JP2013224777A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2013224777A
JP2013224777A JP2012096753A JP2012096753A JP2013224777A JP 2013224777 A JP2013224777 A JP 2013224777A JP 2012096753 A JP2012096753 A JP 2012096753A JP 2012096753 A JP2012096753 A JP 2012096753A JP 2013224777 A JP2013224777 A JP 2013224777A
Authority
JP
Japan
Prior art keywords
rotation speed
fan motor
refrigerator
damper
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012096753A
Other languages
Japanese (ja)
Inventor
Shintaro Kusano
慎太郎 草野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2012096753A priority Critical patent/JP2013224777A/en
Publication of JP2013224777A publication Critical patent/JP2013224777A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator configured to secure a stable cooling capacity more reliably by focusing on opening/closing motions of dampers.SOLUTION: A control board 31 disposed in a refrigerator includes: a refrigerator operation condition detecting means 71 for controlling opening/closing motions of dampers on the basis of detection of the opening/closing motion of each of the dampers (freezing compartment cooling damper, a refrigerating compartment cooling damper), and information from a plurality of temperature sensors; a fan rotation speed setting means 72 setting a target rotation speed of an inside fan motor 9 before starting the opening/closing motion of each damper, on the basis of the information obtained by the detecting means 71; a fan motor rotation speed detecting means 73 detecting a rotation speed of the fan motor 9 after starting the opening/closing motion of each damper; a fan motor rotation speed correcting means 74 calculating a rotation speed correction value on the basis of a difference value obtained by subtracting an actual rotation speed from the target rotation speed after starting the opening/closing motion of each damper; and a fan motor rotation speed control means 75 adjusting and controlling the rotation speed of the fan motor 9 on the basis of the rotation speed correction value as necessary.

Description

本発明は、庫内ファンモータとその回転数を運転制御する制御装置とを備えた冷蔵庫に関する。   The present invention relates to a refrigerator provided with an internal fan motor and a control device that controls the number of rotations.

従来、一般的な冷蔵庫では、断熱箱体による庫内を冷凍室、冷蔵室、及び野菜室に区分けして複数の貯蔵室を持つ構造とすると共に、各室の背方には冷却器と庫内ファンモータとを設置し、冷却器からの冷気を庫内ファンモータにより各室に循環させて冷却を行う機能を持たせている。また、断熱箱体の下部には機械室が設けられ、この機械室内には冷却器と共に冷媒回路を構成する圧縮機並びに凝縮器とこれらの機器を空冷するための機械室ファンモータとが設置されている。更に、近年では各室内の温度に基づいて庫内ファンモータに印加する電圧、或いは凝縮器や圧縮機の温度に基づいて機械室ファンモータに印加する電圧等を可変にし、各ファンモータの回転数を可変にすることにより、各温度に応じた適切な冷気循環、或いは空冷を行っている。加えて、近年の冷蔵庫では、複数の貯蔵室を選択的に冷却するために、冷気通路中に風路開閉用のダンパが設けられた構造を持つものも製品化されている。   Conventionally, in a general refrigerator, the inside of a cabinet with a heat insulating box is divided into a freezer compartment, a refrigerator compartment, and a vegetable compartment and has a plurality of storage compartments. An internal fan motor is installed, and the cooling air is cooled by circulating the cool air from the cooler to each room by the internal fan motor. A machine room is provided in the lower part of the heat insulation box, and a compressor and a condenser constituting a refrigerant circuit together with a cooler and a machine room fan motor for air-cooling these devices are installed in the machine room. ing. Furthermore, in recent years, the voltage applied to the internal fan motor based on the temperature in each room, or the voltage applied to the machine room fan motor based on the temperature of the condenser or compressor, etc. can be varied, and the number of rotations of each fan motor. By making this variable, appropriate cold air circulation or air cooling corresponding to each temperature is performed. In addition, in recent refrigerators, a refrigerator having a structure in which a damper for opening and closing an air passage is provided in a cold air passage in order to selectively cool a plurality of storage rooms has been commercialized.

ところで、ダンパが設けられた構造の冷蔵庫では、庫内ファンモータが各貯蔵室のダンパの開閉による風路抵抗の変化や周囲温度変化に伴う軸受けオイルの粘度変化により回転数が大きく変化することが知られている。そこで、既存の冷蔵庫では、各ファンモータの回転数を検出する回転数検出手段を備え、その検出結果に基づいて設定回転数に各ファンモータを調整するためのフィードバック制御を行うことにより、一層安定した冷却性能を確保することを仕様上の目的としている。   By the way, in a refrigerator having a structure provided with a damper, the number of rotations of the internal fan motor may change greatly due to a change in airflow resistance due to opening / closing of the damper in each storage chamber or a change in the viscosity of the bearing oil accompanying a change in ambient temperature. Are known. Therefore, the existing refrigerator is provided with a rotation speed detection means for detecting the rotation speed of each fan motor, and by performing feedback control for adjusting each fan motor to the set rotation speed based on the detection result, it is further stable. The purpose of the specification is to ensure the cooling performance.

因みに、ファンモータを調整するためのフィードバック制御を行う冷蔵庫に係る周知技術としては、例えば負荷に変動が生じた場合でもファンモータを設定回転数で安定して回転させる「冷蔵庫」(特許文献1参照)が挙げられる。   Incidentally, as a well-known technique related to a refrigerator that performs feedback control for adjusting a fan motor, for example, a “refrigerator” that stably rotates a fan motor at a set rotational speed even when a load fluctuates (see Patent Document 1). ).

しかしながら、この冷蔵庫では、ファンモータの周辺環境の変化によって生じる回転数の変動を補正するために一定時間毎にフィードバック制御を行うことにより回転数の安定化を図っているが、実際にはファンモータの周辺環境に関係なくフィードバック制御を実施することになるため、例えばフィードバック制御後にファンモータの周辺温度が低下すると、軸受けオイルの粘度増加に伴ってファンモータの回転数が低下してしまう。こうした場合、次のフィードバック制御が行われるまでに低速回転で運転するため、冷蔵庫としての冷却能力が低下してしまうことになる。   However, in this refrigerator, the rotational speed is stabilized by performing feedback control at regular intervals to correct fluctuations in the rotational speed caused by changes in the surrounding environment of the fan motor. Therefore, if the ambient temperature of the fan motor decreases after the feedback control, for example, the rotational speed of the fan motor decreases as the viscosity of the bearing oil increases. In such a case, since the operation is performed at a low speed before the next feedback control is performed, the cooling capacity of the refrigerator is reduced.

こうした問題を解決するための技術も提案されており、例えばファンモータの周囲温度をより精密に測定すると共に、ファンモータのフィードバック制御のタイミングを効果的に行うことで、より確実に安定した冷却能率を確保した「冷蔵庫」(特許文献2参照)が挙げられる。   Technologies for solving these problems have also been proposed. For example, by measuring the ambient temperature of the fan motor more precisely and effectively performing the timing of feedback control of the fan motor, more reliable and stable cooling efficiency. “Refrigerator” (see Patent Document 2) that ensures the above.

特開平11−101542号公報Japanese Patent Laid-Open No. 11-101542 特開2005−156102号公報JP 2005-156102 A

上述した特許文献2に係る技術では、庫内温度又は凝縮器周辺温度からファンモータ周辺の温度を推定し、その推定した温度によって目標回転数を補正することで冷却能力の低下防止を図っているが、上述したようなダンパを具備する冷蔵庫でダンパの開閉に伴う風路抵抗の大小による回転数の変化については考慮されていないため、例えばフィードバック制御後にダンパが開状態から閉状態となり、風路抵抗が大きくなった場合にはファンモータの回転数が低下し、特許文献1の場合と同様に、次のフィードバック制御が行われるまでは低回転で回転するために冷蔵庫としての冷却能力が低下してしまうという問題がある。   In the technology according to Patent Document 2 described above, the temperature around the fan motor is estimated from the internal temperature or the condenser ambient temperature, and the target rotational speed is corrected based on the estimated temperature to prevent the cooling capacity from being lowered. However, since the change in the rotation speed due to the magnitude of the wind path resistance accompanying opening / closing of the damper is not considered in the refrigerator including the damper as described above, for example, the damper is changed from the open state to the closed state after the feedback control. When the resistance increases, the rotational speed of the fan motor decreases. As in the case of Patent Document 1, the cooling capacity as a refrigerator decreases because the motor rotates at a low speed until the next feedback control is performed. There is a problem that it ends up.

要するに、特許文献1や特許文献2に開示された技術では、ダンパを具備する冷蔵庫での適用が困難であり、ダンパが開状態から閉状態となって風路抵抗が大きくなった場合に冷却能力が低下されてしまうという問題を解決できないという短所がある。   In short, the techniques disclosed in Patent Document 1 and Patent Document 2 are difficult to apply in a refrigerator equipped with a damper, and cooling capacity is increased when the damper is closed from the open state to increase the air path resistance. There is a disadvantage that it is not possible to solve the problem of the decrease of the image quality.

本発明は、このような問題点を解決すべくなされたもので、その技術的課題は、ダンパの開閉動作に着目して一層確実に安定した冷却能力を確保し得る冷蔵庫を提供することにある。   The present invention has been made to solve such problems, and a technical problem thereof is to provide a refrigerator capable of ensuring a more reliable and stable cooling capacity by paying attention to the opening / closing operation of the damper. .

上記技術的課題を達成するため、本発明の第1の手段は、断熱体により庫内を区分けして設けられた複数の貯蔵室と、複数の貯蔵室に冷気を送風するための冷気ダクトと、冷気ダクト内に設置されて開閉動作するダンパと、冷気を冷気ダクトを通して複数の貯蔵室内に送風して循環させて冷却を行うファンモータと、を本体内に備え、更に、ファンモータの目標回転数を設定するファン回転数設定手段と、ファンモータの回転数を検出するファンモータ回転数検出手段と、ファンモータ回転数設定手段による目標回転数からファンモータ回転数検出手段で検出された回転数を差し引いた差値を算出した結果に基づいて回転数補正値を演算するファンモータ回転数補正手段と、ファンモータの回転数を回転数補正値に基づいて調整して制御するファンモータ回転数制御手段と、を備えた冷蔵庫であって、ファン回転数設定手段は、ダンパの開閉動作開始前に目標回転数を設定し、ファンモータ回転数検出手段は、ダンパの開閉動作終了後にファンモータの回転数を検出し、ファンモータ回転数補正手段は、ダンパの開閉動作終了後に回転数補正値を演算し、ファンモータ回転数制御手段は、ダンパの開閉動作終了後の回転数補正値に基づいてファンモータの回転数の調整を行うことを特徴とする。   In order to achieve the above technical problem, the first means of the present invention includes a plurality of storage chambers provided by partitioning the interior with a heat insulator, and a cold air duct for blowing cool air to the plurality of storage chambers. A damper installed in the cool air duct that opens and closes, and a fan motor that cools the cool air by circulating air through the cool air duct into a plurality of storage chambers. The number of rotations detected by the fan motor rotation number detection means from the target rotation number by the fan motor rotation number setting means, the fan motor rotation number detection means for detecting the rotation number of the fan motor, and the fan motor rotation number setting means Fan motor rotation speed correction means for calculating the rotation speed correction value based on the result of calculating the difference value obtained by subtracting, and adjusting and controlling the rotation speed of the fan motor based on the rotation speed correction value A fan motor speed control means, the fan speed setting means sets a target speed before starting the damper opening / closing operation, and the fan motor speed detection means is set after the damper opening / closing operation ends. The fan motor rotation speed is detected, the fan motor rotation speed correction means calculates the rotation speed correction value after the damper opening / closing operation is completed, and the fan motor rotation speed control means is the rotation speed correction value after the damper opening / closing operation is completed. The number of rotations of the fan motor is adjusted based on the above.

本発明の第2の手段は、第1の手段において、ダンパは複数個設置され、ファンモータ回転数検出手段は、複数のダンパのうちの何れか1つのダンパの開閉動作終了後にファンモータの回転数を検出し、ファンモータ回転数補正手段は、複数のダンパのうちの何れか1つのダンパの開閉動作終了後に回転数補正値を演算することを特徴とする。   The second means of the present invention is the first means, wherein a plurality of dampers are installed, and the fan motor rotation speed detection means rotates the fan motor after the opening / closing operation of any one of the plurality of dampers is completed. The fan motor rotation number correction means calculates the rotation number correction value after the opening / closing operation of any one of the plurality of dampers is completed.

本発明の第3の手段は、第2の手段において、複数のダンパは、冷蔵室と冷凍室とにそれぞれ一つずつ設置されると共に、それぞれの開閉パターンによって複数の貯蔵室を選択的に独立して冷却することを特徴とする。   According to a third means of the present invention, in the second means, the plurality of dampers are respectively installed in the refrigerator compartment and the freezer compartment, and the plurality of storage chambers are selectively made independent by the respective opening / closing patterns. And cooling.

本発明の第4の手段は、第1の手段〜第3の手段の何れか1つの手段において、ファンモータ回転数制御手段は、ファンモータへ印加する電圧を変化させることでファンモータの回転数を制御することを特徴とする。   According to a fourth means of the present invention, in any one of the first means to the third means, the fan motor rotational speed control means changes the voltage applied to the fan motor to change the rotational speed of the fan motor. It is characterized by controlling.

本発明の冷蔵庫によれば、ダンパが庫内の各貯蔵室の温度に応じて開閉動作するものであることを着目し、ダンパの開閉動作開始前にファン回転数設定手段で目標回転数を設定し、ダンパの開閉動作終了後にファンモータ回転数検出手段でファンモータの回転数を検出すると共に、ファンモータ回転数補正手段で回転数補正値を演算し、ファンモータ回転数制御手段によってダンパの開閉動作終了後の回転数補正値に基づいてファンモータの回転数の調整を行うことにより、ダンパの開閉動作を行う都度、ファンモータの回転数を補正して調整制御を行う機能が得られるため、制御ソフトを簡素化にさせ、従来のように定期的にファンモータの回転数に係るフィードバック制御を行うことなく、ファンモータの設定回転数と実際の回転数とのずれを少なくすることができる他、ファンモータの周囲温度の変化によるファンモータの回転数の変化についても十分に抑制することができるようになる。このような結果として、一層確実に安定した冷却能力を確保できると共に、消費電力についても十分に低減し得るようになる。   According to the refrigerator of the present invention, paying attention to the fact that the damper opens and closes according to the temperature of each storage room in the warehouse, the target rotation speed is set by the fan rotation speed setting means before the opening and closing operation of the damper is started. After the damper opening / closing operation is completed, the fan motor rotation speed detection means detects the fan motor rotation speed, the fan motor rotation speed correction means calculates the rotation speed correction value, and the fan motor rotation speed control means calculates the damper opening / closing operation. By adjusting the rotation speed of the fan motor based on the rotation speed correction value after the end of the operation, a function to perform adjustment control by correcting the rotation speed of the fan motor every time the damper opening / closing operation is performed can be obtained. The control software is simplified, and the set rotational speed of the fan motor and the actual rotational speed can be reduced without performing feedback control related to the rotational speed of the fan motor periodically as in the past. Addition can be reduced les, it is possible also to sufficiently suppress the rotation speed of the change in the fan motor due to a change in the ambient temperature of the fan motor. As a result, stable cooling capacity can be ensured more reliably and power consumption can be sufficiently reduced.

本発明の実施例1に係る冷蔵庫を正面方向から示した外観図である。It is the external view which showed the refrigerator which concerns on Example 1 of this invention from the front direction. 図1に示す冷蔵庫の庫内構造を示すX−X方向における側面断面図である。It is side surface sectional drawing in the XX direction which shows the store | warehouse | chamber interior of the refrigerator shown in FIG. 図1に示す冷蔵庫の庫内構造を一部透視して示した背面方向からの外観図である。It is the external view from the back direction which showed partially the internal structure of the refrigerator shown in FIG. 図2に示す側面断面図の要部を拡大して一部破断して示した図である。It is the figure which expanded and showed a partial fracture | rupture and shown the principal part of the side surface sectional view shown in FIG. 図3に示す背面方向からの外観における一部を露呈して拡大して示した図である。It is the figure which expanded and showed a part in the external appearance from the back direction shown in FIG. 図1〜図5で説明した冷蔵庫に備えられる各ダンパの開閉動作に伴う風路抵抗特性を風量に対する静圧の関係で示した図である。It is the figure which showed the airway resistance characteristic accompanying the opening / closing operation | movement of each damper with which the refrigerator demonstrated in FIGS. 図1〜図5で説明した冷蔵庫に備えられる庫内ファンモータにおける風量特性並びに回転数特性を風量に対する静圧、回転数の関係で示した図である。It is the figure which showed the air volume characteristic and rotation speed characteristic in the fan motor provided in the refrigerator demonstrated in FIGS. 1-5 by the relationship of the static pressure with respect to an air volume, and rotation speed. 図1〜図5で説明した冷蔵庫に備えられる制御装置である制御基板に係る基本構成を示した機能ブロック図である。FIG. 6 is a functional block diagram showing a basic configuration relating to a control board which is a control device provided in the refrigerator described in FIGS. 1 to 5. 図8で説明した制御基板による動作処理を示したフローチャートである。FIG. 9 is a flowchart showing an operation process by the control board described in FIG. 8. FIG.

以下に、本発明の冷蔵庫について、実施例を挙げ、図面を参照して詳細に説明する。   Hereinafter, examples of the refrigerator of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施例1に係る冷蔵庫を正面方向から示した外観図である。また、図2は係る冷蔵庫の庫内構造を示すX−X方向における側面断面図であり、図3は係る冷蔵庫の庫内構造(ダクトや吹き出し口の配置等)を一部透視して示した背面方向からの外観図である。更に、図4は図2に示す側面断面図の要部を拡大して一部破断して示した図であり、図5は図3に示す背面方向からの外観における一部を露呈して拡大して示した図である。   FIG. 1 is an external view showing a refrigerator according to a first embodiment of the present invention from the front direction. 2 is a side cross-sectional view in the XX direction showing the internal structure of the refrigerator, and FIG. 3 is a partially transparent view of the internal structure of the refrigerator (arrangement of ducts and outlets, etc.). It is an external view from the back direction. Further, FIG. 4 is an enlarged view of a main part of the side sectional view shown in FIG. 2 and is partially broken, and FIG. 5 is an enlarged view showing a part of the appearance from the back direction shown in FIG. FIG.

図1を参照すれば、実施例1に係る冷蔵庫1は、断熱体により庫内を区分けして設けられた複数の貯蔵室として、上方から冷蔵室2、製氷室3、上段冷凍室4、下段冷凍室5、及び野菜室6を有する構成となっている。尚、以下では冷蔵室2及び野菜室6を総称して冷蔵温度帯室と呼び、製氷室3、上段冷凍室4、及び下段冷凍室5を総称して冷凍温度帯室60と呼ぶことがある。   Referring to FIG. 1, the refrigerator 1 according to the first embodiment includes a refrigerator room 2, an ice making room 3, an upper freezer room 4, and a lower stage as a plurality of storage rooms provided by partitioning the interior with a heat insulator. It has a configuration having a freezer compartment 5 and a vegetable compartment 6. Hereinafter, the refrigerator compartment 2 and the vegetable compartment 6 may be collectively referred to as a refrigerated temperature zone, and the ice making chamber 3, the upper freezer compartment 4, and the lower freezer compartment 5 may be collectively referred to as a freezer temperature zone 60. .

冷蔵室2は前方側に左右に分割された観音開きの冷蔵室扉2a、2bを備え、製氷室3、上段冷凍室4、下段冷凍室5、及び野菜室6は、それぞれ引き出し式の製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a、及び野菜室扉6aを備えている。尚、以下では冷蔵室扉2a、2bと製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a、及び野菜室扉6aとを単に扉として略称する。   The refrigerating room 2 is provided with front-opening refrigerating room doors 2a and 2b divided into left and right sides, and the ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6 are respectively drawer-type ice making room doors. 3a, upper freezer compartment door 4a, lower freezer compartment door 5a, and vegetable compartment door 6a. Hereinafter, the refrigerator compartment doors 2a and 2b, the ice making compartment door 3a, the upper freezer compartment door 4a, the lower freezer compartment door 5a, and the vegetable compartment door 6a are simply referred to as doors.

また、冷蔵庫1は、各扉2a、2b、3a、4a、5a、6aの開閉状態をそれぞれ検知する図示しない扉センサと、扉開放状態と判定された状態が所定時間として、例えば1分間以上継続された場合に、使用者に報知する図示しないアラームや、冷蔵室2や野菜室6の温度設定や冷凍温度帯室の温度設定をする図示しない温度設定器等を備えている。   In addition, the refrigerator 1 has a door sensor (not shown) that detects the open / closed state of each of the doors 2a, 2b, 3a, 4a, 5a, and 6a, and the state determined to be the door open state continues for a predetermined time, for example, for one minute or longer. In this case, an alarm (not shown) for notifying the user, a temperature setting device (not shown) for setting the temperature of the refrigerator compartment 2 and the vegetable compartment 6, and the temperature setting of the freezing temperature zone compartment are provided.

図2を参照すれば、冷蔵庫1の庫外と庫内とは、発泡断熱材(例えば発泡ポリウレタン等を例示できる)を充填して形成される断熱箱体10により隔てられている。また、係る断熱箱体10の背面側の壁内には複数の真空断熱材25が実装されている。   Referring to FIG. 2, the outside of the refrigerator 1 and the inside of the refrigerator 1 are separated from each other by a heat insulating box 10 formed by filling a foam heat insulating material (for example, foamed polyurethane or the like). A plurality of vacuum heat insulating materials 25 are mounted in the back wall of the heat insulating box 10.

冷蔵庫1の庫内は、断熱仕切壁28により冷蔵室2と上段冷凍室4及び製氷室3(図1に示されるもので、図2中には図示されない)とが隔てられて区分され、断熱仕切壁29により下段冷凍室5と野菜室6とが隔てられて区分されている。   The refrigerator 1 is separated from the refrigerator compartment 2, the upper freezer compartment 4, and the ice making compartment 3 (shown in FIG. 1 and not shown in FIG. 2) by a heat insulating partition wall 28, and is insulated. The lower freezer compartment 5 and the vegetable compartment 6 are separated from each other by a partition wall 29.

扉2a、2bの庫内側には複数の扉ポケット32が備えられており、冷蔵室2は複数の棚36により縦方向に複数の貯蔵スペースが区画されている。   A plurality of door pockets 32 are provided on the inner side of the doors 2a and 2b. In the refrigerator compartment 2, a plurality of storage spaces are partitioned in the vertical direction by a plurality of shelves 36.

上段冷凍室4、下段冷凍室5、及び野菜室6は、それぞれの各室の前方に備えられた扉3a、4a、5a、6aと一体化されるように、収納容器3b、4b、5b、6bがそれぞれ設けられており、各扉4a,5a,6aの図示しない取手部に手を掛けて手前側に引き出すことにより各収納容器4b,5b,6bが引き出せるようになっている。図1に示される製氷室3の場合にも同様に、扉3aと一体化されるように、図2中に示される収納容器3bが設けられ、扉3aの図示しない取手部に手を掛けて手前側に引き出すことにより収納容器3bが引き出せるようになっている。   The upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6 are stored in the storage containers 3b, 4b, 5b, so as to be integrated with the doors 3a, 4a, 5a, 6a provided in front of the respective compartments. 6b is provided, and each storage container 4b, 5b, 6b can be pulled out by putting a hand on a handle portion (not shown) of each door 4a, 5a, 6a and pulling it out to the front side. Similarly, in the case of the ice making chamber 3 shown in FIG. 1, the storage container 3b shown in FIG. 2 is provided so as to be integrated with the door 3a, and the handle 3 (not shown) of the door 3a is put on a hand. The storage container 3b can be pulled out by pulling it toward the front side.

また、図2〜図5を参照すれば、冷却器7は下段冷凍室5の略背部に備えられた冷却器収納室8内に設けられており、冷却器7の上方に設けられた庫内ファンモータ(送風機)9により冷却器7と熱交換して冷やされた空気の冷気(以下、冷却器7で冷やされてできた低温空気を冷気と称する)が冷蔵室送風ダクト11、上段冷凍室送風ダクト12、下段冷凍室送風ダクト13、及び図示しない製氷室送風ダクトを介して冷蔵室2、上段冷凍室4、下段冷凍室5、及び製氷室3の各室へ送られる。各室への送風は、冷蔵室冷却ダンパ20と冷凍室冷却ダンパ50とにおける開閉動作により制御される。因みに、冷蔵室2、製氷室3、上段冷凍室4、及び下段冷凍室5に対する各送風ダクトは、図3に破線で示す(図3中には冷蔵室送風ダクト11、上段冷凍室送風ダクト12が示される)ように冷蔵庫1の各室の背面側に設けられている。   2 to 5, the cooler 7 is provided in the cooler storage chamber 8 provided substantially at the back of the lower freezing chamber 5, and the inside of the refrigerator provided above the cooler 7. Cold air of air cooled by heat exchange with a cooler 7 by a fan motor (blower) 9 (hereinafter, low temperature air cooled by the cooler 7 is referred to as cold air) is a refrigerator compartment air duct 11, an upper freezer compartment The refrigeration chamber 2, the upper refrigeration chamber 4, the lower refrigeration chamber 5, and the ice making chamber 3 are sent to the refrigeration chamber 2, the lower refrigeration chamber blast duct 13, and an ice making chamber blast duct (not shown). The air blowing to each room is controlled by opening / closing operations in the refrigerating room cooling damper 20 and the freezing room cooling damper 50. Incidentally, the air ducts for the refrigerator compartment 2, the ice making chamber 3, the upper freezer compartment 4, and the lower freezer compartment 5 are indicated by broken lines in FIG. 3 (in FIG. 3, the refrigerator compartment air duct 11 and the upper freezer compartment air duct 12 are shown. Is provided on the back side of each room of the refrigerator 1 as shown in FIG.

図2〜図5(主に図3)を参照して具体的に説明すれば、冷蔵室冷却ダンパ20が開状態、冷凍室冷却ダンパ50が閉状態のときには、冷気が冷蔵室ダクト15及び冷蔵室送風ダクト11を経て多段で設けられた吹き出し口2cから冷蔵室2に送られる。冷蔵室2の冷却を終えた後、冷蔵室背面右側下部に備えられた冷蔵室戻り口2dから流入し、冷蔵室2−野菜室6間の室間連通ダクト16を介して野菜室6の背面右側上部に設けられた野菜室吹き出し口6cから野菜室6に流入して野菜室6を冷却する。野菜室6を冷却した冷気は、断熱仕切壁29の下部前方に設けられた野菜室戻り口6d(図2に示される)から野菜室戻りダクト18(図2に示される)を介して冷却器7の幅とほぼ等しい幅の野菜室戻り吐出口18aから流入する。   Specifically, referring to FIGS. 2 to 5 (mainly FIG. 3), when the refrigerating room cooling damper 20 is in the open state and the freezing room cooling damper 50 is in the closed state, the cold air is in the refrigerating room duct 15 and the refrigerating room. It is sent to the refrigerator compartment 2 through the blower outlet 2c provided in multiple stages through the room air duct 11. After cooling of the refrigerator compartment 2, it flows in from the refrigerator compartment return port 2d provided in the lower right part of the refrigerator compartment back right side, and the back of the vegetable compartment 6 through the inter-room communication duct 16 between the refrigerator compartment 2 and the vegetable compartment 6 The vegetable compartment 6 is cooled by flowing into the vegetable compartment 6 from the vegetable compartment outlet 6c provided on the upper right side. The cool air that has cooled the vegetable compartment 6 is cooled by the vegetable compartment return port 6d (shown in FIG. 2) provided in front of the lower part of the heat insulating partition wall 29 through the vegetable compartment return duct 18 (shown in FIG. 2). 7 flows in from the vegetable chamber return discharge port 18a having a width substantially equal to the width of 7.

図3中では冷凍室冷却ダンパ50を省略しているが、冷凍室冷却ダンパ50が開状態のとき、冷却器7で熱交換された冷気が庫内ファンモータ9により略図した製氷室送風ダクトや上段冷凍室送風ダクト12を経て吹き出し口3c、4cからそれぞれ製氷室3、上段冷凍室4へ送風され、下段冷凍室送風ダクト13(図4に示される)を経て吹き出し口5cから上段冷凍室4へ送風される。一般に、周囲温度に対して低温の冷気は上方から下方に向かう下降流を形成するため、冷気を室の上方により多く供給すれば室内を良好に冷却することができる。実施例1の冷蔵庫1では、冷凍室冷却ダンパ50を設けているが、これを庫内ファンモータ9の上方に設置することで、庫内ファンモータ9からの送風をスムーズにし、下段冷凍室5の上段に位置する製氷室3や上段冷凍室4に送風できるように配慮している。   Although the freezer cooling damper 50 is omitted in FIG. 3, when the freezer cooling damper 50 is in an open state, the cold air heat-exchanged by the cooler 7 is schematically shown by the internal fan motor 9, Air is blown from the outlets 3c and 4c to the ice making chamber 3 and the upper freezer compartment 4 through the upper freezer compartment air duct 12, and from the outlet 5c to the upper freezer compartment 4 through the lower freezer compartment air duct 13 (shown in FIG. 4). It is blown to. Generally, cold air having a low temperature relative to the ambient temperature forms a downward flow from the upper side to the lower side. Therefore, if more cold air is supplied to the upper side of the room, the room can be cooled well. In the refrigerator 1 of the first embodiment, the freezer compartment cooling damper 50 is provided, but by installing the freezer compartment cooling motor 50 above the internal fan motor 9, the air from the internal fan motor 9 can be smoothly blown, and the lower freezer compartment 5. Consideration is given so that air can be blown to the ice making chamber 3 and the upper freezing chamber 4 located in the upper stage.

更に、図5を参照すれば、冷蔵室2を冷却した冷気は、冷却器収納室8の側方に備えられた室間連通ダクト16を通って野菜室6に流入する。野菜室6からの戻り冷気は、野菜室戻り口6d(図2参照)から流入し、断熱仕切壁29の中に設けられた野菜室戻りダクト18(図2、図4に示される)を通って冷却器収納室8の下部前方に設けられた、冷却器7の幅とほぼ等しい幅寸法の野菜室戻り吐出口18a(図5参照)から冷却器収納室8に流入する。   Further, referring to FIG. 5, the cold air that has cooled the refrigerator compartment 2 flows into the vegetable compartment 6 through the inter-room communication duct 16 provided on the side of the cooler storage compartment 8. The return cold air from the vegetable room 6 flows in from the vegetable room return port 6d (see FIG. 2) and passes through the vegetable room return duct 18 (shown in FIGS. 2 and 4) provided in the heat insulating partition wall 29. Then, it flows into the cooler storage chamber 8 from the vegetable chamber return discharge port 18a (see FIG. 5) provided in front of the lower portion of the cooler storage chamber 8 and having a width approximately equal to the width of the cooler 7.

一方、冷凍温度帯室を冷却した冷気は、冷却器収納室8と冷凍温度帯室とを仕切ると共に、下段冷凍室送風ダクト26が設けられた仕切板54(図4に示される)の下部に備えられた冷却器7の幅とほぼ等しい幅寸法の冷凍室戻り口17を介して冷却器収納室8に流入する。尚、冷却器収納室8の下方に備えられた除霜ヒータ22は、ガラス管ヒータであり、ガラス管の外周にはアルミニウム製の放熱フィン22a(図5に示される)が備えられている。除霜ヒータ22の上方には、除霜水が除霜ヒータ22に滴下することを防止するために上部カバー53(図4に示される)が設けられている。   On the other hand, the cold air that has cooled the freezing temperature zone chamber separates the cooler storage chamber 8 from the freezing temperature zone chamber, and is provided below the partition plate 54 (shown in FIG. 4) provided with the lower freezing chamber air duct 26. The refrigerant flows into the cooler storage chamber 8 through the freezer return port 17 having a width dimension substantially equal to the width of the cooler 7 provided. The defrosting heater 22 provided below the cooler storage chamber 8 is a glass tube heater, and an aluminum radiating fin 22a (shown in FIG. 5) is provided on the outer periphery of the glass tube. An upper cover 53 (shown in FIG. 4) is provided above the defrost heater 22 in order to prevent the defrost water from dripping onto the defrost heater 22.

冷却器7及びその周辺の冷却器収納室8の壁に付着した霜が除霜ヒータ22の除霜で融解されることで生じた除霜水は冷却器収納室8の下部に備えられた樋23に流入した後、排水管27を介して機械室19に配された蒸発皿21(図2、図4に示される)に達し、圧縮機24及び機械室19内に配設される略図する凝縮器の発熱により蒸発させられる。   The defrost water produced by the frost adhering to the wall of the cooler 7 and the surrounding cooler storage chamber 8 being melted by the defrost of the defrost heater 22 is provided in the lower part of the cooler storage chamber 8. 23, after reaching the evaporating dish 21 (shown in FIGS. 2 and 4) disposed in the machine room 19 through the drain pipe 27, the compressor 24 and the machine room 19 are schematically illustrated. It is evaporated by the heat generated by the condenser.

また、冷却器7の正面から見て左上部には冷却器7に取り付けられた冷却器温度センサ35、冷蔵室2には冷蔵室温度センサ33、下段冷凍室5には冷凍室温度センサ34がそれぞれ備えられており、それぞれ冷却器7の温度(以下、冷却器温度と称する)、冷蔵室2の温度(以下、冷蔵室温度と称する)、下段冷凍室5の温度(以下、冷凍室温度と称する)を検知できるようになっている。更に、冷蔵庫1は、庫外の温度を検知する略図する外気温度センサを備えている。因みに、野菜室6においても野菜室温度センサ33aが配置されている。   A cooler temperature sensor 35 attached to the cooler 7 is located at the upper left as viewed from the front of the cooler 7, a refrigerating room temperature sensor 33 is provided in the refrigerating room 2, and a freezing room temperature sensor 34 is provided in the lower freezing room 5. The temperature of the cooler 7 (hereinafter referred to as “cooler temperature”), the temperature of the refrigerator compartment 2 (hereinafter referred to as “refrigerator compartment temperature”), and the temperature of the lower freezer compartment 5 (hereinafter referred to as “freezer compartment temperature”). Can be detected). Furthermore, the refrigerator 1 includes a schematic outside air temperature sensor that detects the temperature outside the refrigerator. Incidentally, the vegetable room temperature sensor 33 a is also arranged in the vegetable room 6.

冷蔵庫1の天井壁上面側にはCPU、ROMやRAM等のメモリ、及びインターフェース回路等を搭載して構成される制御装置(制御手段)である制御基板31(図2に示されるが、要部の機能構成は後文で詳述する)が配置されている。制御基板31は、上述した外気温度センサ、冷却器温度センサ35、冷蔵室温度センサ33、野菜室温度センサ33a、及び冷凍室温度センサ34と、各扉2a、2b、3a、4a、5a、6aの開閉状態をそれぞれ検知する略図した扉センサと、冷蔵室2内壁に設けられた略図する温度設定器と、下段冷凍室5内壁に設けられた略図する温度設定器等と、に接続され、ROMに予め搭載されたプログラムにより圧縮機24のON、OFF等の制御、冷蔵室冷却ダンパ20及び冷凍温室冷却ダンパ50の開閉動作を個別に駆動制御するための略図する各アクチュエータの制御、庫内ファンモータ9のON/OFF制御や回転速度制御、上述した各扉2a、2b、3a、4a、5a、6aの開放状態を報知するアラームのON/OFF等の制御を行う。   A control board 31 (shown in FIG. 2) is a control device (control means) configured by mounting a CPU, a memory such as a ROM and a RAM, an interface circuit, and the like on the upper surface side of the refrigerator 1. Is described in detail later). The control board 31 includes the above-described outside air temperature sensor, cooler temperature sensor 35, refrigerator temperature sensor 33, vegetable room temperature sensor 33a, freezer room temperature sensor 34, and doors 2a, 2b, 3a, 4a, 5a, 6a. A simplified door sensor for detecting the open / closed state of the refrigerator, a simplified temperature setter provided on the inner wall of the refrigerator compartment 2, a simplified temperature setter provided on the inner wall of the lower freezer compartment 5, etc. Control of each compressor 24 for controlling the ON / OFF of the compressor 24, the opening / closing operation of the cold room cooling damper 20 and the freezing greenhouse cooling damper 50 individually, and the fan in the refrigerator Control such as ON / OFF control and rotation speed control of the motor 9 and ON / OFF of an alarm for notifying the open state of each door 2a, 2b, 3a, 4a, 5a, 6a described above. Do.

実施例1に係る冷蔵庫1では、冷蔵室冷却ダンパ20及び冷凍温室冷却ダンパ50の開閉動作に着目し、係る制御基板31によってそれらの開閉動作開始前に庫内ファンモータ9の目標回転数を設定し、開閉動作終了後に庫内ファンモータ9の回転数を検出すると共に、回転数補正値を演算し、開閉動作終了後の回転数補正値に基づいて庫内ファンモータ9の回転数の調整を行う機能を持たせるものである。   In the refrigerator 1 according to the first embodiment, attention is paid to the opening / closing operations of the cold room cooling damper 20 and the freezing greenhouse cooling damper 50, and the target rotation speed of the internal fan motor 9 is set by the control board 31 before the opening / closing operation is started. Then, after the opening / closing operation is completed, the rotational speed of the internal fan motor 9 is detected, the rotational speed correction value is calculated, and the rotational speed of the internal fan motor 9 is adjusted based on the rotational speed correction value after the opening / closing operation is completed. It has a function to perform.

図6は、実施例1に係る冷蔵庫1に備えられる各ダンパ(冷蔵室冷却ダンパ20及び冷凍温室冷却ダンパ50)の開閉動作に伴う風路抵抗特性を風量Q[m/分]に対する静圧Ps[Pa]の関係で示した図である。ここでは、冷蔵庫1の冷気風路中に設けられた冷蔵室冷却ダンパ20、冷凍室冷却ダンパ50の開閉動作に応じて変化する風路抵抗特性C1〜C3を示している。 FIG. 6 is a graph showing the airway resistance characteristics associated with the opening / closing operations of the dampers (the cold room cooling damper 20 and the freezing greenhouse cooling damper 50) provided in the refrigerator 1 according to the first embodiment with respect to the air volume Q [m 3 / min]. It is the figure shown by the relationship of Ps [Pa]. Here, the air path resistance characteristics C <b> 1 to C <b> 3 that change according to the opening / closing operation of the refrigerating room cooling damper 20 and the freezing room cooling damper 50 provided in the cold air path of the refrigerator 1 are shown.

風路抵抗特性C1は、庫内ファンモータ9から距離の近い冷凍室冷却ダンパ50が閉状態で、庫内ファンモータ9から距離の遠い冷蔵室冷却ダンパ20が開状態の場合の風路抵抗を示しており、冷凍室冷却ダンパ50及び冷蔵室冷却ダンパ20が何れも閉状態で冷気が流れずに風量Qが得られない場合を除けば、最も風路抵抗が大きいことにより、風量Qが少なく、冷気が流れ難い場合に該当している。   The air path resistance characteristic C1 is the air path resistance when the freezer compartment cooling damper 50 close to the internal fan motor 9 is closed and the refrigerating room cooling damper 20 far from the internal fan motor 9 is open. Except for the case where the freezing chamber cooling damper 50 and the refrigerating room cooling damper 20 are both closed and the airflow Q is not obtained because the cold air does not flow, the airflow resistance Q is the smallest and the airflow Q is small. This corresponds to the case where cold air is difficult to flow.

風路抵抗特性C2は、冷凍室冷却ダンパ50が開状態で、冷蔵室冷却ダンパ20が閉状態の場合の風路抵抗を示しており、風路抵抗が風路抵抗特性C1の場合よりもずっと小さいことにより、風量Qが風路抵抗特性C1の場合よりもずっと多く、冷気が比較的流れ易い場合に該当している。   The air path resistance characteristic C2 indicates the air path resistance when the freezer cooling damper 50 is in the open state and the refrigerating room cooling damper 20 is in the closed state, and the air path resistance is much longer than that in the case of the air path resistance characteristic C1. Since it is small, the air volume Q is much larger than in the case of the air path resistance characteristic C1, and this corresponds to the case where the cold air flows relatively easily.

風路抵抗特性C3は、冷凍室冷却ダンパ50が開状態で、冷蔵室冷却ダンパ20も開状態の場合の風路抵抗を示しており、風路抵抗が風路抵抗特性C2の場合よりも更に小さいことにより、風量Qが風路抵抗特性C2の場合よりも更に多く、冷気が最も流れ易い場合に該当している。   The air path resistance characteristic C3 indicates the air path resistance when the freezer cooling damper 50 is in the open state and the refrigerating room cooling damper 20 is also in the open state. The air path resistance is more than that in the case of the air path resistance C2. Since the air volume Q is smaller than that of the air path resistance characteristic C2, it corresponds to the case where the cold air flows most easily.

要するに、風路抵抗の大きさを比較すれば、風路抵抗特性C1>風路抵抗特性C2>風路抵抗特性C3なる関係が成立する。   In short, if the magnitude of the airway resistance is compared, the relationship of airway resistance characteristic C1> airway resistance characteristic C2> airway resistance characteristic C3 is established.

図7は、実施例1に係る冷蔵庫1に備えられる庫内ファンモータ9における風量特性C4並びに回転数特性C5を風量Q[m/分]に対する静圧Ps[Pa]、回転数Nrpmの関係で示した図である。 FIG. 7 shows the relationship between the air flow rate characteristic C4 and the rotation speed characteristic C5 in the internal fan motor 9 provided in the refrigerator 1 according to the first embodiment, and the static pressure Ps [Pa] and the rotation speed Nrpm with respect to the air flow Q [m 3 / min]. It is the figure shown by.

庫内ファンモータ9の風量特性C4は、風量Qが最小(零)のときには静圧Psが最大となり、風量Qが最大のときには静圧Psが最小(零)となることを示している。因みに、図6に示した風路抵抗特性C1〜C3を図7中の風量特性C4に合成した場合の交点がそれぞれ各ダンパ開閉動作の条件下における実際の冷気の風量となる。   The air volume characteristic C4 of the internal fan motor 9 indicates that the static pressure Ps is maximum when the air volume Q is minimum (zero), and the static pressure Ps is minimum (zero) when the air volume Q is maximum. Incidentally, the intersection when the airflow resistance characteristics C1 to C3 shown in FIG. 6 are combined with the airflow characteristics C4 in FIG. 7 is the actual airflow of the cool air under the respective damper opening / closing operation conditions.

庫内ファンモータ9の回転数特性C5は、風量Qが最大のときは高回転となり、風量Qが最小(零)のときは低回転となることを示している。   The rotation speed characteristic C5 of the internal fan motor 9 indicates that the rotation speed is high when the air volume Q is maximum and the rotation speed is low when the air volume Q is minimum (zero).

以上の結果により、各ダンパ(冷凍室冷却ダンパ50、冷蔵室冷却ダンパ20)の開閉状態によって庫内ファンモータ9の回転数が変動することが判る。   From the above results, it can be seen that the number of rotations of the internal fan motor 9 varies depending on the open / closed state of each damper (the freezer compartment cooling damper 50 and the refrigerator compartment cooling damper 20).

ところで、庫内ファンモータ9の回転数が必要とされる回転数よりも高ければ、消費電力が大きくなってしまったり、或いは各貯蔵室内が冷え過ぎて設定温度より低温になってしまう可能性がある。また、庫内ファンモータ9の回転数が必要とされる回転数よりも回転数が低い場合、各貯蔵室内温度が設定温度に到達する時間が遅くなってしまったり、或いは設定温度に達しないといった問題が発生する可能性がある。従って、庫内ファンモータ9の回転数は、必要とされる回転数(設定される目標回転数)通りに運転されることが望ましいと言える。   By the way, if the number of rotations of the internal fan motor 9 is higher than the required number of rotations, there is a possibility that the power consumption becomes large, or that each storage chamber becomes too cold and becomes lower than the set temperature. is there. Further, when the rotation speed of the internal fan motor 9 is lower than the required rotation speed, the time for each storage room temperature to reach the set temperature is delayed, or the set temperature is not reached. Problems can occur. Therefore, it can be said that it is desirable to operate the internal fan motor 9 according to the required rotational speed (set target rotational speed).

図8は、実施例1に係る冷蔵庫1に備えられる制御装置(制御手段)である制御基板31に係る基本構成を示した機能ブロック図である。   FIG. 8 is a functional block diagram illustrating a basic configuration of the control board 31 that is a control device (control means) provided in the refrigerator 1 according to the first embodiment.

制御基板31は、冷蔵庫1内に設置された複数の温度センサに接続されて各温度センサからの温度検出信号を受信すると共に、各ダンパ(冷凍室冷却ダンパ50、冷蔵室冷却ダンパ20)に接続されてそれらの開閉動作状態の検知、並びに温度検出信号から得られる情報に基づいて開閉動作の制御を行う冷蔵庫運転状態検知手段71と、冷蔵庫運転状態検知手段71で得られた情報に基づいて庫内ファンモータ9の目標回転数を設定するファン回転数設定手段72と、庫内ファンモータ9に接続されて実際の庫内ファンモータ9の回転数を検出するファンモータ回転数検出手段73と、ファンモータ回転数設定手段72による目標回転数からファンモータ回転数検出手段73で検出された実際の回転数を差し引いた差値を算出した結果に基づいて回転数補正値(庫内ファンモータ9に印加する電圧)を演算するファンモータ回転数補正手段74と、庫内ファンモータ9の回転数を必要に応じて回転数補正値に基づいて調整して制御するファンモータ回転数制御手段75と、を備えて構成される。   The control board 31 is connected to a plurality of temperature sensors installed in the refrigerator 1 to receive a temperature detection signal from each temperature sensor, and is connected to each damper (freezer compartment cooling damper 50, refrigerator compartment cooling damper 20). Refrigeration operation state detection means 71 that controls the opening / closing operation based on the detection of the opening / closing operation state and information obtained from the temperature detection signal, and the warehouse based on the information obtained by the refrigerator operation state detection means 71 Fan rotational speed setting means 72 for setting a target rotational speed of the internal fan motor 9, fan motor rotational speed detection means 73 connected to the internal fan motor 9 for detecting the actual rotational speed of the internal fan motor 9, Based on the result of calculating the difference value obtained by subtracting the actual rotational speed detected by the fan motor rotational speed detecting means 73 from the target rotational speed by the fan motor rotational speed setting means 72. Fan motor rotation speed correction means 74 for calculating the rotation speed correction value (voltage applied to the internal fan motor 9), and the rotational speed of the internal fan motor 9 is adjusted based on the rotation speed correction value as necessary. Fan motor rotational speed control means 75 for controlling the motor.

このうち、ファン回転数設定手段72は、各ダンパ(冷凍室冷却ダンパ50、冷蔵室冷却ダンパ20)の開閉動作開始前に庫内ファンモータ9の目標回転数を設定しておく。また、ファンモータ回転数検出手段72は、各ダンパ(冷凍室冷却ダンパ50、冷蔵室冷却ダンパ20)の開閉動作終了後に庫内ファンモータ9の実際の回転数を検出した結果をファンモータ回転数補正手段74へ送出する。そこで、ファンモータ回転数補正手段74は、ダンパの開閉動作終了後に回転数補正値を演算する。これにより、ファンモータ回転数制御手段75は、各ダンパ(冷凍室冷却ダンパ50、冷蔵室冷却ダンパ20)の開閉動作終了後にファンモータ回転数補正手段74で得られた回転数補正値に基づいて庫内ファンモータ9の回転数の調整(庫内ファンモータ9に印加する電圧を変化させる)を行う。   Among these, the fan rotation speed setting means 72 sets the target rotation speed of the internal fan motor 9 before the opening / closing operation of each damper (the freezer compartment cooling damper 50 and the refrigerator compartment cooling damper 20) is started. The fan motor rotational speed detection means 72 detects the actual rotational speed of the internal fan motor 9 after the opening / closing operation of each damper (freezer compartment cooling damper 50, refrigerator compartment cooling damper 20) is completed. The data is sent to the correction means 74. Therefore, the fan motor rotation speed correction means 74 calculates a rotation speed correction value after the damper opening / closing operation is completed. Thereby, the fan motor rotation speed control means 75 is based on the rotation speed correction value obtained by the fan motor rotation speed correction means 74 after the opening / closing operation of each damper (freezer compartment cooling damper 50, refrigerator compartment cooling damper 20) is completed. The number of rotations of the internal fan motor 9 is adjusted (the voltage applied to the internal fan motor 9 is changed).

図9は、制御基板31による動作処理を示したフローチャートである。制御基板31では、冷蔵庫1に対する電源投入後、まず初期動作(ステップS1)として、各ダンパ(冷蔵室冷却ダンパ20、冷凍室冷却ダンパ50)の開閉動作起動の準備を含め、全体的なイニシャライズ動作等を行う。   FIG. 9 is a flowchart showing operation processing by the control board 31. In the control board 31, after the power supply to the refrigerator 1 is turned on, as an initial operation (step S <b> 1), an overall initialization operation including preparation for opening / closing operation activation of each damper (refrigeration chamber cooling damper 20, freezing chamber cooling damper 50) is performed. Etc.

次に、冷蔵庫運転状態検知手段71により冷蔵庫1内に設置された複数の温度センサを含む各センサ(それらの信号)、駆動部品の状態を読み込み(ステップS2)を行い、各ダンパ(冷蔵室冷却ダンパ20、冷凍室冷却ダンパ50)の開閉動作開始前にファンモータ回転数設定手段72により庫内ファンモータ9の回転数設定に係るファンモータ回転数設定値Nctl(ステップS3)を設定する処理を行った後、ファンモータ回転数制御手段75により庫内ファンモータ9の起動に係るファンモータON(ステップS4)の処理を行う。   Next, each of the sensors (a signal thereof) including a plurality of temperature sensors installed in the refrigerator 1 by the refrigerator operation state detection unit 71 and the state of the driving parts are read (step S2), and each damper (cooling room cooling) Before starting the opening / closing operation of the damper 20 and the freezer compartment cooling damper 50), the fan motor rotation speed setting means 72 sets the fan motor rotation speed setting value Nctl (step S3) related to the rotation speed setting of the internal fan motor 9. Thereafter, the fan motor rotation speed control means 75 performs a fan motor ON process (step S4) related to the activation of the internal fan motor 9.

更に、冷蔵庫運転状態検知手段71により各ダンパ(冷凍室冷却ダンパ50、冷蔵室冷却ダンパ20)の開閉動作開始の確認に係る冷凍室ダンパまたは冷蔵室ダンパが開閉動作開始したか否かの判定(ステップS5)を行う。この判定の結果、何れかのダンパが開閉動作開始していれば、ファンモータ回転数制御手段75により庫内ファンモータ9の停止に係るファンモータOFF(ステップS6)の処理を行った後、冷蔵庫運転状態検知手段71により各ダンパ(冷凍室冷却ダンパ50、冷蔵室冷却ダンパ20)の開閉動作終了に係るダンパ動作終了(ステップS7)とする。引き続いて、ファンモータ回転数制御手段75により再度庫内ファンモータ9の起動に係るファンモータON(ステップS8)の処理を行った後、ファンモータ回転数検出手段73によりダンパ開閉動作終了後の庫内ファンモータ9の回転数検出に係るファンモータ実回転数Nr検出(ステップS9)の処理を行う。更に、これを受けてファンモータ回転数補正手段75により庫内ファンモータ9に印加する電圧を示す回転数補正値として、ダンパ開閉動作開始前の庫内ファンモータ9の回転数設定に係るファンモータ回転数設定値Nctlからダンパ開閉動作終了後の庫内ファンモータ9の回転数検出に係るファンモータ実回転数Nrを差し引いた差分値ΔN(=Nctl−Nr)を算出する回転数差演算(ステップS10)を行って得られた回転数補正値(差分値ΔN)に基づいて、ファンモータ回転数制御手段75により庫内ファンモータ9の回転数補正に係るファンモータ回転数調整(ステップS11)を行う。   Further, the refrigerator operating state detection means 71 determines whether or not the freezer compartment damper or the refrigerator compartment damper related to the confirmation of the opening / closing operation start of each damper (freezer compartment cooling damper 50, refrigerator compartment cooling damper 20) has started ( Step S5) is performed. As a result of this determination, if any of the dampers has started an opening / closing operation, the fan motor rotational speed control means 75 performs the fan motor OFF (step S6) processing for stopping the internal fan motor 9, and then the refrigerator The operation state detection means 71 sets the damper operation end (step S7) related to the end of the opening / closing operation of each damper (freezer cooling fan 50, refrigeration chamber cooling damper 20). Subsequently, the fan motor rotational speed control means 75 performs the fan motor ON process (step S8) related to the activation of the internal fan motor 9 again, and then the fan motor rotational speed detection means 73 performs the storage after the damper opening / closing operation is completed. The fan motor actual rotation speed Nr detection (step S9) related to the rotation speed detection of the inner fan motor 9 is performed. Further, as a rotational speed correction value indicating the voltage applied to the internal fan motor 9 by the fan motor rotational speed correcting means 75 in response to this, the fan motor related to the rotational speed setting of the internal fan motor 9 before starting the damper opening / closing operation. Rotational speed difference calculation for calculating a difference value ΔN (= Nctl−Nr) obtained by subtracting the actual fan motor rotational speed Nr related to the rotational speed detection of the internal fan motor 9 after the damper opening / closing operation is completed from the rotational speed setting value Nctl (step) Based on the rotational speed correction value (difference value ΔN) obtained by performing S10), the fan motor rotational speed control means 75 performs fan motor rotational speed adjustment (step S11) related to rotational speed correction of the internal fan motor 9. Do.

この後は、冷蔵庫運転状態検知手段71により冷蔵庫1の通常冷却運転に係る通常冷蔵庫運転制御(ステップS12)を行ってから先の冷蔵庫1内各センサ、駆動部品の状態読み込み(ステップS2)の前にリターンしてそれ以降の処理を繰り返すが、先の冷凍室ダンパまたは冷蔵室ダンパが開閉動作開始したか否かの判定(ステップS5)の結果、何れのダンパも開閉動作開始していない場合についても、上述した各処理(ステップS6〜ステップS11)をジャンプし、冷蔵庫運転状態検知手段71により同様に冷蔵庫1の通常冷却運転に係る通常冷蔵庫運転制御(ステップS12)を行ってから先の冷蔵庫1内各センサ、駆動部品の状態読み込み(ステップS2)の前にリターンしてそれ以降の処理を繰り返す。   After this, normal refrigerator operation control (step S12) related to the normal cooling operation of the refrigerator 1 is performed by the refrigerator operation state detection means 71, and before the state reading of each sensor and drive component in the previous refrigerator 1 (step S2). Returning to step S4, the subsequent processing is repeated. As a result of the determination as to whether or not the previous freezer or refrigeration room damper has started the opening / closing operation (step S5), no damper has started the opening / closing operation. In addition, after jumping the above-described processes (steps S6 to S11) and performing the normal refrigerator operation control (step S12) related to the normal cooling operation of the refrigerator 1 in the same manner by the refrigerator operation state detection means 71, the previous refrigerator 1 It returns before each sensor and drive component state reading (step S2), and the subsequent processing is repeated.

即ち、図9で説明した制御基板31の動作処理によれば、各ダンパ(冷凍室冷却ダンパ50、冷蔵室冷却ダンパ20)の開閉動作を行う都度、庫内ファンモータ9の回転数を補正して調整制御を行うことなるため、風路抵抗の変化による庫内ファンモータ9の設定回転数と実際の回転数とのずれを抑制することができる他、庫内ファンモータ9の周囲温度の変化による庫内ファンモータ9の回転数の変化についても十分に抑制することができる。このような結果として、一層確実に安定した冷却能力を確保できると共に、消費電力についても十分に低減し得る。   That is, according to the operation process of the control board 31 described with reference to FIG. 9, the rotation speed of the internal fan motor 9 is corrected each time the dampers (freezer cooling fan 50 and refrigerator cooling fan 20) are opened and closed. Since the adjustment control is performed, it is possible to suppress the deviation between the set rotational speed of the internal fan motor 9 and the actual rotational speed due to the change in the air path resistance, and the change in the ambient temperature of the internal fan motor 9 The change in the rotation speed of the internal fan motor 9 due to can be sufficiently suppressed. As a result, stable cooling capacity can be ensured more reliably, and power consumption can be sufficiently reduced.

尚、図1〜図5を参照して説明した実施例1に係る冷蔵庫1の基本構造は、あくまでも一例であり、機種タイプ(類型)によって各貯蔵室の配置やレイアウト等が異なる場合があることはよく知られており、ダンパについても1個のものや3個以上のものを持つ様々なタイプがあるため、本発明の冷蔵庫1は実施例1で説明した構造のものに限定されない。   In addition, the basic structure of the refrigerator 1 which concerns on Example 1 demonstrated with reference to FIGS. 1-5 is an example to the last, and arrangement | positioning, layout, etc. of each storage room may differ with model types (types). Is well known, and there are various types of dampers having one or more than three, and therefore the refrigerator 1 of the present invention is not limited to the structure described in the first embodiment.

1 冷蔵庫
2 冷蔵室
3 製氷室
4 上段冷凍室
5 下段冷凍室
6 野菜室
7 冷却器
8 冷却器収納室
9 庫内ファンモータ(送風機)
10 断熱箱体
11 冷蔵室送風ダクト
12 上段冷凍室送風ダクト
13 下段冷凍室送風ダクト
15 冷蔵室ダクト
16 冷蔵室−野菜室連通ダクト
17 冷凍室戻り口
18 野菜室戻りダクト
18a 野菜室戻り吐出口
19 機械室
20 冷蔵室冷却ダンパ
21 蒸発皿
22 除霜ヒータ
23 樋
24 圧縮機
26 下段冷凍室送風ダクト
27 排水管
28、29 断熱仕切壁
31 制御基板
33 冷蔵室温度センサ
33a 野菜室温度センサ
34 冷凍室温度センサ
35 冷却器温度センサ
50 冷凍室冷却ダンパ
53 上部カバー
54 仕切板
71 冷蔵庫運転状態検知手段
72 ファンモータ回転数設定手段
73 ファンモータ回転数検出手段
74 ファンモータ回転数補正手段
75 ファンモータ回転数制御手段
DESCRIPTION OF SYMBOLS 1 Refrigerator 2 Refrigeration room 3 Ice making room 4 Upper freezer room 5 Lower freezer room 6 Vegetable room 7 Cooler 8 Cooler storage room 9 Fan motor (blower)
DESCRIPTION OF SYMBOLS 10 Heat insulation box 11 Refrigerating room ventilation duct 12 Upper stage freezing room ventilation duct 13 Lower stage freezing room ventilation duct 15 Refrigerating room duct 16 Refrigerating room-vegetable room communication duct 17 Freezing room return port 18 Vegetable room return duct 18a Vegetable room return discharge port 19 Machine room 20 Cold room cooling damper 21 Evaporating dish 22 Defrost heater 23 樋
24 Compressor 26 Lower freezer compartment air duct 27 Drain pipe 28, 29 Insulation partition wall 31 Control board 33 Cold room temperature sensor 33a Vegetable room temperature sensor 34 Freezer room temperature sensor 35 Cooler temperature sensor 50 Freezer compartment cooling damper 53 Upper cover 54 Partition plate 71 Refrigerator operation state detection means 72 Fan motor rotation speed setting means 73 Fan motor rotation speed detection means 74 Fan motor rotation speed correction means 75 Fan motor rotation speed control means

Claims (4)

断熱体により庫内を区分けして設けられた複数の貯蔵室と、前記複数の貯蔵室に冷気を送風するための冷気ダクトと、前記冷気ダクト内に設置されて開閉動作するダンパと、冷気を前記冷気ダクトを通して前記複数の貯蔵室内に送風して循環させて冷却を行うファンモータと、を本体内に備え、更に、前記ファンモータの目標回転数を設定するファン回転数設定手段と、前記ファンモータの回転数を検出するファンモータ回転数検出手段と、前記ファンモータ回転数設定手段による前記目標回転数から前記ファンモータ回転数検出手段で検出された前記回転数を差し引いた差値を算出した結果に基づいて回転数補正値を演算するファンモータ回転数補正手段と、前記ファンモータの回転数を前記回転数補正値に基づいて調整して制御するファンモータ回転数制御手段と、を備えた冷蔵庫であって、
前記ファン回転数設定手段は、前記ダンパの開閉動作開始前に前記目標回転数を設定し、前記ファンモータ回転数検出手段は、前記ダンパの開閉動作終了後に前記ファンモータの回転数を検出し、前記ファンモータ回転数補正手段は、前記ダンパの開閉動作終了後に前記回転数補正値を演算し、前記ファンモータ回転数制御手段は、前記ダンパの開閉動作終了後の前記回転数補正値に基づいて前記ファンモータの回転数の調整を行うことを特徴とする冷蔵庫。
A plurality of storage chambers provided by partitioning the interior with a heat insulator, a cold air duct for blowing cool air to the plurality of storage chambers, a damper installed in the cold air duct for opening and closing, and a cool air A fan motor that cools air by circulating it through the cool air duct and circulating the air into the plurality of storage chambers; and further, a fan rotation speed setting means for setting a target rotation speed of the fan motor; and the fan Fan motor rotation speed detection means for detecting the rotation speed of the motor, and a difference value obtained by subtracting the rotation speed detected by the fan motor rotation speed detection means from the target rotation speed by the fan motor rotation speed setting means is calculated. Fan motor rotation speed correction means for calculating a rotation speed correction value based on the result, and a fan for adjusting and controlling the rotation speed of the fan motor based on the rotation speed correction value. And motor speed control means, a refrigerator having a
The fan rotation speed setting means sets the target rotation speed before starting the opening / closing operation of the damper, the fan motor rotation speed detection means detects the rotation speed of the fan motor after the opening / closing operation of the damper, The fan motor rotation speed correction means calculates the rotation speed correction value after completion of the damper opening / closing operation, and the fan motor rotation speed control means is based on the rotation speed correction value after completion of the damper opening / closing operation. The refrigerator characterized by adjusting the rotation speed of the fan motor.
請求項1記載の冷蔵庫において、前記ダンパは複数個設置され、前記ファンモータ回転数検出手段は、前記複数のダンパのうちの何れか1つのダンパの開閉動作終了後に前記ファンモータの回転数を検出し、前記ファンモータ回転数補正手段は、前記複数のダンパのうちの何れか1つのダンパの開閉動作終了後に前記回転数補正値を演算することを特徴とする冷蔵庫。   2. The refrigerator according to claim 1, wherein a plurality of the dampers are installed, and the fan motor rotation speed detection unit detects the rotation speed of the fan motor after the opening / closing operation of any one of the plurality of dampers is completed. The fan motor rotation speed correction means calculates the rotation speed correction value after the opening / closing operation of any one of the plurality of dampers is completed. 請求項2に記載の冷蔵庫において、前記複数のダンパは、冷蔵室と冷凍室とにそれぞれ一つずつ設置されると共に、それぞれの開閉パターンによって前記複数の貯蔵室を選択的に独立して冷却することを特徴とする冷蔵庫。   3. The refrigerator according to claim 2, wherein the plurality of dampers are respectively installed in the refrigerator compartment and the freezer compartment, and the plurality of storage chambers are selectively and independently cooled by respective opening / closing patterns. A refrigerator characterized by that. 請求項1〜3の何れか1項記載の冷蔵庫において、前記ファンモータ回転数制御手段は、前記ファンモータへ印加する電圧を変化させることで前記ファンモータの回転数を制御することを特徴とする冷蔵庫。   The refrigerator according to any one of claims 1 to 3, wherein the fan motor rotation speed control means controls the rotation speed of the fan motor by changing a voltage applied to the fan motor. refrigerator.
JP2012096753A 2012-04-20 2012-04-20 Refrigerator Pending JP2013224777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012096753A JP2013224777A (en) 2012-04-20 2012-04-20 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012096753A JP2013224777A (en) 2012-04-20 2012-04-20 Refrigerator

Publications (1)

Publication Number Publication Date
JP2013224777A true JP2013224777A (en) 2013-10-31

Family

ID=49594941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012096753A Pending JP2013224777A (en) 2012-04-20 2012-04-20 Refrigerator

Country Status (1)

Country Link
JP (1) JP2013224777A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104265669A (en) * 2014-09-24 2015-01-07 合肥美的电冰箱有限公司 Rotating speed control method and device of brushless DC fan, fan and refrigerator
CN108106322A (en) * 2017-11-21 2018-06-01 广州美的华凌冰箱有限公司 Progress control method, device, refrigerator and computer readable storage medium
CN108917269A (en) * 2018-08-07 2018-11-30 澳柯玛股份有限公司 A kind of ducting assembly for multi-temperature zone refrigerator
CN109028706A (en) * 2018-08-07 2018-12-18 澳柯玛股份有限公司 A kind of ducting assembly for multi-temperature zone
JP2021032531A (en) * 2019-08-28 2021-03-01 東芝ライフスタイル株式会社 refrigerator
CN112665303A (en) * 2020-12-28 2021-04-16 Tcl家用电器(合肥)有限公司 Refrigerator control method and device, refrigerator and computer readable storage medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104265669A (en) * 2014-09-24 2015-01-07 合肥美的电冰箱有限公司 Rotating speed control method and device of brushless DC fan, fan and refrigerator
CN108106322A (en) * 2017-11-21 2018-06-01 广州美的华凌冰箱有限公司 Progress control method, device, refrigerator and computer readable storage medium
CN108917269A (en) * 2018-08-07 2018-11-30 澳柯玛股份有限公司 A kind of ducting assembly for multi-temperature zone refrigerator
CN109028706A (en) * 2018-08-07 2018-12-18 澳柯玛股份有限公司 A kind of ducting assembly for multi-temperature zone
JP2021032531A (en) * 2019-08-28 2021-03-01 東芝ライフスタイル株式会社 refrigerator
JP7334091B2 (en) 2019-08-28 2023-08-28 東芝ライフスタイル株式会社 refrigerator
CN112665303A (en) * 2020-12-28 2021-04-16 Tcl家用电器(合肥)有限公司 Refrigerator control method and device, refrigerator and computer readable storage medium

Similar Documents

Publication Publication Date Title
JP6254404B2 (en) Shielding device and refrigerator having the same
JP5178642B2 (en) refrigerator
JP5530852B2 (en) refrigerator
JP5027443B2 (en) Cooling storage
JP6344895B2 (en) refrigerator
JP2013224777A (en) Refrigerator
JP5826317B2 (en) refrigerator
WO2013084460A1 (en) Refrigerator
JP5315179B2 (en) refrigerator
JP5832705B1 (en) refrigerator
JP2017072325A (en) refrigerator
JP2012057888A (en) Refrigerator
JP2012092986A (en) Refrigerator
JP2018091578A (en) refrigerator
JP2018071874A (en) refrigerator
WO2018038023A1 (en) Control device, program, method for controlling refrigerator, and refrigerator
JP6309710B2 (en) Freezer refrigerator
JP5341653B2 (en) refrigerator
JP2014043981A (en) Refrigerator
JP2011038714A (en) Refrigerator
JP5039761B2 (en) refrigerator
JP6309156B2 (en) refrigerator
JP5008440B2 (en) Cooling storage
JP6186187B2 (en) refrigerator
JP2012063026A (en) Refrigerator