WO1999008053A1 - Cooling cycle - Google Patents

Cooling cycle Download PDF

Info

Publication number
WO1999008053A1
WO1999008053A1 PCT/JP1998/003555 JP9803555W WO9908053A1 WO 1999008053 A1 WO1999008053 A1 WO 1999008053A1 JP 9803555 W JP9803555 W JP 9803555W WO 9908053 A1 WO9908053 A1 WO 9908053A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
tank
cooling
pressure
main path
Prior art date
Application number
PCT/JP1998/003555
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuhiko Suzuki
Original Assignee
Zexel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Corporation filed Critical Zexel Corporation
Publication of WO1999008053A1 publication Critical patent/WO1999008053A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0415Refrigeration circuit bypassing means for the receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/05Refrigerant levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Definitions

  • the present invention relates to a cooling cycle using a supercritical fluid, and more particularly to a cooling cycle including a refrigerant tank for adjusting a refrigerant amount in a cycle in a bypass path bypassing an expansion valve.
  • a compressor 2 for increasing the pressure of the refrigerant
  • a radiator 3 for cooling the refrigerant
  • a countercurrent heat for exchanging heat between the refrigerant flowing through the high-pressure line and the low-pressure line.
  • It has a main path 7 having an exchanger 4, an expansion valve 5 for reducing the pressure of the refrigerant, and an evaporator 6 for evaporating and vaporizing the refrigerant.
  • the supercritical refrigerant pressurized by the compressor 2 is cooled by the radiator 3, and further cooled by the countercurrent heat exchanger 4 before entering the expansion valve 5.
  • a main route 7 is also described in the same gazette on page 4, lines 39-44, and on page 5, lines 38-48.
  • a bypass path 9 for bypassing the expansion valve 5 is further provided, and a refrigerant tank 10 and valves 11 and 11 disposed on a high pressure side and a low pressure side with respect to the refrigerant tank 10 in the bypass path 9 are provided.
  • valve 11 In order to increase the amount of refrigerant in the main path 7, the valve 11 is closed and the valve 12 is opened to supply the refrigerant in the refrigerant tank to the main path ⁇ .
  • the valve 11 When the amount of refrigerant in the main path 7 is to be reduced, the valve 11 is opened and the valve 12 is closed, and the refrigerant in the main path 7 is collected in the refrigerant tank 10.
  • the refrigerant can be collected in the refrigerant tank 10 if the pressure in the refrigerant tank is lower than the pressure in the high-pressure side line at the time of collection. If the pressure is higher than or equal to, the refrigerant does not move from the main path 7 into the tank, and the refrigerant in the main path cannot be recovered.
  • a refrigerant in the main path is used.
  • the objective is to increase the range of adjustment of the amount of refrigerant in the main route, since it is possible to sufficiently collect the refrigerant.
  • Another issue is to reduce the required volume of the refrigerant tank by increasing the efficiency of accumulating the amount of refrigerant in the refrigerant tank. Disclosure of the invention
  • a cooling cycle according to the present invention uses a supercritical fluid as a refrigerant, a compressor that pressurizes the refrigerant, a radiator that cools the refrigerant pressurized by the compressor, and a radiator that A main path is formed by sequentially connecting pipes so as to include a pressure reducing means which is disposed downstream of the refrigerant and decompresses the cooled refrigerant, and an evaporator which heats the refrigerant depressurized by the pressure reducing means.
  • a bypass path that bypasses the expansion valve in the main path; a refrigerant tank that stores refrigerant in the bypass path; and a control valve that adjusts a passage cross-section on a refrigerant upstream side and a refrigerant downstream side of the refrigerant tank.
  • a cooling means for cooling the refrigerant in the refrigerant tank is provided.
  • the supercritical fluid fluids such as C02 and ethylene whose critical temperature is around room temperature are used. Even when the control valve is an on-off valve that switches the bypass path to closed or closed, the cross section of the passage is continuous. May be a variable valve.
  • a cooling device independent of the main path may be separately attached to the tank to adjust the cooling capacity. May be configured to cool the refrigerant. Further, the refrigerant in the refrigerant tank may be constantly cooled or may be cooled only when necessary.
  • the cycle configuration of the main path includes at least a compressor, a radiator, a pressure reducing means, and an evaporator.
  • the cycle between the radiator and the expansion valve is required.
  • a configuration in which a heat exchanger for exchanging heat between the refrigerant in the high-pressure side line and the refrigerant in the low-pressure side line is provided, or a configuration in which an accumulator is provided downstream of the refrigerant in the evaporator is included.
  • the high-temperature and high-pressure refrigerant which is pressurized by the compressor and is brought into a supercritical state is cooled by the radiator and then decompressed.
  • the pressure is reduced by the stage to become low-temperature, low-pressure wet steam, which is sent to the compressor after being evaporated and vaporized by the evaporator and pressurized again.
  • the amount of the refrigerant flowing in the main path is adjusted by controlling the control valve of the bypass path to discharge the refrigerant in the refrigerant tank to the main path, or to recover the refrigerant from the main path.
  • the refrigerant flowing into the tank from the main path during recovery is cooled by the cooling means and changes from a supercritical state to a subcritical state (liquid phase state). Therefore, it is possible to always keep the pressure lower than that required, and it is possible to reliably recover the required amount of refrigerant from the main path.
  • FIG. 1 is a diagram showing a configuration example of a cooling cycle according to the present invention.
  • FIG. 2 is a diagram showing a Mollier diagram of the cooling cycle shown in FIG. 1 together with a Mollier diagram of a conventional cycle.
  • FIG. 3 is a diagram showing a configuration of a conventional cooling cycle.
  • the cooling cycle 1 includes a compressor 2 for compressing the refrigerant, a radiator 3 for cooling the refrigerant, a countercurrent heat exchanger 4 for exchanging heat between the high-pressure side line and the low-pressure side line 4, and a refrigerant.
  • the main path 7 includes an expansion valve 5 for reducing pressure and an evaporator 6 for evaporating and evaporating a refrigerant.
  • the main path 7 connects the discharge side of the compressor 2 to the high-pressure passage 4 a of the countercurrent heat exchanger 4 via the radiator 3, and connects the outlet side of the high-pressure passage 4 a to the expansion valve 5.
  • the path from the compressor 2 to the high pressure side of the expansion valve 5 is defined as a high pressure side line 7a.
  • the low-pressure side of the expansion valve 5 is connected to an evaporator 6 via a cooling device 8 to be described later. It is connected to the low pressure passage 4 b of the container 4.
  • the outflow side of the low-pressure passage 4b is connected to the suction side of the compressor 2, and the path from the low-pressure side of the expansion valve 5 to the compressor 2 is a low-pressure line 7b.
  • C 0 2 is used as a refrigerant, and the refrigerant compressed by the compressor 2 enters the radiator 3 as a high-temperature and high-pressure supercritical refrigerant, where heat is radiated and cooled. . Thereafter, the heat is exchanged with the low-temperature refrigerant in the low-pressure side line 7 b in the counter-current heat exchanger 4 to be further cooled and sent to the expansion valve 5 without being liquefied. Then, the pressure is reduced by the expansion valve 5 to become low-temperature and low-pressure wet steam, and heat exchange with the air passing therethrough in the evaporator 6 to become gaseous, and thereafter, the high-pressure side line 7 in the countercurrent heat exchanger 4. It is heated by exchanging heat with the high-temperature refrigerant of a and returned to the compressor 2.
  • the bypass path 9 that bypasses the expansion valve 5 includes a refrigerant tank 10 for storing refrigerant and a passage on the high pressure side (between the refrigerant tank 10 and the high pressure side line 7 a) than the refrigerant tank 10.
  • a first on-off valve 11 for opening and closing the valve
  • a second on-off valve 12 for opening and closing the passage on the low pressure side (between the refrigerant tank 10 and the low pressure side line 7b).
  • a cooling device 8 that cools the coolant in the coolant tank 10 is provided between the expansion valve 5 and the evaporator 6 in the main path 7.
  • the cooling device 8 is formed on a low-pressure pipe extending from the expansion valve 5.
  • a low-pressure pipe is wound around the refrigerant tank 10, or the low-pressure pipe and the side of the refrigerant tank 10 are brought into contact with each other.
  • the refrigerant tank 10 may be constituted by a double pipe composed of an inner cylinder that stores the refrigerant and an outer cylinder that forms a passage around which the refrigerant flows.
  • the refrigerant in the refrigerant tank may be constantly cooled by the low-temperature refrigerant after passing through the expansion valve 5. It is supposed to.
  • the supercritical high-temperature and high-pressure refrigerant compressed by the compressor 2 indicated by the point A is cooled to the point B by the radiator 3, and It is further cooled to point C by the flow type heat exchanger 4. Then, the pressure is reduced by the expansion valve 5 to become a low-temperature and low-pressure wet steam indicated by a point D. Thereafter, the heat is exchanged with the refrigerant in the refrigerant tank 10 by the cooling device 8, and the evaporator 6 evaporates and reaches the point E. . The refrigerant that has passed through the evaporator 6 is further heated to the point F by the countercurrent heat exchanger 4, and then compressed again by the compressor 2 to return to the point A.
  • the cooling capacity will be reduced according to the heat load. If it is necessary to reduce the pressure, or if there is a request to reduce the high-pressure side pressure and operate at the maximum COP, the first on-off valve 11 is closed, the second on-off valve 12 is closed, and the refrigerant tank 1 is closed. Only the high pressure side of 0 is opened, and the refrigerant in the main path 7 is collected in the refrigerant tank 10. As a result, the pressure in the high pressure side line 7a decreases, and the cooling capacity decreases.
  • the pressure in the refrigerant tank 10 may be the same as that of the high-pressure side line 7a. No movement of the refrigerant to the refrigerant tank 10 occurs. Immediately after opening the first on-off valve 11, even if there is a pressure difference between the inside of the refrigerant tank and the high-pressure side line 7a, the pressure equilibrates after a while, and the high-pressure side line 7a In some cases, the refrigerant cannot be sufficiently recovered because the pressure drop P1 cannot be sufficiently large, and the refrigeration effect cannot be sufficiently reduced. In FIG. 2, this state is represented as a state change of A " ⁇ B" ⁇ C " ⁇ D" ⁇ ⁇ "indicated by a chain line.
  • the refrigerant tank 10 is constantly cooled, the refrigerant in the tank is changed to liquid-phase refrigerant and accumulated, and the pressure in the refrigerant tank 10 is changed to the high-pressure side line 7 a Lower pressure is always maintained. For this reason, the amount of refrigerant recovered from the main path 7 to the refrigerant tank 10 can be increased, and the pressure fluctuation P2 of the high-pressure side line 7a can be made larger than P1, so that the refrigeration effect can be reduced. It can be reduced sufficiently. If this state is indicated by a broken line on the Moliere diagram, as shown in FIG.
  • the adjustment range of the cooling capacity (Q to Q ′), that is, the adjustment range of the refrigerant amount can be made larger than the conventional adjustment range (Q to Q ′′). Since they can be stored in a phased state, the required volume of the tank itself can be made smaller than that of the conventional one.
  • cooling device 8 should be provided as a separate cycle independent of the main path 7. Is also good. Industrial applicability
  • the present invention in a configuration in which a refrigerant tank and control valves are provided on the outlet side and the inlet side thereof on the path bypassing the expansion valve of the main path to adjust the amount of refrigerant in the main path, Cools the refrigerant in the refrigerant tank and changes the refrigerant flowing from the main path into the refrigerant tank from the supercritical state to the subcritical state, so that the refrigerant tank is always kept at a lower pressure than the high-pressure line when recovering the refrigerant.
  • the required volume is made smaller than that of the conventional refrigerant tank without requiring the same tank volume as the conventional one.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

A cooling cycle using a supercritical fluid as a refrigerant, capable of regulating the quantity of the refrigerant over a wide range, and adapted to reduce a required capacity of a refrigerant tank provided for increasing and decreasing the quantity of the refrigerant, wherein a main path (7) is formed by connecting a compressor (2), a radiator (3), an expansion valve (5) and an evaporator (6) in series, and a bypass path (9) is provided in the main path (7) so as to bypass the expansion valve (5) and is provided with a refrigerant tank (10) for storing the refrigerant therein, and on-off valves (11, 12) for opening and closing the inlet and the outlet of the refrigerant tank (10). The refrigerant in the refrigerant tank is cooled with the refrigerant which is circulating in the main path (7) and which has just passed through the expansion valve to keep the temperature in the refrigerant tank (10) lower than that in a high-pressure side line (7a), whereby a required quantity of refrigerant can be recovered.

Description

明 細 冷却サイクル 技術分野  Details Cooling cycle Technical field
この発明は、 超臨界流体を用いた冷却サイクル、 特に、 膨張弁をバイパ スするバイパス経路にサイクル内の冷媒量を調節するための冷媒タンクを 備えた冷却サイクルに関する。 背景技術  The present invention relates to a cooling cycle using a supercritical fluid, and more particularly to a cooling cycle including a refrigerant tank for adjusting a refrigerant amount in a cycle in a bypass path bypassing an expansion valve. Background art
自然環境に適した代替冷媒が模索される昨今において、 フロンガスを用 いるよりも以前に利用されていた炭酸ガス冷媒 ( C 0 2 ) が再び注目され ている。 このような C 0 2 を用いた冷却サイクルは、 C 0 2 の臨界温度が In the search for alternative refrigerants suitable for the natural environment, carbon dioxide refrigerant (C02), which had been used earlier than using CFCs, is attracting attention again. In such a cooling cycle using C 0 2, the critical temperature of C 0 2
3 1 °Cであることから、 高圧側ラインが超臨界領域で用いられる構成とな つており、 十分な冷凍性能を得る必要から特公平 7— 1 8 6 0 2号公報の 第 4図に示されるサイクル構成が考えられている。 Since the temperature is 31 ° C, the high-pressure side line is used in the supercritical region, and it is necessary to obtain sufficient refrigeration performance, as shown in Fig. 4 of Japanese Patent Publication No. 7-186002. Cycle configuration is considered.
これは、 本願の第 3図に示されるように、 冷媒を昇圧する圧縮機 2、 冷 媒を冷却する放熱器 3、 高圧側ラインと低圧側ラインとを流れる冷媒を熱 交換させる向流型熱交換器 4、 冷媒を減圧する膨張弁 5、 冷媒を蒸発させ て気化する蒸発器 6を備えた主経路 7を有している。 この主経路 7におい て、 圧縮機 2で昇圧された超臨界状態の冷媒は、 放熱器 3で冷却され、 膨 張弁 5に入る前に向流型熱交換器 4によってさらに冷却される。 そして、 冷却された冷媒は、 膨張弁 5によって減圧されて湿り蒸気となり、 蒸発器 6で気相冷媒となつた後に向流型熱交換器 4で高圧側冷媒と熱交換してさ らに加熱され、 圧縮室 2へ戻される。 このような主経路 7に対して、 同公報の第 4頁第 3 9行目から第 4 4行 目、 及び、 第 5頁第 3 8行目から第 4 8行目にも記述されているように、 膨張弁 5をバイパスするバイパス経路 9を更に設け、 このバイパス経路 9 に冷媒タンク 1 0と、 この冷媒夕ンク 1 0を境にして高圧側及び低圧側に 配された弁 1 1 , 1 2とを設け、 主経路 7の冷媒量を増加させたい場合に は、 弁 1 1を閉、 弁 1 2を開とし、 冷媒タンク内の冷媒を主経路 Ίに供給 する。 また、 主経路 7の冷媒量を減少させたい場合には、 弁 1 1を開、 弁 1 2を閉とし、 主経路 7の冷媒を冷媒タンク 1 0に回収するようにしてい る。 This is, as shown in FIG. 3 of the present application, a compressor 2 for increasing the pressure of the refrigerant, a radiator 3 for cooling the refrigerant, and a countercurrent heat for exchanging heat between the refrigerant flowing through the high-pressure line and the low-pressure line. It has a main path 7 having an exchanger 4, an expansion valve 5 for reducing the pressure of the refrigerant, and an evaporator 6 for evaporating and vaporizing the refrigerant. In this main path 7, the supercritical refrigerant pressurized by the compressor 2 is cooled by the radiator 3, and further cooled by the countercurrent heat exchanger 4 before entering the expansion valve 5. Then, the cooled refrigerant is decompressed by the expansion valve 5 to become wet steam, becomes a vapor-phase refrigerant in the evaporator 6, and then heat-exchanges with the high-pressure side refrigerant in the countercurrent heat exchanger 4 to be further heated. And returned to the compression chamber 2. Such a main route 7 is also described in the same gazette on page 4, lines 39-44, and on page 5, lines 38-48. As described above, a bypass path 9 for bypassing the expansion valve 5 is further provided, and a refrigerant tank 10 and valves 11 and 11 disposed on a high pressure side and a low pressure side with respect to the refrigerant tank 10 in the bypass path 9 are provided. In order to increase the amount of refrigerant in the main path 7, the valve 11 is closed and the valve 12 is opened to supply the refrigerant in the refrigerant tank to the main path Ί. When the amount of refrigerant in the main path 7 is to be reduced, the valve 11 is opened and the valve 12 is closed, and the refrigerant in the main path 7 is collected in the refrigerant tank 10.
しかしながら、 上述の構成において、 冷媒タンク 1 0への冷媒の回収 は、 冷媒タンク内の圧力が回収時の高圧側ラインの圧力よりも低ければ可 能となるが、 夕ンク内圧力が高圧側ラインの圧力よりも高いか同等である と、 主経路 7からタンク内に冷媒が移動せず、 主経路内の冷媒を回収する ことができない。  However, in the above-described configuration, the refrigerant can be collected in the refrigerant tank 10 if the pressure in the refrigerant tank is lower than the pressure in the high-pressure side line at the time of collection. If the pressure is higher than or equal to, the refrigerant does not move from the main path 7 into the tank, and the refrigerant in the main path cannot be recovered.
また、 冷媒タンク内の圧力が高圧側ラインと低圧側ラインとの間の中間 圧に設定されているような場合でも、 弁 1 1を開いてしばらくすると、 冷 媒タンク内の圧力が高圧側ラインの圧力と等しくなり、 冷媒の回収が十分 に行えなくなることが懸念される。  Also, even when the pressure in the refrigerant tank is set to the intermediate pressure between the high-pressure line and the low-pressure line, a short time after opening the valve 11, the pressure in the refrigerant tank becomes high-pressure line. There is a concern that refrigerant pressure may not be sufficient for recovery of refrigerant.
そこで、 この発明においては、 超臨界流体を冷媒として用い、 冷媒夕 ンクとその出口側及び入口側にバルブを設けて主経路内の冷媒流量を調節 するようにした冷却サイクルにおいて、 主経路の冷媒の回収を充分に行う ことができ、 主経路内の冷媒量の調節範囲を大きくすることを課題として いる。 また、 冷媒タンクの冷媒量の蓄積効率を高めることで冷媒タンクの 必要容積を小さくすることも課題としている。 発明の開示 Therefore, in the present invention, in a cooling cycle in which a supercritical fluid is used as a refrigerant and valves are provided on a refrigerant tank and outlet and inlet sides thereof to regulate the flow rate of the refrigerant in the main path, a refrigerant in the main path is used. The objective is to increase the range of adjustment of the amount of refrigerant in the main route, since it is possible to sufficiently collect the refrigerant. Another issue is to reduce the required volume of the refrigerant tank by increasing the efficiency of accumulating the amount of refrigerant in the refrigerant tank. Disclosure of the invention
上記課題を達成するために、 この発明にかかる冷却サイクルは、 超臨界 流体を冷媒とし、 冷媒を昇圧する圧縮機と、 この圧縮機で昇圧された冷媒 を冷却する放熱器と、 この放熱器よりも冷媒下流側に配されて前記冷却さ れた冷媒を減圧する減圧手段と、 この減圧手段で減圧された冷媒を加熱す る蒸発器とを含むように順次配管接続して主経路を構成し、 前記主経路に 前記膨張弁をバイパスするバイパス経路を設け、 このバイパス経路に、 冷 媒を蓄積する冷媒タンクと、 この冷媒タンクの冷媒上流側及び冷媒下流側 において通路断面を調節する制御弁とを設け、 前記冷媒タンク内の冷媒を 冷却する冷却手段を設けたことを特徴としている。  In order to achieve the above object, a cooling cycle according to the present invention uses a supercritical fluid as a refrigerant, a compressor that pressurizes the refrigerant, a radiator that cools the refrigerant pressurized by the compressor, and a radiator that A main path is formed by sequentially connecting pipes so as to include a pressure reducing means which is disposed downstream of the refrigerant and decompresses the cooled refrigerant, and an evaporator which heats the refrigerant depressurized by the pressure reducing means. A bypass path that bypasses the expansion valve in the main path; a refrigerant tank that stores refrigerant in the bypass path; and a control valve that adjusts a passage cross-section on a refrigerant upstream side and a refrigerant downstream side of the refrigerant tank. And a cooling means for cooling the refrigerant in the refrigerant tank is provided.
超臨界流体としては、 臨界温度が常温付近にある C 0 2 、 エチレン等の 流体が用いられ、 制御弁としては、 バイパス経路を閧又は閉に切り替える 開閉弁であっても、 通路断面を連続的に可変する弁であってもよい。 また、 冷却手段としては、 主経路とは独立した冷却装置を別途タンクに付設して 冷却能力を調節するものであってもよいが、 主経路を循環する減圧手段通 過後の冷媒によって冷媒タンク内の冷媒を冷却する構成としてもよい。 ま た、 冷媒タンク内の冷媒は、 常時冷却するようにしても、 必要時にのみ冷 却するようにしてもよい。  As the supercritical fluid, fluids such as C02 and ethylene whose critical temperature is around room temperature are used. Even when the control valve is an on-off valve that switches the bypass path to closed or closed, the cross section of the passage is continuous. May be a variable valve. As the cooling means, a cooling device independent of the main path may be separately attached to the tank to adjust the cooling capacity. May be configured to cool the refrigerant. Further, the refrigerant in the refrigerant tank may be constantly cooled or may be cooled only when necessary.
さらに、 主経路のサイクル構成としては、 圧縮器、 放熱器、 減圧手段、 蒸発器を少なく とも含み、 例えば、 膨張弁に流入する冷媒温度を更に下げ るために、 放熱器と膨張弁との間に高圧側ラインの冷媒と低圧側ラインの 冷媒とを熱交換する熱交換器を設ける構成、 あるいは蒸発器の冷媒下流側 にアキュムレータを設けるような構成等が含まれる。  Furthermore, the cycle configuration of the main path includes at least a compressor, a radiator, a pressure reducing means, and an evaporator.For example, in order to further lower the temperature of the refrigerant flowing into the expansion valve, the cycle between the radiator and the expansion valve is required. A configuration in which a heat exchanger for exchanging heat between the refrigerant in the high-pressure side line and the refrigerant in the low-pressure side line is provided, or a configuration in which an accumulator is provided downstream of the refrigerant in the evaporator is included.
したがって、 このような構成によれば、 圧縮機で昇圧されて超臨界状 態となる高温高圧の冷媒は、 放熱器によって冷却され、 しかる後に減圧手 段によって減圧されて低温低圧の湿り蒸気となり、 蒸発器で蒸発気化した 後に圧縮機へ送られ、 再び昇圧される。 主経路内を流通する冷媒量は、 バ ィパス経路の制御弁を制御することによって冷媒タンク内の冷媒を主経路 に放出したり、 或いは、 主経路から冷媒を回収することで調節されるもの であるが、 回収時に主経路からタンク内に流入される冷媒は、 冷却手段に よって冷却されて超臨界状態から亜臨界状態(液相状態)へ変移するので、 冷媒回収時にはタンク内を高圧側ラインよりも常に低圧に保つことができ、 主経路から必要量の冷媒を確実に回収することが可能となる。 図面の簡単な説明 Therefore, according to such a configuration, the high-temperature and high-pressure refrigerant which is pressurized by the compressor and is brought into a supercritical state is cooled by the radiator and then decompressed. The pressure is reduced by the stage to become low-temperature, low-pressure wet steam, which is sent to the compressor after being evaporated and vaporized by the evaporator and pressurized again. The amount of the refrigerant flowing in the main path is adjusted by controlling the control valve of the bypass path to discharge the refrigerant in the refrigerant tank to the main path, or to recover the refrigerant from the main path. However, the refrigerant flowing into the tank from the main path during recovery is cooled by the cooling means and changes from a supercritical state to a subcritical state (liquid phase state). Therefore, it is possible to always keep the pressure lower than that required, and it is possible to reliably recover the required amount of refrigerant from the main path. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明にかかる冷却サイクルの構成例を示す図であり、 第 2 図は、 第 1図で示す冷却サイクルのモリエ一ル線図を従来のサイクルのモ リエール線図と共に示したものであり、 第 3図は従来の冷却サイクルの構 成を示す図である。 発明を実施するための最良の形態  FIG. 1 is a diagram showing a configuration example of a cooling cycle according to the present invention. FIG. 2 is a diagram showing a Mollier diagram of the cooling cycle shown in FIG. 1 together with a Mollier diagram of a conventional cycle. FIG. 3 is a diagram showing a configuration of a conventional cooling cycle. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明の実施の態様を図面に基づいて説明する。 第 1図におい て、 冷却サイクル 1は、 冷媒を圧縮する圧縮機 2、 冷媒を冷却する放熱器 3、高圧側ラインと低圧側ラインとの冷媒を熱交換する向流型熱交換器 4、 冷媒を減圧する膨張弁 5、 冷媒を蒸発気化する蒸発器 6を有して構成され た主経路 7を備えている。 この主経路 7は、 圧縮機 2の吐出側を放熱器 3 を介して向流型熱交換器 4の高圧通路 4 aに接続し、 この高圧通路 4 aの 流出側を膨張弁 5に接続し、 圧縮機 2から膨張弁 5の高圧側に至る経路を 高圧側ライ ン 7 aとしている。 また、 膨張弁 5の低圧側は、 後述する冷却 装置 8を介して蒸発器 6に接続され、 この蒸発器 6を通って向流型熱交換 器 4の低圧通路 4 bに接続されている。 そして、 低圧通路 4 bの流出側を 圧縮機 2の吸入側に接続し、 膨張弁 5の低圧側から圧縮機 2に至る経路を 低圧側ライン 7 bとしている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, the cooling cycle 1 includes a compressor 2 for compressing the refrigerant, a radiator 3 for cooling the refrigerant, a countercurrent heat exchanger 4 for exchanging heat between the high-pressure side line and the low-pressure side line 4, and a refrigerant. The main path 7 includes an expansion valve 5 for reducing pressure and an evaporator 6 for evaporating and evaporating a refrigerant. The main path 7 connects the discharge side of the compressor 2 to the high-pressure passage 4 a of the countercurrent heat exchanger 4 via the radiator 3, and connects the outlet side of the high-pressure passage 4 a to the expansion valve 5. The path from the compressor 2 to the high pressure side of the expansion valve 5 is defined as a high pressure side line 7a. The low-pressure side of the expansion valve 5 is connected to an evaporator 6 via a cooling device 8 to be described later. It is connected to the low pressure passage 4 b of the container 4. The outflow side of the low-pressure passage 4b is connected to the suction side of the compressor 2, and the path from the low-pressure side of the expansion valve 5 to the compressor 2 is a low-pressure line 7b.
この冷却サイクル 1においては、 冷媒として C 0 2 が用いられており、 圧縮機 2によって圧縮された冷媒は、 高温高圧の超臨界状態の冷媒として 放熱器 3に入り、 ここで放熱して冷却する。 その後、 向流型熱交換器 4に おいて低圧側ライン 7 bの低温冷媒と熱交換して更に冷やされ、 液化され ることなく膨張弁 5へ送られる。 そして、 この膨張弁 5において減圧され て低温低圧の湿り蒸気となり、 蒸発器 6においてここを通過する空気と熱 交換してガス状となり、 しかる後に向流型熱交換器 4において高圧側ライ ン 7 aの高温冷媒と熱交換して加熱され、 圧縮機 2へ戻される。  In this cooling cycle 1, C 0 2 is used as a refrigerant, and the refrigerant compressed by the compressor 2 enters the radiator 3 as a high-temperature and high-pressure supercritical refrigerant, where heat is radiated and cooled. . Thereafter, the heat is exchanged with the low-temperature refrigerant in the low-pressure side line 7 b in the counter-current heat exchanger 4 to be further cooled and sent to the expansion valve 5 without being liquefied. Then, the pressure is reduced by the expansion valve 5 to become low-temperature and low-pressure wet steam, and heat exchange with the air passing therethrough in the evaporator 6 to become gaseous, and thereafter, the high-pressure side line 7 in the countercurrent heat exchanger 4. It is heated by exchanging heat with the high-temperature refrigerant of a and returned to the compressor 2.
冷却サイクル 1は、 上述した主経路 7に対して、 向流型熱交換器 4の高 圧通路 4 aと膨張弁 5との間に一端を接続し、 他端を膨張弁 5と蒸発器 6 との間に接続するバイパス経路 9が設けられている。 膨張弁 5をバイパス するこのバイパス経路 9には、 冷媒を蓄積する冷媒タンク 1 0と、 この冷 媒タンク 1 0よりも高圧側 (冷媒タンク 1 0と高圧側ライン 7 aとの間) において通路を開閉する第 1の開閉弁 1 1 と、 低圧側 (冷媒タンク 1 0と 低圧側ライン 7 bとの間) において通路を開閉する第 2の開閉弁 1 2とが 設けられている。  In the cooling cycle 1, one end is connected between the high-pressure passage 4a of the counterflow heat exchanger 4 and the expansion valve 5 with respect to the main path 7 described above, and the other end is connected to the expansion valve 5 and the evaporator 6 A bypass path 9 is provided to connect between the two. The bypass path 9 that bypasses the expansion valve 5 includes a refrigerant tank 10 for storing refrigerant and a passage on the high pressure side (between the refrigerant tank 10 and the high pressure side line 7 a) than the refrigerant tank 10. There is provided a first on-off valve 11 for opening and closing the valve, and a second on-off valve 12 for opening and closing the passage on the low pressure side (between the refrigerant tank 10 and the low pressure side line 7b).
また、 主経路 7の膨張弁 5と蒸発器 6との間には、 冷媒タンク 1 0の冷 媒を冷却する冷却装置 8が設けられている。 この冷却装置 8は、 膨張弁 5 から伸びる低圧配管上に形成されており、 例えば、 冷媒タンク 1 0の周囲 に低圧配管を卷設したり、 低圧配管と冷媒タンク 1 0の側面同士を当接し て構成されるものであっても、 冷媒タンク 1 0を冷媒を溜める内筒とその 周囲に冷媒を流通させる通路を形成する外筒とからなる 2重管によって構 成するものであっても、 或いは、 冷媒タンク内に低圧配管を気密よく揷通 する構造等としてもよく、 膨張弁 5を通過した後の低温冷媒によって、 前 記冷媒タンク内の冷媒を常時冷却するようになっている。 In addition, a cooling device 8 that cools the coolant in the coolant tank 10 is provided between the expansion valve 5 and the evaporator 6 in the main path 7. The cooling device 8 is formed on a low-pressure pipe extending from the expansion valve 5. For example, a low-pressure pipe is wound around the refrigerant tank 10, or the low-pressure pipe and the side of the refrigerant tank 10 are brought into contact with each other. However, the refrigerant tank 10 may be constituted by a double pipe composed of an inner cylinder that stores the refrigerant and an outer cylinder that forms a passage around which the refrigerant flows. Alternatively, the refrigerant in the refrigerant tank may be constantly cooled by the low-temperature refrigerant after passing through the expansion valve 5. It is supposed to.
上記構成において、 熱負荷に応じて冷却能力を大きくする必要や、 高圧 側圧力を高めて C O P (成績係数 : 冷凍効果/圧縮機の仕事) を最高の状 態で運転する要請がある場合等には、 第 1の開閉弁 1 1を閉、 第 2の開閉 弁 1 2を開として冷媒タンク 1 0の低圧側のみを開放し、 冷媒タンク 1 0 内の冷媒を主経路 7に放出する。 これにより、 高圧側ライン 7 aの圧力は 上昇し、 冷却能力が高められる。  In the above configuration, when there is a need to increase the cooling capacity according to the heat load, or when there is a demand to operate the COP (coefficient of performance: refrigeration effect / compressor work) in the highest condition by increasing the high-pressure side pressure, etc. Closes the first on-off valve 11, opens the second on-off valve 12, opens only the low pressure side of the refrigerant tank 10, and discharges the refrigerant in the refrigerant tank 10 to the main path 7. As a result, the pressure of the high-pressure side line 7a increases, and the cooling capacity is increased.
このような冷媒の状態変化は、 図 2のモリエール線図において A→B→ Such a change in the state of the refrigerant is represented by A → B →
C→D→E→F→Aで示されるようになり、 A点で示される圧縮機 2で圧 縮された超臨界状態の高温高圧冷媒は、 放熱器 3によって B点まで冷却さ れ、 向流型熱交換器 4によってさらに C点まで冷却される。 そして、 膨張 弁 5によって減圧されて D点で示す低温低圧の湿り蒸気となり、 その後、 冷却装置 8で冷媒タンク 1 0内の冷媒と熱交換され、 蒸発器 6で蒸発気化 されて E点に至る。 蒸発器 6を通過した冷媒は、 さらに向流型熱交換器 4 によって F点まで加熱され、 しかる後に再び圧縮機 2で圧縮されて A点に 戻る。 As shown by C → D → E → F → A, the supercritical high-temperature and high-pressure refrigerant compressed by the compressor 2 indicated by the point A is cooled to the point B by the radiator 3, and It is further cooled to point C by the flow type heat exchanger 4. Then, the pressure is reduced by the expansion valve 5 to become a low-temperature and low-pressure wet steam indicated by a point D. Thereafter, the heat is exchanged with the refrigerant in the refrigerant tank 10 by the cooling device 8, and the evaporator 6 evaporates and reaches the point E. . The refrigerant that has passed through the evaporator 6 is further heated to the point F by the countercurrent heat exchanger 4, and then compressed again by the compressor 2 to return to the point A.
このような状態に対して、 高圧側ライン 7 aの圧力を許容範囲内とする要 請がある場合や、 圧縮機 2の吐出温度を低下する必要がある場合、 熱負荷 に応じて冷却能力を小さくする必要がある場合、 高圧側圧力を低下させて 最高 C O Pで運転したい要請がある場合等には、 第 1の開閉弁 1 1を閧、 第 2の開閉弁 1 2を閉として冷媒タンク 1 0の高圧側のみを開放し、 主経 路 7の冷媒を冷媒タンク 1 0内に回収する。 これにより、 高圧側ライン 7 aの圧力は低下し、 冷却能力が低下する。 この過程において、 冷媒タンク 1 0内の圧力が調節されない従来の構成 にあっては、 冷媒タンク内の圧力が高圧側ライン 7 aと同じである場合も あり、 この場合には、 主経路 7から冷媒タンク 1 0への冷媒の移動は起こ らない。 また、 第 1の開閉弁 1 1を開とした直後には冷媒タンク内と高圧 側ライン 7 aとの間で圧力差があっても、 しばらくすると圧力が平衡して しまい、 高圧側ライン 7 aの圧力降下 P 1が大きく とれないために冷媒の 回収が十分に行えず、 冷凍効果を十分に低減させることができない場合も ある。 第 2図においては、 この状態を一点鎖線で示す A " →B " →C " → D " → → →Κ " の状態変化として表わす。 In such a situation, if there is a request to keep the pressure of the high pressure side line 7a within the allowable range, or if it is necessary to lower the discharge temperature of the compressor 2, the cooling capacity will be reduced according to the heat load. If it is necessary to reduce the pressure, or if there is a request to reduce the high-pressure side pressure and operate at the maximum COP, the first on-off valve 11 is closed, the second on-off valve 12 is closed, and the refrigerant tank 1 is closed. Only the high pressure side of 0 is opened, and the refrigerant in the main path 7 is collected in the refrigerant tank 10. As a result, the pressure in the high pressure side line 7a decreases, and the cooling capacity decreases. In the conventional configuration in which the pressure in the refrigerant tank 10 is not adjusted in this process, the pressure in the refrigerant tank may be the same as that of the high-pressure side line 7a. No movement of the refrigerant to the refrigerant tank 10 occurs. Immediately after opening the first on-off valve 11, even if there is a pressure difference between the inside of the refrigerant tank and the high-pressure side line 7a, the pressure equilibrates after a while, and the high-pressure side line 7a In some cases, the refrigerant cannot be sufficiently recovered because the pressure drop P1 cannot be sufficiently large, and the refrigeration effect cannot be sufficiently reduced. In FIG. 2, this state is represented as a state change of A "→ B" → C "→ D" →→→ Κ "indicated by a chain line.
これに対して、 本構成によれば、 冷媒タンク 1 0が常時冷却されてタン ク内の冷媒が液相冷媒に変えられて蓄積され、冷媒タンク 1 0内の圧力は、 高圧側ライン 7 aよりも常に低い圧力に保たれる。 このため、 主経路 7か ら冷媒タンク 1 0へ回収される冷媒量を大きくすることができ、 高圧側ラ イン 7 aの圧力変動 P 2は P 1 よりも大きくすることができ、 冷凍効果を 十分に低減させることができる。 この状態をモリエール線図上で破線で示 すものとすると、 第 2図に示されるように、 A , → ' C ' →Ώ ' →Ε →F→A ' の状態変化として表わすことができ、 冷却能力の調整範囲 (Q 〜 Q ' )、 即ち、 冷媒量の調整範囲を従来の調整範囲 ( Q〜 Q ") よりも大 きくすることができる。 また、 冷媒タンク 1 0内の冷媒を液相状態で貯え ることができることから、 タンク自体の必要容積を従来のものに比べて小 さくすることができる。  On the other hand, according to the present configuration, the refrigerant tank 10 is constantly cooled, the refrigerant in the tank is changed to liquid-phase refrigerant and accumulated, and the pressure in the refrigerant tank 10 is changed to the high-pressure side line 7 a Lower pressure is always maintained. For this reason, the amount of refrigerant recovered from the main path 7 to the refrigerant tank 10 can be increased, and the pressure fluctuation P2 of the high-pressure side line 7a can be made larger than P1, so that the refrigeration effect can be reduced. It can be reduced sufficiently. If this state is indicated by a broken line on the Moliere diagram, as shown in FIG. 2, it can be represented as a state change of A, → 'C' → Ώ '→ 、 → F → A', The adjustment range of the cooling capacity (Q to Q ′), that is, the adjustment range of the refrigerant amount can be made larger than the conventional adjustment range (Q to Q ″). Since they can be stored in a phased state, the required volume of the tank itself can be made smaller than that of the conventional one.
尚、 膨張弁通過後の冷媒によって冷媒タンク内の冷媒を冷却したのでは 冷凍効果に大きな影響がでるというのであれば、 冷却装置 8を主経路 7 と は独立した別個のサイクルとして設けるようにしてもよい。 産業上の利用可能性 If cooling the refrigerant in the refrigerant tank with the refrigerant after passing through the expansion valve would greatly affect the refrigeration effect, the cooling device 8 should be provided as a separate cycle independent of the main path 7. Is also good. Industrial applicability
以上述べたように、 この発明によれば、 主経路の膨張弁をバイパスする 経路上に冷媒タンクとその出口側及び入口側にそれぞれ制御弁を設けて主 経路の冷媒量を調節する構成において、 冷媒タンク内の冷媒を冷却して主 経路から冷媒タンクへ流入する冷媒を超臨界状態から亜臨界状態へ変移す るようにし、 もって冷媒回収時に冷媒タンク内を高圧側ラインよりも常に 低圧に保つようにしたので、 高圧側ラインと冷媒タンク内との圧力がすぐ に平衡して冷媒の回収が困難になるようなことがなくなり、 主経路の冷媒 量を所望の量とすることができる。 その結果、 サイクルの運転条件によつ て冷媒の回収の有無が左右されず、 いつでも主経路の冷媒量の調節可能と なる。  As described above, according to the present invention, in a configuration in which a refrigerant tank and control valves are provided on the outlet side and the inlet side thereof on the path bypassing the expansion valve of the main path to adjust the amount of refrigerant in the main path, Cools the refrigerant in the refrigerant tank and changes the refrigerant flowing from the main path into the refrigerant tank from the supercritical state to the subcritical state, so that the refrigerant tank is always kept at a lower pressure than the high-pressure line when recovering the refrigerant. With this configuration, the pressure in the high-pressure side line and the pressure in the refrigerant tank are not immediately equilibrated, and it is not difficult to collect the refrigerant, and the amount of refrigerant in the main path can be set to a desired amount. As a result, it is possible to adjust the amount of refrigerant in the main path at any time, regardless of whether the refrigerant is collected or not depending on the operating conditions of the cycle.
また、 冷媒タンク内の冷媒を冷却して亜臨界状態とすることから、 従来 と同程度のタンク容積を必要とせず、 必要容積を従来の冷媒タンクよりも 小さくすることにある。  Further, since the refrigerant in the refrigerant tank is cooled to a subcritical state, the required volume is made smaller than that of the conventional refrigerant tank without requiring the same tank volume as the conventional one.

Claims

請 求 の 範 囲 The scope of the claims
1 . 超臨界流体を冷媒とし、  1. Supercritical fluid as refrigerant
冷媒を昇圧する圧縮機と、 この圧縮機で昇圧された冷媒を冷却する放熱 器と、 この放熱器よりも冷媒下流側に配されて前記冷却された冷媒を減圧 する減圧手段と、 この減圧手段で減圧された冷媒を加熱する蒸発器とを含 むように順次配管接続して主経路を構成し、  A compressor that pressurizes the refrigerant, a radiator that cools the refrigerant pressurized by the compressor, a decompression unit that is disposed downstream of the radiator and that decompresses the cooled refrigerant, and a decompression unit A main path is formed by sequentially connecting pipes so as to include an evaporator for heating the refrigerant depressurized in
前記主経路に前記減圧手段をバイパスするバイパス経路を設け、 このバイパス経路に、 冷媒を蓄積する冷媒タンクと、 この冷媒タンクの 冷媒上流側及び冷媒下流側において通路断面を調節する制御弁とを設け、 さらに、 前記冷媒タンク内の冷媒を冷却する冷却手段を設けたことを特 徴とする冷却サイクル。  A bypass path for bypassing the pressure reducing means is provided in the main path, a refrigerant tank for accumulating refrigerant, and a control valve for adjusting a passage cross section on a refrigerant upstream side and a refrigerant downstream side of the refrigerant tank are provided on the bypass path. A cooling cycle, further comprising a cooling means for cooling the refrigerant in the refrigerant tank.
2 . 前記主経路の冷媒量を増加させる場合には、 前記冷媒タンクの冷媒上 流側に設けられた制御弁を閉、 冷媒下流側に設けられた制御弁を開とし、 前記主経路の冷媒量を減少させる場合には.、 前記冷媒タンクの冷媒上流側 に設けられた制御弁を開、 冷媒下流側に設けられた制御弁を閉とする請求 項 1記載の冷却サイクル。 2. When increasing the amount of refrigerant in the main path, the control valve provided on the upstream side of the refrigerant in the refrigerant tank is closed, and the control valve provided on the downstream side of the refrigerant is opened. 2. The cooling cycle according to claim 1, wherein when reducing the amount, a control valve provided on a refrigerant upstream side of the refrigerant tank is opened, and a control valve provided on a refrigerant downstream side is closed.
3 . 前記冷却手段は、 前記減圧手段を通過した後の減圧された冷媒によつ て前記冷媒タンク内の冷媒を冷却するものである請求項 1記載の冷却サイ クル。 3. The cooling cycle according to claim 1, wherein the cooling unit cools the refrigerant in the refrigerant tank with the depressurized refrigerant after passing through the decompression unit.
4 . 前記冷却手段は、 前記主経路の低圧配管を前記冷却タンクの周囲に卷 設してなることを特徴とする請求項 3記載の冷却サイクル。 4. The cooling cycle according to claim 3, wherein the cooling means is formed by winding a low-pressure pipe of the main path around the cooling tank.
5 . 前記冷却手段は、 前記主経路の低圧配管を前記冷却タンクに揷通して なることを特徴とする請求項 3記載の冷却サイクル。 5. The cooling cycle according to claim 3, wherein the cooling unit is configured to connect a low-pressure pipe of the main path to the cooling tank.
6 . 前記冷却手段は、 前記冷却タンクを内筒とし、 その周囲に前記主経路 の低圧冷媒を通す通路が形成された外筒を設けてなることを特徴とする請 求項 3記載の冷却サイクル。 6. The cooling cycle according to claim 3, wherein the cooling means comprises an inner cylinder having the cooling tank, and an outer cylinder having a passage through which the low-pressure refrigerant of the main path is formed. .
7 . 前記主経路には、 前記圧縮機の吐出側から前記減圧手段に至る高圧ラ インの冷媒と、 前記減圧手段から前記圧縮機の吸入側に至る低圧ラインの 冷媒とを熱交換する熱交換器がさらに設けられていることを特徴とする請 求項 1記載の冷却サイクル。 7. The main path includes a heat exchanger for exchanging heat between a high-pressure line refrigerant from the discharge side of the compressor to the decompression unit and a low-pressure line refrigerant from the decompression unit to the suction side of the compressor. 3. The cooling cycle according to claim 1, further comprising a vessel.
PCT/JP1998/003555 1997-08-12 1998-08-11 Cooling cycle WO1999008053A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP23043597A JPH1163686A (en) 1997-08-12 1997-08-12 Refrigeration cycle
JP9/230435 1997-08-12

Publications (1)

Publication Number Publication Date
WO1999008053A1 true WO1999008053A1 (en) 1999-02-18

Family

ID=16907865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003555 WO1999008053A1 (en) 1997-08-12 1998-08-11 Cooling cycle

Country Status (2)

Country Link
JP (1) JPH1163686A (en)
WO (1) WO1999008053A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1059495A3 (en) * 1999-06-08 2002-01-02 Mitsubishi Heavy Industries, Ltd. Supercritical vapor compression cycle
US6385980B1 (en) 2000-11-15 2002-05-14 Carrier Corporation High pressure regulation in economized vapor compression cycles
EP1207360A2 (en) * 2000-11-15 2002-05-22 Carrier Corporation Suction line heat exchanger with a storage tank for a transcritical vapor compression cycle
US6418735B1 (en) 2000-11-15 2002-07-16 Carrier Corporation High pressure regulation in transcritical vapor compression cycles
WO2004010060A1 (en) * 2002-07-23 2004-01-29 Daikin Industries, Ltd. Refrigerating cycle
US6739141B1 (en) 2003-02-12 2004-05-25 Carrier Corporation Supercritical pressure regulation of vapor compression system by use of gas cooler fluid pumping device
EP1467158A2 (en) * 2003-04-09 2004-10-13 Hitachi, Ltd. Refrigeration cycle apparatus
FR2869098A1 (en) * 2003-12-23 2005-10-21 Tecumseh Products Co
US7424807B2 (en) 2003-06-11 2008-09-16 Carrier Corporation Supercritical pressure regulation of economized refrigeration system by use of an interstage accumulator
EP2233860A1 (en) * 2007-12-07 2010-09-29 Mitsubishi Heavy Industries, Ltd. Refrigerant circuit
US10041713B1 (en) 1999-08-20 2018-08-07 Hudson Technologies, Inc. Method and apparatus for measuring and improving efficiency in refrigeration systems
DE102007043162B4 (en) * 2006-09-14 2021-02-25 Konvekta Ag Air conditioning with automatic refrigerant shift
WO2021111605A1 (en) * 2019-12-05 2021-06-10 三菱電機株式会社 Refrigeration cycle device
CN116018486A (en) * 2021-08-24 2023-04-25 株式会社日本伊藤美珂 Heat pump device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3714305B2 (en) * 2002-07-11 2005-11-09 ダイキン工業株式会社 Refrigeration apparatus and refrigerant charging method for refrigeration apparatus
US7171825B2 (en) * 2002-08-02 2007-02-06 Daikin Industries, Ltd. Refrigeration equipment
JP4214114B2 (en) * 2002-09-10 2009-01-28 東京エレクトロン株式会社 Processing device and maintenance method of processing device
JP5324749B2 (en) 2006-09-11 2013-10-23 ダイキン工業株式会社 Refrigeration equipment
JP5223550B2 (en) * 2008-09-09 2013-06-26 富士電機株式会社 vending machine
KR20210130700A (en) * 2019-02-25 2021-11-01 에이티에스 저팬 가부시키가이샤 Refrigerant control system and cooling system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555893Y2 (en) * 1974-09-05 1980-02-09
JPH01193561A (en) * 1988-01-28 1989-08-03 Ebara Res Co Ltd Heat pump
JPH03503206A (en) * 1989-01-09 1991-07-18 シンヴェント・アクシェセルスカープ Supercritical vapor compression cycle operating method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555893Y2 (en) * 1974-09-05 1980-02-09
JPH01193561A (en) * 1988-01-28 1989-08-03 Ebara Res Co Ltd Heat pump
JPH03503206A (en) * 1989-01-09 1991-07-18 シンヴェント・アクシェセルスカープ Supercritical vapor compression cycle operating method and device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1059495A3 (en) * 1999-06-08 2002-01-02 Mitsubishi Heavy Industries, Ltd. Supercritical vapor compression cycle
US10041713B1 (en) 1999-08-20 2018-08-07 Hudson Technologies, Inc. Method and apparatus for measuring and improving efficiency in refrigeration systems
US6385980B1 (en) 2000-11-15 2002-05-14 Carrier Corporation High pressure regulation in economized vapor compression cycles
EP1207360A2 (en) * 2000-11-15 2002-05-22 Carrier Corporation Suction line heat exchanger with a storage tank for a transcritical vapor compression cycle
US6418735B1 (en) 2000-11-15 2002-07-16 Carrier Corporation High pressure regulation in transcritical vapor compression cycles
EP1207360A3 (en) * 2000-11-15 2002-08-28 Carrier Corporation Suction line heat exchanger with a storage tank for a transcritical vapor compression cycle
US6606867B1 (en) 2000-11-15 2003-08-19 Carrier Corporation Suction line heat exchanger storage tank for transcritical cycles
WO2004010060A1 (en) * 2002-07-23 2004-01-29 Daikin Industries, Ltd. Refrigerating cycle
US6739141B1 (en) 2003-02-12 2004-05-25 Carrier Corporation Supercritical pressure regulation of vapor compression system by use of gas cooler fluid pumping device
EP1467158A2 (en) * 2003-04-09 2004-10-13 Hitachi, Ltd. Refrigeration cycle apparatus
EP1467158A3 (en) * 2003-04-09 2004-12-01 Hitachi, Ltd. Refrigeration cycle apparatus
US7424807B2 (en) 2003-06-11 2008-09-16 Carrier Corporation Supercritical pressure regulation of economized refrigeration system by use of an interstage accumulator
FR2869098A1 (en) * 2003-12-23 2005-10-21 Tecumseh Products Co
DE102007043162B4 (en) * 2006-09-14 2021-02-25 Konvekta Ag Air conditioning with automatic refrigerant shift
EP2233860A4 (en) * 2007-12-07 2013-12-25 Mitsubishi Heavy Ind Ltd Refrigerant circuit
EP2233860A1 (en) * 2007-12-07 2010-09-29 Mitsubishi Heavy Industries, Ltd. Refrigerant circuit
WO2021111605A1 (en) * 2019-12-05 2021-06-10 三菱電機株式会社 Refrigeration cycle device
CN114746704A (en) * 2019-12-05 2022-07-12 三菱电机株式会社 Refrigeration cycle device
JP7386894B2 (en) 2019-12-05 2023-11-27 三菱電機株式会社 Refrigeration cycle equipment
CN114746704B (en) * 2019-12-05 2024-04-30 三菱电机株式会社 Refrigeration cycle device
CN116018486A (en) * 2021-08-24 2023-04-25 株式会社日本伊藤美珂 Heat pump device
CN116018486B (en) * 2021-08-24 2024-01-26 株式会社日本伊藤美珂 Heat pump device and control method thereof

Also Published As

Publication number Publication date
JPH1163686A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
WO1999008053A1 (en) Cooling cycle
US9989280B2 (en) Cascade cooling system with intercycle cooling or additional vapor condensation cycle
JP4321095B2 (en) Refrigeration cycle equipment
AU2001286333B2 (en) Method and arrangement for defrosting a vapor compression system
EP1631773B1 (en) Supercritical pressure regulation of economized refrigeration system
JP2000346472A (en) Supercritical steam compression cycle
JPH11193967A (en) Refrigerating cycle
JP3614330B2 (en) Supercritical vapor compression refrigeration cycle
WO2007119372A1 (en) Freezing apparatus
WO2008019689A2 (en) A transcritical refrigeration system with a booster
JP2006527836A (en) Supercritical pressure regulation of vapor compression system
JP2007503565A (en) Defrosting method for heat pump hot water system
EP1207360B1 (en) Suction line heat exchanger with a storage tank for a transcritical vapor compression cycle
WO1999010686A1 (en) Cooling cycle
JP4317793B2 (en) Cooling system
JP4841288B2 (en) Refrigeration equipment
JP2005214444A (en) Refrigerator
JP4841287B2 (en) Refrigeration equipment
JP2002228282A (en) Refrigerating device
JP2001227837A (en) Regenerative refrigerating cycle and method for operating heat regenerative refrigeration cycle
JP2006003023A (en) Refrigerating unit
JP3990524B2 (en) Compressive refrigeration unit for subcritical and supercritical operation
JP2002168536A (en) Air conditioner
KR102313304B1 (en) Air conditioner for carbon dioxide
CN209541214U (en) A kind of auto-cascading refrigeration system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase