JP5315179B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP5315179B2
JP5315179B2 JP2009207644A JP2009207644A JP5315179B2 JP 5315179 B2 JP5315179 B2 JP 5315179B2 JP 2009207644 A JP2009207644 A JP 2009207644A JP 2009207644 A JP2009207644 A JP 2009207644A JP 5315179 B2 JP5315179 B2 JP 5315179B2
Authority
JP
Japan
Prior art keywords
refrigerator
compartment
temperature
damper
temperature zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009207644A
Other languages
Japanese (ja)
Other versions
JP2011058686A (en
Inventor
寛人 石渡
陽平 門傳
誠 芦田
良二 河井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2009207644A priority Critical patent/JP5315179B2/en
Publication of JP2011058686A publication Critical patent/JP2011058686A/en
Application granted granted Critical
Publication of JP5315179B2 publication Critical patent/JP5315179B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator improved in inner volume efficiency and energy-saving performance with respect to the refrigerator including a damper for controlling air distribution to food storage compartments. <P>SOLUTION: This refrigerator includes a freezing temperature-zone compartment and a refrigerating temperature-zone compartment sectioned and formed in a refrigerator body to store foods, a cooler in which cold air for cooling the freezing temperature-zone compartment and the refrigerating temperature-zone compartment exchanges heat, a cooler receiving compartment in which the cooler is disposed, an inside fan for distributing the cold air exchanging heat by the cooler to the freezing temperature-zone compartment and the refrigerating temperature-zone compartment, a fan cover disposed while covering the inside fan and having an opening communicated with the freezing temperature-zone compartment or the freezing temperature-zone compartment, and the damper disposed on the opening of the fan cover for controlling the air distribution, and the fan cover has an air trunk gradually enlarged from the upstream to the downstream in the rotating direction of the inside fan, and has the opening at the downstream of the air trunk. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、冷蔵庫に関する。   The present invention relates to a refrigerator.

特許文献1には、冷却器で熱交換した冷気が送風機で送風され、冷凍室ダクトを介して、冷凍室の背面側に多段に設けられた吹き出し口から冷凍室に吹き出される構成が記載されている。   Patent Document 1 describes a configuration in which cold air heat-exchanged by a cooler is blown by a blower, and blown out from a blowout port provided in multiple stages on the back side of the freezer compartment to a freezer compartment via a freezer compartment duct. ing.

特開2009−14320号公報JP 2009-14320 A

しかしながら、特許文献1に記載の冷蔵庫は、送風機によって形成される冷気流れに対して十分な配慮がされていない。そのため、流れの損失が大きく、必要風量を得るための庫内ファン動力が大きくなる、という課題があった。   However, in the refrigerator described in Patent Document 1, sufficient consideration is not given to the cold air flow formed by the blower. Therefore, there has been a problem that the loss of the flow is large, and the power of the internal fan for obtaining the necessary air volume becomes large.

本発明は以上のような問題点に鑑みてなされたものであり、冷気流れの損失を抑え、省エネルギー性の向上した冷蔵庫を得ることを目的とする。   This invention is made | formed in view of the above problems, and it aims at obtaining the refrigerator which suppressed the loss of cold air flow and improved energy saving property.

上記課題を解決するために、本発明は、冷蔵庫本体に区画形成されて夫々食品を収納する冷凍温度帯室及び冷蔵温度帯室と、前記冷凍温度帯室及び前記冷蔵温度帯室を冷却する冷気が熱交換される冷却器と、前記冷却器が設けられる前記冷凍温度帯室の背部の冷却器収納室と、前記冷却器で熱交換された冷気を前記冷凍温度帯室及び前記冷蔵温度帯室に送風する前記冷却器の上方で鉛直面から背面側に傾斜して配置された庫内ファンと、該庫内ファンの前方を覆うように設けられ前記冷凍温度帯室の上部と連通する開口を有するファンカバーと、前記庫内ファンの上方であって前記ファンカバーの開口に設けられ送風を制御する送風制御手段と、前記冷却器収納室と前記冷凍温度帯室との間のダクトと、を備え、前記ファンカバーは前記庫内ファンの回転方向に上流から下流に次第に拡大する風路を有し、該風路の下流に前記庫内ファン側に傾斜して前記開口が設けられ、前記庫内ファンの前方に位置する前記冷凍温度帯室へ冷気を吹き出す吹き出し口が前記開口の上方に設けられたことを特徴とする。 In order to solve the above-described problems, the present invention provides a freezing temperature zone and a refrigeration temperature zone that are partitioned in the refrigerator main body to store foods, and cool air that cools the freezing temperature zone and the refrigeration temperature zone, respectively. A cooler in which heat is exchanged, a cooler storage chamber at the back of the freezing temperature zone chamber in which the cooler is provided, and cold air heat-exchanged by the cooler in the freezing temperature zone chamber and the refrigeration temperature zone chamber An internal fan that is disposed above the cooler that is inclined to the back side from the vertical surface, and an opening that is provided so as to cover the front of the internal fan and communicates with the upper portion of the freezing temperature zone chamber. A fan cover having a fan control unit that is provided above the internal fan and that is provided in the opening of the fan cover and controls air flow, and a duct between the cooler storage chamber and the freezing temperature zone chamber. And the fan cover is in the cabinet. Has the air passage gradually expanding from the upstream to the downstream in the rotational direction of the § down, the opening is provided to be inclined in the in-compartment fan side downstream of 該風Ro, said to be located ahead of the in-compartment fan An air outlet for blowing cold air into the freezing temperature zone is provided above the opening .

また、前記風路は5度〜20度の範囲で該風路を拡大する拡大角度を有することを特徴とする。   In addition, the air passage has an expansion angle for enlarging the air passage in a range of 5 degrees to 20 degrees.

また、前記風路は上流から下流まで180度又は180度よりも大きい角度を有することを特徴とする。   The air passage has an angle greater than 180 degrees or greater than 180 degrees from upstream to downstream.

また、前記ファンカバーは前記庫内ファンと対向する位置に窪みを有することを特徴とする。   Further, the fan cover has a recess at a position facing the internal fan.

また、前記開口は横長であって該開口の長手方向が前記風路の下流且つ前記庫内ファンの上方に位置することを特徴とする。   The opening is horizontally long, and the longitudinal direction of the opening is located downstream of the air passage and above the internal fan.

本発明によれば、冷気流れの損失を抑え、省エネルギー性の向上した冷蔵庫を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the loss of cold air flow can be suppressed and the refrigerator which improved energy saving property can be obtained.

本発明の実施形態に係る冷蔵庫の正面外形図。The front external view of the refrigerator which concerns on embodiment of this invention. 本発明の実施形態に係る冷蔵庫の庫内の構成を表す図1のX−X断面図。XX sectional drawing of FIG. 1 showing the structure in the refrigerator compartment which concerns on embodiment of this invention. 本発明の実施形態に係る冷蔵庫の庫内の構成を表す正面図。The front view showing the structure in the refrigerator compartment which concerns on embodiment of this invention. 図2の要部拡大説明図。The principal part expansion explanatory drawing of FIG. 図3の要部拡大説明図。The principal part expansion explanatory drawing of FIG. 本発明の実施形態に係る冷蔵庫の制御を表すフローチャート。The flowchart showing control of the refrigerator which concerns on embodiment of this invention. 本発明の実施形態に係る冷蔵庫の制御を表すタイムチャート。The time chart showing control of the refrigerator which concerns on embodiment of this invention. 本発明の実施形態に係る冷蔵庫の送風機周辺構造を表す正面図。The front view showing the fan peripheral structure of the refrigerator which concerns on embodiment of this invention. 本発明の実施形態に係る冷蔵庫の送風機周辺構造を表す縦断面図。The longitudinal cross-sectional view showing the fan peripheral structure of the refrigerator which concerns on embodiment of this invention. 本発明の実施形態に係る冷蔵庫の冷凍室ダンパを表す斜視図。The perspective view showing the freezer compartment damper of the refrigerator which concerns on embodiment of this invention. 送風機の流量−静圧特性を表す図。The figure showing the flow volume-static pressure characteristic of an air blower. 風路抵抗が小さい場合における送風機の入口速度と出口速度を表す図。The figure showing the inlet speed and outlet speed of a fan in case air path resistance is small. 風路抵抗が大きい場合における送風機の入口速度と出口速度を表す図。The figure showing the inlet speed and outlet speed of an air blower in case air path resistance is large. 送風機周辺構造を背面側から見た分解斜視図。The disassembled perspective view which looked at the air blower periphery structure from the back side.

本発明に係る冷蔵庫の実施形態を、図1から図13を参照しながら説明する。   An embodiment of a refrigerator according to the present invention will be described with reference to FIGS. 1 to 13.

図1は、本実施形態の冷蔵庫1の正面外形図であり、図2は、冷蔵庫1の庫内の構成を表す図1におけるX−X縦断面図であり、図3は、冷蔵庫1の庫内の構成を表す正面図であり、冷気ダクトや吹き出し口の配置などを示す図であり、図4は図2の要部拡大説明図である。図5は図3の要部拡大説明図である。   FIG. 1 is a front external view of a refrigerator 1 according to the present embodiment, FIG. 2 is a vertical sectional view taken along line XX in FIG. 1 showing a configuration inside the refrigerator 1, and FIG. FIG. 4 is a front view showing the internal configuration, showing the arrangement of the cold air duct and the outlet, and FIG. 4 is an enlarged explanatory view of the main part of FIG. FIG. 5 is an enlarged explanatory view of the main part of FIG.

図1に示すように、本実施形態の冷蔵庫1は、食品収納室として、上方から、冷蔵室2,製氷室3,上段冷凍室4,下段冷凍室5,野菜室6を備えている。なお、以下本明細書中では、製氷室3と上段冷凍室4と下段冷凍室5の総称として冷凍温度帯室60、冷蔵室2と野菜室6の総称として冷蔵温度帯室61と呼ぶことがある。   As shown in FIG. 1, the refrigerator 1 of this embodiment is equipped with the refrigerator compartment 2, the ice-making room 3, the upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6 from upper direction as a food storage room. In the following description, the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5 are collectively referred to as a freezing temperature zone 60, and the refrigerating chamber 2 and vegetable room 6 are collectively referred to as a refrigerating temperature zone 61. is there.

冷蔵室2は前方側に、左右に分割された観音開きの冷蔵室扉2a,2bを備え、製氷室3,上段冷凍室4,下段冷凍室5,野菜室6は、それぞれ引き出し式の製氷室扉3a,上段冷凍室扉4a,下段冷凍室扉5a,野菜室扉6aを備えている。以下では、冷蔵室扉2a,2b,製氷室扉3a,上段冷凍室扉4a,下段冷凍室扉5a,野菜室扉6aを単に扉2a,2b,3a,4a,5a,6aと称する。   The refrigerating room 2 includes front and rear refrigerating room doors 2a and 2b which are divided into left and right sides. The ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6 are each a drawer-type ice making room door. 3a, an upper freezer compartment door 4a, a lower freezer compartment door 5a, and a vegetable compartment door 6a. Hereinafter, the refrigerator compartment doors 2a and 2b, the ice making compartment door 3a, the upper freezer compartment door 4a, the lower freezer compartment door 5a, and the vegetable compartment door 6a are simply referred to as doors 2a, 2b, 3a, 4a, 5a, and 6a.

また、冷蔵庫1は、扉2a,2b,3a,4a,5a,6aの各扉の開閉状態をそれぞれ検知する図示しない扉センサと、扉開放状態と判定された状態が所定時間、例えば、1分間以上継続された場合に、使用者に報知する図示しないアラーム、冷蔵室2や野菜室6の温度設定や冷凍温度帯室60の温度設定をする図示しない温度設定器等を備えている。   The refrigerator 1 includes a door sensor (not shown) that detects the open / closed state of each door of the doors 2a, 2b, 3a, 4a, 5a, and 6a, and a state determined to be the door open state for a predetermined time, for example, 1 minute. When the operation is continued, an alarm (not shown) for notifying the user, a temperature setting device (not shown) for setting the temperature of the refrigerator compartment 2 and the vegetable compartment 6 and the temperature setting of the freezing temperature zone 60 are provided.

図2に示すように、冷蔵庫1の庫外と庫内は、発泡断熱材(発泡ポリウレタン)を充填することにより形成される断熱箱体10により隔てられている。冷蔵庫1の断熱箱体10は真空断熱材25を実装している。   As shown in FIG. 2, the outside of the refrigerator 1 and the inside of the refrigerator are separated by a heat insulating box 10 formed by filling a foam heat insulating material (foamed polyurethane). The heat insulating box 10 of the refrigerator 1 is mounted with a vacuum heat insulating material 25.

庫内は、断熱仕切壁28により冷蔵室2と、上段冷凍室4及び製氷室3(図1参照、図2中で製氷室3は図示されていない)とが隔てられ、断熱仕切壁29により、下段冷凍室5と野菜室6とが隔てられている。   The inside of the refrigerator is separated from the refrigerator compartment 2 by the heat insulating partition wall 28, the upper freezing chamber 4 and the ice making chamber 3 (see FIG. 1, the ice making chamber 3 is not shown in FIG. 2). The lower freezer compartment 5 and the vegetable compartment 6 are separated.

扉2a,2b(図1参照)の庫内側には複数の扉ポケット32が備えられている。また、冷蔵室2は複数の棚36により縦方向に複数の貯蔵スペースに区画されている。   A plurality of door pockets 32 are provided on the inner side of the doors 2a and 2b (see FIG. 1). The refrigerator compartment 2 is partitioned into a plurality of storage spaces in the vertical direction by a plurality of shelves 36.

図2に示すように、上段冷凍室4,下段冷凍室5及び野菜室6は、それぞれの室の前方に備えられた扉4a,5a,6aと一体に引き出される、収納容器4b,5b,6bがそれぞれ設けられており、扉4a,5a,6aの図示しない取手部に手を掛けて手前側に引き出すことにより収納容器4b,5b,6bが引き出せるようになっている。図1に示す製氷室3にも同様に、扉3aと一体に、図示しない収納容器(図2中(3b)で表示)が設けられ、扉3aの図示しない取手部に手を掛けて手前側に引き出すことにより収納容器3bが引き出せるようになっている。なお上段冷凍室4は、急速冷凍室として使用できる。急速冷凍性能の向上のために、上段冷凍室4の収納容器4bには図示しないアルミトレーが備えられており、冷凍速度が向上するようになっている。   As shown in FIG. 2, the upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6 are withdrawn integrally with doors 4a, 5a, 6a provided in front of the respective compartments, and storage containers 4b, 5b, 6b. Are respectively provided, and the storage containers 4b, 5b, 6b can be pulled out by putting a hand on a handle portion (not shown) of the doors 4a, 5a, 6a and pulling it out to the front side. Similarly, the ice making chamber 3 shown in FIG. 1 is provided with an unillustrated storage container (indicated by (3b) in FIG. 2) integrally with the door 3a. The container 3b can be pulled out by pulling it out. The upper freezer compartment 4 can be used as a quick freezer compartment. In order to improve the quick freezing performance, the storage container 4b of the upper freezer compartment 4 is provided with an aluminum tray (not shown) so that the freezing speed is improved.

図2に示すように(適宜図3〜図5参照)、冷却器7は下段冷凍室5の略背部に備えられた冷却器収納室8内に設けられており、冷却器7の上方に設けられた送風機9により冷却器7と熱交換して冷やされた空気(冷気、以下、冷却器7で冷やされてできた低温空気を冷気と称する)が冷蔵室ダクト11,冷凍室ダクト12を介して、冷蔵室2,上段冷凍室4,下段冷凍室5,製氷室3の各室へ送られる。各室への送風は冷蔵室ダンパ20と冷凍室ダンパ50の開閉により制御される。   As shown in FIG. 2 (refer to FIGS. 3 to 5 as appropriate), the cooler 7 is provided in a cooler storage chamber 8 provided substantially at the back of the lower freezing chamber 5 and provided above the cooler 7. The air that has been cooled by exchanging heat with the cooler 7 by the blower 9 (cold air; hereinafter, low-temperature air that has been cooled by the cooler 7 is referred to as cold air) passes through the refrigerator compartment duct 11 and the freezer compartment duct 12. Then, it is sent to the refrigerator compartment 2, the upper freezer compartment 4, the lower freezer compartment 5, and the ice making room 3. Air blowing to each room is controlled by opening and closing the refrigerator compartment damper 20 and the freezer compartment damper 50.

ちなみに、冷蔵室ダクト11,冷凍室ダクト12は、図3に破線で示すように冷蔵庫1の各室の背面側に設けられている。   Incidentally, the refrigerator compartment duct 11 and the freezer compartment duct 12 are provided on the back side of each room of the refrigerator 1 as indicated by broken lines in FIG.

具体的には、冷蔵室ダンパ20が開状態、冷凍室ダンパ50が閉状態のときには、冷気は、冷蔵室ダクト11を経て多段に設けられた吹き出し口2cから冷蔵室2に送られる。
冷気は、冷蔵室2の冷却を終えた後に、冷蔵室2の背面右側下部に備えられた冷蔵室戻り口2d、から流入し、冷蔵室−野菜室連通ダクト16を介して、野菜室6背面右側上部に設けられた野菜室吹き出し口6cから野菜室6に流入して野菜室6を冷却する。野菜室6を冷却した冷気は、断熱仕切壁29の下部前方に設けられた、野菜室戻り口6dから、野菜室戻りダクト18を介して、冷却器7の幅とほぼ等しい幅の野菜室戻り吹き出し口18aから流入する(図3または図5参照)。
Specifically, when the refrigerator compartment damper 20 is in the open state and the freezer compartment damper 50 is in the closed state, the cold air is sent to the refrigerator compartment 2 from the outlets 2 c provided in multiple stages via the refrigerator compartment duct 11.
After the cooling of the refrigerating room 2 is finished, the cold air flows in from the refrigerating room return port 2d provided at the lower right side of the back side of the refrigerating room 2 and the back of the vegetable room 6 through the refrigerating room-vegetable room communication duct 16. The vegetable compartment 6 is cooled by flowing into the vegetable compartment 6 from the vegetable compartment outlet 6c provided on the upper right side. The cold air that has cooled the vegetable compartment 6 is returned from the vegetable compartment return port 6d provided in front of the lower part of the heat insulating partition wall 29 through the vegetable compartment return duct 18, and returned to the vegetable compartment having a width substantially equal to the width of the cooler 7. It flows in from the outlet 18a (see FIG. 3 or FIG. 5).

図3では冷凍室ダンパ50が省略されているが、冷凍室ダンパ50が開状態のとき、冷却器7で熱交換された冷気が送風機9により昇圧され、冷凍室ダクト12を経て吹き出し口3c,4c,5cからそれぞれ製氷室3,上段冷凍室4,下段冷凍室5へ送風される。なお、図3に示すとおり、本実施形態の冷蔵庫1では、冷凍温度帯室60の吹き出し口3c〜5cは、計7個備えられており、吹き出し口3c〜5cの周長の合計は1200mmである。   Although the freezer damper 50 is omitted in FIG. 3, when the freezer damper 50 is in an open state, the cold air heat-exchanged by the cooler 7 is boosted by the blower 9, passes through the freezer duct 12, The air is blown from 4c and 5c to the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5, respectively. In addition, as shown in FIG. 3, in the refrigerator 1 of this embodiment, a total of seven outlets 3c to 5c of the freezing temperature zone 60 are provided, and the total circumference of the outlets 3c to 5c is 1200 mm. is there.

図4に示すように本実施形態の冷蔵庫1では、冷却器7の上方に送風機9を設け、送風機9の上方に冷凍室ダンパ50を設けている。さらに、冷凍室ダンパ50の上方に冷凍温度帯室60の上段に位置する上段冷凍室4に冷気を送り出す上段冷凍室吹き出し口4cと製氷室吹き出し口3c(図3参照)が備えられている。なお、上段冷凍室吹き出し口4cは、冷凍室の吹き出し口の中で最も開口面積が大きくなっている。   As shown in FIG. 4, in the refrigerator 1 of the present embodiment, a blower 9 is provided above the cooler 7, and a freezer compartment damper 50 is provided above the blower 9. Further, an upper freezer compartment outlet 4c and an ice making room outlet 3c (see FIG. 3) for sending cold air to the upper freezer compartment 4 located above the freezer temperature zone 60 are provided above the freezer damper 50. The upper freezer compartment outlet 4c has the largest opening area among the outlets of the freezer compartment.

図5に示すように、冷蔵室2を冷却した冷気は、冷却器収納室8の側方に備えられた冷蔵室−野菜室連通ダクト16を通って、野菜室6に流入する。野菜室6からの戻り冷気は、野菜室戻り口6d(図2参照)から流入し、図4に示すように、断熱仕切壁29の中に設けられた野菜室戻りダクト18を通って、冷却器収納室8の下部前方に設けられた、冷却器7の幅とほぼ等しい幅寸法の野菜室戻り吹き出し口18a(図5参照)から、冷却器収納室8に流入する。一方、冷凍温度帯室60を冷却した冷気は、図4に示すように、冷却器収納室8と冷凍温度帯室60を仕切る仕切板54の下部に備えられた、冷却器7の幅とほぼ等しい幅寸法の冷凍室戻り口17を介して冷却器収納室8に流入する。なお、冷却器収納室8の下方には、除霜ヒータ22が備えられている。除霜ヒータ22は、ガラス管ヒータであり、ガラス管の外周にはアルミニウム製の放熱フィン22aが備えられている。   As shown in FIG. 5, the cold air that has cooled the refrigerator compartment 2 flows into the vegetable compartment 6 through the refrigerator compartment-vegetable compartment communication duct 16 provided on the side of the cooler storage compartment 8. The return cold air from the vegetable compartment 6 flows in from the vegetable compartment return port 6d (see FIG. 2), and cools through the vegetable compartment return duct 18 provided in the heat insulating partition wall 29 as shown in FIG. It flows into the cooler storage chamber 8 from the vegetable room return outlet 18a (see FIG. 5) provided in front of the lower portion of the cooler storage chamber 8 and having a width approximately equal to the width of the cooler 7. On the other hand, as shown in FIG. 4, the cold air that has cooled the refrigeration temperature zone chamber 60 is approximately equal to the width of the cooler 7 provided at the lower part of the partition plate 54 that partitions the cooler storage chamber 8 and the refrigeration temperature zone chamber 60. It flows into the cooler storage chamber 8 through the freezer return port 17 having the same width. A defrost heater 22 is provided below the cooler storage chamber 8. The defrost heater 22 is a glass tube heater, and an aluminum radiating fin 22a is provided on the outer periphery of the glass tube.

除霜ヒータ22の上方には、除霜水が除霜ヒータ22に滴下することを防止するために、上部カバー53が設けられている。また、図5に示すとおり、冷却器収納室8の下部前方には、冷却器7の除霜中の上昇気流が流入する空間である、暖気収納スペース26が設けられている。この暖気収納スペース26によって、除霜ヒータ22に通電することによって実施される除霜運転中に生じる暖気(上昇気流)が、冷凍温度帯室60に流入することを抑えることができる。   An upper cover 53 is provided above the defrost heater 22 in order to prevent defrost water from dripping onto the defrost heater 22. In addition, as shown in FIG. 5, a warm air storage space 26 is provided in front of the lower portion of the cooler storage chamber 8. The warm air storage space 26 is a space into which the ascending air current during the defrosting of the cooler 7 flows. The warm air storage space 26 can suppress warm air (updraft) generated during the defrosting operation performed by energizing the defrost heater 22 from flowing into the refrigeration temperature zone chamber 60.

冷却器7及びその周辺の冷却器収納室8の壁に付着した霜は、除霜運転時に解かされ、その際に生じた除霜水は冷却器収納室8の下部に備えられた樋23に流入した後に、排水管27を介して後記する機械室19に配された蒸発皿21に達し、圧縮機24及び、機械室19内に配設される図示しない凝縮器及び圧縮機24の発熱により蒸発させられる。   The frost adhering to the wall of the cooler 7 and the surrounding cooler storage chamber 8 is dissolved at the time of the defrosting operation, and the defrost water generated at that time is stored in the bowl 23 provided at the lower part of the cooler storage chamber 8. After flowing in, it reaches an evaporating dish 21 disposed in a machine room 19 to be described later via a drain pipe 27, and generates heat by the compressor 24 and a condenser (not shown) disposed in the machine room 19 and the compressor 24. Evaporate.

また、冷却器7の正面から見て左上部には冷却器7に取り付けられた冷却器温度センサ35,冷蔵室2には冷蔵室温度センサ33,下段冷凍室5には冷凍室温度センサ34がそれぞれ備えられており、それぞれ冷却器7の温度(以下、冷却器温度と称する)、冷蔵室2の温度(以下、冷蔵室温度と称する)、下段冷凍室5の温度(以下、冷凍室温度と称する)を検知できるようになっている。更に、冷蔵庫1は、庫外の温度を検知する図示しない外気温度センサを備えている。なお、野菜室6にも野菜室温度センサ33aが配置してある。   A cooler temperature sensor 35 attached to the cooler 7 is located at the upper left as viewed from the front of the cooler 7. The temperature of the cooler 7 (hereinafter referred to as “cooler temperature”), the temperature of the refrigerator compartment 2 (hereinafter referred to as “refrigerator compartment temperature”), and the temperature of the lower freezer compartment 5 (hereinafter referred to as “freezer compartment temperature”). Can be detected). Furthermore, the refrigerator 1 includes an outside temperature sensor (not shown) that detects the temperature outside the refrigerator. The vegetable compartment 6 is also provided with a vegetable compartment temperature sensor 33a.

ちなみに、本実施形態では、イソブタンを冷媒として用い、冷媒封入量は約80gと少量にしている。   Incidentally, in this embodiment, isobutane is used as a refrigerant, and the amount of refrigerant enclosed is as small as about 80 g.

冷蔵庫1の天井壁上面側にはCPU,ROMやRAM等のメモリ、インターフェース回路等を搭載した制御基板31が配置されており(図2参照)、制御基板31は、前記した外気温度センサ,冷却器温度センサ35,冷蔵室温度センサ33,野菜室温度センサ33a,冷凍室温度センサ34,扉2a,2b,3a,4a,5a,6aの各扉の開閉状態をそれぞれ検知する前記した扉センサ、冷蔵室2内壁に設けられた図示しない温度設定器等と接続し、前記ROMに予め搭載されたプログラムにより、圧縮機24のON,OFF等の制御、冷蔵室ダンパ20及び冷凍室ダンパ50を個別に駆動する図示省略のそれぞれのアクチュエータの制御、送風機のON/OFF制御や回転速度制御、前記した扉開放状態を報知するアラームのON/OFF等の制御を行う。   A control board 31 on which a CPU, a memory such as a ROM and a RAM, an interface circuit, and the like are mounted is arranged on the upper surface of the ceiling wall of the refrigerator 1 (see FIG. 2). Temperature sensor 35, refrigerator temperature sensor 33, vegetable room temperature sensor 33a, freezer temperature sensor 34, door sensor for detecting the open / closed state of each door of doors 2a, 2b, 3a, 4a, 5a, 6a, Connected to a temperature setter (not shown) provided on the inner wall of the refrigerator compartment 2, and controls the ON / OFF of the compressor 24, the refrigerator compartment damper 20 and the freezer compartment damper 50 individually by a program preinstalled in the ROM. ON / OFF control of each actuator (not shown) that is driven to ON, ON / OFF control and rotation speed control of the blower, and ON / O of an alarm that informs the door open state described above It performs the control of F, and the like.

次に、本実施形態の冷蔵庫1の送風機9と冷凍室ダンパ50周辺の詳細構造について図8〜図10及び図13を参照しながら説明する。   Next, the detailed structure around the blower 9 and the freezer compartment damper 50 of the refrigerator 1 of the present embodiment will be described with reference to FIGS. 8 to 10 and FIG. 13.

図8は、本実施形態の冷蔵庫1の送風機9と冷凍室ダンパ50周辺の構造を正面から見た図、図9は、本実施形態の冷蔵庫1の送風機9と冷凍室ダンパ50周辺の構造を側方から見た縦断面図である。また、図10は本実施形態の冷蔵庫1の冷凍室ダンパ50の斜視図、図13は送風機9周辺構造を背面側から見た分解斜視図である。   FIG. 8 is a front view of the structure around the blower 9 and the freezer damper 50 of the refrigerator 1 according to the present embodiment. FIG. 9 shows the structure around the blower 9 and the freezer damper 50 of the refrigerator 1 according to the present embodiment. It is the longitudinal cross-sectional view seen from the side. FIG. 10 is a perspective view of the freezer damper 50 of the refrigerator 1 of the present embodiment, and FIG. 13 is an exploded perspective view of the peripheral structure of the blower 9 as seen from the back side.

本実施形態の冷蔵庫1で使用する冷凍室ダンパ50は、図10に示すとおり、開口102を一面に備えた、例えば樹脂製の一体成形された横長のフレーム103と、フレーム103の一端(長方形状の短手部)にモータや減速歯車などの駆動系を内蔵した駆動手段100を備えるものである。開閉板104の一面には、例えば発泡ウレタンや発泡ポリエチレンといった柔軟な材料で成形された緩衝部材104aを備えている。冷凍室ダンパ50は、フレーム103の開口102近傍の内側の面(開閉板と対向する側の面)103aに、緩衝部材104aが押し付けられることにより閉状態となる。したがって、そのシール性能は、開口102の周長102aに依存する。ここで、開口102にはフレーム103の上辺と下辺が連結する連結部103bが備えられているが、これは、変形抑制のために備えられるものであり、シール性能に直接寄与するものではない。したがって、冷凍室ダンパ50のシール性能を考える際の、開口102の周長102aには、シール性能に直接寄与しない連結部103bの長さは含まない。なお、本実施形態の冷蔵庫1で使用する冷凍室ダンパ50の開口102の大きさは、180mm×35mmであり、シール性能に寄与す
る周長102aは430mmである。また、開口102の外周には、冷凍室ダンパ50取り
付け時の位置合せと、開口102の補強を兼ねたリブ103cが備えられている。
As shown in FIG. 10, a freezer damper 50 used in the refrigerator 1 according to the present embodiment includes a horizontally elongated frame 103 made of, for example, resin, having an opening 102 on one side, and one end (rectangular shape) of the frame 103. The driving means 100 includes a driving system such as a motor and a reduction gear. One surface of the opening / closing plate 104 includes a buffer member 104a formed of a flexible material such as urethane foam or polyethylene foam. The freezer compartment damper 50 is closed when the buffer member 104a is pressed against the inner surface (the surface facing the opening / closing plate) 103a in the vicinity of the opening 102 of the frame 103. Therefore, the sealing performance depends on the peripheral length 102 a of the opening 102. Here, the opening 102 is provided with a connecting portion 103b where the upper side and the lower side of the frame 103 are connected, but this is provided for suppressing deformation and does not directly contribute to the sealing performance. Therefore, when considering the sealing performance of the freezer damper 50, the peripheral length 102a of the opening 102 does not include the length of the connecting portion 103b that does not directly contribute to the sealing performance. In addition, the magnitude | size of the opening 102 of the freezer damper 50 used with the refrigerator 1 of this embodiment is 180 mm x 35 mm, and the perimeter 102a which contributes to sealing performance is 430 mm. Further, a rib 103c is provided on the outer periphery of the opening 102. The rib 103c serves as both a positioning when the freezer compartment damper 50 is attached and a reinforcement of the opening 102.

図8中に示すように、本実施形態の冷蔵庫1の送風機は、ケーシング9aの形状が略方形であり、ボス部にモータを備えたモータ一体型のプロペラファンである。送風機9の吐出側は、冷気を集約する冷気集約ダクト13を形成すべくファンカバー70が備えられている。ファンカバー70は、送風機9の前方を覆うように設けられている。冷気集約ダクト13の外周部13aは、送風機9の回転中心から外周部13aまでの距離が、最小となる位置(図8中に示した最小寸法位置)から、庫内ファン回転方向に上流から下流に向けて次第に拡大するように拡大風路13bとなっている。   As shown in FIG. 8, the blower of the refrigerator 1 of the present embodiment is a motor-integrated type propeller fan in which the shape of the casing 9 a is substantially square and the boss portion includes a motor. A fan cover 70 is provided on the discharge side of the blower 9 so as to form a cold air collecting duct 13 for collecting cold air. The fan cover 70 is provided so as to cover the front of the blower 9. The outer peripheral portion 13a of the cold air collecting duct 13 is from upstream to downstream in the direction of rotation of the internal fan from the position where the distance from the rotation center of the blower 9 to the outer peripheral portion 13a is minimum (minimum dimension position shown in FIG. 8). It becomes the expansion wind path 13b so that it may expand gradually toward.

なお、冷気集約ダクト13の外周部13aは、式(1)に基づいて、図8中に示した最小寸法位置から、拡大角γ1で拡大するようになっている。 Note that the outer peripheral portion 13a of the cold air collecting duct 13 expands at the expansion angle γ 1 from the minimum dimension position shown in FIG. 8 based on the formula (1).

Figure 0005315179
Figure 0005315179

ここで、Rminは送風機9の回転中心から外周部13aまでの距離の最小寸法、γ1は流路拡大角、γ2は図8中に示した最小寸法位置から庫内ファン回転方向にとった角度である。具体的には本実施形態の冷蔵庫では、Rmin=140mm,γ1=10度,γ2=200度となっている。 Here, R min is the minimum dimension of the distance from the rotation center of the blower 9 to the outer peripheral portion 13a, γ 1 is the flow path enlargement angle, and γ 2 is the minimum dimension position shown in FIG. Angle. Specifically, in the refrigerator of this embodiment, R min = 140 mm, γ 1 = 10 degrees, and γ 2 = 200 degrees.

また、本実施形態の冷蔵庫1では、冷気集約ダクト13の拡大風路13bは、庫内ファン回転中心から風路外周壁までの距離が、最小となる位置から、庫内ファン回転方向に180度以上有している。   Further, in the refrigerator 1 of the present embodiment, the enlarged air passage 13b of the cold air collecting duct 13 is 180 degrees in the direction of rotation of the internal fan from the position where the distance from the internal fan rotation center to the air passage outer peripheral wall is minimized. Have more.

すなわち、拡大風路13bは、始端(上流)から終端(下流)まで180度又は180度よりも大きい角度を有する。また、出口開口13cは、横長であって該出口開口13cの長手方向が拡大風路13bの終端(下流)に位置する。また、ファンカバー70は、送風機9に対向する位置に窪み70aを有し、当該窪みの周囲に拡大風路13bが設けられている。すなわち、拡大風路13bを冷気が流れて整流されることで、出口開口13bをスムーズに通過して、上段冷凍室4に流入する。これにより、上段冷凍室4の冷却効率を向上することができる。   That is, the enlarged air passage 13b has an angle larger than 180 degrees or 180 degrees from the start end (upstream) to the end end (downstream). The outlet opening 13c is horizontally long, and the longitudinal direction of the outlet opening 13c is located at the end (downstream) of the enlarged air passage 13b. The fan cover 70 has a recess 70 a at a position facing the blower 9, and an enlarged air passage 13 b is provided around the recess. That is, the cold air flows through the enlarged air passage 13b and is rectified, so that it smoothly passes through the outlet opening 13b and flows into the upper freezer compartment 4. Thereby, the cooling efficiency of the upper freezer compartment 4 can be improved.

また、図4に示すように、ファンカバー70の前方を覆うように、冷凍室ダクト12が設けられている。すなわち、冷却器収納室8と上段冷凍室4及び下段冷凍室5との間に、冷気集約ダクト13及び冷凍室ダクト12が配置される。これにより、空気断熱層が貯蔵空間の後方に形成されるため、上段冷凍室4及び下段冷凍室5が冷却器収納室8から受ける熱影響(例えば、冷却器7の除霜運転時の温度上昇等による影響)は抑制され、貯蔵空間の温度変化を抑制できる。   Moreover, as shown in FIG. 4, the freezer compartment duct 12 is provided so that the front of the fan cover 70 may be covered. That is, the cool air collecting duct 13 and the freezer compartment duct 12 are disposed between the cooler storage chamber 8 and the upper freezer compartment 4 and the lower freezer compartment 5. As a result, an air insulation layer is formed behind the storage space, so that the upper freezing chamber 4 and the lower freezing chamber 5 are affected by heat from the cooler storage chamber 8 (for example, the temperature rise during the defrosting operation of the cooler 7). Etc.) is suppressed, and the temperature change of the storage space can be suppressed.

また、図8中に示すとおり、送風機9は水平面から角度β1(本実施形態の冷蔵庫1ではβ1は10度)だけ傾斜させて配設している。   Further, as shown in FIG. 8, the blower 9 is disposed to be inclined from the horizontal plane by an angle β1 (β1 is 10 degrees in the refrigerator 1 of the present embodiment).

図9に示すとおり、冷凍室ダンパ50は、開口102が略前方に向くように配設しているが、その配設位置は、冷凍室ダンパ50のリブ103cを、図8に示す冷気集約ダクト13の出口開口13c(出口開口13cは冷凍室ダンパ50の開口102より大きい)に一致させることで容易に定まるようになっている。また、図9に示すとおり、冷凍室ダンパ50は、回転軸101が、上側になるように配設してある。さらに、冷凍室ダンパ50の開閉板104は、背面側に開き、その開角度θは、運転状態によって異なり、0度(全閉),60度,90度(全開)の状態で使用される(運転状態と開角度の関係の詳細は後述)。   As shown in FIG. 9, the freezer compartment damper 50 is arranged so that the opening 102 faces substantially forward, but the arrangement position is such that the rib 103 c of the freezer compartment damper 50 is connected to the cold air collecting duct shown in FIG. 8. It is easily determined by matching with the 13 outlet openings 13c (the outlet opening 13c is larger than the opening 102 of the freezer damper 50). Moreover, as shown in FIG. 9, the freezer damper 50 is arrange | positioned so that the rotating shaft 101 may become an upper side. Furthermore, the open / close plate 104 of the freezer damper 50 opens to the back side, and the opening angle θ varies depending on the operating state, and is used in a state of 0 degrees (fully closed), 60 degrees, and 90 degrees (fully opened) ( Details of the relationship between the operating state and the opening angle will be described later).

図8に示すとおり、冷凍室ダンパ50は、水平面から角度β2(本実施形態の冷蔵庫1ではβ2は6度)だけ傾斜させて設置するようにしている。また、図9に示すとおり、送風機9は、角度α1(本実施形態の冷蔵庫1ではα1は13度)だけ後方に傾斜、冷凍室ダンパ50は角度α2(本実施形態の冷蔵庫1ではα2は6度)だけ後方に傾斜して設置するようにしている。   As shown in FIG. 8, the freezer damper 50 is installed to be inclined from the horizontal plane by an angle β2 (β2 is 6 degrees in the refrigerator 1 of the present embodiment). 9, the blower 9 is inclined backward by an angle α1 (α1 is 13 degrees in the refrigerator 1 of the present embodiment), and the freezer damper 50 is angled α2 (α2 is 6 in the refrigerator 1 of the present embodiment). It is designed to be tilted backward by a degree.

なお、冷気集約ダクト13の出口開口13cの大きさは、188.5mm×43mmであり
、その周長13dは、463mmである。
The size of the outlet opening 13c of the cold air collecting duct 13 is 188.5 mm × 43 mm, and its peripheral length 13d is 463 mm.

ファンホールド71には、冷気集約ダクト13と、冷却器収納室8とが連通する連通孔75が設けられている。なお、連通孔75は、冷気集約ダクト13内の下端に位置するように設けている。   The fan hold 71 is provided with a communication hole 75 through which the cold air collecting duct 13 and the cooler storage chamber 8 communicate. The communication hole 75 is provided at the lower end in the cold air collecting duct 13.

また、冷気集約ダクト13内(ファンカバー内面70a)の送風機9の下部の領域には、ファンカバーヒータ76が配設されている。なお、ファンカバーヒータ76は、図9に示すとおり、冷気集約ダクト13内から、連通孔75を経て、冷却器室8内に延伸させた部分76aを有している。   In addition, a fan cover heater 76 is disposed in a region below the blower 9 in the cold air collecting duct 13 (fan cover inner surface 70a). As shown in FIG. 9, the fan cover heater 76 has a portion 76 a that extends from the inside of the cool air collecting duct 13 through the communication hole 75 into the cooler chamber 8.

なお、図13に示すとおり、ファンカバー70は仕切板54と一体成型品となっている。また、送風機9を保持する部材(ファンホールド71)は、ファンカバー70とは別体となっており、図13に示すようにファンカバーの背面側に組みつけられる。   As shown in FIG. 13, the fan cover 70 is an integrally molded product with the partition plate 54. Further, the member (fan hold 71) for holding the blower 9 is separate from the fan cover 70, and is assembled to the back side of the fan cover as shown in FIG.

次に、本実施形態の冷蔵庫1の冷却運転の制御について図6を参照しながら説明する。
図6は本実施形態の冷蔵庫1の基本的な制御を表す制御フローチャートである。制御は、制御基板31(図2参照)のCPUがROMに格納されたプログラムを実行することによって行われる。
Next, control of the cooling operation of the refrigerator 1 of the present embodiment will be described with reference to FIG.
FIG. 6 is a control flowchart showing basic control of the refrigerator 1 of the present embodiment. The control is performed by the CPU of the control board 31 (see FIG. 2) executing a program stored in the ROM.

本実施形態の冷蔵庫1の冷却運転は、冷凍室運転,冷蔵室運転,冷蔵冷凍運転,霜冷却運転及びOFFからなる。冷凍室運転とは、「庫内ファンON,冷蔵室ダンパ閉,冷凍室ダンパ開(開角度θ=90度(開角度の定義は図9参照)),圧縮機ON(高回転)」の状態で、冷凍温度帯室60を冷却する運転であり、冷蔵室運転とは、「庫内ファンON,冷蔵室ダンパ開,冷凍室ダンパ閉(開角度θ=0度),圧縮機ON(低回転)」の状態で、冷蔵温度帯室61の冷却を実施する運転、冷蔵冷凍運転とは、「庫内ファンON,冷蔵室ダンパ開,冷凍室ダンパ開(開角度θ=60度),圧縮機ON(高回転)」の状態で、冷蔵温度帯室61と冷凍温度帯室60の両方を冷却する運転である。また、霜冷却運転とは、「庫内ファンON,冷蔵室ダンパ開,冷凍室ダンパ閉,圧縮機OFF」の状態で、冷蔵温度帯室61の冷却を実施する運転であり、OFFは、送風機も圧縮機も停止させ、冷却を行わない状態である。   The cooling operation of the refrigerator 1 of the present embodiment includes a freezer operation, a refrigerating room operation, a refrigerating operation, a frost cooling operation, and OFF. The freezer operation is the state of “fan in the refrigerator ON, refrigerator colder damper closed, freezer damper open (open angle θ = 90 degrees (see FIG. 9 for definition of open angle)), compressor ON (high rotation)” The operation of cooling the refrigeration temperature zone 60 is as follows. The operation of the refrigeration chamber includes “an internal fan ON, a refrigeration chamber damper open, a freezer compartment damper closed (open angle θ = 0 °), and a compressor ON (low rotation). The operation for cooling the refrigeration temperature zone 61 in the state of “)” and the refrigeration / freezing operation are “internal fan ON, refrigeration chamber damper open, freezer compartment damper open (open angle θ = 60 degrees), compressor” This is an operation for cooling both the refrigeration temperature zone chamber 61 and the freezing temperature zone chamber 60 in the “ON (high rotation)” state. The frost cooling operation is an operation for cooling the refrigeration temperature zone chamber 61 in the state of “internal fan ON, refrigeration chamber damper open, freezer compartment damper close, compressor OFF”. And the compressor are stopped and cooling is not performed.

図6に示すように、冷蔵庫1は電源投入により運転が開始され(スタート)、冷蔵庫1の庫内各室が冷却され、基本的な熱負荷が、庫外からの熱侵入のみとなった時点から、それ以降は、ユーザーが扉の開閉を行い熱負荷が増加する、あるいは、庫外温湿度環境が変化して熱侵入量が変化するといったことがなければ、一定の運転パターンを繰り返す(安定冷却運転)。図6では、この安定冷却運転状態に至るまでの制御過程は省略している。
なお、本実施形態の冷蔵庫1の安定した冷却運転時には、野菜室6の温度に基づく制御は行わないので、野菜室6に関する説明は省略する(以下の制御の説明では冷蔵室2の中に野菜室6も含む)。
As shown in FIG. 6, when the refrigerator 1 is started to operate when the power is turned on (start), each chamber in the refrigerator 1 is cooled, and the basic heat load is only the heat intrusion from the outside. From then on, if the user opens and closes the door and the heat load increases, or the outside temperature and humidity environment changes and the amount of heat penetration does not change, a certain operation pattern is repeated (stable Cooling operation). In FIG. 6, the control process up to this stable cooling operation state is omitted.
In addition, at the time of the stable cooling operation of the refrigerator 1 of this embodiment, since control based on the temperature of the vegetable compartment 6 is not performed, description regarding the vegetable compartment 6 is abbreviate | omitted (in the description of the following control, vegetables are contained in the refrigerator compartment 2). Including chamber 6).

安定冷却運転時は、一定の運転パターン(運転サイクル)を繰り返すが、ここでは冷凍室運転が実施されている状態から説明をする(ステップS101)。冷凍室運転とは、「庫内ファンON,冷蔵室ダンパ閉,冷凍室ダンパ開,圧縮機ON(高回転)」の状態で、冷凍温度帯室60の冷却を実施する運転である。   During the stable cooling operation, a constant operation pattern (operation cycle) is repeated. Here, the operation will be described from the state in which the freezer operation is performed (step S101). The freezer operation is an operation in which the freezing temperature zone 60 is cooled in the state of “internal fan ON, refrigerator colder damper closed, freezer damper open, compressor ON (high rotation)”.

冷凍室運転が実施されている状態で、冷蔵室扉2a、あるいは、2bの開閉を検知する冷蔵室扉センサによって冷蔵室扉2a、あるいは、2bの開閉が検知されると(ステップS102)、ステップS201に進む(ステップS201については後述)。冷蔵室扉2a、あるいは、2bの開閉がなければ、続いて、冷蔵室温度センサ33によって検知される冷蔵室温度があらかじめ設定されている冷蔵室上限温度TR_2(本実施形態の冷蔵庫1ではTR_2=6℃)より高いか否かが判定される(ステップS103)。   When opening / closing of the refrigerating room door 2a or 2b is detected by the refrigerating room door sensor that detects opening / closing of the refrigerating room door 2a or 2b in the state where the freezer operation is being performed (step S102), step The process proceeds to S201 (step S201 will be described later). If the refrigerator compartment door 2a or 2b is not opened and closed, the refrigerator compartment upper limit temperature TR_2 in which the refrigerator compartment temperature detected by the refrigerator compartment temperature sensor 33 is preset (TR_2 = in the refrigerator 1 of the present embodiment) is set. It is determined whether the temperature is higher than 6 ° C. (step S103).

冷蔵室温度>冷蔵室上限温度TR_2となっていない場合(No)(冷蔵室温度>冷蔵室上限温度TR_2となっている場合(Yes)の制御は後述)、冷凍室温度センサ34によって検知される冷凍室温度が、あらかじめ設定されている冷凍室下限温度TF_1(本実施形態の冷蔵庫1ではTF_1=−21℃)より低いかどうかが判定される(ステップS104)。なお、冷凍室温度<冷凍室下限温度TF_1となっていない場合(No)は、再びステップS101に戻る。   When the temperature of the refrigerating room is not higher than the refrigerating room temperature TR_2 (No) (the control when the refrigerating room temperature is higher than the refrigerating room upper temperature TR_2 (Yes) will be described later), the temperature is detected by the freezing room temperature sensor 34. It is determined whether or not the freezer compartment temperature is lower than a preset freezer compartment lower limit temperature TF_1 (TF_1 = −21 ° C. in the refrigerator 1 of the present embodiment) (step S104). In addition, when it is not freezer compartment temperature <freezer compartment lower limit temperature TF_1 (No), it returns to step S101 again.

ステップS104で、冷凍室温度<冷凍室下限温度TF_1となった場合(Yes)は、続いて、冷蔵室温度と、あらかじめ設定されている判定基準温度TR_a(本実施形態の冷蔵庫1ではTR_a=5℃)、TR_b(本実施形態の冷蔵庫1ではTR_b=4℃)との比較を行い、その比較結果に基づいて、冷却器温度センサ35の検知温度に関する基
準温度Tevpの値を選択する。具体的には、冷蔵室温度>TR_aであればTevp=Tevp_1(本実施形態の冷蔵庫1ではTevp_1=3℃)とし、TR_a≧冷蔵室温度>TR_bであれば、Tevp=Tevp_2(本実施形態の冷蔵庫1ではTevp_2
=−10℃)とし、TR_b≧冷蔵室温度であれば、Tevp=Tevp_3(本実施形態の冷蔵庫1ではTevp_2=−18℃)とする(ステップS105)。
In step S104, if the freezer compartment temperature is smaller than the freezer compartment lower limit temperature TF_1 (Yes), then the refrigerator compartment temperature and the preset reference temperature TR_a (TR_a = 5 in the refrigerator 1 of the present embodiment) are set. C) and TR_b (TR_b = 4 ° C. in the refrigerator 1 of the present embodiment), and the value of the reference temperature Tevp related to the detected temperature of the cooler temperature sensor 35 is selected based on the comparison result. Specifically, if the refrigerating room temperature> TR_a, Tevp = Tevp_1 (Tevp_1 = 3 ° C. in the refrigerator 1 of the present embodiment), and if TR_a ≧ refrigerating room temperature> TR_b, Tevp = Tevp_2 (the present embodiment In refrigerator 1, Tevp_2
= −10 ° C.) and TR_b ≧ refrigeration room temperature, Tevp = Tevp_3 (Tevp_2 = −18 ° C. in the refrigerator 1 of the present embodiment) (step S105).

したがって、Tevpの値は、外気温度が高く、冷蔵室温度が上昇しやすい場合には、Tevp_1が選択され、外気温度が低く、冷蔵室温度が上昇し難い場合には、Tevp_3が選択され、その間程度の外気温度であればTevp_2が選択される。また、例えば、食品かすなどを挟みこみ、冷蔵室扉2a、あるいは、2bにわずかな隙間が生じ、そのために定常的に熱負荷は増えるが、冷蔵室扉センサは隙間が小さいために扉は閉状態と認識して扉開放状態を知らせるアラームが鳴動しない状態となることがある。この場合には、外気温が比較的低くても、冷蔵室の温度が上昇しやすくなることがあり、Tevpの値は、Tevp_2やTevp_1が選択されることもある。   Therefore, Tevp_1 is selected when the outside air temperature is high and the refrigerator temperature is likely to rise, and Tevp_3 is selected when the outside temperature is low and the refrigerator temperature is difficult to rise. If the outside air temperature is about, Tevp_2 is selected. In addition, for example, a food gap may be sandwiched between the refrigerator compartment door 2a or 2b, and a slight gap is generated, which steadily increases the heat load. However, the refrigerator compartment sensor has a small gap so that the door is closed. It may be in a state where an alarm that recognizes the state and notifies the door open state does not sound. In this case, even if the outside air temperature is relatively low, the temperature of the refrigerator compartment may easily rise, and Tevp_2 or Tevp_1 may be selected as the value of Tevp.

続いて霜冷却運転が実施される(ステップS106)。霜冷却運転とは、「庫内ファンON,冷蔵室ダンパ開、冷凍室ダンパ閉、圧縮機OFF」の状態で冷蔵温度帯室61が冷却される運転である。霜冷却運転が実施されている状態では、冷蔵室温度があらかじめ設定されている冷蔵室下限温度TR_1(本実施形態の冷蔵庫1ではTR_1=1.5℃)より低いか否か(ステップS107)、冷却器温度がステップS105で設定された基準温
度Tevpより高いか否か(ステップS108)が判定され、冷蔵室温度<冷蔵室下限温度TR_1を満足せず(No)、また、冷却器温度>基準温度Tevpを満足しない場合(No)には、冷凍室温度が、あらかじめ設定されている圧縮機ON温度TF_2(本実施形態の冷蔵庫1ではTF_2=−19℃)より高いか否かが判定され(ステップS109)、冷凍室温度>圧縮機ON温度TF_2が満足されない場合(No)には、再びステップS107に戻る。
Subsequently, a frost cooling operation is performed (step S106). The frost cooling operation is an operation in which the refrigerating temperature zone chamber 61 is cooled in a state of “internal fan ON, refrigerating chamber damper open, freezer compartment damper closed, compressor OFF”. In the state in which the frost cooling operation is performed, whether or not the refrigerator compartment temperature is lower than a preset refrigerator compartment lower limit temperature TR_1 (TR_1 = 1.5 ° C. in the refrigerator 1 of the present embodiment) (step S107). It is determined whether or not the cooler temperature is higher than the reference temperature Tevp set in step S105 (step S108), the refrigerator temperature does not satisfy the refrigerator compartment temperature <refrigerator compartment lower limit temperature TR_1 (No), and the refrigerator temperature> reference. When the temperature Tevp is not satisfied (No), it is determined whether or not the freezer temperature is higher than the preset compressor ON temperature TF_2 (TF_2 = −19 ° C. in the refrigerator 1 of the present embodiment) ( In step S109), when the freezer temperature> compressor ON temperature TF_2 is not satisfied (No), the process returns to step S107 again.

ステップS109において、冷凍室温度>圧縮機ON温度TF_2となっている(Yes)と判定された場合は、続いて圧縮機がONされて、低回転(本実施形態の冷蔵庫1ではこのときの圧縮機回転数は1200min-1)で運転される冷蔵室運転となる(ステップS110)。すなわち、冷蔵室運転とは、「庫内ファンON,冷蔵室ダンパ開,冷凍室ダンパ閉,圧縮機ON(低回転)」の状態で、冷蔵温度帯室61の冷却を実施する運転である。 In step S109, when it is determined that the freezer temperature> compressor ON temperature TF_2 (Yes), the compressor is subsequently turned on and the low rotation (in the refrigerator 1 of the present embodiment, the compression at this time). The refrigerator is operated at a machine speed of 1200 min −1 ) (step S110). That is, the refrigerating room operation is an operation for cooling the refrigerating temperature zone chamber 61 in the state of “internal fan ON, refrigerating room damper open, freezer compartment damper closed, compressor ON (low rotation)”.

冷蔵室運転が実施されている状態では、冷凍室温度があらかじめ設定されている冷凍室上限温度TF_3(本実施形態の冷蔵庫1ではTF_3=−16℃)より高いか否かが判定され、(ステップS111)、冷凍室温度>冷凍室上限温度TF_3が満足されない(No)と判定された場合には(冷凍室温度>冷凍室上限温度TF_3が満足される場合(Yes)の制御は後述)、冷蔵室温度<冷蔵室下限温度TR_1の判定に移る(ステップS112)。冷蔵室温度<冷蔵室下限温度TR_1が満足されない場合(No)には、再びステップS111に戻る。   In the state in which the refrigerator compartment operation is carried out, it is determined whether or not the freezer compartment temperature is higher than the preset freezer compartment upper limit temperature TF_3 (TF_3 = −16 ° C. in the refrigerator 1 of the present embodiment) (step). S111), when it is determined that the temperature of the freezer compartment> the freezer compartment upper limit temperature TF_3 is not satisfied (No) (if the freezer compartment temperature> the freezer compartment upper limit temperature TF_3 is satisfied (Yes), the control will be described later). The process proceeds to determination of room temperature <refrigeration room lower limit temperature TR_1 (step S112). When the refrigerator compartment temperature <the refrigerator compartment lower limit temperature TR_1 is not satisfied (No), the process returns to step S111 again.

ステップS112において、冷蔵室温度<冷蔵室下限温度TR_1が満足された場合(Yes)、「冷凍室ダンパ開、冷蔵室ダンパ閉」となり(ステップS113)、続いて、圧縮機24が高回転(本実施形態の冷蔵庫1ではこのときの圧縮機回転数は1900min-1)になるとともに、送風機9が停止される(ステップS114)。所定時間(本実施形態の冷蔵庫1では30秒)経過後(ステップS115)、送風機9が稼動され、冷凍室運転が開始される(ステップS116)。ステップS116の冷凍室運転は、ステップS101で説明した冷凍室運転の状態であるので、以上が本実施形態の冷蔵庫1の安定冷却運転時の運転サイクルとなる。 In step S112, when the refrigerator compartment temperature <the refrigerator compartment lower limit temperature TR_1 is satisfied (Yes), “freezer compartment damper open, refrigerator compartment damper closed” is set (step S113). In the refrigerator 1 of the embodiment, the compressor rotation speed at this time is 1900 min −1 ) and the blower 9 is stopped (step S114). After a predetermined time (30 seconds in the refrigerator 1 of the present embodiment) has elapsed (step S115), the blower 9 is operated and the freezer operation is started (step S116). Since the freezer compartment operation in step S116 is the state of the freezer compartment operation described in step S101, the above is the operation cycle during the stable cooling operation of the refrigerator 1 of the present embodiment.

なお、一般に冷蔵庫では、扉開閉や、比較的温度が高い食品を収納するといったことがあると、熱負荷が一時的に増すことになる。以下では、本実施形態の冷蔵庫1の熱負荷が一時的に増した場合の制御について説明する。   In general, in a refrigerator, when a door is opened or closed or food having a relatively high temperature is stored, the heat load temporarily increases. Below, control when the heat load of the refrigerator 1 of this embodiment increases temporarily is demonstrated.

本実施形態の冷蔵庫1では、ステップS102において、冷蔵室扉2a、あるいは、2bの開閉の有無を判定しており、冷蔵室扉2a、あるいは、2bの扉開閉があった場合、ステップS201に進むようになっている。ステップS201では、冷蔵室上限温度TR_2がTR_2′に置き換わる(本実施形態の冷蔵庫1ではTR_2=6℃がTR_2′=8℃になる)。冷蔵室上限温度TR_2を、TR_2′と上書きしたらステップS101に戻る。ステップS101に戻ると、扉が既に閉じられていれば(ステップS102がNoと判定されれば)、続いてステップS103において、冷蔵室温度>冷蔵室上限温度TR_2の判定が行われる。ここでは、ステップS201において、冷蔵室上限温度TR_2がTR_2′で上書きされているため、冷蔵室上限温度が高くなっている。したがって、冷蔵室2の扉開閉がない場合よりも、ステップS103における冷蔵室温度>冷蔵室上限温度TR_2は満足され難くなる。ステップS103における冷蔵室温度>冷蔵室上限温度TR_2が満足された場合(Yes)は、冷蔵室2の冷却が必須な状態とみなし、冷蔵室ダンパ20を開状態として、冷蔵冷凍運転、すなわち、「庫内ファンON,冷蔵室ダンパ開,冷凍室ダンパ開,圧縮機ON(高回転)」の運転として、冷蔵温度帯室61と冷凍温度帯室60の両方が冷却される(ステップS301)。ステップS301により冷蔵冷凍運転が開始された後には、ステップS112に移る。なお、冷蔵室上限温度TR_2は、所定時間(本実施形態の冷蔵庫1では30分)経過後にTR_2′(=8℃)から再び元の値のTR_2(=6℃)に戻るようになっている。   In the refrigerator 1 of the present embodiment, whether or not the refrigerator compartment door 2a or 2b is opened or closed is determined in step S102, and if the refrigerator compartment door 2a or 2b is opened or closed, the process proceeds to step S201. It is like that. In step S201, the refrigerator compartment upper limit temperature TR_2 is replaced with TR_2 '(TR_2 = 6 ° C. becomes TR_2 ′ = 8 ° C. in the refrigerator 1 of the present embodiment). When the refrigerating room upper limit temperature TR_2 is overwritten with TR_2 ', the process returns to step S101. Returning to step S101, if the door has already been closed (if step S102 is determined to be No), then in step S103, the determination of refrigeration room temperature> refrigeration room upper limit temperature TR_2 is performed. Here, in step S201, since the refrigerator compartment upper limit temperature TR_2 is overwritten with TR_2 ', the refrigerator compartment upper limit temperature is high. Therefore, it is difficult to satisfy the refrigerator temperature> the refrigerator temperature upper limit temperature TR_2 in step S103 as compared with the case where the refrigerator compartment 2 is not opened and closed. When the temperature of the refrigerating room> the refrigerating room upper limit temperature TR_2 in Step S103 is satisfied (Yes), it is considered that the refrigerating room 2 is in an indispensable state, the refrigerating room damper 20 is opened, and the refrigerating operation, that is, “ As the operation of the internal fan ON, refrigerator compartment damper open, freezer compartment damper open, compressor ON (high rotation), both the refrigerator temperature zone chamber 61 and the refrigerator temperature zone chamber 60 are cooled (step S301). After the refrigeration operation is started in step S301, the process proceeds to step S112. Note that the refrigerator compartment upper limit temperature TR_2 returns from TR_2 '(= 8 ° C.) to the original value TR_2 (= 6 ° C.) again after a predetermined time (30 minutes in the refrigerator 1 of the present embodiment). .

また、ステップS112によって冷蔵室運転中に冷凍室温度>冷凍室上限温度TF_3の判定が行われる。冷凍室温度>冷凍室上限温度TF_3が満足された場合(Yes)、冷凍温度帯室60の冷却が必須な状態とみなし、圧縮機24を高回転とし、冷凍室ダンパ50を開状態として、冷蔵冷凍運転、すなわち、「庫内ファンON,冷蔵室ダンパ開,冷凍室ダンパ開,圧縮機ON(高回転)」の運転として、冷蔵温度帯室61と冷凍温度帯室60の両方が冷却される(ステップS301)。ステップS501により冷蔵冷凍運転が開始された後には、ステップS112に移る。   Further, in step S112, the determination of the freezer temperature> the freezer upper limit temperature TF_3 is performed during the refrigerator operation. When the freezer temperature> freezer upper limit temperature TF_3 is satisfied (Yes), it is considered that cooling of the freezing temperature zone 60 is indispensable, the compressor 24 is set to a high rotation speed, the freezer compartment damper 50 is opened, and refrigeration is performed. In the refrigeration operation, that is, the operation of “internal fan ON, refrigerator compartment damper open, freezer compartment damper open, compressor ON (high rotation)”, both the refrigerator temperature zone chamber 61 and the refrigerator temperature zone chamber 60 are cooled. (Step S301). After the refrigeration operation is started in step S501, the process proceeds to step S112.

また、ステップS107(冷蔵室温度<冷蔵室下限温度TR_1)、または、ステップS108(冷却器温度>Tevp(ステップS105で設定された基準温度))の何れかが満足される(Yes)と、霜冷却運転中に庫内ファンが停止され(ステップS401)、ステップS109に移る。   Further, if either step S107 (refrigeration room temperature <refrigeration room lower limit temperature TR_1) or step S108 (cooler temperature> Tevp (reference temperature set in step S105)) is satisfied (Yes), frost The internal fan is stopped during the cooling operation (step S401), and the process proceeds to step S109.

図7は、本実施形態の冷蔵庫1を、外気温度が30℃、相対湿度70%の環境に設置し、安定冷却運転の状態になった際の庫内の温度変化と、送風機9,冷蔵室ダンパ20,冷凍室ダンパ50及び圧縮機24の制御状態を表すタイムチャートである。なお、詳細な測定条件はJISC9801:2006に則っている。   FIG. 7 shows the temperature change in the refrigerator when the refrigerator 1 of the present embodiment is installed in an environment where the outside air temperature is 30 ° C. and the relative humidity is 70%, and the stable cooling operation is performed, the blower 9 and the refrigerator compartment. 3 is a time chart showing control states of a damper 20, a freezer damper 50, and a compressor 24. The detailed measurement conditions are in accordance with JIS C9801: 2006.

図7に示すように、「庫内ファンON,冷蔵室ダンパ閉,冷凍室ダンパ開,圧縮機ON(高回転)」の状態で実施される冷凍室運転は、経過時間taにおいて、冷凍室温度が冷凍室下限温度TF_1に達したため(図6におけるステップS104)、続いて、「庫内ファンON,冷蔵室ダンパ閉,冷凍室ダンパ開,圧縮機OFF」の状態で実施される霜冷却運転となっている(図6におけるステップS106)。なお、図6におけるステップS105によって、冷蔵室温度>TR_a(TR_a=5℃)となったため、Tevpは、Tevp=Tevp_1(Tevp_1=3℃)となっている。霜冷却運転の実施中は、冷凍温度帯室60の冷却は行われていないので、冷凍室温度は上昇し、経過時間tbで圧縮機ON温度TF_2に達している(図6におけるステップS109)ので、続いて、圧縮機24が低回転で稼動し、「庫内ファンON,冷蔵室ダンパ開,冷凍室ダンパ閉,圧縮機ON(低回転)」の冷蔵室運転となる(図6のステップS110)。経過時間tbまでは、圧縮機24が稼動しない霜冷却であったのに対して、経過時間tbからは圧縮機24が稼動する冷蔵室運転となったことで、冷蔵温度帯室61の冷却が加速され、経過時間tcで、冷蔵室下限温度TR_1に達している(図6におけるステップS112)。したがって、次に、冷凍室運転(「庫内ファンON,冷蔵室ダンパ閉,冷凍室ダンパ開,圧縮機ON(高回転)」)に移るが、冷凍室運転開始時には、所定時間Δt(Δt=30秒間)の間、送風機9が停止され(図6におけるステップS113〜ステップS115)、所定時間Δt経過後に、送風機9が稼動され冷却が開始される(図6におけるステップS116)。   As shown in FIG. 7, the freezer operation performed in the state of “internal fan ON, refrigerator colder damper closed, freezer damper open, compressor ON (high rotation)” is performed at the freezer temperature at the elapsed time ta. Has reached the freezer compartment lower limit temperature TF_1 (step S104 in FIG. 6), and subsequently, a frost cooling operation performed in the state of “internal fan ON, refrigerator compartment damper closed, freezer compartment damper open, compressor OFF” (Step S106 in FIG. 6). In step S105 in FIG. 6, the temperature in the refrigerator compartment is greater than TR_a (TR_a = 5 ° C.), so Tevp is Tevp = Tevp_1 (Tevp_1 = 3 ° C.). During the frost cooling operation, since the freezing temperature zone 60 is not cooled, the freezing chamber temperature rises and reaches the compressor ON temperature TF_2 at the elapsed time tb (step S109 in FIG. 6). Subsequently, the compressor 24 is operated at a low rotation speed, and the operation of the refrigerator compartment of “internal fan ON, refrigerator compartment damper open, freezer compartment damper closed, compressor ON (low revolution)” is performed (step S110 in FIG. 6). ). Until the elapsed time tb, the frost cooling was performed while the compressor 24 was not operated. From the elapsed time tb, the refrigeration temperature zone chamber 61 was cooled due to the operation of the refrigerating room where the compressor 24 was operated. It is accelerated and reaches the refrigerator compartment lower limit temperature TR_1 at the elapsed time tc (step S112 in FIG. 6). Therefore, the operation proceeds to the freezer operation (“internal fan ON, refrigerating chamber damper closed, freezer damper open, compressor ON (high rotation)”), but at the start of the freezer operation, a predetermined time Δt (Δt = For 30 seconds, the blower 9 is stopped (steps S113 to S115 in FIG. 6), and after the predetermined time Δt has elapsed, the blower 9 is operated and cooling is started (step S116 in FIG. 6).

以上、本実施形態の冷蔵庫1の構造及び基本的な制御方式を説明したが、以下では本実施形態の冷蔵庫1の奏する効果を説明する。   The structure and basic control method of the refrigerator 1 according to the present embodiment have been described above, but the effects exerted by the refrigerator 1 according to the present embodiment will be described below.

本実施形態の冷蔵庫1は、送風機9の前方に位置する食品収納室(冷凍温度帯室60)へ向かう冷気を集約すべく冷気集約ダクト13を備え、冷気集約ダクト13は、送風機9の前方に位置する冷凍温度帯室60と連通する冷気集約ダクト出口開口13cを備え、ファンカバー出口開口70aに、冷凍温度帯室60への送風を制御すべくダンパ(冷凍室ダンパ50)を備え、冷凍温度帯室60への送風は、冷凍室ダンパ50の開口を介してのみ行うようにしている。また、冷気集約ダクト13は、冷気集約ダクト流路断面が最小となる位置(図8中に示す最小寸法位置)から、庫内ファン回転方向に順次拡大する拡大風路13bを備えている。   The refrigerator 1 of the present embodiment includes a cold air collecting duct 13 to collect cold air toward the food storage room (the freezing temperature zone chamber 60) located in front of the blower 9, and the cold air collecting duct 13 is disposed in front of the blower 9. A cold air collecting duct outlet opening 13c communicating with the refrigeration temperature zone chamber 60 located is provided, and a fan cover outlet opening 70a is provided with a damper (freezer compartment damper 50) for controlling air flow to the refrigeration temperature zone chamber 60. The air blowing to the belt chamber 60 is performed only through the opening of the freezer compartment damper 50. Further, the cold air collecting duct 13 includes an enlarged air passage 13b that sequentially expands in the direction of rotation of the internal fan from a position where the cross section of the cold air collecting duct flow path is the minimum (position of the minimum dimension shown in FIG. 8).

これにより、省エネルギー性が向上する。以下で図11,図12A及び図12Bを参照しながら理由を説明する。   Thereby, energy saving property improves. The reason will be described below with reference to FIGS. 11, 12A and 12B.

本実施形態の冷蔵庫は、送風機9と、この送風機9の前方に備えられた複数の吹き出し口を備えた室(冷凍室60)との間に、送風機9の前方に備えられた室へ向かう流れを集約する冷気集約ダクト13を備え、この冷気集約ダクト13は、冷気集約ダクト流路断面が最小となる位置(図8中に示す最小寸法位置)から、前記庫内ファン回転方向に順次拡大する拡大風路13bを備えている。   The refrigerator of the present embodiment flows between the blower 9 and a chamber (freezer compartment 60) provided with a plurality of outlets provided in front of the blower 9 toward a chamber provided in front of the blower 9. The cold air collecting duct 13 is sequentially expanded from the position where the cross section of the cold air collecting duct flow path is minimum (minimum dimension position shown in FIG. 8) in the fan rotation direction. An enlarged air passage 13b is provided.

これにより、省エネルギー性が向上する。以下で図11〜図13を参照しながら理由を説明する。   Thereby, energy saving property improves. The reason will be described below with reference to FIGS.

冷蔵庫の冷却器は、一般にマイナス温度となるため、着霜が生じる。そして、冷却器に霜が成長した場合、風路抵抗が増加する。また、冷蔵庫は、食品を貯蔵することを目的とするため、食品収納スペースを極力大きくとることが望ましい。すなわち、食品を収納できないスペースである冷気ダクトをできるだけコンパクトにすることが望ましい。   Since the refrigerator cooler generally has a negative temperature, frost formation occurs. And when frost grows in a cooler, wind path resistance increases. In addition, since the refrigerator is intended to store food, it is desirable to make the food storage space as large as possible. That is, it is desirable to make the cold air duct, which is a space where food cannot be stored, as compact as possible.

ここで、冷蔵庫では、一般に送風機として軸流ファンであるプロペラファンが用いられる。図11は回転数を一定とした場合のプロペラファンの一般的な風量−静圧特性図である。図11中に示すように、一定回転数の場合、風路抵抗が小さいと、風量Q1が得られ、風路抵抗が小さいと風量Q2となる。ここで、Q1>Q2の関係である。   Here, in a refrigerator, a propeller fan which is an axial fan is generally used as a blower. FIG. 11 is a general air volume-static pressure characteristic diagram of the propeller fan when the rotation speed is constant. As shown in FIG. 11, when the rotational speed is constant, the air volume Q1 is obtained when the air path resistance is small, and the air volume Q2 is obtained when the air path resistance is small. Here, the relationship is Q1> Q2.

次に、図12A及び図12Bは、プロペラファンの翼90の入口と出口の間の速度変化(速度三角形)を表す図であり、図12Aは風路抵抗が小さい場合、図12Bは風路抵抗が大きい場合を示す。図12A中のc1は入口絶対速度、u1は入口周速度(回転速度)、w1は入口相対速度(翼に対する相対速度)、c2は出口絶対速度、cm2は出口絶対速度の軸方向成分、cθ2は出口絶対速度の周方向成分、u2は出口周速度、w2は出口相対速度を表す。図11の風量−静圧特性における風量が多い場合(例えば図11の風量Q1の状態)、すなわち図12Aにおいては、入口周速度u1(あるいは出口周速度u2)に対して、軸方向の速度成分(c1(=cm2))が、相対的に大きくなる。また、図11に示すとおり、風量が多い場合は静圧が低くなる。これは、翼の入口相対速度w1と出口相対速度w2の間の減速が小さいことを意味する。したがって、風量が多い場合は、おおよそ図12Aに示すような速度三角形となる。一方、風量が少ない場合(例えば図11の風量Q2の状態)、図12Bに示すような速度三角形となる。 Next, FIG. 12A and FIG. 12B are diagrams showing a speed change (speed triangle) between the inlet and the outlet of the blade 90 of the propeller fan. FIG. 12A is a case where the air path resistance is small, and FIG. The case where is large. In FIG. 12A, c 1 is the inlet absolute speed, u 1 is the inlet peripheral speed (rotational speed), w 1 is the inlet relative speed (relative speed to the blade), c 2 is the outlet absolute speed, and cm 2 is the axis of the outlet absolute speed. direction component, c .theta.2 is circumferential component of the outlet absolute velocity, u 2 is the outlet peripheral velocity, w 2 represents the outlet relative velocity. When the air volume in the air volume-static pressure characteristic of FIG. 11 is large (for example, in the state of the air volume Q1 of FIG. 11), that is, in FIG. 12A, the axial direction of the inlet peripheral speed u 1 (or the outlet peripheral speed u 2 ) The velocity component (c 1 (= c m2 )) becomes relatively large. Moreover, as shown in FIG. 11, when there is much air volume, a static pressure becomes low. This means that the deceleration between the blade inlet relative velocity w 1 and the outlet relative velocity w 2 is small. Therefore, when the air volume is large, a speed triangle as shown in FIG. 12A is obtained. On the other hand, when the air volume is small (for example, the state of the air volume Q2 in FIG. 11), a speed triangle as shown in FIG. 12B is obtained.

一定回転数の場合、図12Aと図12Bで周速度は等しく、u1=u1′(u2=u2′)となる。このことから、一定回転数の場合、風路抵抗が小さい場合(図12)に比べて風路抵抗が大きい場合(図13)では、出口絶対速度の周方向成分が大きいことがわかる(cθ2<cθ2′)。 In the case of a constant rotational speed, the peripheral speeds are the same in FIGS. 12A and 12B, and u 1 = u 1 ′ (u 2 = u 2 ′). From this, it can be seen that when the rotational speed is constant, the circumferential component of the outlet absolute speed is large when the wind path resistance is large (FIG. 13) compared to when the wind path resistance is small (FIG. 12) (c θ2 < Cθ2 ′).

以上説明したとおり、風路抵抗が大きい場合、プロペラファンの吹き出し領域には、周方向成分cθ2に起因する強い旋回流れが形成される。この旋回流れのエネルギーは、冷却に有効に使われることなく損失となる。したがって、着霜によって風路抵抗が増加した場合、損失となっている強い旋回流れを有効に利用することで、省エネルギー性を向上させることができる。 As described above, when the wind path resistance is large, a strong swirl flow caused by the circumferential component cθ2 is formed in the blowing area of the propeller fan. The energy of this swirl flow is lost without being used effectively for cooling. Therefore, when the wind path resistance increases due to frost formation, the energy saving performance can be improved by effectively using the strong swirl flow which is a loss.

本実施形態の冷蔵庫は、冷気集約ダクト13を備えており、冷気集約ダクト13は、冷気集約ダクト流路断面が最小となる位置から、送風機9の回転方向に順次拡大する拡大風路13bを備えている。これにより、上記旋回流れは、拡大風路13bに流入し、順次流路断面が拡大することで、旋回流れを圧力回復させることができる。すなわち、従来損失となっていた旋回流れを圧力として有効利用できるようにしているので、必要な風量を得るためのファン動力を抑えることができ、省エネルギー性が向上する。   The refrigerator of the present embodiment includes a cold air collecting duct 13, and the cold air collecting duct 13 includes an enlarged air passage 13 b that sequentially expands in the rotation direction of the blower 9 from a position where the cross section of the cold air collecting duct flow path is minimized. ing. As a result, the swirling flow flows into the enlarged air passage 13b, and the swirling flow can be pressure-recovered by sequentially expanding the cross-section of the flow path. That is, since the swirl flow that has been conventionally lost can be effectively used as the pressure, the fan power for obtaining the necessary air volume can be suppressed, and the energy saving performance is improved.

また、冷気集約ダクト13の外周面13aと送風機9の回転中心の距離が、冷気集約ダクト流路断面が最小となる位置から、送風機9の回転方向に順次拡大するように形成されている。送風機9から吹き出される流れは、主として送風機9の周方向に吹き出される。これにより、周方向に広がるように吹き出される旋回流れをスムーズに圧力回復させることができるので、省エネルギー性が高くなる。   Further, the distance between the outer peripheral surface 13a of the cold air collecting duct 13 and the rotation center of the blower 9 is formed so as to sequentially increase in the rotation direction of the blower 9 from the position where the cross section of the cold air collecting duct flow path is minimized. The flow blown out from the blower 9 is blown out mainly in the circumferential direction of the blower 9. Thereby, since the pressure of the swirling flow blown out in the circumferential direction can be smoothly recovered, the energy saving property is improved.

また、冷気集約ダクト13の拡大風路13bの風路拡大角は10度としてあり、圧力回復に有効で、且つ、省スペース設置ができる5度以上20度以下の拡大角としている。これにより、省エネルギー性が高く、拡大風路13bをコンパクトにできる。   Further, the air passage expansion angle of the expansion air passage 13b of the cold air collecting duct 13 is 10 degrees, and is an expansion angle of 5 degrees or more and 20 degrees or less that is effective for pressure recovery and can be installed in a space-saving manner. Thereby, energy saving property is high and the expansion wind path 13b can be made compact.

また、冷気集約ダクト13の拡大風路13bを庫内ファン回転方向に180度以上(200度)備えている。旋回流れを圧力回復させるためには距離が長いほうが有利であるが、これにより拡大風路13bが十分な距離となり、旋回流れを効果的に圧力回復させることができるので、省エネルギー性が高くなる。   Further, the enlarged air passage 13b of the cold air collecting duct 13 is provided with 180 degrees or more (200 degrees) in the fan rotation direction. In order to recover the pressure of the swirling flow, it is advantageous that the distance is long. However, this makes the expanded air passage 13b a sufficient distance, and the swirling flow can be pressure-recovered effectively, so that energy saving is improved.

また、冷気集約ダクト13は、拡大風路13bを経て流出する流れを上方に向けるべく、上方に開口している。これにより庫内ファン前方の室(冷凍室60)を良好に冷却することができるとともに、省エネルギー性も高くなる。以下でその理由を説明する。   The cold air collecting duct 13 is opened upward so as to direct the flow flowing out through the enlarged air passage 13b upward. As a result, the chamber (freezer chamber 60) in front of the internal fan can be cooled well, and the energy saving performance is also improved. The reason will be described below.

一般に、周囲温度に対して低温の冷気は上方から下方に向かう下降流を形成する。そのため、冷気を貯蔵室の上方により多く供給することで、貯蔵室内を良好に冷却できる。従来の冷蔵庫では、下段側の冷凍室吹き出し口の開口面積を小さくして、この下段側の冷凍室吹き出し口から吹き出す風量を相対的に下げて、上段側の冷凍室吹き出し口の吹き出し風量を相対的に上げるようにしていた。すなわち、庫内ファンの下方に旋回流れが吹き出されて、庫内ファンの下方に向かう流れが生じる。そのため、下段側の冷凍室吹き出し口の開口面積が大きいと、そのまま多くの風量が下段側の冷凍室吹き出し口から吹き出される。そして、相対的に上段側の冷凍室吹き出し口との吹き出し量のバランスが崩れてしまう。したがって、下段側の冷凍室吹き出し口の開口面積を小さくして抵抗をつけることで、下段側の冷凍室吹き出し口からの噴出し風量を調整していた。   Generally, cold air having a low temperature relative to the ambient temperature forms a downward flow from the upper side to the lower side. Therefore, the storage chamber can be favorably cooled by supplying more cold air to the upper side of the storage chamber. In conventional refrigerators, the opening area of the lower freezer compartment outlet is reduced, the amount of air blown from the lower freezer compartment outlet is relatively lowered, and the amount of air blown from the upper freezer compartment outlet is relatively I was trying to raise it. That is, a swirling flow is blown out below the internal fan, and a flow toward the lower side of the internal fan is generated. For this reason, if the opening area of the lower freezer compartment outlet is large, a large amount of air is blown out from the lower freezer compartment outlet. And the balance of the blowing amount with the freezer compartment outlet on the upper stage side is relatively lost. Therefore, the amount of air blown from the lower freezer compartment outlet is adjusted by reducing the opening area of the lower freezer compartment outlet and adding resistance.

しかし、この構成では結果として風路抵抗が増加することになり、必要風量を得るための庫内ファン回転数を上げることが必要となる。すなわち、省エネルギー性を悪化させる要因となっていた。   However, with this configuration, the air path resistance increases as a result, and it is necessary to increase the internal fan rotation speed to obtain the necessary air volume. That is, it has become a factor that deteriorates energy saving.

そこで、本実施形態の冷蔵庫では、冷気集約ダクト13は、拡大風路13bを経て流出する流れを上方に向けるべく、上方に開口しているので、従来の冷蔵庫に見られたような、送風機9の下方へ向かう旋回流れを、拡大風路13bにより圧力回復させて、上方に向かう流れにしている。これにより、庫内ファン前方の室(冷凍温度帯室60)を良好に冷却することができるとともに、省エネルギー性を向上できる。   Therefore, in the refrigerator of the present embodiment, the cold air collecting duct 13 is opened upward so that the flow flowing out through the enlarged air passage 13b is directed upward, so that the blower 9 as seen in the conventional refrigerator is used. The swirling flow going downward is recovered by pressure by the enlarged air passage 13b and is turned upward. Thereby, while being able to cool well the chamber (refrigeration temperature zone room 60) ahead of an internal fan, energy-saving property can be improved.

また、冷気集約ダクト13を形成するファンカバー70の内面は、送風機9の回転軸を延長した線との交点近傍に、滑らかな曲面で形成された窪み70aを設けている。既述のとおり、送風機9の吹き出し流れは、周方向に向かう流れが強いが、軸方向成分も残っている。この窪み70aにより、軸方向成分を周方向にスムーズに向けることができるので、転向の際の損失が少なくなる。したがって省エネルギー性が高くなる。   In addition, the inner surface of the fan cover 70 that forms the cold air collecting duct 13 is provided with a recess 70 a formed with a smooth curved surface in the vicinity of the intersection with the line extending the rotation axis of the blower 9. As described above, the blowout flow of the blower 9 is strong in the circumferential direction, but the axial component remains. Since the recess 70a can smoothly direct the axial component in the circumferential direction, loss during turning is reduced. Therefore, energy saving property becomes high.

また、送風機9の前方に備えられた複数の吹き出し口を備えた室(冷凍温度帯室60)への送風を開閉制御するダンパ(冷凍室ダンパ50)を、冷気集約ダクト13の拡大風路13bの出口部に備えている。このように、拡大風路13bを備えて空気流れを効率よく集約できる。これにより、送風機9の前方に備えられた複数の吹き出し口を備えた室への送風制御手段(冷凍室ダンパ50)を小型化することができ、省スペース化を図ることができる。   In addition, a damper (freezer compartment damper 50) that controls opening and closing of air blown to a chamber (freezing temperature zone chamber 60) provided in front of the blower 9 is provided with an enlarged air passage 13 b of the cold air collecting duct 13. At the exit. In this way, the air flow can be efficiently collected by providing the enlarged air passage 13b. Thereby, the ventilation control means (freezer compartment damper 50) to the room provided with the several blower outlet provided in front of the air blower 9 can be reduced in size, and space saving can be achieved.

なお、本実施形態の冷蔵庫は、送風機9としてプロペラファンを用いているが、例えば、翼の形状を遠心型の翼にした場合(遠心ファンを採用した場合)であっても、ファン吹き出し流れに周方向に向かう流れ(旋回流れ)が生じるので、同様の効果が得られる。   In addition, although the refrigerator of this embodiment uses the propeller fan as the air blower 9, even when it is a case where the shape of a wing | blade is a centrifugal wing | blade (when a centrifugal fan is employ | adopted), a fan blowing flow is used. Since a flow (swirl flow) directed in the circumferential direction occurs, the same effect can be obtained.

また、本実施形態の冷蔵庫1では、送風機9から、送風機9の前方に備えられた複数の吹き出し口を備えた食品収納室(冷凍温度帯室60)に至る風路中に、冷気集約ダクト13を備え、冷気集約ダクト13は、送風機9の前方に位置する冷凍温度帯室60と連通する冷気集約ダクト出口開口13cを備え、冷気集約ダクト出口開口13cに、冷凍温度帯室60への送風を制御すべくダンパ(冷凍室ダンパ50)を備え、冷凍温度帯室60への送風は、冷凍室ダンパ50の開口を介してのみ行うようにしている。このように冷気集約ダクト13を形成することで、送風機9の前方に備えられた複数の吹き出し口を備えた室への送風を、確実に冷気集約ダクト出口開口13cに誘導できるので、冷気集約ダクト出口開口13cに設置できる程度の大きさのダンパで、冷凍温度帯室60に向かう冷気の全量を制御可能となる。したがって、庫内ファン吐出空間全体を閉塞するような大型のダンパ90を設置する必要がなくなるため、スペース効率がよく、また、コスト増加を抑えた冷蔵庫となる。   Moreover, in the refrigerator 1 of this embodiment, in the air path from the air blower 9 to the food storage room (freezing temperature zone room 60) provided with the several blower outlet provided in front of the air blower 9, the cold air | gas concentration duct 13 is provided. The cold air collecting duct 13 includes a cold air collecting duct outlet opening 13c communicating with the refrigeration temperature zone chamber 60 located in front of the blower 9, and the cold air collecting duct outlet opening 13c sends air to the refrigeration temperature zone chamber 60. In order to control, a damper (freezer compartment damper 50) is provided, and air is sent to the freezing temperature zone chamber 60 only through the opening of the freezer compartment damper 50. By forming the cold air collecting duct 13 in this way, it is possible to reliably guide the air blown to the room having a plurality of outlets provided in front of the blower 9 to the cold air collecting duct outlet opening 13c. A damper that is large enough to be installed in the outlet opening 13c can control the total amount of cold air that flows toward the freezing temperature zone chamber 60. Therefore, since it is not necessary to install a large damper 90 that closes the entire fan discharge space in the cabinet, the refrigerator is efficient in space and suppresses an increase in cost.

本実施形態の冷蔵庫1は、冷凍室ダンパ50を備えるべく冷気集約ダクト13の出口開口13aの数を、送風機9の前方に位置する冷凍温度帯室60の複数の吹き出し口3c〜5cより少数としている。これにより、スペース効率がよく、低コストの冷蔵庫となる。   In the refrigerator 1 of the present embodiment, the number of the outlet openings 13 a of the cold air collecting duct 13 is set to be smaller than the plurality of outlets 3 c to 5 c of the refrigeration temperature zone chamber 60 positioned in front of the blower 9 in order to provide the freezer damper 50. Yes. Thereby, space efficiency is good and it becomes a low-cost refrigerator.

本実施形態の冷蔵庫1は、冷凍室ダンパ50を備えるべく冷気集約ダクト13の出口開口13cの周長13dを、送風機9の前方に位置する冷凍温度帯室60の複数の吹き出し口3c〜5cの総周長より短くしている。また、冷凍室ダンパ50の開口102の周長102aを、送風機9の前方に位置する冷凍温度帯室60の複数の吹き出し口3c〜5cの総周長より短くしている。これらにより信頼性の高い冷蔵庫となる。理由を以下で説明する。   In the refrigerator 1 of the present embodiment, the peripheral length 13d of the outlet opening 13c of the cold air collecting duct 13 is provided to the freezing room damper 50 so as to be provided with the freezing room dampers 50 of the plurality of outlets 3c to 5c of the freezing temperature zone 60 positioned in front of the blower 9. It is shorter than the total circumference. Further, the peripheral length 102 a of the opening 102 of the freezer compartment damper 50 is made shorter than the total peripheral length of the plurality of outlets 3 c to 5 c of the freezing temperature zone chamber 60 located in front of the blower 9. These make the refrigerator highly reliable. The reason will be explained below.

一般に、ダンパを設置する目的は、閉時に冷気を遮断することである。したがって、ダンパが備えられた風路であっても、確実に冷気が遮断されないと、所望の性能が出ないといったことが起こるため、信頼性が低下する。一方で、構造物と構造物の接触部には、一般に微小な隙間が生じるため、例えば、冷凍室ダンパ50が閉状態であっても開閉板104(より正確には開閉板104に備えられた緩衝部材104a)とフレーム103間に生じる微小な隙間から微量の冷気が漏れ出す。また、図9に示すとおり、冷凍室ダンパ50は、冷気集約ダクト13の出口開口13c部に設置されるが、この出口開口13cと、冷凍室ダンパ50間にも微小な隙間が生じ、微量の冷気が漏れ出す。この冷気漏れの問題を軽減し、信頼性の高い冷蔵庫とするためには、冷気が漏れ出すシール部の長さを短くすることが有効となる。例えば、各吹き出し口3c〜5cそれぞれにダンパを設置するといったことを考えた場合、一見、確実に冷凍温度帯室60への送風を遮断できるように見えるが、ダンパ自体のシール部、また、ダンパと吹き出し口3c〜5c形成部材とのシール部の長さ(それぞれほぼ吹き出し口の周長に等しい)は長くなってしまい、冷気が漏れ出しやすくなってしまう。一方で、本実施形態の冷蔵庫1では、冷気集約ダクト13の出口開口13cの周長13dを463mmとして、送風機9の前方に位置する冷凍温度帯室60の複数の吹き出し口3c〜5cの総周長1200mmより十分短くしている。また、冷凍室ダンパ50の開口102の周長102aを430mmとして、冷凍温度帯室60の複数の吹き出し口3c〜5cの総周長1200mmより十分短くしている。これにより、冷凍室ダンパ50を閉状態とした際の冷気漏れの影響を少なくできるので、信頼性が高い冷蔵庫となる。   In general, the purpose of installing a damper is to shut off cold air when closed. Therefore, even if it is an air path provided with a damper, unless cool air is reliably interrupted | blocked, it will happen that desired performance will not come out, and reliability falls. On the other hand, since a minute gap is generally generated at the contact portion between the structure and the structure, for example, the open / close plate 104 (more precisely, the open / close plate 104 is provided even when the freezer damper 50 is closed). A small amount of cold air leaks from a minute gap formed between the buffer member 104 a) and the frame 103. Further, as shown in FIG. 9, the freezer compartment damper 50 is installed at the outlet opening 13c portion of the cold air collecting duct 13. However, a minute gap is generated between the outlet opening 13c and the freezer compartment damper 50, and a small amount of Cold air leaks out. In order to reduce the problem of cold air leakage and to make a highly reliable refrigerator, it is effective to shorten the length of the seal portion from which cold air leaks. For example, when it is considered that a damper is installed at each of the outlets 3c to 5c, at first glance, it seems that the air flow to the freezing temperature zone 60 can be surely blocked, but the seal part of the damper itself, And the lengths of the sealing portions between the blowout ports 3c to 5c forming members (each approximately equal to the circumferential length of the blowout port) become long, and the cold air easily leaks out. On the other hand, in the refrigerator 1 of the present embodiment, the circumferential length 13d of the outlet opening 13c of the cold air collecting duct 13 is set to 463 mm, and the total circumference of the plurality of outlets 3c to 5c of the refrigeration temperature zone chamber 60 located in front of the blower 9 is used. The length is sufficiently shorter than 1200 mm. Further, the peripheral length 102a of the opening 102 of the freezer compartment damper 50 is set to 430 mm, which is sufficiently shorter than the total peripheral length 1200 mm of the plurality of outlets 3c to 5c of the freezing temperature zone chamber 60. Thereby, since the influence of the cold air leak at the time of making the freezer compartment damper 50 into a closed state can be reduced, it becomes a highly reliable refrigerator.

本実施形態の冷蔵庫1では、冷凍室ダンパの開口面積より、冷凍室ダンパ50を備えるべく冷気集約ダクト13の出口開口13cの面積を大きくしている。冷凍室ダンパ50の開口面積と冷気集約ダクト13の出口開口13cの面積が一致している場合、組み立て作業者のスキルの影響などによって、冷凍室ダンパ50の取り付け位置が若干ずれるといったことが起きた場合、冷凍室ダンパ50を通過する冷気が流れる風路断面が小さくなってしまい、通風抵抗が大きくなるといった不具合が生じることがある。本実施形態の冷蔵庫1では、冷凍室ダンパの開口面積6300mm2より、冷凍室ダンパ50を備えるべく冷気集約ダクト13の出口開口13cの面積を8105.5mm2と大きくしている。したがって、組み立て作業者のスキルの影響などによって、通風抵抗が変化するといった不具合が生じにくい、信頼性が高い冷蔵庫となる。 In the refrigerator 1 of this embodiment, the area of the outlet opening 13c of the cold air collecting duct 13 is made larger than the opening area of the freezer damper so as to include the freezer damper 50. When the opening area of the freezer damper 50 and the area of the outlet opening 13c of the cold air collecting duct 13 coincide with each other, the mounting position of the freezer damper 50 may slightly shift due to the influence of the skill of the assembly operator. In this case, the cross section of the air path through which the cold air passing through the freezer compartment damper 50 is reduced may cause a problem that the ventilation resistance is increased. In the refrigerator 1 of the present embodiment, than the opening area 6300Mm 2 of the freezing chamber damper is the area of the outlet opening 13c of the cool air aggregate duct 13 to prepare for the freezer compartment damper 50 to increase the 8105.5mm 2. Therefore, it becomes a highly reliable refrigerator that is unlikely to have a problem that the ventilation resistance changes due to the influence of the skill of the assembly operator.

本実施形態の冷蔵庫1は、冷気集約ダクト13の出口開口13cに単一のダンパ(冷凍室ダンパ50)を配設している。一般に、本実施形態のような冷蔵庫では、ダンパの開閉制御は予め搭載されたプログラムにより実施されるが、プログラムにはバグが伴う(バグを伴わないプログラムの作成は極めて困難)。このことを考慮すると、冷凍温度帯室60への送風を制御すべく冷凍室ダンパ50を複数個備えた場合、制御プログラムがより複雑化するので、バグによる意図しない動作が起きる確率が高くなる。したがって、本実施形態の冷蔵庫1では、冷凍室ダンパ50を単一とすることで、スペース効率がよく、低コストであるだけでなく、バグによる誤作動が起きにくい信頼性が高い冷蔵庫になっている。   In the refrigerator 1 of this embodiment, a single damper (freezer compartment damper 50) is disposed in the outlet opening 13 c of the cold air collecting duct 13. In general, in a refrigerator such as this embodiment, damper opening / closing control is performed by a preinstalled program, but the program is accompanied by bugs (it is extremely difficult to create a program without bugs). In consideration of this, when a plurality of freezer compartment dampers 50 are provided to control the blowing of air to the freezing temperature zone chamber 60, the control program becomes more complicated, and the probability of an unintended operation due to a bug increases. Therefore, in the refrigerator 1 of the present embodiment, the single freezer damper 50 is not only space efficient and low cost, but also a highly reliable refrigerator that is unlikely to malfunction due to bugs. Yes.

本実施形態の冷蔵庫1は、冷却器7の上方に送風機9を備え、送風機9の上方に冷気集約ダクト13の出口開口13cを備えている。これにより、省エネ性に優れた冷蔵庫となる。理由を以下で説明する。   The refrigerator 1 of the present embodiment includes a blower 9 above the cooler 7, and includes an outlet opening 13 c of the cold air collecting duct 13 above the blower 9. Thereby, it becomes a refrigerator excellent in energy saving. The reason will be explained below.

一般に、流路内を流れる流れを転向させると通風抵抗が増し、その度合いは、流れる流量が多いほど大きい。本実施形態の冷蔵庫1は、冷凍室運転を実施するが、冷凍室運転時には、冷却器7を通過した後に送風機9で昇圧された冷気は、冷気集約ダクト13によって全て冷気集約ダクト13の出口開口13cに向かって(冷凍室ダンパ50に向かって)分流することなく流れる。したがって、多くの流れが冷凍室ダンパ50に向かうため、冷却器7を通り、送風機9で昇圧された冷気を、冷凍室ダンパ50に向かわせるために転向させると通風抵抗が大きくなる。本実施形態の冷蔵庫1では、上述のとおり、冷却器7の上方に送風機9を備え、送風機9の上方に冷凍室ダンパ50が設置される冷気集約ダクト13の出口開口13cを備える構造としているので、冷却器7を通った後に、送風機9で昇圧された冷気が、冷凍室ダンパ50に向かう際の転向を抑えることで通風抵抗が大きくならないようにしている。これにより、所定風量を得るためのファン動力を抑えられるので省エネ性が高い冷蔵庫となる。   In general, when the flow flowing in the flow path is turned, the ventilation resistance increases, and the degree of the resistance increases as the flow rate increases. The refrigerator 1 of the present embodiment performs the freezer operation. During the operation of the freezer, all the cold air that has been pressurized by the blower 9 after passing through the cooler 7 is opened at the outlet of the cold air aggregation duct 13 by the cold air aggregation duct 13. It flows without diverting toward 13c (toward freezer damper 50). Accordingly, since a large amount of flow goes to the freezer compartment damper 50, the airflow resistance increases when the cool air that has passed through the cooler 7 and is turned to be directed to the freezer compartment damper 50 is turned. As described above, the refrigerator 1 of the present embodiment includes the blower 9 above the cooler 7 and the outlet opening 13c of the cold air collecting duct 13 in which the freezer compartment damper 50 is installed above the blower 9. The airflow resistance is not increased by suppressing the turning of the cold air, which has been pressurized by the blower 9 after passing through the cooler 7, toward the freezer compartment damper 50. Thereby, since the fan power for obtaining the predetermined air volume can be suppressed, the refrigerator has high energy saving performance.

本実施形態の冷蔵庫1では、図9中に示すとおり、送風機9は、鉛直面から角度α1だけ冷却器収納室8側(背面側)に傾斜させて配設している。これにより、冷却器7を通った流れをスムーズに冷気集約ダクト13の出口開口13c(冷凍室ダンパ50)に向かわせることができるため、必要風量を送る際のファン動力を抑えられ、省エネ性が向上する。   In the refrigerator 1 of the present embodiment, as shown in FIG. 9, the blower 9 is disposed so as to be inclined toward the cooler storage chamber 8 (back side) by an angle α1 from the vertical plane. As a result, since the flow through the cooler 7 can be smoothly directed to the outlet opening 13c (freezer compartment damper 50) of the cold air collecting duct 13, the fan power when sending the necessary air volume can be suppressed, and the energy saving performance is improved. improves.

本実施形態の冷蔵庫1は、冷却器7の上方に送風機9を、送風機9の上方に冷気集約ダクト13の出口開口13cを、冷気集約ダクト出口開口13cの上方に、送風機9の前方に位置する食品収納室(冷凍温度帯室60)の主たる冷却風を吹き出すべく吹き出し口(上段冷凍室吹き出し口4c)を備えている。これにより、省エネ性が高い冷蔵庫となっている。理由を以下で説明する。   The refrigerator 1 of this embodiment is located in front of the air blower 9 above the cooler 7, the outlet opening 13 c of the cold air collecting duct 13 above the air blower 9, and above the cold air collecting duct outlet opening 13 c. An air outlet (upper freezer compartment outlet 4c) is provided to blow out the main cooling air in the food storage room (freezing temperature zone 60). Thereby, it is a refrigerator with high energy-saving property. The reason will be explained below.

一般に、冷却器7で熱交換され周囲温度に対して低温となった冷気は、食品収納室に吹き出した後は、上方から下方に向かう下降流を形成するので、冷気を室の上方により多く供給することで、室内を良好に冷却できる。したがって、上段冷凍室吹き出し口4cには多くの吐出風量が必要であり、そのために本実施形態の冷蔵庫1では、上段冷凍室吹き出し口4cを、冷凍温度帯室60の吹き出し口の中で最も大きな開口面積としているが、多くの吐出風量を得るためには、開口面積の大小だけでなく、吹き出し口に至るまでの経路における通風抵抗も問題となる。本実施形態の冷蔵庫1では、上述のとおり、冷却器7の上方に送風機9を、送風機9の上方に冷気集約ダクト13の出口開口13c(冷凍室ダンパ50)を、冷気集約ダクト13の出口開口13c(冷凍室ダンパ50)の上方に上段冷凍室吹き出し口4cを備えているので、冷気は、多くの吐出風量を要する上段冷凍室吹き出し口4cに向かってスムーズに流れる。これにより、必要風量を送る際のファン動力を抑えられるので、省エネ性が向上する。   In general, the cold air that has been heat-exchanged by the cooler 7 and has a low temperature relative to the ambient temperature forms a downward flow from the upper side to the lower side after being blown into the food storage chamber, so that more cold air is supplied to the upper side of the chamber. By doing so, the room can be cooled well. Therefore, the upper stage freezer compartment outlet 4c requires a large amount of discharged air. Therefore, in the refrigerator 1 of the present embodiment, the upper stage freezer compartment outlet 4c is the largest among the outlets of the freezing temperature zone chamber 60. Although the opening area is used, in order to obtain a large amount of discharge air, not only the size of the opening area but also the ventilation resistance in the route to the outlet is a problem. In the refrigerator 1 of the present embodiment, as described above, the blower 9 is above the cooler 7, the outlet opening 13 c (the freezer damper 50) of the cold air collecting duct 13 is above the fan 9, and the outlet opening of the cold air collecting duct 13. Since the upper freezer compartment outlet 4c is provided above 13c (freezer compartment damper 50), the cool air smoothly flows toward the upper freezer compartment outlet 4c that requires a large amount of discharge airflow. Thereby, since the fan power at the time of sending required air volume can be suppressed, energy-saving property improves.

本実施形態の冷蔵庫1は、図9に示すとおり、冷凍室ダンパ50の開口102を、鉛直面から前記庫内ファン側に角度α2だけ傾斜させている。これにより、冷気は、多くの吐出風量を要する上段冷凍室吹き出し口4cに向かってスムーズに流れるようになり、必要風量を送る際のファン動力を抑えられるので、省エネ性が向上する。   As shown in FIG. 9, the refrigerator 1 of the present embodiment is configured such that the opening 102 of the freezer damper 50 is inclined from the vertical plane toward the internal fan side by an angle α2. As a result, the cool air smoothly flows toward the upper freezer compartment outlet 4c that requires a large amount of discharged air, and the fan power when sending the required amount of air can be suppressed, thus improving energy saving.

本実施形態の冷蔵庫1は、送風機9の前方に位置する食品収納室(冷凍温度帯室60)の上方に、別の食品収納室(冷蔵室2)を設けている。本実施形態の冷蔵庫1は、冷却器7の上方に送風機9を、送風機9の上方に冷気集約ダクト13の出口開口13cを、備える構造となっており、上方にスムーズに冷気が流れる構造である。したがって、別の食品収納室をさらに上方に設ければ、スムーズに冷気を送り込むことができるため、別の食品収納室(冷蔵室2)へ必要風量を送る際のファン動力を抑えられるので、省エネ性が向上する。   The refrigerator 1 of this embodiment is provided with another food storage room (refrigeration room 2) above the food storage room (freezing temperature zone room 60) located in front of the blower 9. The refrigerator 1 of the present embodiment has a structure including a blower 9 above the cooler 7 and an outlet opening 13c of the cool air collecting duct 13 above the blower 9, and the cool air flows smoothly upward. . Therefore, if another food storage room is provided further upward, cold air can be fed smoothly, so the fan power when sending the necessary air volume to another food storage room (refrigeration room 2) can be suppressed, thus saving energy. Improves.

本実施形態の冷蔵庫1は、庫内ファンの前方に位置する食品収納室が、冷凍温度帯に維持される冷凍温度帯室60となっている。これにより、省エネ性が高い冷蔵庫となる。以下で理由を説明する。   In the refrigerator 1 of the present embodiment, the food storage chamber located in front of the internal fan is a freezing temperature zone 60 that is maintained in the freezing temperature zone. Thereby, it becomes a refrigerator with high energy-saving property. The reason will be explained below.

一般に、冷却器で冷却された冷気を、庫内ファンによって昇圧して庫内に循環させることで庫内を冷却する冷蔵庫においては、庫内ファン吐出領域近傍では、冷却器で冷却された冷気が温度上昇していないために、もっとも低温になりやすい。したがって、送風機9の前方に位置する食品収納室を、例えば、冷蔵温度帯に維持する冷蔵室や野菜室にすると、冷蔵温度帯以下の温度(マイナス温度)にまで冷却されてしまい食品が凍結するといった不具合が生じることがある。そのような事態を避けるためには、ヒータにより加温して、冷蔵温度帯に維持しなければならない。したがって、庫内を冷却しながら、温度補償のためにヒータ加温を行うための電力が新たに必要となるために、省エネ性は低い。一方、本実施形態の冷蔵庫1のように、送風機9の前方に位置する食品収納室として、冷凍温度帯に維持される室(冷凍温度帯室60)とした場合は、低温になりやすい性質を有効利用することができるので、省エネ性は高い。   In general, in a refrigerator that cools the inside of a refrigerator by boosting the cold air cooled by the cooler with an internal fan and circulating it in the internal compartment, the cold air cooled by the cooler is near the internal fan discharge area. Since the temperature has not risen, the temperature tends to be the lowest. Therefore, if the food storage room located in front of the blower 9 is, for example, a refrigeration room or vegetable room maintained in a refrigeration temperature zone, the food is frozen to a temperature (minus temperature) below the refrigeration temperature zone. Such a problem may occur. In order to avoid such a situation, it must be heated by a heater and maintained in a refrigerated temperature zone. Therefore, since the electric power for performing heater heating is newly required for temperature compensation, while cooling the inside of a store | warehouse | chamber, energy-saving property is low. On the other hand, as a refrigerator 1 of the present embodiment, when the food storage room located in front of the blower 9 is a room maintained in the freezing temperature zone (the freezing temperature zone room 60), it tends to be low in temperature. Since it can be used effectively, energy saving is high.

また、送風機9の前方に位置する食品収納室を冷凍温度帯室60とする場合にも、冷凍室ダンパ50が閉状態であっても冷凍室ダンパ50の開閉板104とフレーム103間に生じる微小な隙間、あるいは、冷凍室ダンパ50が設置される冷気集約ダクト13の出口開口13cと、冷凍室ダンパ50間に生じる微小な隙間から、冷気漏れが生じる。送風機9の前方に位置する食品収納室が冷凍温度帯室60の場合、この冷気漏れによって、著しい信頼性の低下、省エネ性の低下が生じることがある。理由を以下で説明する。   In addition, when the food storage chamber located in front of the blower 9 is the freezing temperature zone chamber 60, even if the freezing chamber damper 50 is in a closed state, a minute amount generated between the open / close plate 104 of the freezing chamber damper 50 and the frame 103 is generated. Cold air leaks from a small gap or a minute gap formed between the outlet opening 13c of the cold air collecting duct 13 where the freezer damper 50 is installed and the freezer damper 50. When the food storage chamber located in front of the blower 9 is the refrigeration temperature zone chamber 60, this cold air leakage may cause a significant decrease in reliability and energy saving. The reason will be explained below.

本実施形態の冷蔵庫は、既述のとおり、冷凍室ダンパ50を閉状態として、冷蔵室運転、霜冷却運転を実施する。この運転モードでは、送風されるのは冷蔵温度帯室61のみであるため、比較的温度が高い冷気が循環する。したがって、これらの運転モードにおいて、比較的温度の高い冷気が冷凍温度帯室60に漏れ出すと、冷凍温度帯室60を暖めてしまうことになり、冷凍食品が解けるといった問題が発生することがある。また、冷凍温度帯室60を暖めてしまうことは、冷凍温度帯室60を冷却する際の熱負荷が増えることになる。冷凍温度帯室60を冷却するためには、冷凍温度帯室温度以下の例えば−25℃といった低い冷却器温度とする必要があるが、一般に、冷却器温度を低温とする冷凍室運転は効率が低い(成績係数が低く)。したがって、冷気が漏れて冷凍温度帯室60を暖めてしまうと、冷凍室運転時の負荷を増やしてしまうことになり省エネ性が低下する。以上のように、冷凍室ダンパ50閉状態で実施する、冷蔵室運転や霜冷却運転の際に、冷凍温度帯室60への冷気漏れがあると、冷凍食品が解けるといった信頼性の問題や、省エネ性が低下するといった問題が発生する。したがって、送風機9の前方に位置する食品収納室が冷凍温度帯室60の場合、特に既述の冷気漏れ低減のための構造が有効となる。   As described above, the refrigerator of the present embodiment performs the refrigerator compartment operation and the frost cooling operation with the freezer damper 50 closed. In this operation mode, since only the refrigerated temperature zone 61 is blown, cold air having a relatively high temperature circulates. Therefore, in these operation modes, if cool air having a relatively high temperature leaks into the freezing temperature zone chamber 60, the freezing temperature zone chamber 60 will be warmed, and the problem that the frozen food can be dissolved may occur. . Moreover, warming the freezing temperature zone chamber 60 increases the thermal load when cooling the freezing temperature zone chamber 60. In order to cool the freezing temperature zone chamber 60, it is necessary to set a cooler temperature as low as, for example, −25 ° C., which is lower than the freezing temperature zone temperature. Low (low coefficient of performance). Therefore, if cold air leaks and the freezing temperature zone chamber 60 is heated, the load during the freezing chamber operation is increased and energy saving performance is reduced. As described above, when there is a cold air leak to the freezing temperature zone chamber 60 in the cold room operation or the frost cooling operation performed in the closed state of the freezer damper 50, the problem of reliability that the frozen food can be dissolved, Problems such as reduced energy savings occur. Therefore, when the food storage chamber located in front of the blower 9 is the refrigeration temperature zone chamber 60, the structure for reducing the cold air leakage described above is particularly effective.

本実施形態の冷蔵庫1は、送風機9の前方に位置する食品収納室(冷凍温度帯室60)の上方に冷蔵温度帯に維持される冷蔵室2を備えている。既述のとおり、上方に向かう流れを利用して効率よく冷やすために、別の食品収納室をさらに上方に設けることが有利となる。ただし、送風機9からの距離が遠くなる(風路が長くなる)こと、また、低温冷気は、密度が大きく下向きの力が働くことともあるため、風量は送風機9の前方に位置する食品収納室(冷凍温度帯室60)に比べて少なくなる。したがって、送風機9の前方に位置する食品収納室(冷凍温度帯室60)の上方に、低温に維持するために多くの冷気(風量)を必要とする冷凍温度帯に維持される室を配設することは望ましくない。すなわち、送風機9の前方に位置する食品収納室(冷凍温度帯室60)の上方には、冷蔵温度帯に維持する室を配設することが望ましい。   The refrigerator 1 of the present embodiment includes a refrigerator compartment 2 that is maintained in a refrigeration temperature zone above a food storage chamber (a freezing temperature zone chamber 60) located in front of the blower 9. As described above, it is advantageous to provide another food storage chamber further upward in order to efficiently cool by using the upward flow. However, since the distance from the blower 9 is long (the wind path is long), and the low-temperature cold air may have a large density and a downward force may be applied, the air volume is the food storage chamber located in front of the blower 9. Compared to (refrigeration temperature zone chamber 60). Therefore, a room maintained in a freezing temperature zone that requires a lot of cold air (air volume) to maintain a low temperature is disposed above the food storage room (freezing temperature zone room 60) located in front of the blower 9. It is not desirable to do so. That is, it is desirable to dispose a room maintained in the refrigerated temperature zone above the food storage chamber (freezing temperature zone chamber 60) located in front of the blower 9.

本実施形態の冷蔵庫1は、送風機9の前方に位置する食品収納室(冷凍温度帯室60)の上方に冷蔵室2、下方に野菜室6を備えている。これにより冷蔵室,野菜室を適温に保持しやすくなる。理由を以下で説明する。   The refrigerator 1 of the present embodiment includes a refrigerator compartment 2 above a food storage room (freezing temperature zone room 60) located in front of the blower 9, and a vegetable compartment 6 below. This makes it easier to keep the refrigeration room and vegetable room at the proper temperature. The reason will be explained below.

一般に、冷蔵室と野菜室は、ともに冷蔵温度帯に保持される室であるが、野菜室は、ユーザーが低温に弱い食材(低温障害をおこす食材)を収納することもあるため、冷蔵室に対してやや高めの温度に保持することが望ましい(例えば、冷蔵室は3℃、野菜室は5℃など)。したがって、野菜室が冷えすぎる冷蔵庫であった場合、野菜室にヒータを配設して、ヒータ加温によって所定温度に維持することが必要となる。このような冷蔵庫の場合、ヒータ電力の分だけ省エネ性が悪化することになる。このような事態を避けるためには、野菜室は、冷蔵室よりも低い冷却能力で冷やすことが必要となる。すなわち、野菜室6には、冷蔵室2に送る冷気よりも高めの温度の冷気を送る、あるいは、同じ温度なら冷蔵室2よりも少量の冷気を送ることが有効となる。本実施形態の冷蔵庫1では、冷凍温度帯室60の上方に冷蔵室2を、冷凍温度帯室60の下方に野菜室6を備えているが、これにより、本実施形態の冷蔵庫1のように、冷蔵室2と野菜室6が直列に配される場合は、冷蔵室2を冷やすことで温度が上昇した冷気を野菜室6に送ることができるため、風量は同じでも、冷蔵室2に送る冷気よりも高めの温度の冷気を野菜室6に送ることができ、冷蔵室2と野菜室6を適温に保ちやすくなる。   In general, the refrigerated room and the vegetable room are both kept in the refrigerated temperature range, but the vegetable room may contain foods that are sensitive to low temperatures (foods that cause low temperature damage). On the other hand, it is desirable to keep the temperature slightly higher (for example, 3 ° C. in the refrigerator compartment, 5 ° C. in the vegetable compartment, etc.). Therefore, when the vegetable room is a refrigerator that is too cold, it is necessary to provide a heater in the vegetable room and maintain it at a predetermined temperature by heating the heater. In the case of such a refrigerator, the energy saving performance is deteriorated by the heater power. In order to avoid such a situation, it is necessary to cool the vegetable room with a cooling capacity lower than that of the refrigerator room. That is, it is effective to send cold air having a higher temperature than the cold air sent to the refrigerator compartment 2 to the vegetable compartment 6, or to send a small amount of cold air than the refrigerator compartment 2 at the same temperature. In the refrigerator 1 of this embodiment, the refrigerator compartment 2 is provided above the freezing temperature zone chamber 60, and the vegetable compartment 6 is provided below the freezing temperature zone chamber 60. Thus, as in the refrigerator 1 of this embodiment. In the case where the refrigerator compartment 2 and the vegetable compartment 6 are arranged in series, cold air whose temperature has been increased by cooling the refrigerator compartment 2 can be sent to the vegetable compartment 6, so that even if the air volume is the same, it is sent to the refrigerator compartment 2 Cold air having a temperature higher than that of the cold air can be sent to the vegetable compartment 6, and the refrigerator compartment 2 and the vegetable compartment 6 can be easily maintained at an appropriate temperature.

また、別の実施形態として、冷蔵室2と野菜室6が並列に配される場合も考えられる。
この場合、既述のとおり、上方の冷蔵室2に向かいやすくしてある送風機9からの冷気を、強制的に下方に転向させて、野菜室6に向かわせることになるため、特に配慮せずとも野菜室6に向かう風路の通風抵抗は大きくなる。したがって、この場合、冷蔵室2と野菜室6に同程度の温度の冷気が到達するが、野菜室6への風量は容易に低く抑えることができ、冷蔵室2と野菜室6を適温に保ちやすくなる。
Moreover, as another embodiment, the case where the refrigerator compartment 2 and the vegetable compartment 6 are arranged in parallel is also considered.
In this case, as described above, the cold air from the blower 9 that is easily directed to the upper refrigerating chamber 2 is forced to be turned downward to be directed to the vegetable compartment 6, so no particular consideration is given. In both cases, the draft resistance of the air passage toward the vegetable compartment 6 increases. Therefore, in this case, the cold air having the same temperature reaches the refrigerator compartment 2 and the vegetable compartment 6, but the air volume to the vegetable compartment 6 can be easily kept low, and the refrigerator compartment 2 and the vegetable compartment 6 are kept at an appropriate temperature. It becomes easy.

以上の理由により、冷凍温度帯室60の上方に冷蔵室2を、冷凍温度帯室60の下方に野菜室6を配設することで冷蔵室2と野菜室6を適温に保ちやすくなる。   For the above reasons, it is easy to keep the refrigerator compartment 2 and the vegetable compartment 6 at an appropriate temperature by arranging the refrigerator compartment 2 above the freezing temperature compartment 60 and the vegetable compartment 6 below the freezing compartment 60.

本実施形態の冷蔵庫1は、冷凍室ダンパ50を形成する主たる面(フレーム103を形成する面)が、水平面からβ2だけ傾斜するように配設している。除霜運転時などに、冷凍室ダンパ50に水が滴下した場合であっても、これにより、水は冷凍室ダンパ50から流下するため、冷凍室ダンパ50に水が滞留して、その後凍結するといった不良事故を防止でき、信頼性の高い冷蔵庫となる。また、β2を6度としているが、β2を6度以上とすることで、水が流下しやすくなり、滞留した水が凍結することが原因となる不良事故する確率を十分低くでき、信頼性が高い冷蔵庫となる。   In the refrigerator 1 of the present embodiment, the main surface forming the freezer damper 50 (the surface forming the frame 103) is disposed so as to be inclined by β2 from the horizontal plane. Even when water is dripped into the freezer compartment damper 50 during the defrosting operation or the like, this causes water to flow down from the freezer compartment damper 50, so that the water stays in the freezer compartment damper 50 and then freezes. Such a faulty accident can be prevented and the refrigerator becomes highly reliable. In addition, β2 is set to 6 degrees, but if β2 is set to 6 degrees or more, water can easily flow down, and the probability of a defective accident caused by freezing of accumulated water can be sufficiently lowered, and reliability is improved. It becomes a high refrigerator.

本実施形態の冷蔵庫1では、冷凍室ダンパ50は、開口102を備え、開口102の一辺の近傍に回転軸101を備え、回転軸101の回転動作に連動する開閉板104を備えるものであって、開閉板104の回転軸101まわりの角度位置により、開口102の開閉制御がなされるダンパとしている。開閉板104の回転運動を利用することで、簡単な機構によって、開閉板104を、開閉板104と対向する開口102の面102aに押し付けることができ、確実に開口102の閉状態を形成できる。これにより低コストで、且つ、信頼性の高いダンパとなる。   In the refrigerator 1 of the present embodiment, the freezer damper 50 includes an opening 102, a rotating shaft 101 near one side of the opening 102, and an opening / closing plate 104 that is linked to the rotating operation of the rotating shaft 101. The opening / closing control of the opening 102 is performed by the angular position of the opening / closing plate 104 around the rotation shaft 101. By utilizing the rotational movement of the opening / closing plate 104, the opening / closing plate 104 can be pressed against the surface 102 a of the opening 102 facing the opening / closing plate 104 by a simple mechanism, and the closed state of the opening 102 can be reliably formed. Thereby, it becomes a low-cost and highly reliable damper.

本実施形態の冷蔵庫1では、冷凍室ダンパ50の回転軸101が上側になるように冷凍室ダンパ50を配設している。これにより回転軸101付近に水が滞留して凍結することで冷凍室ダンパ50が回動不能となるといった不良事故が起きにくい信頼性の高い冷蔵庫となる。   In the refrigerator 1 of this embodiment, the freezer compartment damper 50 is arrange | positioned so that the rotating shaft 101 of the freezer compartment damper 50 may become an upper side. As a result, a highly reliable refrigerator in which a malfunction such as the freezer compartment damper 50 becoming unrotatable due to water remaining in the vicinity of the rotating shaft 101 and freezing is unlikely to occur.

本実施形態の冷蔵庫1では、冷凍室ダンパ50の開閉板104を、冷気集約ダクト13側に開くように配設している。冷凍室ダンパ50の閉状態を考えた場合、例えば、逆に冷凍温度帯室60側に開くように配設した場合を考えると、冷気集約ダクト13側、すなわち、送風機9の吐出領域側は圧力が高く、冷凍温度帯室60側は圧力が低くなるため、開閉板104が開く方向に力が加わることになる。一方で、開閉板104を冷気集約ダクト13側に開くようにすれば、密閉度が増す方向に力が加わることになる。したがって、本実施形態の冷蔵庫1では、冷凍室ダンパ50の開閉板104を、冷気集約ダクト13側に開くように配設することで、冷凍室ダンパ50のシール部102aからの漏れが起こりにくくなり、信頼性が高い冷蔵庫となっている。   In the refrigerator 1 of the present embodiment, the open / close plate 104 of the freezer damper 50 is disposed so as to open to the cold air collecting duct 13 side. When the closed state of the freezer damper 50 is considered, for example, when it is arranged to open to the freezing temperature zone 60 side, the cold air collecting duct 13 side, i.e., the discharge region side of the blower 9 is pressurized. Since the pressure is low on the freezing temperature zone chamber 60 side, a force is applied in the direction in which the opening / closing plate 104 opens. On the other hand, if the opening / closing plate 104 is opened to the cold air collecting duct 13 side, a force is applied in the direction of increasing the sealing degree. Therefore, in the refrigerator 1 of the present embodiment, the open / close plate 104 of the freezer compartment damper 50 is disposed so as to open to the cold air collecting duct 13 side, so that leakage from the seal portion 102a of the freezer compartment damper 50 is less likely to occur. It has become a highly reliable refrigerator.

本実施形態の冷蔵庫1は、冷蔵冷凍運転時には、冷凍室ダンパ50の開角度θを60度としている。これは、図9に示すとおり、冷凍室ダンパ50の開角度によって、冷蔵室ダクト11の流入部の閉塞度合を制御して、冷蔵温度帯室61への冷気の送風量を適量にするためである。冷蔵冷凍運転時に例えば、冷凍室ダンパ50の開角度θをより大きくする(例えば90度)と、冷蔵室ダクト11の流入部の閉塞度合が大きくなるので、冷蔵室ダクト11の通風抵抗が大きくなり、冷蔵温度帯室61への風量が減少する。したがって冷蔵温度帯室61の冷却が抑えめとなる。一方、冷凍室ダンパ50の開角度θをより小さくする(例えば45度)と、冷蔵室ダクト11の通風抵抗が小さくなり、より冷蔵温度帯室61が冷える。なお、冷凍室ダンパ50の開角度を60度より小さくした場合、冷蔵温度帯室61へ向かう流れの通風抵抗が減少すると同時に、冷凍温度帯室60へ向かう流れの通風抵抗が大きくなる。したがって冷凍温度帯室60の冷却を実施しつつ、冷蔵温度帯室61に重点を置いた冷却が実施できる。つまり本実施形態の冷蔵庫1では、冷凍室ダンパ50の開角度θによって、冷凍温度帯室60と冷蔵温度帯室61の風量を調整することができ、各室を適温にしやすくなっている。   In the refrigerator 1 of the present embodiment, the open angle θ of the freezer damper 50 is set to 60 degrees during the refrigeration operation. This is because, as shown in FIG. 9, the degree of blockage of the inflow portion of the refrigerator compartment duct 11 is controlled by the opening angle of the freezer damper 50 so that the amount of cool air blown into the refrigerator compartment 61 is made appropriate. is there. For example, if the opening angle θ of the freezer damper 50 is increased (for example, 90 degrees) during the refrigerating operation, the degree of blockage of the inflow portion of the refrigerating room duct 11 increases, so that the ventilation resistance of the refrigerating room duct 11 increases. The air volume to the refrigerated temperature zone 61 is reduced. Therefore, cooling of the refrigeration temperature zone 61 is suppressed. On the other hand, if the open angle θ of the freezer damper 50 is made smaller (for example, 45 degrees), the ventilation resistance of the refrigerator compartment duct 11 becomes smaller, and the refrigerator compartment 61 is further cooled. In addition, when the opening angle of the freezer compartment damper 50 is made smaller than 60 degrees, the ventilation resistance of the flow toward the refrigeration temperature zone chamber 61 is decreased and the ventilation resistance of the flow toward the freezer temperature zone chamber 60 is increased. Therefore, it is possible to perform cooling with emphasis on the refrigeration temperature zone chamber 61 while cooling the freezing temperature zone chamber 60. That is, in the refrigerator 1 of the present embodiment, the air volume of the freezing temperature zone chamber 60 and the refrigeration temperature zone chamber 61 can be adjusted by the open angle θ of the freezing chamber damper 50, and each chamber is easily set to an appropriate temperature.

本実施形態の冷蔵庫1は、冷凍室ダンパ50に熱的に接触するヒータを配設している。
これにより、万が一冷凍室ダンパ50が凍結して回動不能となった場合でも、ヒータによって融解させることができるので、信頼性が高い冷蔵庫となる。
The refrigerator 1 of this embodiment is provided with a heater that is in thermal contact with the freezer damper 50.
Thereby, even if the freezer compartment damper 50 freezes and cannot be rotated, it can be melted by the heater, so that the refrigerator is highly reliable.

1 冷蔵庫
2 冷蔵室
3 製氷室
4 上段冷凍室
5 下段冷凍室
6 野菜室
7 冷却器
8 冷却器収納室
9 送風機
10 断熱箱体
11 冷蔵室ダクト
12 冷凍室ダクト
13 冷気集約ダクト
16 冷蔵室−野菜室連通ダクト
17 冷凍室戻り口
18 野菜室戻りダクト
18a 野菜室戻り吹き出し口
19 機械室
20 冷蔵室ダンパ
21 蒸発皿
22 除霜ヒータ
23 樋
24 圧縮機
26 暖気収納スペース
31 制御基板
33 冷蔵室温度センサ
33a 野菜室温度センサ
34 冷凍室温度センサ
35 冷却器温度センサ
50 冷凍室ダンパ
53 上部カバー
54 仕切板
60 冷凍温度帯室
61 冷蔵温度帯室
70 ファンカバー
71 ファンホールド
75 連通孔
100 駆動手段
101 回転軸
102 開口
103 フレーム
104 開閉板
DESCRIPTION OF SYMBOLS 1 Refrigerator 2 Refrigeration room 3 Ice making room 4 Upper freezing room 5 Lower freezing room 6 Vegetable room 7 Cooler 8 Cooler storage room 9 Blower 10 Insulation box 11 Refrigeration room duct 12 Freezing room duct 13 Cold air collecting duct 16 Refrigeration room-Vegetable Room communication duct 17 Freezer compartment return port 18 Vegetable room return duct 18a Vegetable room return outlet 19 Machine room 20 Refrigeration room damper 21 Evaporation dish 22 Defrost heater 23 樋 24 Compressor 26 Warm air storage space 31 Control board 33 Refrigeration room temperature sensor 33a Vegetable room temperature sensor 34 Freezer room temperature sensor 35 Cooler temperature sensor 50 Freezer room damper 53 Upper cover 54 Partition plate 60 Freezing temperature zone room 61 Refrigeration temperature zone room 70 Fan cover 71 Fan hold 75 Communication hole 100 Driving means 101 Rotating shaft 102 Opening 103 Frame 104 Opening and closing plate

Claims (5)

冷蔵庫本体に区画形成されて夫々食品を収納する冷凍温度帯室及び冷蔵温度帯室と、
前記冷凍温度帯室及び前記冷蔵温度帯室を冷却する冷気が熱交換される冷却器と、
前記冷却器が設けられる前記冷凍温度帯室の背部の冷却器収納室と、
前記冷却器で熱交換された冷気を前記冷凍温度帯室及び前記冷蔵温度帯室に送風する前記冷却器の上方で鉛直面から背面側に傾斜して配置された庫内ファンと、
該庫内ファンの前方を覆うように設けられ前記冷凍温度帯室の上部と連通する開口を有するファンカバーと、
前記庫内ファンの上方であって前記ファンカバーの開口に設けられ送風を制御する送風制御手段と、
前記冷却器収納室と前記冷凍温度帯室との間のダクトと、を備え、
前記ファンカバーは前記庫内ファンの回転方向に上流から下流に次第に拡大する風路を有し、該風路の下流に前記庫内ファン側に傾斜して前記開口が設けられ
前記庫内ファンの前方に位置する前記冷凍温度帯室へ冷気を吹き出す吹き出し口が前記開口の上方に設けられたことを特徴とする冷蔵庫。
A freezing temperature zone and a refrigeration temperature zone chamber that are compartmentally formed in the refrigerator main body and each store food,
A cooler in which cold air that cools the freezing temperature zone chamber and the refrigeration temperature zone chamber is heat-exchanged;
A cooler storage chamber at the back of the freezing temperature zone in which the cooler is provided;
An in-compartment fan arranged to be inclined from the vertical surface to the back side above the cooler for blowing cold air heat-exchanged by the cooler to the freezing temperature zone chamber and the refrigeration temperature zone chamber;
A fan cover provided to cover the front of the internal fan and having an opening communicating with the upper part of the freezing temperature zone chamber ;
Blower control means for controlling the ventilation provided above the internal fan and at the opening of the fan cover;
A duct between the cooler storage chamber and the refrigeration temperature zone chamber ,
The fan cover has an air passage that gradually expands from upstream to downstream in the direction of rotation of the internal fan, and the opening is provided on the downstream side of the air passage so as to incline toward the internal fan .
A refrigerator characterized in that an air outlet for blowing cold air to the freezing temperature zone located in front of the internal fan is provided above the opening .
請求項1において、前記風路は5度〜20度の範囲で該風路を拡大する拡大角度を有することを特徴とする冷蔵庫。   2. The refrigerator according to claim 1, wherein the air passage has an expansion angle for enlarging the air passage in a range of 5 degrees to 20 degrees. 請求項1において、前記風路は上流から下流まで180度又は180度よりも大きい角度を有することを特徴とする冷蔵庫。   2. The refrigerator according to claim 1, wherein the air passage has an angle greater than 180 degrees or greater than 180 degrees from upstream to downstream. 請求項1において、前記ファンカバーは前記庫内ファンと対向する位置に窪みを有することを特徴とする冷蔵庫。   2. The refrigerator according to claim 1, wherein the fan cover has a recess at a position facing the internal fan. 請求項1乃至3のいずれかにおいて、前記開口は横長であって該開口の長手方向が前記風路の下流且つ前記庫内ファンの上方に位置することを特徴とする冷蔵庫。   The refrigerator according to any one of claims 1 to 3, wherein the opening is horizontally long, and a longitudinal direction of the opening is located downstream of the air passage and above the internal fan.
JP2009207644A 2009-09-09 2009-09-09 refrigerator Expired - Fee Related JP5315179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009207644A JP5315179B2 (en) 2009-09-09 2009-09-09 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009207644A JP5315179B2 (en) 2009-09-09 2009-09-09 refrigerator

Publications (2)

Publication Number Publication Date
JP2011058686A JP2011058686A (en) 2011-03-24
JP5315179B2 true JP5315179B2 (en) 2013-10-16

Family

ID=43946536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009207644A Expired - Fee Related JP5315179B2 (en) 2009-09-09 2009-09-09 refrigerator

Country Status (1)

Country Link
JP (1) JP5315179B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016026018A1 (en) 2014-08-21 2016-02-25 Electrolux Do Brasil S.A. Air flow control system and method for a refrigeration apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6003716B2 (en) * 2012-04-17 2016-10-05 株式会社デンソー Channel switching device
JP5909426B2 (en) * 2012-08-23 2016-04-26 日立アプライアンス株式会社 refrigerator
JP6710349B2 (en) * 2015-10-08 2020-06-17 青島海爾股▲フン▼有限公司 refrigerator
JP2020118336A (en) * 2019-01-23 2020-08-06 日立グローバルライフソリューションズ株式会社 refrigerator
CN113432368B (en) * 2020-03-23 2023-03-10 日立环球生活方案株式会社 Refrigerator
CN113899148A (en) * 2021-10-25 2022-01-07 澳柯玛股份有限公司 Glass door air-cooled refrigerator with automatic air guide device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635879B2 (en) * 1985-02-28 1994-05-11 三菱電機株式会社 Blower
JP2692871B2 (en) * 1988-07-19 1997-12-17 三洋電機株式会社 refrigerator
JP3631316B2 (en) * 1996-01-30 2005-03-23 三菱電機株式会社 refrigerator
JP2004101088A (en) * 2002-09-10 2004-04-02 Toshiba Corp Refrigerator
JP4276907B2 (en) * 2003-08-27 2009-06-10 株式会社日立製作所 Air cleaner
JP4115414B2 (en) * 2004-03-19 2008-07-09 三洋電機株式会社 Refrigeration equipment
JP2006308259A (en) * 2005-05-02 2006-11-09 Mitsubishi Electric Corp Freezer-refrigerator
JP2009014320A (en) * 2007-07-09 2009-01-22 Hitachi Appliances Inc Refrigerator
JP4945365B2 (en) * 2007-08-02 2012-06-06 日立アプライアンス株式会社 refrigerator
JP4564994B2 (en) * 2007-09-07 2010-10-20 日立アプライアンス株式会社 refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016026018A1 (en) 2014-08-21 2016-02-25 Electrolux Do Brasil S.A. Air flow control system and method for a refrigeration apparatus

Also Published As

Publication number Publication date
JP2011058686A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
KR101260277B1 (en) Refrigerator
JP5315179B2 (en) refrigerator
WO2015043418A1 (en) Shielding device and refrigerator comprising same
KR101092176B1 (en) Refrigerator
JP5507511B2 (en) refrigerator
KR101284056B1 (en) Refrigerator
JP6788893B2 (en) refrigerator
WO2014198152A1 (en) Electric refrigerator
JP2017072325A (en) refrigerator
JP2018071874A (en) refrigerator
JP2012057888A (en) Refrigerator
JP2013224777A (en) Refrigerator
KR101152070B1 (en) Refrigerator
JP2013002663A (en) Refrigerator
JP5341653B2 (en) refrigerator
JP5039761B2 (en) refrigerator
JP2011058693A (en) Refrigerator
JP2013104650A (en) Refrigerator
JP5103452B2 (en) refrigerator
JP2011038714A (en) Refrigerator
JP7372186B2 (en) refrigerator
JP2021042865A (en) refrigerator
JP2019027649A (en) refrigerator
JP7254227B2 (en) refrigerator
JP2019138514A (en) refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5315179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees