JPH01193561A - Heat pump - Google Patents

Heat pump

Info

Publication number
JPH01193561A
JPH01193561A JP1868388A JP1868388A JPH01193561A JP H01193561 A JPH01193561 A JP H01193561A JP 1868388 A JP1868388 A JP 1868388A JP 1868388 A JP1868388 A JP 1868388A JP H01193561 A JPH01193561 A JP H01193561A
Authority
JP
Japan
Prior art keywords
refrigerant
cooler
cooling medium
heat pump
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1868388A
Other languages
Japanese (ja)
Other versions
JP2548962B2 (en
Inventor
Shinji Yosomiya
四十宮 眞次
Yasuo Ogawa
小川 康夫
Shinji Nomichi
伸治 野路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP63018683A priority Critical patent/JP2548962B2/en
Publication of JPH01193561A publication Critical patent/JPH01193561A/en
Application granted granted Critical
Publication of JP2548962B2 publication Critical patent/JP2548962B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PURPOSE:To save energy by a method wherein CO2 is used as cooling medium and employing a counterflow type heat exchanger for the cooling unit in which the cooling medium and the load fluid flow in the mutually opposite directions and the cooling medium is maintained in the state of a fluid at a super critical pressure. CONSTITUTION:CO2 gas is compressed by a compressor 1 to become a fluid at a super critical pressure, and is supplied to a cooling unit 2 via a cooling medium passage 5 where the gas is cooled. The cooling medium is cooled by the load fluid supplied through a piping 10, maintaining its super critical condition. The super critical pressure fluid so cooled passes through a cooling medium passage 6, goes through a pressure reduction by a reduction mechanism 3, and enters into an evaporator 4 via a cooling medium passage 7. Since the cooling medium is not in the super critical condition by now, the cooling medium is super heated and evaporated by the heating medium supplied through a piping 9 to be returned to the compressor 1 to complete the cycle. By employing a counterflow type heat exchanger for the cooling unit 2, the temperature change of the cooling medium in the cooling unit 2 can be effectively utilized, saving energy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷媒として二酸化炭素を用いるヒートポンプ
に関するものである。なお、ここでヒートポンプとは、
温流体を製造する狭義のヒートポンプのみならず、冷流
体を製造する冷凍機を含む広義のヒートポンプをいう。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat pump that uses carbon dioxide as a refrigerant. In addition, here, what is a heat pump?
It refers not only to heat pumps in the narrow sense of producing hot fluids, but also to heat pumps in a broader sense, including refrigerators that produce cold fluids.

〔従来技術〕[Prior art]

近年、圧縮式ヒートポンプの作動冷媒として用いられる
フロン(クロロフルオロカーボン)中に含まれる塩素(
C1)が、大気の成層圏のオゾン層を破壊するという理
由により、該フロンの使用を国際的に規制しようとする
検討が行なわれている。
In recent years, chlorine (
Because C1) destroys the ozone layer in the stratosphere of the atmosphere, consideration is being given to internationally regulating the use of CFCs.

即ち、このオゾン層では大気圏に照射される光の内、生
物に有害な290〜320nmの光を吸収しており、該
オゾンを分解し破壊したならば前記の有害な光が地表に
到達してしまうからである。
In other words, the ozone layer absorbs 290 to 320 nm of light that is harmful to living things out of the light irradiated into the atmosphere, and if this ozone is decomposed and destroyed, the harmful light will reach the earth's surface. This is because it will be put away.

ところでもし全てのハロゲン化されたクロロフルオロア
ルカンが規制されるとすれば、現在ヒートポンプに用い
られている主要冷媒のフロン−113、フロン−11、
フロン−114、フロン−12、フロン−22等は全て
規制されることになる。
By the way, if all halogenated chlorofluoroalkanes were to be regulated, the main refrigerants currently used in heat pumps, Freon-113, Freon-11,
Freon-114, Freon-12, Freon-22, etc. will all be regulated.

このため現在使用されているフロン系冷媒以外の代替冷
媒の開発が急がれている。
Therefore, there is an urgent need to develop alternative refrigerants other than the currently used fluorocarbon-based refrigerants.

〔従来技術の問題点〕[Problems with conventional technology]

そして現時点において、フロン系以外の冷媒で最も有望
な冷媒としては、不燃性、安全性、無害、不腐食性等の
点から、二酸化炭素が考えられる。
At present, carbon dioxide is considered to be the most promising refrigerant other than fluorocarbon-based refrigerants due to its nonflammability, safety, harmlessness, and noncorrosion.

しかしながらこの二酸化炭素は臨界温度が非常に低く、
通常の空調条件で運転してヒートポンプサイクルを組ん
だ場合、成績係数が極端に悪く経済的でないという問題
点があった。
However, this carbon dioxide has a very low critical temperature;
When operating under normal air conditioning conditions and using a heat pump cycle, there was a problem in that the coefficient of performance was extremely poor and it was not economical.

本発明は上述の点に鑑みてなされたものであり、フロン
系の冷媒の代わりに二酸化炭素を用い、且つ従来のヒー
トポンプに比べて省エネルギーが図れるヒートポンプを
提供することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a heat pump that uses carbon dioxide instead of a fluorocarbon-based refrigerant and that can save energy compared to conventional heat pumps.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するため本発明は、ヒートポンプを、
圧縮機、冷却器、減圧機構及び蒸発器を具備し、これら
の機器を冷媒経路で接続して冷媒循環流路を形成するヒ
ートポンプにおいて、冷媒として二酸化炭素を用いると
ともに、前記冷却器内の冷媒を超臨界圧流体の状態とし
、且つ該冷却器を冷媒の流れと負荷流体の流れが対向す
る向流形熱交換器として構成した。
In order to solve the above problems, the present invention uses a heat pump,
In a heat pump that is equipped with a compressor, a cooler, a pressure reduction mechanism, and an evaporator, and which connects these devices with a refrigerant path to form a refrigerant circulation flow path, carbon dioxide is used as the refrigerant, and the refrigerant in the cooler is The fluid was in a supercritical pressure state, and the cooler was configured as a counterflow type heat exchanger in which the flow of the refrigerant and the flow of the load fluid were opposed to each other.

また本発明は、ヒートポンプを、圧縮機、冷却器、減圧
機構及び蒸発器を具備し、これらの機器を冷媒経路で接
続して冷媒循環流路を形成するヒートポンプにおいて、
冷媒として二酸化炭素を用いるとともに、前記冷却器内
の冷媒を超臨界圧流体の状態とし、且つ該冷却器をその
伝熱面上に水を散布する散水装置を具備する構成として
構成した。
The present invention also provides a heat pump that includes a compressor, a cooler, a pressure reduction mechanism, and an evaporator, and connects these devices with a refrigerant path to form a refrigerant circulation flow path.
Carbon dioxide is used as a refrigerant, the refrigerant in the cooler is in a supercritical pressure fluid state, and the cooler is equipped with a water sprinkler that sprays water onto its heat transfer surface.

〔作用〕[Effect]

本発明は上記の如くヒートポンプを構成したので、冷媒
として二酸化炭素を用いるので、その分子中に塩素を含
むフロンを使用する必要がなく、従って成着圏を破壊す
ることはない。
Since the heat pump of the present invention is constructed as described above, carbon dioxide is used as the refrigerant, so there is no need to use fluorocarbons containing chlorine in the molecules thereof, and therefore the formation sphere is not destroyed.

また冷却器内の冷媒を超臨界圧流体の状態としたので、
従来使われてきたフロン−12(7) 場合ヨりも成績
係数の高いヒートポンプを提供できる。
In addition, since the refrigerant in the cooler is in a supercritical pressure fluid state,
It is possible to provide a heat pump with a high coefficient of performance compared to the conventionally used Freon-12(7).

また冷却器の構造を向流形にすれば、温度変化を有効に
利用でき、ヒートポンプを省エネルギーとすることがで
きる。
Furthermore, if the structure of the cooler is made to be a countercurrent type, temperature changes can be effectively utilized, and the heat pump can be made energy efficient.

また冷却器をその伝熱面上に水を散布する散水装置を具
備する構造とすれば、冷媒の圧力を低くすることができ
、通常の冷房に用いることができ、さらに有効となる。
Furthermore, if the cooler is structured to include a water sprinkler that sprays water onto its heat transfer surface, the pressure of the refrigerant can be lowered, and the cooler can be used for normal cooling, making it even more effective.

〔実施例〕〔Example〕

以下、本発明に係るヒートポンプの第1の実施例を図面
に基づいて詳細に説明する。
EMBODIMENT OF THE INVENTION Hereinafter, the first example of the heat pump according to the present invention will be described in detail based on the drawings.

第1図はこの実施例に係るヒートポンプの構成を示す構
成図である。
FIG. 1 is a configuration diagram showing the configuration of a heat pump according to this embodiment.

同図に示すように、このヒートポンプは圧縮機1、冷却
器2、減圧機構3及び蒸発器4を具備し、これらの機器
を冷媒経路5,6,7.8で接続して冷媒循環流路を形
成して構成されている。
As shown in the figure, this heat pump is equipped with a compressor 1, a cooler 2, a pressure reducing mechanism 3, and an evaporator 4, and these devices are connected by refrigerant paths 5, 6, and 7.8 to form a refrigerant circulation flow path. It is composed of the following.

また、このヒートポンプの冷媒には二酸化炭素が用いら
れる。
Furthermore, carbon dioxide is used as a refrigerant for this heat pump.

次にこの第1図に示すヒートポンプの作動サイクルを説
明する。
Next, the operation cycle of the heat pump shown in FIG. 1 will be explained.

なおここで第2図は二酸化炭素のモリエ線図上に、給湯
と冷房が同時に行なえる条件を備えたサイクルの一例を
描いた図であり、以下この図をも参照しながら説明する
Note that FIG. 2 is a diagram depicting an example of a cycle with conditions that allow hot water supply and cooling to be performed simultaneously on a Mollier diagram of carbon dioxide, and the following description will be made with reference to this diagram as well.

なおこの第2図における条件は、蒸発温度は5°Cで、
圧縮機は可逆断熱圧縮で、冷却器・蒸発器は等圧変化で
、減圧機構は等エンタルピー膨張であるとする。
The conditions in Figure 2 are that the evaporation temperature is 5°C,
The compressor uses reversible adiabatic compression, the cooler and evaporator use isobaric change, and the pressure reduction mechanism uses isenthalpic expansion.

ここでこのサイクルは点線のA−B4C4Dで示す。Here, this cycle is indicated by dotted lines A-B4C4D.

第1図、第2図に示すように、まず冷媒である二酸化炭
素ガスは、圧縮機1によって圧縮されて超臨界圧流体に
なり(第2図のB)、冷媒経路5を通って冷却器2に送
られ、ここで冷却される(第2図のC)。通常のヒート
ポンプではこの部分は凝縮器となるが、本実施例におけ
る冷媒は超臨界圧流体となっているので凝縮せず、配管
10により送られる負荷流体により超臨界状態のままで
冷却きれる。冷却された超臨界圧流体は冷媒経路6を通
り、減圧機構3によって減圧され(第2図のD)、冷媒
経路7を通って蒸発器4に入る。
As shown in Figs. 1 and 2, carbon dioxide gas, which is a refrigerant, is first compressed by the compressor 1 to become a supercritical pressure fluid (B in Fig. 2), and then passes through the refrigerant path 5 to the cooler. 2, where it is cooled (C in Figure 2). In a normal heat pump, this part functions as a condenser, but since the refrigerant in this embodiment is a supercritical pressure fluid, it does not condense, and can be cooled in a supercritical state by the load fluid sent through the piping 10. The cooled supercritical pressure fluid passes through the refrigerant path 6, is reduced in pressure by the pressure reducing mechanism 3 (D in FIG. 2), and enters the evaporator 4 through the refrigerant path 7.

このときの冷媒は超臨界の状態になっていないので、通
常のヒートポンプのように冷媒は配管9によって送られ
る熱源流体により過熱きれ、蒸発し、再び圧縮機1に戻
り、これによってそのサイクルが形成される。
Since the refrigerant at this time is not in a supercritical state, like in a normal heat pump, the refrigerant is overheated by the heat source fluid sent through the pipe 9, evaporates, and returns to the compressor 1 again, forming the cycle. be done.

上記例においては、冷却器2の入口冷媒温度が80°C
であり、出口冷媒温度が40°Cである(第2図のB→
C)。
In the above example, the inlet refrigerant temperature of cooler 2 is 80°C.
, and the outlet refrigerant temperature is 40°C (B → in Figure 2).
C).

ここで冷却器2を向流形熱交換器で構成することによっ
て、この冷却器2内での冷媒の温度変化を有効に利用す
れば、冷却器2内での冷媒と負荷流体の温度分布が第3
図に示すようになる。
If the cooler 2 is configured with a countercurrent heat exchanger and the temperature change of the refrigerant in the cooler 2 is effectively utilized, the temperature distribution of the refrigerant and the load fluid in the cooler 2 can be improved. Third
The result will be as shown in the figure.

即ち、同図に示すように、冷媒は80℃から40℃に冷
却され、逆に負荷流体は30℃から70°Cに加熱され
給湯負荷に供きれる。
That is, as shown in the figure, the refrigerant is cooled from 80°C to 40°C, and conversely, the load fluid is heated from 30°C to 70°C to serve the hot water supply load.

一方上記二酸化炭素の場合と同様の条件に、従来給湯等
に用いられているフロン−12を適用した場合のサイク
ルは、第4図に示すフロン−12のモリエ線図上のサイ
クルa4b4cm1−dのようになる。
On the other hand, when Freon-12, which is conventionally used for hot water supply, is applied to the same conditions as for carbon dioxide, the cycle is a4b4cm1-d on the Mollier diagram of Freon-12 shown in Figure 4. It becomes like this.

ここで負荷流体を40℃から70℃に加熱するために冷
媒の凝縮温度は75°Cとなる。
Here, in order to heat the load fluid from 40°C to 70°C, the condensation temperature of the refrigerant becomes 75°C.

第2図と第4図からこの条件下での成績係数COPを求
めてみると、二酸化炭素の場合がC0P=4.4、フロ
ン−12の場合がC0P=3.7であり、従来型のフロ
ン−12に比べ、成績係数が約2割よくなる。このよう
に冷媒として二酸化炭素を用い、その超臨界状態を有効
に利用したヒートポンプは、特に負荷流体の出入口温度
差が大きいことから、負荷流体を給湯用の給湯水や乾燥
用の空気流とし、給湯装置や乾燥装置として使用するの
が一番効果的である。
When calculating the coefficient of performance COP under these conditions from Figures 2 and 4, it is found that for carbon dioxide, C0P = 4.4, and for Freon-12, C0P = 3.7. Compared to Freon-12, the coefficient of performance is about 20% better. In this way, a heat pump that uses carbon dioxide as a refrigerant and effectively utilizes its supercritical state has a particularly large temperature difference between the inlet and outlet of the load fluid, so the heat pump uses hot water for hot water supply or air flow for drying as the load fluid. It is most effective to use it as a water heater or dryer.

なお本実施例をそのまま普通の冷房に用いることも可能
であるが、冷却器2内の冷媒の圧力が高くなる。
Although this embodiment can be used as is for ordinary cooling, the pressure of the refrigerant in the cooler 2 will increase.

そこで、次に冷媒の圧力を低くできる第2の実施例を説
明する。
Therefore, next, a second embodiment in which the pressure of the refrigerant can be lowered will be described.

第5図はこの第2の実施例の構成を示す構成図である。FIG. 5 is a block diagram showing the structure of this second embodiment.

なおここで上記第1実施例と同一部分には同一の符号を
付する。
Note that the same parts as in the first embodiment are given the same reference numerals.

同図に示すように、この実施例においては、冷媒である
二酸化炭素ガスは圧縮機1により圧縮されて冷媒経路5
を通って冷却器2に送られる。この冷却器2内では、ポ
ンプ12、配管11を通って散水装置13より散布され
る水が、ファン14によって通風される空気によって気
化、冷却し、その散布水によって冷媒が冷却する。なお
散布水の温度条件によって冷媒は凝縮する場合もある。
As shown in the figure, in this embodiment, carbon dioxide gas, which is a refrigerant, is compressed by a compressor 1 and a refrigerant path 5
is sent to the cooler 2. In the cooler 2, water sprayed from a water sprinkler 13 through a pump 12 and piping 11 is vaporized and cooled by air ventilated by a fan 14, and the refrigerant is cooled by the sprayed water. Note that the refrigerant may condense depending on the temperature conditions of the sprayed water.

この冷却された冷媒は冷媒経路6を通り、減圧機構3に
よって減圧され、冷媒経路7を通って蒸発器4に入る。
This cooled refrigerant passes through a refrigerant path 6, is reduced in pressure by a pressure reducing mechanism 3, and enters an evaporator 4 through a refrigerant path 7.

蒸発器4では冷媒は配管9により送られる冷房負荷流体
により加熱きれ蒸発し、−方冷房負荷流体は冷却され、
負荷に供される。この後冷媒は再び圧縮機1に戻りサイ
クルを形成する。
In the evaporator 4, the refrigerant is heated and evaporated by the cooling load fluid sent through the pipe 9, and the - side cooling load fluid is cooled.
Subjected to load. After this, the refrigerant returns to the compressor 1 again to form a cycle.

このようにこの実施例によれば、冷却器2内での冷媒の
温度条件は、従来の空冷形の冷却器に比べて、水の気化
熱を利用するので、低く保つことができ、結果として冷
媒の圧力を低くすることができるので、普通の冷房に用
いることができ、さらに有効となる。
As described above, according to this embodiment, the temperature condition of the refrigerant in the cooler 2 can be kept low compared to the conventional air-cooled type cooler because the heat of vaporization of water is used. Since the pressure of the refrigerant can be lowered, it can be used for ordinary air conditioning, making it even more effective.

以上本発明を実施例に基づいて説明したが、本発明は上
記実施例に限定されるものではなく、本発明の範囲で種
々の変形が可能であることは言うまでもない。
Although the present invention has been described above based on Examples, it goes without saying that the present invention is not limited to the above-mentioned Examples, and that various modifications can be made within the scope of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明に係るヒートポンプ
によれば、冷媒として二酸化炭素を用いるので、その分
子中に塩素を含むフロンを使用する必要がなく、従って
成層圏を破壊することはないという優れた効果を有する
As explained in detail above, the heat pump according to the present invention uses carbon dioxide as a refrigerant, so there is no need to use fluorocarbons containing chlorine in its molecules, and therefore the heat pump has the advantage of not destroying the stratosphere. It has a great effect.

また本発明に係るヒートポンプによれば、二酸化炭素の
超臨界圧状態を有効に利用することにより、従来使われ
てきたフロン−12の場合よりも成績係数の高いヒート
ポンプを提供できるという優れた効果を有する。
Furthermore, according to the heat pump according to the present invention, by effectively utilizing the supercritical pressure state of carbon dioxide, it is possible to provide a heat pump with a higher coefficient of performance than in the case of conventionally used Freon-12. have

また本発明に係るヒートポンプの冷却器の構造を向流形
にすれば、温度変化を有効に利用でき、省エネルギーと
することができる。
Furthermore, if the structure of the heat pump cooler according to the present invention is of a countercurrent type, temperature changes can be effectively utilized and energy can be saved.

また本発明に係るヒートポンプの冷却器をその伝熱面上
に水を散布する散水装置を具備する構造とすれば、冷媒
の圧力を低くすることができ、通常の冷房に用いること
ができ、さらに有効となる。
Furthermore, if the heat pump cooler according to the present invention is structured to include a water spraying device that sprays water on its heat transfer surface, the pressure of the refrigerant can be lowered, and it can be used for normal cooling. It becomes effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例に係るヒートポンプの構
成を示す構成図、第2図は二酸化炭素のモリエ線図上に
、給湯・冷房が同時に行なえる条件を備えたサイクルの
一例を描いた図、第3図は向流形熱交換器で構成した冷
却器2内での冷媒と負荷流体の温度分布を示す図、第4
図はフロン−12のモリエ線図上に、サイクルの一例を
描いた図、第5図は本発明の第2の実施例の構成を示す
構成図である。 図中、1・・・圧縮機、2・・・冷却器、4・・・蒸発
器、3・・・減圧機構、5,6,7.8・・・冷媒経路
、11・・・配管、12・・・ポンプ、13・・・散水
装置、14・・・ファン、である。 出願人 株式会社 荏原総合研究所 代理人 弁理士 熊 谷 隆(外1名)第1図 第3図 第2図
Fig. 1 is a block diagram showing the structure of a heat pump according to the first embodiment of the present invention, and Fig. 2 shows an example of a cycle with conditions that allow hot water supply and cooling to be performed simultaneously on a Mollier diagram of carbon dioxide. Figure 3 is a diagram showing the temperature distribution of the refrigerant and load fluid in the cooler 2 configured with a countercurrent heat exchanger, Figure 4
The figure is a diagram depicting an example of a cycle on the Mollier diagram of Freon-12, and FIG. 5 is a configuration diagram showing the configuration of a second embodiment of the present invention. In the figure, 1... Compressor, 2... Cooler, 4... Evaporator, 3... Pressure reduction mechanism, 5, 6, 7.8... Refrigerant path, 11... Piping, 12... Pump, 13... Water sprinkler, 14... Fan. Applicant Ebara Research Institute Co., Ltd. Agent Patent Attorney Takashi Kumagai (1 other person) Figure 1 Figure 3 Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)圧縮機、冷却器、減圧機構及び蒸発器を具備し、
これらの機器を冷媒経路で接続して冷媒循環流路を形成
するヒートポンプにおいて、冷媒として二酸化炭素を用
いるとともに、前記冷却器内の冷媒を超臨界圧流体の状
態とし、且つ該冷却器を冷媒の流れと負荷流体の流れが
対向する向流形熱交換器としたことを特徴とするヒート
ポンプ。
(1) Equipped with a compressor, cooler, pressure reduction mechanism and evaporator,
In a heat pump that connects these devices with a refrigerant path to form a refrigerant circulation flow path, carbon dioxide is used as the refrigerant, the refrigerant in the cooler is in a supercritical pressure fluid state, and the cooler is in a state of supercritical pressure fluid. A heat pump characterized in that it is a counterflow type heat exchanger in which the flow of the flow and the flow of the load fluid are opposed to each other.
(2)前記冷却器の負荷流体が給湯用の給湯水であるこ
とを特徴とする請求項(1)記載のヒートポンプ。
(2) The heat pump according to claim 1, wherein the load fluid of the cooler is hot water for hot water supply.
(3)前記冷却器の負荷流体が乾燥用の空気流であるこ
とを特徴とする請求項(1)記載のヒートポンプ。
(3) The heat pump according to claim 1, wherein the load fluid of the cooler is a drying air flow.
(4)圧縮機、冷却器、減圧機構及び蒸発器を具備し、
これらの機器を冷媒経路で接続して冷媒循環流路を形成
するヒートポンプにおいて、冷媒として二酸化炭素を用
いるとともに、前記冷却器内の冷媒を超臨界圧流体の状
態とし、且つ該冷却器をその伝熱面上に水を散布する散
水装置を具備する構成としたことを特徴とするヒートポ
ンプ。
(4) Equipped with a compressor, cooler, pressure reduction mechanism and evaporator,
In a heat pump that connects these devices through a refrigerant path to form a refrigerant circulation flow path, carbon dioxide is used as the refrigerant, the refrigerant in the cooler is in a supercritical pressure fluid state, and the cooler is in a state of supercritical pressure fluid. A heat pump characterized in that it is configured to include a water sprinkler that sprays water onto a heated surface.
JP63018683A 1988-01-28 1988-01-28 heat pump Expired - Lifetime JP2548962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63018683A JP2548962B2 (en) 1988-01-28 1988-01-28 heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63018683A JP2548962B2 (en) 1988-01-28 1988-01-28 heat pump

Publications (2)

Publication Number Publication Date
JPH01193561A true JPH01193561A (en) 1989-08-03
JP2548962B2 JP2548962B2 (en) 1996-10-30

Family

ID=11978409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63018683A Expired - Lifetime JP2548962B2 (en) 1988-01-28 1988-01-28 heat pump

Country Status (1)

Country Link
JP (1) JP2548962B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999008053A1 (en) * 1997-08-12 1999-02-18 Zexel Corporation Cooling cycle
WO1999010686A1 (en) * 1997-08-21 1999-03-04 Zexel Corporation Cooling cycle
US6012300A (en) * 1997-07-18 2000-01-11 Denso Corporation Pressure control valve for refrigerating system
US6044655A (en) * 1996-08-22 2000-04-04 Denso Corporation Vapor compression type refrigerating system
JP2002089883A (en) * 2000-09-12 2002-03-27 Sanyo Electric Co Ltd Cooling and drying apparatus in which hot-water supply unit is used
US6370896B1 (en) 1998-11-18 2002-04-16 Denso Corporation Hot water supply system
US6467288B2 (en) 2000-06-28 2002-10-22 Denso Corporation Heat-pump water heater
US6508073B2 (en) 2000-04-19 2003-01-21 Denso Corporation Hot water supply system with heat pump cycle
JP2008089289A (en) * 2006-10-05 2008-04-17 Daikin Ind Ltd Air conditioner
JP2009139072A (en) * 2007-12-04 2009-06-25 Shinichi Chikauchi Hot water generating system using heat of condenser for air conditioner and refrigerator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4205532A (en) * 1977-05-02 1980-06-03 Commercial Refrigeration (Wiltshire) Limited Apparatus for and method of transferring heat

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4205532A (en) * 1977-05-02 1980-06-03 Commercial Refrigeration (Wiltshire) Limited Apparatus for and method of transferring heat

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6044655A (en) * 1996-08-22 2000-04-04 Denso Corporation Vapor compression type refrigerating system
US6012300A (en) * 1997-07-18 2000-01-11 Denso Corporation Pressure control valve for refrigerating system
WO1999008053A1 (en) * 1997-08-12 1999-02-18 Zexel Corporation Cooling cycle
WO1999010686A1 (en) * 1997-08-21 1999-03-04 Zexel Corporation Cooling cycle
US6370896B1 (en) 1998-11-18 2002-04-16 Denso Corporation Hot water supply system
US6494051B2 (en) 1998-11-18 2002-12-17 Denso Corporation Hot water supply system
US6508073B2 (en) 2000-04-19 2003-01-21 Denso Corporation Hot water supply system with heat pump cycle
US6467288B2 (en) 2000-06-28 2002-10-22 Denso Corporation Heat-pump water heater
JP2002089883A (en) * 2000-09-12 2002-03-27 Sanyo Electric Co Ltd Cooling and drying apparatus in which hot-water supply unit is used
JP2008089289A (en) * 2006-10-05 2008-04-17 Daikin Ind Ltd Air conditioner
JP2009139072A (en) * 2007-12-04 2009-06-25 Shinichi Chikauchi Hot water generating system using heat of condenser for air conditioner and refrigerator

Also Published As

Publication number Publication date
JP2548962B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
JP5025605B2 (en) Refrigeration cycle apparatus and air conditioner
US20040237527A1 (en) Exhaust heat recovery system
JPH01193561A (en) Heat pump
CN110345584A (en) A kind of humiture independence control air conditioner system of injection throttling
JP3880519B2 (en) Cooling device and aerosol generation system including the same
JP2002106987A (en) Refrigerating system equipped with stabilizing circuit of fluid for connection
JP2004286289A (en) Refrigerant cycle device
JP2002022298A (en) Refrigeration cycle device and method for controlling the same
US5018367A (en) Cooling energy generator with cooling energy accumulator
JP2776200B2 (en) Absorption type ice cold storage device
CN208091001U (en) A kind of carbon dioxide air source heat pump system
US5046321A (en) Method and apparatus for gas conditioning by low-temperature vaporization and compression of refrigerants, specifically as applied to air
JP2576893B2 (en) Absorption refrigerator
JP2004069276A (en) Waste heat recovering cooling system
JPH0490454A (en) Freezer
JPH09243195A (en) Absorption type heat pump
JPS5849872A (en) Heat pump device
CN206439917U (en) A kind of heat pump driven dehumidification system for runner
KR200257255Y1 (en) refrigerator/heat pump system
WO2007020472A1 (en) Heating system
JP3242143B2 (en) Ammonia refrigerator
JPS6158745B2 (en)
JPH0297851A (en) Air cooler
JPH0712412A (en) Refrigerating cycle and refrigerating device
JPH05223405A (en) Method and device for supplying heat