JPH09243195A - Absorption type heat pump - Google Patents

Absorption type heat pump

Info

Publication number
JPH09243195A
JPH09243195A JP8048685A JP4868596A JPH09243195A JP H09243195 A JPH09243195 A JP H09243195A JP 8048685 A JP8048685 A JP 8048685A JP 4868596 A JP4868596 A JP 4868596A JP H09243195 A JPH09243195 A JP H09243195A
Authority
JP
Japan
Prior art keywords
absorber
refrigerant
solution
pressure side
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8048685A
Other languages
Japanese (ja)
Inventor
Takahide Sugiyama
隆英 杉山
Nakahiro Inagaki
那加博 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP8048685A priority Critical patent/JPH09243195A/en
Publication of JPH09243195A publication Critical patent/JPH09243195A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2315/00Sorption refrigeration cycles or details thereof
    • F25B2315/002Generator absorber heat exchanger [GAX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

PROBLEM TO BE SOLVED: To enhance a heat collection rate in a GAX unit (absorption type regenerative heat exchanger) of an absorption type heat pump and inhibit an increase in the cost accompanying the improvement in the heat collection rate. SOLUTION: A vaporizer is classified into two types: or more particularly, a low temperature vaporizer 35a and a high temperature vaporizer 35b where the low temperature vaporizer 35a vaporizes refrigerants at a temperature required to provide a specified cool water and the high temperature vaporizer vaporizes refrigerants at a higher temperature. An absorber is classified into two types: One is a high pressure absorber 50b, which is internally furnished with a GAX unit (absorption regenerative heat exchanger) is connected to the high temperature vaporizer while the other is a tow temperature absorber 50a which is connected to the low temperature absorber 35a. The bottom of the high pressure absorber 50b is connected to a spray device 51a, which is internally furnished with the top of the low pressure absorber 50a by way of a pressure reducing valve 59 and refrigerant vapor generated at the high temperature vaporizer 35b is introduced to the high pressure absorber 50b while refrigerant vapor generated at the low temperature vaporizer 35a is introduced to the low pressure absorber 50a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、吸収式ヒートポン
プに係り、特にGAX(Generator−AbsorberHeat
Exchanger:吸収再生熱交換器)サイクルを適用した吸
収式ヒートポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption heat pump, and more particularly to GAX (Generator-Absorber Heat).
Exchanger: Absorption-type heat pump that applies a cycle of absorption and regeneration.

【0002】[0002]

【従来の技術】GAXサイクルは、アンモニアを冷媒と
し水を吸収剤とする吸収式冷凍サイクルを高効率化させ
る手法としてよく知られており、例えば特開平6−21
3526号公報に開示された例がある。同公報に開示さ
れた吸収式ヒートポンプは、GAX部(吸収器の熱を発
生器に与える熱交換部)での熱交換で、加熱側流体の温
度と被加熱側流体の温度がオーバーラップする温度領域
を増加させる方法として、蒸発器で発生した冷媒蒸気を
吸収器に供給する前に、コンプレッサを用いて機械的に
圧縮する方法を採っている。図4にその効果を示す。冷
媒蒸気を圧縮する前の圧力をP1、圧縮後の圧力をP2
する。冷媒蒸気の圧縮を行わないときのオーバーラップ
する温度領域をスマッジングで、冷媒蒸気の圧縮を行っ
たときのオーバーラップする温度領域をハッチングで、
それぞれ示す。
2. Description of the Related Art The GAX cycle is well known as a method for improving the efficiency of an absorption refrigeration cycle using ammonia as a refrigerant and water as an absorbent.
There is an example disclosed in Japanese Patent No. 3526. The absorption heat pump disclosed in the publication has a temperature at which the temperature of the heating-side fluid and the temperature of the heated-side fluid overlap due to heat exchange in the GAX unit (heat exchange unit that gives heat of the absorber to the generator). As a method of increasing the area, a method is used in which the refrigerant vapor generated in the evaporator is mechanically compressed using a compressor before being supplied to the absorber. The effect is shown in FIG. The pressure before the refrigerant vapor is compressed is P 1 , and the pressure after the compression is P 2 . The overlapping temperature range when the refrigerant vapor is not compressed is smudging, and the overlapping temperature range when the refrigerant vapor is compressed is hatched.
Shown respectively.

【0003】図ので示される温度領域はコンプレッサ
を使用しない場合の発生器側での熱交換可能な温度範
囲、で示される温度領域はコンプレッサを使用しない
場合の吸収器側での熱交換可能な温度範囲、で示され
る温度領域はコンプレッサを使用した場合の発生器側で
の熱交換可能な温度範囲、で示される温度領域はコン
プレッサを使用した場合の吸収器側での熱交換可能な温
度範囲、をそれぞれ表している。この図から理解できる
ように、吸収器の圧力を機械的に上昇させることで、吸
収器と発生器との熱交換で、加熱側流体の温度と被加熱
側流体の温度がオーバーラップする温度領域を広げるこ
とができ、それに伴って吸収器と発生器の間の熱交換量
が増大する。特開平6−174323号公報にも類似の
装置が開示されている。
The temperature range shown by in the figure is the temperature range in which heat can be exchanged on the generator side when the compressor is not used, and the temperature range shown by is the temperature where heat can be exchanged on the absorber side when the compressor is not used. Range, the temperature range indicated by is the temperature range where heat can be exchanged on the generator side when using a compressor, the temperature range shown by is the temperature range where heat can be exchanged on the absorber side when using a compressor, Respectively. As can be understood from this figure, by mechanically increasing the pressure of the absorber, the temperature range where the temperature of the heating side fluid and the temperature of the heated side fluid overlap during heat exchange between the absorber and the generator. Can be increased, which in turn increases the amount of heat exchange between the absorber and the generator. Japanese Patent Application Laid-Open No. 6-174323 discloses a similar device.

【0004】[0004]

【発明が解決しようとする課題】しかし、この方法で
は、コンプレッサを用いて吸収器の圧力を上昇させてい
るので、コンプレッサとその運転動力を要する。
However, in this method, since the pressure of the absorber is increased by using the compressor, the compressor and its operating power are required.

【0005】本発明が解決しようとする課題は、吸収式
ヒートポンプのGAX(吸収再生熱交換器)における熱
回収率を高め、かつそれに伴うコストの増加を抑制する
にある。
The problem to be solved by the present invention is to increase the heat recovery rate in the GAX (absorption / regeneration heat exchanger) of an absorption heat pump and to suppress the increase in cost associated therewith.

【0006】[0006]

【課題を解決するための手段】本発明の第1の手段は、
上記の課題を解決するため、吸収剤に冷媒を吸収してな
る冷媒濃度が高い強溶液を導入し、該強溶液を冷媒蒸気
と冷媒濃度が低い弱溶液とに分離生成する再生ユニット
と、この再生ユニットで生成された冷媒蒸気を冷却して
液冷媒とする凝縮器と、この凝縮器で生成された液冷媒
を膨張弁を介して導入し、熱媒との熱交換により前記液
冷媒を蒸発させる蒸発器と、この蒸発器で蒸発された冷
媒蒸気と前記再生ユニットで生成された弱溶液とを導入
し、弱溶液に冷媒蒸気を吸収させ強溶液を生成する吸収
ユニットと、この吸収ユニットで生成された強溶液を前
記再生ユニットに供給する溶液ポンプとを含んでなる吸
収式ヒートポンプにおいて、前記蒸発器を互いに異なる
温度で冷媒を蒸発させる少なくとも二つの蒸発器から構
成し、前記吸収ユニットを、前記弱溶液の散布装置とこ
の散布装置の下方に伝熱壁により画成されて配設された
熱交換流路とを内装してなる高圧側吸収器と、該高圧側
吸収器の下方に配置され、高圧側吸収器の底部に減圧弁
を介して接続された溶液散布装置とこの溶液散布装置の
下方に伝熱壁により画成されて配設された熱交換流路と
を内装してなる低圧側吸収器と、を含んで構成し、高圧
側吸収器の熱交換流路内には強溶液を、低圧側吸収器の
熱交換流路には冷却水を、それぞれ導き、前記溶液ポン
プは低圧側吸収器底部に吸い込み側を接続して配置し、
前記二つの蒸発器のうちの高温側の蒸発器で蒸発した冷
媒蒸気を前記高圧側吸収器底部に導き、低温側の蒸発器
で蒸発した冷媒蒸気を前記低圧側吸収器底部に導くよう
に構成することを特徴とする。
A first means of the present invention is as follows.
In order to solve the above problems, a strong solution having a high refrigerant concentration, which is obtained by absorbing a refrigerant into an absorbent, is introduced, and a regeneration unit that separately generates the strong solution into a refrigerant vapor and a weak solution having a low refrigerant concentration, A condenser that cools the refrigerant vapor generated in the regeneration unit into a liquid refrigerant and a liquid refrigerant generated in this condenser are introduced through an expansion valve, and the liquid refrigerant is evaporated by heat exchange with a heat medium. The evaporator to be introduced, the refrigerant vapor evaporated in this evaporator and the weak solution generated in the regeneration unit are introduced, and an absorption unit that absorbs the refrigerant vapor in the weak solution to generate a strong solution, and this absorption unit In an absorption heat pump including a solution pump that supplies the generated strong solution to the regeneration unit, the evaporator includes at least two evaporators that evaporate a refrigerant at different temperatures, and the absorption unit And a high-pressure side absorber in which the weak solution spraying device and a heat exchange flow path defined by a heat transfer wall below the spraying device are installed, and the high-pressure side absorber. A solution spraying device that is arranged below the solution sprayer and is connected to the bottom of the high-pressure side absorber via a pressure reducing valve, and a heat exchange flow path that is defined below the solution spraying device and that is defined by heat transfer walls. A low pressure side absorber that is internally installed, and is configured to include a strong solution in the heat exchange flow path of the high pressure side absorber, and cooling water to the heat exchange flow path of the low pressure side absorber, respectively, The solution pump is arranged by connecting the suction side to the low pressure side absorber bottom,
The refrigerant vapor evaporated in the high temperature side evaporator of the two evaporators is guided to the high pressure side absorber bottom, and the refrigerant vapor evaporated in the low temperature side evaporator is guided to the low pressure side absorber bottom. It is characterized by doing.

【0007】上記構成とした場合のNH3−H2Oデュー
リング線図の例を図2に示す。蒸発温度の高い蒸発器を
高温蒸発器、蒸発温度の低い蒸発器を低温蒸発器とす
る。低温蒸発器の圧力をPa、高温蒸発器の圧力をPbと
する。スマッジングの領域は蒸発器が1個の場合の熱交
換温度領域を示し、ハッチングの領域は蒸発器を蒸発温
度の異なる(圧力の異なる)二つの蒸発器に分割した場
合の熱交換温度領域を示している。低温蒸発器で蒸発す
る冷媒の温度(すなわち低温蒸発器の圧力)は、必要な
冷却媒体(例えば冷水)の蒸発器出口温度で設定され
る。この場合、GAX部加熱流体側(高圧側吸収器の熱
交換流路外側)を流れる弱溶液の温度範囲は図2のA〜
Bの範囲、GAX部被加熱流体側(高圧側吸収器の熱交
換流路内)を流れる強溶液の温度範囲は図2のC〜Dの
範囲となる。
FIG. 2 shows an example of an NH 3 --H 2 O Duhring diagram in the case of the above configuration. An evaporator with a high evaporation temperature is a high temperature evaporator, and an evaporator with a low evaporation temperature is a low temperature evaporator. The pressure of the low temperature evaporator is Pa and the pressure of the high temperature evaporator is Pb. The area of smudging shows the heat exchange temperature area when there is one evaporator, and the area of hatching shows the heat exchange temperature area when the evaporator is divided into two evaporators with different evaporation temperatures (different pressures). ing. The temperature of the refrigerant evaporated in the low temperature evaporator (that is, the pressure of the low temperature evaporator) is set by the evaporator outlet temperature of the required cooling medium (for example, cold water). In this case, the temperature range of the weak solution flowing on the heating fluid side of the GAX part (outside the heat exchange flow path of the high-pressure side absorber) is from A to
The range of B, the temperature range of the strong solution flowing on the GAX part heated fluid side (in the heat exchange flow path of the high-pressure side absorber) is the range of C to D in FIG. 2.

【0008】一方、圧力Paの蒸発器のみの場合、GA
X部加熱流体側(高圧側吸収器の熱交換流路外側)を流
れる弱溶液の温度範囲は図2のA’〜B’の範囲、GA
X部被加熱流体側(高圧側吸収器の熱交換流路内)を流
れる強溶液の温度範囲は図2のC〜D’の範囲となり、
蒸発圧力(蒸発温度)の異なる二つの蒸発器を設けた場
合の方が、熱交換可能温度範囲が広がることが理解でき
る。熱交換可能温度範囲が広がることにより、GAX部
での交換熱量が増加し、成績係数が向上する。
On the other hand, if only the evaporator with pressure Pa is used, GA
The temperature range of the weak solution flowing on the part X heating fluid side (outside the heat exchange flow path of the high-pressure side absorber) is the range A ′ to B ′ in FIG.
The temperature range of the strong solution flowing on the part X heated fluid side (in the heat exchange flow path of the high-pressure side absorber) is the range C to D ′ in FIG.
It can be understood that the temperature range in which heat can be exchanged is expanded when two evaporators having different evaporation pressures (evaporation temperatures) are provided. By expanding the temperature range in which heat can be exchanged, the amount of heat exchanged in the GAX section is increased and the coefficient of performance is improved.

【0009】本発明の第2の手段は、上記第1の手段に
おいて、二つの蒸発器の蒸発温度を異ならせる方法とし
て、膨張弁の下流側に分岐管を設け、その一方を高温側
の蒸発器に、他方を減圧弁を介して低温側の蒸発器に、
それぞれ接続したものである。膨張弁をでたのちさらに
減圧弁で減圧されてから蒸発する液冷媒は、膨張弁を出
たのち蒸発する液冷媒よりも低温で蒸発する。
The second means of the present invention is the same as the above-mentioned first means, as a method of making the evaporation temperatures of the two evaporators different from each other, a branch pipe is provided on the downstream side of the expansion valve, and one of them is evaporated on the high temperature side. To the evaporator on the low temperature side through the pressure reducing valve,
They are connected to each other. The liquid refrigerant that evaporates after leaving the expansion valve and further decompressed by the decompression valve evaporates at a lower temperature than the liquid refrigerant that evaporates after exiting the expansion valve.

【0010】本発明の第3の手段は、上記第1または第
2の手段において、再生ユニット頂部に溶液ポンプで加
圧された強溶液が流れる分縮器を内装し、高圧側吸収器
に内装された熱交換流路には、前記分縮器を通過した強
溶液を導き、低圧側吸収器に内装された熱交換流路には
冷却流体が流れるようにしたことを特徴とする。
A third means of the present invention is the same as the first or second means, wherein a regenerator top is equipped with a partial condenser through which a strong solution pressurized by a solution pump flows, and a high pressure side absorber is installed. The strong solution that has passed through the dephlegmator is introduced into the heat exchange passage, and the cooling fluid flows through the heat exchange passage installed in the low pressure side absorber.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施例を図1に基
づいて説明する。図1に、本発明に係る吸収式ヒートポ
ンプの一実施例の系統構成図を示す。本実施例は、アン
モニアを冷媒とし、吸収剤を水とした吸収式ヒートポン
プの例である。図示の吸収式ヒートポンプは、再生ユニ
ット31、凝縮器32、冷媒熱交換器33、膨張弁3
4、高温蒸発器35b、低温蒸発器35a、吸収ユニッ
ト36、溶液ポンプ37、減圧弁57,59,61を含
んで構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. FIG. 1 shows a system configuration diagram of an embodiment of an absorption heat pump according to the present invention. This embodiment is an example of an absorption heat pump using ammonia as a refrigerant and an absorbent as water. The illustrated absorption heat pump includes a regeneration unit 31, a condenser 32, a refrigerant heat exchanger 33, and an expansion valve 3.
4, a high temperature evaporator 35b, a low temperature evaporator 35a, an absorption unit 36, a solution pump 37, and pressure reducing valves 57, 59, 61.

【0012】再生ユニット31は、縦形の再生容器38
の内部に、下部の方から順に、再生入熱器39、弱溶液
の熱交換器40、回収段41aと濃縮段41bからなる
精留器41、熱交換流路をなす分縮器42を設けて形成
される。再生容器38の底部は熱交換器40の入り側に
配管で接続されている。この再生ユニット31により、
溶液ポンプ37から供給される強溶液55(43b)
が、再生容器38の頂部から取り出される冷媒蒸気44
と再生容器38の底部に溜る弱溶液56に分離される。
The regeneration unit 31 includes a vertical regeneration container 38.
Inside, the regenerator 39, a weak solution heat exchanger 40, a rectifier 41 consisting of a recovery stage 41a and a concentration stage 41b, and a partial condenser 42 forming a heat exchange flow path are provided in this order from the bottom. Formed. The bottom of the regeneration vessel 38 is connected to the inlet side of the heat exchanger 40 by a pipe. With this playback unit 31,
Strong solution 55 (43b) supplied from solution pump 37
Is the refrigerant vapor 44 taken out from the top of the regeneration container 38.
And the weak solution 56 that collects at the bottom of the regeneration container 38 is separated.

【0013】吸収ユニット36は、頂部に配置された散
布装置51bとその下方に配置された吸収熱回収熱交換
部(すなわち吸収再生熱交換器)52をなす熱交換流路
を内装してなる高圧側吸収器50bと、頂部に配置され
た散布装置51aとその下方に配置された吸収放熱部5
3をなす熱交換流路を内装してなる低圧側吸収器50a
と、高圧側吸収器50bの底部を減圧弁59を介して散
布装置51aに連通する溶液配管60と、を含んで構成
されている。散布装置51bは減圧弁57を介して前記
熱交換器40の出側に接続され、吸収熱回収熱交換部5
2の入側は前記分縮器42の出側に接続されている。低
圧側吸収器50aの底部に溶液ポンプ37の吸い込み側
が接続され、溶液ポンプ37の吐出側が前記分縮器42
の入側に接続されている。吸収熱回収熱交換部52の出
側が前記精留器41の回収段41aと濃縮段41bの間
に接続されている。
The absorption unit 36 has a high pressure inside which is provided a heat exchange passage forming a spraying device 51b arranged at the top and an absorption heat recovery heat exchange part (that is, absorption regeneration heat exchanger) 52 arranged below the spraying device 51b. The side absorber 50b, the spraying device 51a arranged at the top, and the absorbing / dissipating part 5 arranged therebelow.
Low-pressure-side absorber 50a having a heat exchange flow path forming the inside 3
And a solution pipe 60 that connects the bottom of the high-pressure side absorber 50b to the spraying device 51a via the pressure reducing valve 59. The spraying device 51b is connected to the outlet side of the heat exchanger 40 via a pressure reducing valve 57, and the absorption heat recovery heat exchange section 5
The input side of 2 is connected to the output side of the divider 42. The suction side of the solution pump 37 is connected to the bottom of the low-pressure side absorber 50a, and the discharge side of the solution pump 37 is connected to the decompressor 42.
Is connected to the input side of. The outlet side of the absorption heat recovery heat exchange section 52 is connected between the recovery stage 41a and the concentration stage 41b of the rectifier 41.

【0014】凝縮器32は冷却流体が通流される熱交換
コイル45を内装し、頂部が前記再生ユニット31の頂
部に、底部が冷媒熱交換器33の加熱側流体流路入り口
に接続されている。
The condenser 32 incorporates a heat exchange coil 45 through which a cooling fluid flows, the top portion is connected to the top portion of the regeneration unit 31, and the bottom portion is connected to the heating side fluid passage inlet of the refrigerant heat exchanger 33. .

【0015】冷媒熱交換器33は、加熱側流体流路と、
低圧側被加熱側流体流路と、高圧側被加熱側流体流路と
を備え、低圧側被加熱側流体流路の出側が前記低圧側吸
収器50aの底部に、高圧側被加熱側流体流路の出側が
前記高圧側吸収器50bの底部に、それぞれ接続されて
いる。
The refrigerant heat exchanger 33 includes a heating side fluid flow path,
The low pressure side heated side fluid flow path and the high pressure side heated side fluid flow path are provided, and the outlet side of the low pressure side heated side fluid flow path is at the bottom of the low pressure side absorber 50a and the high pressure side heated side fluid flow. The outlet side of the passage is connected to the bottom of the high pressure side absorber 50b.

【0016】高温蒸発器35bは頂部に配置された冷媒
散布装置47bと冷媒散布装置47bの下方に配置され
冷却流体が通流される熱交換コイル48bを内装して構
成され、その冷媒散布装置47bは前記冷媒熱交換器3
3の加熱側流体流路の出側に膨張弁34を介して接続さ
れている。高温蒸発器35bはまた、前記冷媒熱交換器
33の高圧側被加熱側流体流路入り側に連通されてい
る。
The high temperature evaporator 35b is constructed by incorporating a refrigerant distribution device 47b arranged at the top and a heat exchange coil 48b arranged below the refrigerant distribution device 47b and through which a cooling fluid flows, the refrigerant distribution device 47b. Refrigerant heat exchanger 3
3 is connected to the outlet side of the heating-side fluid flow path via an expansion valve 34. The high temperature evaporator 35b is also communicated with the high pressure side heated side fluid flow channel entering side of the refrigerant heat exchanger 33.

【0017】低温蒸発器35aは頂部に配置された冷媒
散布装置47aと冷媒散布装置47aの下方に配置され
冷却流体が通流される熱交換コイル48aを内装して構
成され、その冷媒散布装置47aは前記膨張弁34の出
側に減圧弁61を介して接続されている。低温蒸発器3
5aはまた、前記冷媒熱交換器33の低圧側被加熱側流
体流路入り側に連通されている。、このように構成され
た実施例の動作について以下に説明する。凝縮器32
は、再生ユニット31で生成された冷媒蒸気44を導入
し、熱交換コイル45に通流される冷却流体により冷却
して凝縮する。凝縮器32により凝縮された液冷媒46
は、冷媒熱交換器33と膨張弁34を通って二つに分流
され、一方は高温蒸発器35bの頂部に設けられた冷媒
散布装置47bから熱交換コイル48b上に散布され
る。散布された冷媒は熱交換コイル48bに通流される
冷却流体の熱を奪って蒸発し、この冷媒蒸気49bは冷
媒熱交換器33を通って、前記高圧側吸収器50bの底
部に導入される。二つに分流された液冷媒46の他方は
減圧弁61を経て減圧され、低温蒸発器35aの頂部に
設けられた冷媒散布装置47aから熱交換コイル48a
上に散布される。散布された冷媒は熱交換コイル48a
に通流される冷却流体の熱を奪って蒸発し、この冷媒蒸
気49aは冷媒熱交換器33を経て、前記低圧側吸収器
50aの底部に導入される。高温蒸発器35bでは、冷
媒は、低温蒸発器35aでより高い温度圧力で蒸発す
る。
The low temperature evaporator 35a is constructed by internally mounting a refrigerant distribution device 47a arranged at the top and a heat exchange coil 48a arranged below the refrigerant distribution device 47a and through which a cooling fluid flows, the refrigerant distribution device 47a. It is connected to the outlet side of the expansion valve 34 via a pressure reducing valve 61. Low temperature evaporator 3
5a is also communicated with the low pressure side heated side fluid passage entry side of the refrigerant heat exchanger 33. The operation of the embodiment thus configured will be described below. Condenser 32
Introduces the refrigerant vapor 44 generated in the regeneration unit 31, cools it with the cooling fluid flowing through the heat exchange coil 45, and condenses it. Liquid refrigerant 46 condensed by the condenser 32
Is split into two through the refrigerant heat exchanger 33 and the expansion valve 34, and one of the two is sprayed onto the heat exchange coil 48b from the refrigerant spraying device 47b provided at the top of the high temperature evaporator 35b. The dispersed refrigerant deprives the heat of the cooling fluid flowing through the heat exchange coil 48b and evaporates, and this refrigerant vapor 49b passes through the refrigerant heat exchanger 33 and is introduced to the bottom of the high pressure side absorber 50b. The other of the two divided liquid refrigerants 46 is decompressed via the pressure reducing valve 61, and is transferred from the refrigerant distribution device 47a provided at the top of the low temperature evaporator 35a to the heat exchange coil 48a.
Sprinkled on top. The dispersed refrigerant is the heat exchange coil 48a.
The heat of the cooling fluid flowing in the refrigerant is evaporated and evaporated, and the refrigerant vapor 49a is introduced into the bottom portion of the low pressure side absorber 50a via the refrigerant heat exchanger 33. In the high temperature evaporator 35b, the refrigerant evaporates at a higher temperature pressure in the low temperature evaporator 35a.

【0018】高圧側吸収器50bの底部に導入された冷
媒蒸気は、吸収熱回収熱交換部52をなす熱交換流路の
伝熱面上で弱溶液の散布装置51bから散布される弱溶
液に吸収され、散布された弱溶液は冷媒濃度を高めて高
圧側吸収器50bの底部に溜る。冷媒蒸気の吸収により
発生する吸収熱は、熱交換流路の内側に通流される強溶
液43bを加熱し、再生に必要な熱の一部として回収さ
れる。高圧側吸収器50bの底部に溜った弱溶液は減圧
弁59を経て低圧側吸収器50aの散布装置51aに導
かれ、吸収放熱部53をなす熱交換流路の伝熱面上に散
布される。散布された弱溶液は、吸収放熱部53をなす
熱交換流路の伝熱面上で低圧側吸収器50aの底部に導
かれた前記低温蒸発器35aからの冷媒蒸気を吸収し、
強溶液となって低圧側吸収器50aの底部に溜る。この
ときの吸収熱は、吸収放熱部53の熱交換流路に通流さ
れる冷却流体に奪われ、吸収は連続的に行われる。
The refrigerant vapor introduced into the bottom of the high-pressure side absorber 50b becomes a weak solution sprayed from the weak solution spraying device 51b on the heat transfer surface of the heat exchange passage forming the absorption heat recovery heat exchange section 52. The weak solution that has been absorbed and sprinkled increases the refrigerant concentration and accumulates at the bottom of the high-pressure side absorber 50b. The absorption heat generated by the absorption of the refrigerant vapor heats the strong solution 43b flowing inside the heat exchange channel and is recovered as a part of the heat necessary for regeneration. The weak solution accumulated at the bottom of the high-pressure side absorber 50b is guided to the spraying device 51a of the low-pressure side absorber 50a via the pressure reducing valve 59, and is sprayed onto the heat transfer surface of the heat exchange passage forming the absorption / radiation part 53. . The sprayed weak solution absorbs the refrigerant vapor from the low temperature evaporator 35a guided to the bottom of the low pressure side absorber 50a on the heat transfer surface of the heat exchange passage forming the absorption and heat dissipation part 53,
It becomes a strong solution and accumulates at the bottom of the low pressure side absorber 50a. The absorbed heat at this time is taken by the cooling fluid flowing through the heat exchange flow path of the absorption / radiation unit 53, and absorption is continuously performed.

【0019】低圧側吸収器50aの底部に溜った強溶液
43aは溶液ポンプ37により昇圧され、再生ユニット
31の分縮器42を通って昇温され、昇温された強溶液
43bは吸収ユニット36の吸収熱回収熱交換部52の
下部入口からその熱交換流路内に導入されている。この
吸収熱回収熱交換部52を通った強溶液55は、再生ユ
ニット31の精留器41の中段に導入されている。再生
ユニット31の再生処理により分離されて、再生容器3
8の底部に溜った弱溶液56は、熱交換器40と減圧弁
57を通って高圧側吸収器50bに設けられた弱溶液の
散布装置51bに供給されている。
The strong solution 43a accumulated at the bottom of the low pressure side absorber 50a is pressurized by the solution pump 37 and heated through the partial condenser 42 of the regeneration unit 31, and the heated strong solution 43b is absorbed by the absorption unit 36. Is introduced into the heat exchange passage from the lower inlet of the absorbed heat recovery heat exchange section 52. The strong solution 55 passing through the absorption heat recovery heat exchange section 52 is introduced into the middle stage of the rectifier 41 of the regeneration unit 31. The recycling container 3 is separated by the recycling process of the recycling unit 31.
The weak solution 56 collected at the bottom of 8 passes through the heat exchanger 40 and the pressure reducing valve 57 and is supplied to the weak solution spraying device 51b provided in the high pressure side absorber 50b.

【0020】吸収熱回収熱交換部52において、沸騰に
より気液の二相流になった強溶液55は、吸収熱回収熱
交換部52の上部出口から再生ユニット31の精留器4
1に送られる。精留器41に導入された二相流の強溶液
55は、冷媒蒸気と弱溶液とに分離される。冷媒蒸気は
精留器41を上昇する過程で濃度を高め、分縮器42に
低温の強溶液43aとの熱交換により更に蒸気が濃縮さ
れて冷媒蒸気の濃度が高められ、凝縮器32に供給され
る。一方、強溶液は精留器41を下降する過程で冷媒濃
度が減少し、弱溶液の熱交換器40と再生入熱器39を
通過すると弱溶液となり再生容器38の底部に溜まり、
前述したように高圧側吸収器50bに供給される。この
ようにして、吸収工程と再生工程が繰返し行われ、その
過程で高温蒸発器35b、低温蒸発器35a又は吸収放
熱部53から系外に冷熱又は温熱が取り出される。
In the absorption heat recovery heat exchange section 52, the strong solution 55 which has become a gas-liquid two-phase flow due to boiling flows from the upper outlet of the absorption heat recovery heat exchange section 52 to the rectifier 4 of the regeneration unit 31.
Sent to 1. The two-phase strong solution 55 introduced into the rectifier 41 is separated into a refrigerant vapor and a weak solution. The refrigerant vapor increases in concentration in the process of rising in the rectifier 41, and the vapor is further concentrated in the dephlegmator 42 by heat exchange with the low-temperature strong solution 43a to increase the concentration of the refrigerant vapor and supplied to the condenser 32. To be done. On the other hand, the strong solution has a reduced refrigerant concentration in the process of descending the rectifier 41, and when it passes through the weak solution heat exchanger 40 and the regenerative heat input device 39, it becomes a weak solution and accumulates at the bottom of the regenerating container 38.
As described above, it is supplied to the high pressure side absorber 50b. In this way, the absorption step and the regeneration step are repeatedly performed, and in the process, cold heat or hot heat is taken out of the system from the high temperature evaporator 35b, the low temperature evaporator 35a or the absorption / radiation unit 53.

【0021】ここで、系統内における溶液の温度圧力の
変化を図2に対照させて説明する。
Here, the change in temperature and pressure of the solution in the system will be described with reference to FIG.

【0022】再生ユニット38内の弱溶液(図2のE
点)は、減圧弁57で減圧され、高圧側吸収器50bの
散布装置51bに導かれる(図2のa点)。散布装置5
1bから吸収熱回収熱交換部52の伝熱面上に散布され
た弱溶液は、冷媒蒸気を吸収しつつ吸収熱回収熱交換部
52の熱交換流路内を流れる強溶液と熱交換して冷却さ
れ、高圧側吸収器50bの底部に達する(図2のb
点)。高圧側吸収器50bは高温蒸発器35bに連通さ
れており、その圧力は高温蒸発器35bの圧力と同じP
bである。高圧側吸収器50bの底部に溜った弱溶液
は、減圧弁59で低温蒸発器35aと同じPaに減圧さ
れ、低圧側吸収器50aの散布装置51aに流入する
(図2のf点)。散布装置51aから吸収放熱部53の
伝熱面上に散布された弱溶液は、低温蒸発器35aから
冷媒熱交換器33を経て導入された冷媒蒸気を吸収しつ
つ吸収放熱部53の熱交換流路内を流れる冷却流体と熱
交換して冷却され、強溶液となって低圧側吸収器50a
の底部に達する(図2のg点)。
A weak solution in the regeneration unit 38 (E in FIG. 2)
The point) is decompressed by the pressure reducing valve 57 and guided to the spraying device 51b of the high pressure side absorber 50b (point a in FIG. 2). Spraying device 5
The weak solution sprayed from 1b onto the heat transfer surface of the absorbed heat recovery heat exchange section 52 exchanges heat with the strong solution flowing in the heat exchange flow path of the absorbed heat recovery heat exchange section 52 while absorbing the refrigerant vapor. It is cooled and reaches the bottom of the high pressure side absorber 50b (b in FIG. 2).
point). The high pressure side absorber 50b is in communication with the high temperature evaporator 35b, and its pressure is the same as the pressure of the high temperature evaporator 35b.
b. The weak solution accumulated at the bottom of the high pressure side absorber 50b is decompressed by the pressure reducing valve 59 to the same Pa as the low temperature evaporator 35a, and flows into the spraying device 51a of the low pressure side absorber 50a (point f in FIG. 2). The weak solution sprayed from the spraying device 51a onto the heat transfer surface of the absorption / radiation unit 53 absorbs the refrigerant vapor introduced from the low-temperature evaporator 35a via the refrigerant heat exchanger 33, and the heat exchange flow of the absorption / radiation unit 53. It is cooled by exchanging heat with the cooling fluid flowing in the passage to become a strong solution, and the low pressure side absorber 50a.
Bottom (point g in FIG. 2).

【0023】低圧側吸収器50aの底部に溜った強溶液
は、溶液ポンプ37によって加圧され、再生ユニット3
1に内装された分縮器42を経て吸収熱回収熱交換部5
2の熱交換流路入り口に達する(図2のc点)。吸収熱
回収熱交換部52の熱交換流路内に流入した強溶液は、
該熱交換流路外側を流れる弱溶液に加熱されつつ流れ、
気液二相となって熱交換流路出口に達する(図2のd
点)。熱交換流路出口に達した強溶液は再生ユニット3
1に導かれ、溶液と蒸気に分離されたのち、溶液は再生
ユニット31の底部に溜る(図2のe点)。
The strong solution accumulated at the bottom of the low pressure side absorber 50a is pressurized by the solution pump 37, and the regeneration unit 3
1 through the partial condenser 42, and the absorption heat recovery heat exchange section 5
2 reaches the heat exchange channel inlet (point c in FIG. 2). The strong solution flowing into the heat exchange flow path of the absorbed heat recovery heat exchange section 52 is
Flowing while being heated by a weak solution flowing outside the heat exchange channel,
It becomes a gas-liquid two-phase and reaches the heat exchange passage outlet (d in FIG. 2).
point). The strong solution reaching the heat exchange channel outlet is regenerated by the regeneration unit 3
After being guided to 1 and separated into a solution and a vapor, the solution accumulates at the bottom of the regeneration unit 31 (point e in FIG. 2).

【0024】溶液は上述のように循環して冷凍サイクル
を形成する。この冷凍サイクルにおいては、強溶液は再
生ユニット31の精留器41に流入する前に、吸収熱回
収熱交換部52でその外側を流れる弱溶液の熱を回収し
ている。本実施例では、蒸発器及び吸収器を二つに分け
て、吸収熱回収熱交換部52を内装する高圧側吸収器5
0bの圧力を高めることで、吸収熱回収熱交換部52外
側の冷媒蒸気吸収開始位置の弱溶液温度を高め、吸収熱
回収熱交換部52における熱交換温度領域を広げること
ができた。
The solution circulates as described above to form a refrigeration cycle. In this refrigeration cycle, before the strong solution flows into the rectifier 41 of the regeneration unit 31, the absorption heat recovery heat exchange section 52 recovers the heat of the weak solution flowing outside thereof. In the present embodiment, the evaporator and the absorber are divided into two, and the high pressure side absorber 5 in which the absorbed heat recovery heat exchange section 52 is installed is installed.
By increasing the pressure of 0b, the weak solution temperature at the refrigerant vapor absorption start position outside the absorption heat recovery heat exchange unit 52 was increased, and the heat exchange temperature region in the absorption heat recovery heat exchange unit 52 could be widened.

【0025】蒸発器を高温蒸発器と低温蒸発器の二つで
構成し、吸収器を高温蒸発器に接続された高圧側吸収器
と、低温蒸発器に接続された低圧側吸収器に分けること
により、どの程度成績係数(COP)が向上するかをシ
ミュレーションで検討した。シミュレーションは、下記
の温度、圧力条件で行った。
The evaporator is composed of a high temperature evaporator and a low temperature evaporator, and the absorber is divided into a high pressure side absorber connected to the high temperature evaporator and a low pressure side absorber connected to the low temperature evaporator. The degree of improvement in the coefficient of performance (COP) was examined by simulation. The simulation was performed under the following temperature and pressure conditions.

【0026】 比較する、蒸発器を異なる温度で蒸発する二つの蒸発器
に分割していないサイクルの温度、圧力条件は上記条件
と同じとした。ただし、蒸発器の条件は上記低温蒸発
器、吸収器は上記低圧側吸収器と同じとしてある。この
時のデューリング線図を図3に示す。
[0026] For comparison, the temperature and pressure conditions of the cycle in which the evaporator was not divided into two evaporators that evaporate at different temperatures were the same as the above conditions. However, the conditions of the evaporator are the same as those of the low temperature evaporator and the absorber described above. FIG. 3 shows a Duhring diagram at this time.

【0027】シミュレーションの結果、蒸発器、吸収器
を分割したサイクルのCOP,0.88、分割しないサ
イクルのCOP,0.81を得た。この結果から上記温
度、圧力条件で蒸発器、吸収器を分割することにより、
COPが約9%向上することを確認できた。
As a result of the simulation, COP, 0.88 of the cycle in which the evaporator and the absorber were divided, and COP, 0.81 of the cycle in which the evaporator and the absorber were not divided were obtained. From this result, by dividing the evaporator and absorber under the above temperature and pressure conditions,
It was confirmed that the COP was improved by about 9%.

【0028】[0028]

【発明の効果】本発明によれば、蒸発器を所要の温度の
冷水を得るのに必要な温度で冷媒が蒸発する低温蒸発器
と、それよりも高温で冷媒が蒸発する高温蒸発器との二
つで構成し、吸収器を高温蒸発器に接続された高圧側吸
収器と、低温蒸発器に接続された低圧側吸収器に分ける
ことにより、コンプレッサなど他からの動力を使用する
ことなく、つまり、インプットを増やすことなく、GA
X部(吸収熱回収熱交換部)で熱交換を行う弱溶液の温
度を高めることができる。蒸発器と吸収器をそれぞれ分
割することで伝熱面積は増大するが、GAX部での熱交
換量が増加し、COPが向上する効果がある。
According to the present invention, a low-temperature evaporator in which a refrigerant evaporates at a temperature required to obtain cold water at a desired temperature and a high-temperature evaporator in which a refrigerant evaporates at a higher temperature than that It is composed of two, and by dividing the absorber into a high pressure side absorber connected to the high temperature evaporator and a low pressure side absorber connected to the low temperature evaporator, without using power from a compressor or the like, In other words, GA without increasing the input
It is possible to raise the temperature of the weak solution for heat exchange in the X part (absorption heat recovery heat exchange part). Although the heat transfer area is increased by dividing the evaporator and the absorber, the amount of heat exchange in the GAX portion is increased, and COP is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の要部構成を示す系統図であ
る。
FIG. 1 is a system diagram showing a main configuration of an embodiment of the present invention.

【図2】本発明の原理を示すデューリング線図である。FIG. 2 is a Duhring diagram showing the principle of the present invention.

【図3】本発明の実施例を示すデューリング線図であ
る。
FIG. 3 is a Duhring diagram showing an example of the present invention.

【図4】従来技術の例を示すデューリング線図である。FIG. 4 is a Dühring diagram showing an example of a conventional technique.

【符号の説明】[Explanation of symbols]

31 再生ユニット 32 凝縮器 33 冷媒熱交換器 34 膨張弁 35a 低温蒸発器 35b 高温蒸発
器 36 吸収ユニット 37 溶液ポンプ 38 再生容器 39 再生入熱器 40 弱溶液の熱交換器 41 精留器 41a 回収段 41b 濃縮段 42 分縮器 43a,b 強溶
液 44 冷媒蒸気 45 熱交換コイ
ル 46 液冷媒 47a,b 冷媒
散布装置 48a,b 熱交換コイル 49a,b 冷媒
蒸気 50a 高圧側吸収器 50b 低圧側吸
収器 51a,b 散布装置 52 吸収熱回収
熱交換部 53 吸収放熱部 55 強溶液 56 弱溶液 57 減圧弁 58 弱溶液 59 減圧弁 60 溶液配管 61 減圧弁
31 Regeneration Unit 32 Condenser 33 Refrigerant Heat Exchanger 34 Expansion Valve 35a Low Temperature Evaporator 35b High Temperature Evaporator 36 Absorption Unit 37 Solution Pump 38 Regeneration Container 39 Regeneration Heater 40 Weak Solution Heat Exchanger 41 Fractioner 41a Recovery Stage 41b Condensing stage 42 Decompressor 43a, b Strong solution 44 Refrigerant vapor 45 Heat exchange coil 46 Liquid refrigerant 47a, b Refrigerant spraying device 48a, b Heat exchange coil 49a, b Refrigerant vapor 50a High pressure side absorber 50b Low pressure side absorber 51a , B Dispersing device 52 Absorption heat recovery heat exchange part 53 Absorption heat dissipation part 55 Strong solution 56 Weak solution 57 Pressure reducing valve 58 Weak solution 59 Pressure reducing valve 60 Solution piping 61 Pressure reducing valve

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 吸収剤に冷媒を吸収してなる冷媒濃度が
高い強溶液を導入し、該強溶液を冷媒蒸気と冷媒濃度が
低い弱溶液とに分離生成する再生ユニット31と、この
再生ユニットで生成された冷媒蒸気を冷却して液冷媒と
する凝縮器と、この凝縮器で生成された液冷媒を膨張弁
を介して導入し、熱媒との熱交換により前記液冷媒を蒸
発させる蒸発器と、この蒸発器で蒸発された冷媒蒸気と
前記再生ユニットで生成された弱溶液とを導入し、弱溶
液に冷媒蒸気を吸収させ強溶液を生成する吸収ユニット
と、この吸収ユニットで生成された強溶液を前記再生ユ
ニットに供給する溶液ポンプとを含んでなる吸収式ヒー
トポンプにおいて、 前記蒸発器が、互いに異なる温度で冷媒を蒸発させる少
なくとも二つの蒸発器からなり、 前記吸収ユニットが、前記弱溶液の散布装置とこの溶液
散布装置の下方に伝熱壁により画成されて配設された熱
交換流路とを内装してなる高圧側吸収器と、該高圧側吸
収器の下方に配置され、高圧側吸収器の底部に減圧弁を
介して接続された溶液散布装置とこの溶液散布装置の下
方に伝熱壁により画成されて配設された熱交換流路とを
内装してなる低圧側吸収器と、を含んでなり、 高圧側吸収器の熱交換流路内には強溶液が、低圧側吸収
器の熱交換流路には冷却水が、それぞれ導かれ、 前記溶液ポンプは低圧側吸収器底部に吸い込み側を接続
して配置され、 前記二つの蒸発器のうちの高温側の蒸発器で蒸発した冷
媒蒸気は前記高圧側吸収器底部に導かれ、低温側の蒸発
器で蒸発した冷媒蒸気は前記低圧側吸収器底部に導かれ
るように構成されていることを特徴とする吸収式ヒート
ポンプ。
1. A regeneration unit 31 for introducing a strong solution having a high refrigerant concentration, which is obtained by absorbing a refrigerant into an absorbent, and separating and producing the strong solution into a refrigerant vapor and a weak solution having a low refrigerant concentration, and the regeneration unit. A condenser that cools the refrigerant vapor generated in 1. to a liquid refrigerant, and introduces the liquid refrigerant generated in this condenser through an expansion valve, and evaporates the liquid refrigerant by heat exchange with a heat medium. And an absorption unit that introduces the refrigerant vapor evaporated in this evaporator and the weak solution generated in the regeneration unit, absorbs the refrigerant vapor in the weak solution to generate a strong solution, and is generated in this absorption unit. In an absorption heat pump including a solution pump that supplies a strong solution to the regeneration unit, the evaporator includes at least two evaporators that evaporate a refrigerant at different temperatures, and the absorption unit is A high-pressure side absorber in which the weak solution spraying device and a heat exchange passage defined and arranged by a heat transfer wall below the solution spraying device are installed, and below the high-pressure side absorber A solution spraying device that is arranged and connected to the bottom of the high-pressure side absorber via a pressure reducing valve, and a heat exchange flow path that is defined and arranged by a heat transfer wall below the solution spraying device are installed. A high pressure side absorber, a strong solution is introduced into the heat exchange flow path of the high pressure side absorber, and cooling water is introduced into the heat exchange flow path of the low pressure side absorber. Is arranged with the suction side connected to the low pressure side absorber bottom, and the refrigerant vapor evaporated in the high temperature side evaporator of the two evaporators is guided to the high pressure side absorber bottom part, and the low temperature side evaporator It is characterized in that the refrigerant vapor that has been vaporized in is introduced to the bottom of the low-pressure side absorber. Absorption heat pump to be.
【請求項2】 膨張弁の下流側に分岐管が設けられ、そ
の一方が高温側の蒸発器に、他方が減圧弁を介して低温
側の蒸発器に、それぞれ接続されていることを特徴とす
る請求項1に記載の吸収式ヒートポンプ。
2. A branch pipe is provided on the downstream side of the expansion valve, one of which is connected to the evaporator on the high temperature side, and the other is connected to the evaporator on the low temperature side via a pressure reducing valve. The absorption heat pump according to claim 1.
【請求項3】 再生ユニット頂部には溶液ポンプで加圧
された強溶液が流れる分縮器が内装され、高圧側吸収器
に内装された熱交換流路には、前記分縮器を通過した強
溶液が導かれることと、低圧側吸収器に内装された熱交
換流路には冷却流体が流れることとを特徴とする請求項
1または2に記載の吸収式ヒートポンプ。
3. A dephlegmator in which a strong solution pressurized by a solution pump flows is installed at the top of the regeneration unit, and a heat exchange passage provided in a high pressure side absorber passes through the dephlegmator. The absorption type heat pump according to claim 1 or 2, wherein a strong solution is introduced and a cooling fluid flows through a heat exchange passage installed in the low pressure side absorber.
【請求項4】 請求項1乃至3のいずれかに記載の吸収
式ヒートポンプにおいて、前記冷媒がアンモニアであ
り、前記吸収剤が水であることを特徴とする吸収式ヒー
トポンプ。
4. The absorption heat pump according to claim 1, wherein the refrigerant is ammonia and the absorbent is water.
JP8048685A 1996-03-06 1996-03-06 Absorption type heat pump Pending JPH09243195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8048685A JPH09243195A (en) 1996-03-06 1996-03-06 Absorption type heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8048685A JPH09243195A (en) 1996-03-06 1996-03-06 Absorption type heat pump

Publications (1)

Publication Number Publication Date
JPH09243195A true JPH09243195A (en) 1997-09-16

Family

ID=12810180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8048685A Pending JPH09243195A (en) 1996-03-06 1996-03-06 Absorption type heat pump

Country Status (1)

Country Link
JP (1) JPH09243195A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007051411A1 (en) * 2005-10-31 2007-05-10 Qidong Pang Ammonia water absorption refrigerating device utilizing exhaust heat of tail gas
CN103196257A (en) * 2012-01-09 2013-07-10 江苏江平空调净化设备有限公司 Aqueous ammonia liquid vaporization system for ship
CN111795513A (en) * 2020-06-16 2020-10-20 普泛能源技术研究院(北京)有限公司 Two-state thermal drive refrigerating system
CN115789986A (en) * 2023-01-30 2023-03-14 安徽普泛能源技术有限公司 Repressurization vaporization absorption refrigeration system and cold and hot state starting method and process thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007051411A1 (en) * 2005-10-31 2007-05-10 Qidong Pang Ammonia water absorption refrigerating device utilizing exhaust heat of tail gas
CN103196257A (en) * 2012-01-09 2013-07-10 江苏江平空调净化设备有限公司 Aqueous ammonia liquid vaporization system for ship
CN103196257B (en) * 2012-01-09 2015-09-16 江苏江平空调净化设备有限公司 Aqueous ammonia solution vapo(u)rization system peculiar to vessel
CN111795513A (en) * 2020-06-16 2020-10-20 普泛能源技术研究院(北京)有限公司 Two-state thermal drive refrigerating system
CN111795513B (en) * 2020-06-16 2021-10-22 普泛能源技术研究院(北京)有限公司 Two-state thermal drive refrigerating system
CN115789986A (en) * 2023-01-30 2023-03-14 安徽普泛能源技术有限公司 Repressurization vaporization absorption refrigeration system and cold and hot state starting method and process thereof
CN115789986B (en) * 2023-01-30 2023-05-23 安徽普泛能源技术有限公司 Repressurization vaporization absorption refrigeration system and cold and hot state starting method and technology thereof

Similar Documents

Publication Publication Date Title
JP2978563B2 (en) Vapor heat exchange dual GAX absorption cycle
JPH0219385B2 (en)
JPH06507965A (en) Regenerative absorption cycle with multi-stage breathing apparatus
KR19990022970A (en) Compression and Absorption Hybrid Heat Pump
JP3353101B2 (en) Absorption heat pump
JPH09243195A (en) Absorption type heat pump
JP2881593B2 (en) Absorption heat pump
JP3865346B2 (en) Absorption chiller / heater
JP2004190886A (en) Absorption refrigerating machine and absorption refrigerating system
JPH06272989A (en) Refrigerator
JP2945971B1 (en) Ammonia absorption refrigerator
JP2787182B2 (en) Single / double absorption chiller / heater
JPH07198222A (en) Heat pump including reverse rectifying part
JP3948814B2 (en) Multi-effect absorption refrigerator
JPS6122225B2 (en)
JP2787111B2 (en) Absorption heat pump
KR200288609Y1 (en) Ammonia absorbtion- type refrigerator
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
JPH09318185A (en) Absorption heat pump and its operation
JP3486382B2 (en) Absorption refrigerator
JP2926299B2 (en) Absorption heat pump
JP2004011928A (en) Absorption refrigerator
JP2005300126A (en) Absorption type refrigerating machine
JP2962020B2 (en) Absorption type heat pump device
JPH01244257A (en) Double-effect absorption water cooler/heater