JP3948814B2 - Multi-effect absorption refrigerator - Google Patents

Multi-effect absorption refrigerator Download PDF

Info

Publication number
JP3948814B2
JP3948814B2 JP06150398A JP6150398A JP3948814B2 JP 3948814 B2 JP3948814 B2 JP 3948814B2 JP 06150398 A JP06150398 A JP 06150398A JP 6150398 A JP6150398 A JP 6150398A JP 3948814 B2 JP3948814 B2 JP 3948814B2
Authority
JP
Japan
Prior art keywords
temperature side
regenerator
solution
high temperature
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06150398A
Other languages
Japanese (ja)
Other versions
JPH11257775A (en
Inventor
義雄 改田
明夫 近沢
隆一郎 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP06150398A priority Critical patent/JP3948814B2/en
Publication of JPH11257775A publication Critical patent/JPH11257775A/en
Application granted granted Critical
Publication of JP3948814B2 publication Critical patent/JP3948814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は吸収式冷凍機に関し、詳しくは、高温側再生器で発生させた冷媒蒸気を低温側再生器での加熱源にする多重効用吸収式冷凍機に関する。
【0002】
【従来の技術】
図2は従来の多重効用吸収式冷凍機の一例(三重効用の例)を示すが、同図に示す如く、高温側再生器1と低温側再生器2,3(中温再生器及び低温再生器)とに対し希溶液La,Lb,Lcを並列的に送る溶液循環形式を採る場合、各再生器1〜3に供給する希溶液La,Lb,Lcの溶液濃度は互いに等しくなっていた。
【0003】
図中、4は加熱器、5は凝縮器、6は蒸発器、8は吸収器、P1は溶液ポンプ、P3は冷媒ポンプ、Cは冷却対象熱媒、Wは冷却用熱媒であり、Nは夫々、溶液熱交換器である。
【0004】
また、希溶液の生成については、図3に示す如く、凝縮器で凝縮させた冷媒R’を順次に蒸発させる第1及び第2蒸発器6A,6Bを設けるとともに、再生器からの戻り濃溶液L’に第1及び第2蒸発器6A,6Bでの発生冷媒蒸気を順次に吸収させる第1及び第2吸収器8A,8Bを設け、そして、この構成において冷却対象熱媒Cを第2蒸発器6Bから第1蒸発器6Aの順に通過させる形態を採って、第2蒸発器6Bでの冷媒蒸発温度を第1蒸発器6Aで要求される冷媒蒸発温度よりも高くすることにより、第1吸収器8Aでの冷媒吸収に比べ、第2吸収器8Bにおいてより低い溶液濃度まで冷媒吸収させる二段吸収方式が知られている。
【0005】
つまり、この二段吸収方式によれば、通常の一段吸収方式に比べ、冷媒吸収の後、再生器に送る希溶液Lの溶液濃度を低くすることができ、それにより、再生器での溶液濃度の変化幅(すなわち、冷媒蒸気の発生による溶液濃縮再生での溶液濃度の上昇幅)を拡大して、再生器での冷媒蒸気の発生効率を高めることができる。
【0006】
【発明が解決しようとする課題】
しかし、前記の如く、多重効用形式における各再生器に溶液濃度の互いに等しい希溶液を並列的に供給するのでは、仮に二段吸収方式を採用して各再生器に対する供給希溶液の溶液濃度を低下させ、それにより各再生器における冷媒蒸気の発生効率を向上させたとしても、装置全体効率(成績係数)の向上には限界があり、この点、未だ改善の余地があった。
【0007】
この実情に対し、本発明の主たる課題は、溶液循環の面での合理的な改良により、多重効用吸収式冷凍機の全体効率を効果的に向上させる点にある。
【0008】
【課題を解決するための手段】
〔1〕請求項1記載の発明では、高温側再生器と低温側再生器とに対し各別の吸収器から希溶液を並列的に送る溶液循環において、高温側再生器に送る高温側希溶液の溶液濃度を低温側再生器に送る低温側希溶液の溶液濃度よりも低くし、それにより、高温側再生器での溶液濃度の変化幅を低温側再生器での溶液濃度の変化幅よりも大きくし、また、高温側再生器から送出される高温側濃溶液と低温側再生器から送出される低温側濃溶液とを合流させて、その合流濃溶液を第1吸収器において冷媒吸収させ、そして、その第1吸収器で生成される希溶液を、低温側再生器に送る低温側希溶液と、第2吸収器でさらに冷媒吸収させた上で高温側再生器に送る高温側希溶液とに分流する。
【0009】
つまり、多重効用形式では高温側再生器での発生冷媒蒸気を低温側再生器での冷媒蒸気発生の加熱源にすることから、上記の如く、高温側再生器に送る高温側希溶液の溶液濃度を低温側再生器に送る低温側希溶液の溶液濃度よりも低くして、高温側再生器での溶液濃度の変化幅を低温側再生器での溶液濃度の変化幅よりも大きくすれば(すなわち、高温側再生器での加熱量の増大を伴わずに高温側再生器での冷媒蒸気の発生量を増加させれば)、それに伴い低温側再生器での加熱量も増大することで低温側再生器での冷媒蒸気発生量もともに増加し、これにより、装置の全体効率(成績係数)が効果的に向上する。
【0010】
そしてまた、請求項1記載の発明では、高温側再生器と低温側再生器とに対し各別の吸収器から並列的に送る希溶液のうち、高温側再生器に送る高温側希溶液の溶液濃度のみを選択的に低くするから、例えば、二段吸収方式を採用するにしても、前記の如く各再生器に対する供給希溶液の溶液濃度をともに低下させるに比べ、濃度低下対象の溶液量が少量になり、その分、高温側再生器に送る高温側希溶液の溶液濃度を一層効果的に低下させることが可能になって、高温側再生器での溶液濃度の変化幅を低濃度側へ一層効果的に拡大することができる。
【0011】
すなわち、請求項1記載の発明によれば、上記の如く高温側再生器での溶液濃度の変化幅を低濃度側へ一層効果的に拡大できて高温側再生器での冷媒蒸気発生量を効果的に増加させ得ることと、それに伴い前記の如く低温側再生器での冷媒蒸気発生量も効果的に増加させ得ることとが相まって、各再生器への供給希溶液の溶液濃度を単に平均的に低下させるに比べ、装置の全体効率を極めて効果的に向上させることができ、また、このように高温側再生器での溶液濃度の変化幅を効果的に拡大させての効率向上により、所要の冷凍能力を得るのに要する加熱量及び溶液ポンプの消費動力を低減してランニングコストを大きく低減できる。
また、上記の如き希溶液生成形態であれば、第1吸収器において低温側希溶液と同濃度まで濃度低下させた溶液を、第2吸収器でさらに冷媒吸収させて低濃度の高温側希溶液を生成(いわゆる二段吸収方式)するから、再生器からの送出濃溶液に対する一段の冷媒吸収だけで低濃度の高温側希溶液を一気に生成するに比べ、濃度低下対象の溶液量が少量であることとも相まって、生成する高温側希溶液の溶液濃度をより効率的にかつ確実に低下させることが容易になり、これにより、前記した発明の効果を一層確実かつ安定的に得ることができる。
また、この希溶液生成形態であれば、低温側希溶液を生成する第1吸収器を二段吸収方式における前段吸収器に兼用利用した状態で、低濃度の高温側希溶液を二段吸収方式で生成するから、例えば、低温側再生器から送出される低温側濃溶液と高温側再生器から送出される高温側濃溶液とを、低温側希溶液用の吸収器とこれとは別の高温側希溶液用の二段吸収方式の吸収器とで各別に冷媒吸収させる形態に比べれば、装置全体としての吸収器部分の構成を簡素化することができて、装置製作を容易にすることができる。
【0012】
〔2〕請求項2記載の発明では、高温側再生器と低温側再生器とに対し各別の吸収器から希溶液を並列的に送る溶液循環において、高温側再生器に送る高温側希溶液の溶液濃度を低温側再生器に送る低温側希溶液の溶液濃度よりも低くし、それにより、高温側再生器から送出される高温側濃溶液の溶液濃度を、低温側再生器から送出される低温側濃溶液の溶液濃度よりも低くし、また、高温側再生器から送出される高温側濃溶液と低温側再生器から送出される低温側濃溶液とを合流させて、その合流濃溶液を第1吸収器において冷媒吸収させ、そして、その第1吸収器で生成される希溶液を、低温側再生器に送る低温側希溶液と、第2吸収器でさらに冷媒吸収させた上で高温側再生器に送る高温側希溶液とに分流する。
【0013】
つまり、このようにすれば、供給希溶液の溶液濃度を低くすることによる冷媒蒸気発生量の増量分をもって高温側再生器での冷媒蒸気発生量は大きく保ちながらも、高温側再生器からの送出濃溶液の溶液濃度低下(すなわち、高温側再生器での溶液濃縮再生における最終再生濃度の低下)により再生温度の低下に対して発生冷媒蒸気の圧力を高く維持する形態で、低温側再生器での再生温度を確保するのに要する高温側再生器での再生温度を低下させることができ、この必要再生温度の低下により装置の全体効率を向上させることができる。
【0014】
そしてまた、請求項1記載の発明と同様、高温側再生器と低温側再生器とに対し各別の吸収器から並列的に送る希溶液のうち、高温側再生器に送る高温側希溶液の溶液濃度のみを選択的に低くするから、各再生器に対する供給希溶液の溶液濃度をともに低下させるに比べ、濃度低下対象の溶液量が少量になり、その分、高温側再生器に送る高温側希溶液の溶液濃度を一層効果的に低下させることが可能になって、上記の如き冷媒蒸気発生量を維持しながらの送出側溶液濃度の低下による高温側再生器での再生温度の低下を一層効果的に実現でき、このことから、装置の全体効率を効果的に向上させることができ、また、このように高温側再生器での必要再生温度を低下させての効率向上により、所要の冷凍能力を得るのに要する加熱量を低減してランニングコストを大きく低減できる。
また、上記の如き希溶液生成形態であれば、第1吸収器において低温側希溶液と同濃度まで濃度低下させた溶液を、第2吸収器でさらに冷媒吸収させて低濃度の高温側希溶液を生成(いわゆる二段吸収方式)するから、再生器からの送出濃溶液に対する一段の冷媒吸収だけで低濃度の高温側希溶液を一気に生成するに比べ、濃度低下対象の溶液量が少量であることとも相まって、生成する高温側希溶液の溶液濃度をより効率的にかつ確実に低下させることが容易になり、これにより、前記した発明の効果を一層確実かつ安定的に得ることができる。
また、この希溶液生成形態であれば、低温側希溶液を生成する第1吸収器を二段吸収方式における前段吸収器に兼用利用した状態で、低濃度の高温側希溶液を二段吸収方式で生成するから、例えば、低温側再生器から送出される低温側濃溶液と高温側再生器から送出される高温側濃溶液とを、低温側希溶液用の吸収器とこれとは別の高温側希溶液用の二段吸収方式の吸収器とで各別に冷媒吸収させる形態に比べれば、装置全体としての吸収器部分の構成を簡素化することができて、装置製作を容易にすることができる。
【0015】
また、多重効用形式では、低温側再生器での再生温度を確保する上で高温側再生器における再生温度が単効用の場合の再生温度(一般に90〜100℃)に比べ非常に高い温度(三重効用では200℃以上もの温度)になり、この高温化の為に装置腐食が促進されて腐食防止が難しくなる問題もあるが、請求項2記載の発明によれば、上記の如く高温側再生器での再生温度を効果的に低下できることにより、高温化による装置腐食の問題も合わせ効果的に回避できる。
【0016】
ちなみに、三重効用の場合、高温側再生器での再生温度は上記の如く200℃以上になるが、一般に吸収液に用いられる臭化リチウム溶液の鉄などに対する腐食性は200℃を越えると急激に増大することから、上記の如く高温側再生器に要求される再生温度を低下し得ることは、装置腐食を防止する上で極めて有効である。
【0017】
〔3〕請求項3記載の発明では、高温側再生器に送る高温側希溶液の溶液濃度を低温側再生器に送る低温側希溶液の溶液濃度よりも低くして、高温側再生器での溶液濃度の変化幅を低温側再生器での溶液濃度の変化幅よりも大きくし、かつ、高温側再生器から送出される高温側濃溶液の溶液濃度を、低温側再生器から送出される低温側濃溶液の溶液濃度よりも低くし、また、高温側再生器から送出される高温側濃溶液と低温側再生器から送出される低温側濃溶液とを合流させて、その合流濃溶液を第1吸収器において冷媒吸収させ、そして、その第1吸収器で生成される希溶液を、低温側再生器に送る低温側希溶液と、第2吸収器でさらに冷媒吸収させた上で高温側再生器に送る高温側希溶液とに分流する。
【0018】
すなわち、高温側再生器と低温側再生器とに対し各別の吸収器から並列的に送る希溶液のうち、高温側再生器に送る高温側希溶液の溶液濃度を選択的に低くするのであれば、濃度低下対象の溶液量が少量になり、その分、高温側再生器に送る高温側希溶液の溶液濃度を効果的に低下させ得ることを有効に活用して、高温側再生器での溶液濃度の変化幅を拡大させることと、高温側再生器からの送出濃溶液を濃度低下させて高温側再生器での再生温度を低下させることとの両方を実施するのであり、これにより、前記した請求項1記載の発明による効果と請求項2記載の発明による効果との両方を得ることができる。
また、上記の如き希溶液生成形態であれば、第1吸収器において低温側希溶液と同濃度まで濃度低下させた溶液を、第2吸収器でさらに冷媒吸収させて低濃度の高温側希溶液を生成(いわゆる二段吸収方式)するから、再生器からの送出濃溶液に対する一段の冷媒吸収だけで低濃度の高温側希溶液を一気に生成するに比べ、濃度低下対象の溶液量が少量であることとも相まって、生成する高温側希溶液の溶液濃度をより効率的にかつ確実に低下させることが容易になり、これにより、前記した請求項1記載の発明による効果と請求項2記載の発明による効果との両方を一層確実かつ安定的に得ることができる。
また、この希溶液生成形態であれば、低温側希溶液を生成する第1吸収器を二段吸収方式における前段吸収器に兼用利用した状態で、低濃度の高温側希溶液を二段吸収方式で生成するから、例えば、低温側再生器から送出される低温側濃溶液と高温側再生器から送出される高温側濃溶液とを、低温側希溶液用の吸収器とこれとは別の高温側希溶液用の二段吸収方式の吸収器とで各別に冷媒吸収させる形態に比べれば、装置全体としての吸収器部分の構成を簡素化することができて、装置製作を容易にすることができる。
【0022】
〔4〕請求項4記載の発明では、低温側希溶液を生成する第1吸収器において発生冷媒蒸気を吸収させる第1蒸発器と、高温側希溶液を生成する第2吸収器において発生冷媒蒸気を吸収させる第2蒸発器とを設ける装置構成にして、冷却対象熱媒を第2蒸発器から第1蒸発器の順に通過させる形態で、それら蒸発器において順次冷却するから、その冷却対象冷媒の順次冷却(換言すれば二段階冷却)により第2蒸発器での冷媒蒸発温度を第1蒸発器での冷媒蒸発温度よりも高くし、それにより、第2吸収器で生成する高温側希溶液の溶液濃度を第1吸収器で生成する低温側希溶液の溶液濃度よりも低下させることができる。
【0023】
そして、前記の如く、各再生器に並列的に供給する希溶液のうち高温側希溶液の溶液濃度を選択的に低くする形態であって、濃度低下対象の溶液量が少量であることから、上記の如く冷媒蒸発温度を高くして第2吸収器での生成希溶液の溶液濃度を低くすることに対し、冷却前の未だ高温の冷却対象冷媒が有する温度と熱量を効果的に寄与させることができ、これにより、高温側希溶液の溶液濃度の低下を効果的にして、前記した請求項1又は2記載の発明の効果を一層確実かつ安定的に得ることができる。
【0025】
〔5〕請求項5記載の発明では、低温側再生器として中温再生器と低温再生器を設ける装置構成にして、高温側再生器での発生冷媒蒸気を中温再生器の加熱源にするとともに、その中温再生器での発生冷媒蒸気、又は、その中温再生器で加熱源として用いた後の凝縮液冷媒を低温再生器の加熱源にする多重効用形式(すなわち、少なくとも三重効用形式)にするから、高温側再生器での発生冷媒蒸気を低温側再生器での加熱源にする多重効用形式の段数増加による全体効率の向上と、請求項1又は2記載の発明による全体効率の向上とが相まって、全体効率の極めて高い吸収式冷凍機とすることができる。
【0026】
そして、このように多重効用形式を採ることにおいて、その段数を多くするほど、高温側再生器(最上段の再生器)での必要再生温度が高くなって、その再生温度と高温側再生器に対する希溶液供給温度との温度差の拡大で加熱器による加熱量のうち高温側再生器での冷媒蒸気発生に有効に寄与する熱量の比率が低下(すなわち、高温側再生器での冷媒蒸気発生効率が低下)する傾向となり、また、高温化による装置腐食の問題が顕著となることから、前記した請求項1又は2記載の発明は、装置効率を向上させる上で、また、装置腐食を防止する上で、多重効用形式の段数が多くなるほど一層有効なものとなる。
【0027】
なお、四重効用以上の多重効用形式とする場合には、上記の低温再生器及び中温再生器に対する高温側再生器として、さらに高温側再生器と低温側再生器との多重効用関係を有する複数の再生器を設ける装置構成を採る。
【0028】
【発明の実施の形態】
図1は溶液循環系を一つにまとめた一体型の三重効用吸収式冷凍機を示し、1は高温再生器、2は中温再生器、3は低温再生器であり、加熱器4による加熱で高温再生器1において溶液La中から発生させた冷媒蒸気Raを中温再生器2の加熱用熱交換器2aに送り、この冷媒蒸気Raを加熱源として中温再生器2において溶液Lb中から冷媒蒸気Rbを発生させる。
【0029】
また、中温再生器2の加熱用熱交換器2aから送出される高温の凝縮液冷媒Ra’及び中温再生器2での発生冷媒蒸気Rbを低温再生器3の加熱用熱交換器3a,3bに送り、これら高温液冷媒Ra’及び冷媒蒸気Rbを加熱源として低温再生器3において溶液Lc中から冷媒蒸気Rcを発生させる。
【0030】
なお、2g,3gは、加熱器4にガスバーナ等の燃焼装置を採用した場合、その燃焼装置が発生する高温燃焼ガスEを高温再生器1での冷媒蒸気発生の加熱源に用いた後、さらに中温再生器2や低温再生器3での冷媒蒸気発生の加熱源の一部として有効利用するための加熱用熱交換器である。
【0031】
低温再生器3の加熱用熱交換器3a,3bから送出される凝縮液冷媒Ra’,Rb’及び低温再生器3での発生冷媒蒸気Rcは凝縮器5で合流させて、未凝縮分を冷却用熱交換器5aによる冷却で凝縮させ、そして、この凝縮器5から第1及び第2蒸発器6,7へ液冷媒を二流Rx’,Ry’に分流して送り、これら液冷媒Rx’,Ry’を各蒸発器6,7において冷却対象熱媒C(本例では循環冷水)からの気化熱奪取により蒸発させる。
【0032】
6a,7aは各蒸発器6,7において蒸発過程の冷媒Rx’,Ry’と冷却対象熱媒Cとを熱交換させる蒸発用熱交換器(すなわち、冷水発生用の熱交換器)であり、冷却対象熱媒Cは、第2蒸発器7の蒸発用熱交換器7aから第1蒸発器6の蒸発用熱交換器6aの順に通過させることで、第2蒸発器7の蒸発用熱交換器7aにおいて温度をt1からt2へ降下させ、続いて、第1蒸発器6の蒸発用熱交換器6aにおいて温度をt2からt3に降下させ、この二段階冷却より第2蒸発器7での冷媒Ry’の蒸発温度tbを第1蒸発器6での冷媒Rx’の蒸発温度taよりも高くする。
【0033】
一方、各再生器1,2,3から送出される冷媒蒸気発生後(すなわち濃縮後)の濃溶液La’,Lb’,Lc’は合流させて第1吸収器8に送り、この第1吸収器8において第1蒸発器6での発生冷媒蒸気Rxを合流濃溶液L’に吸収させる。そして、第1吸収器8での冷媒吸収により生成される希溶液Lを二流L1,L2に分流し、その一方L1を低温側希溶液としてさらに二流Lb,Lcに分流して中温再生器2と低温再生器3とに分配供給し、他方L2は第2吸収器9に送る。
【0034】
第2吸収器9では、前記の如く第2蒸発器7における冷媒蒸発温度tbを第1蒸発器6における冷媒蒸発温度taよりも高くした条件の下で、第1吸収器8から供給される希溶液L2に第2蒸発器7での発生冷媒蒸気Ryをさらに吸収させ、これにより、中温・低温再生器2,3に送る低温側希溶液Lb,Lcの溶液濃度d1よりも溶液濃度d2の低い希溶液Laを生成して、その低濃度希溶液Laを高温側希溶液として高温再生器1に供給する。
【0035】
そして、本第1実施形態の三重効用吸収式冷凍機では、このように高温再生器1(高温側再生器)に送る高温側希溶液Laの溶液濃度d2を、中温・低温再生器2,3(低温側再生器)に送る低温側希溶液Lb,Lcの溶液濃度d1よりも低くすることにより、高温再生器1での溶液濃度の変化幅Δd2を、中温・低温再生器2,3での溶液濃度の変化幅Δd1よりも大きく(Δd2>Δd1)する、または、高温再生器1から送出される高温側濃溶液La’の溶液濃度d2’(=d2+Δd2)を、中温・低温再生器2,3から送出される低温側濃溶液Lb’,Lc’の溶液濃度d1’(=d1+Δd1)よりも低く(d2’<d1’)するようにしてある。
【0036】
なお、具体的運転値の一例としては、冷媒に水を用い、吸収液に臭化リチウム溶液を用いる形式において、t1≒15℃,t2≒12℃,t3≒7℃,ta≒5℃,tb≒10℃,d1≒58%(溶液温度40℃),d2≒55%(溶液温度40℃),d1’≒63%とするのに対し、Δd2>Δd1にする場合では60%<d2’≦63%を挙げることができ、また、d2’<d1’とする場合では58%≦d2’<63%を挙げることができる。
【0037】
Wは凝縮器5の冷却用熱交換器5aや第1,第2吸収器8,9の冷却用熱交換器8a,9aに供給する冷却用熱媒(本例では水)、P1は低圧溶液ポンプ、P2は高温側希溶液用の高圧溶液ポンプ、P3,P4は第1,第2蒸発器6,7の夫々において液冷媒Rx’,Ry’を循環散布する冷媒ポンプである。
【0038】
10〜14は濃溶液と希溶液を熱交換させる熱回収用の第1〜第5の熱交換器であり、第1熱交換器10では、高温再生器1からの送出濃溶液La’を高温再生器1への供給希溶液Laと熱交換させ、第2熱交換器11では、第1熱交換器10からの送出濃溶液La’と中温再生器2からの送出濃溶液Lb’との合流濃溶液を第1熱交換器10への供給希溶液Laと熱交換させ、第3熱交換器12では、第2熱交換器11から送出される合流濃溶液La’,Lb’を中温再生器2への供給希溶液Lbと熱交換させる。
【0039】
また、第4熱交換器13では、第3熱交換器12から送出される合流濃溶液La’,Lb’と低温再生器3からの送出濃溶液Lc’との合流濃溶液を第2熱交換器11への供給希溶液Laと熱交換させ、そして、第5熱交換器14では、第4熱交換器13から送出される合流濃溶液L’を、第3熱交換器12への供給希溶液Lbと低温再生器3への供給希溶液Lcとへ分流する前の希溶液L1に対し熱交換させる。
【0040】
つまり、この熱交換構成では、中温・低温再生器2,3(低温側再生器)から送出される低温側濃溶液Lb’,Lc’を、中温・低温再生器2,3に送る低温側希溶液Lb,Lcと第3及び第5熱交換器12,14で熱交換させる前に、高温再生器1(高温側再生器)に送る高温側希溶液Laと第2及び第4熱交換器11,13で優先的に熱交換させ、その後に、この高温側希溶液Laを高温再生器1から送出される高温側濃溶液La’と第1熱交換器10で熱交換させるようにしてあり、この優先熱交換により高温再生器1に対する希溶液供給温度を高めることで、高温再生器1での冷媒蒸気発生効率、ひいては、その影響を大きく受ける装置全体効率(成績係数)を一層向上させるようにしてある。
【0056】
〔その他の実施形態〕
前述の各実施形態では三重効用吸収式冷凍機を示したが、本発明の実施にあたり、高温側再生器での発生冷媒蒸気を低温側再生器での加熱源にする多重効用の段数は何段であってもよく、本発明は三重効用に限らず、二重効用あるいは四重効用以上の多重効用吸収式冷凍機にも適用できる。
【0057】
三重効用以上で低温側再生器が複数器となる場合、これら低温側再生器に対し希溶液を並列的に供給する形態、あるいは、直列的に供給する形態、あるいはまた、並列供給と直列供給とを組み合わせた形態のいずれを採用してもよい。
【0058】
冷媒と吸収液との組み合わせは水と臭化リチウム溶液との組み合わせに限定されるものではなく、例えば、アンモニアを冷媒とし水を吸収液とする組み合わせなど、種々の組み合わせが可能である。
【0059】
高温側再生器における加熱器は、ガス燃料ないし液体燃料を用いる燃焼形式、あるいは、高温蒸気や高温水を熱源とする形式のいずれであってもよい。
【0060】
本発明による多重効用吸収式冷凍機は、冷凍専用機に限らず、吸収式冷温水機や吸収式ヒートポンプとして実施してもよい。
【図面の簡単な説明】
【図1】 実施形態を示す冷凍回路図
【図2】 従来例を示す冷凍回路図
【図3】 他の従来例を示す部分的冷凍回路図
【符号の説明】
1 高温側再生器
Ra’ 冷媒蒸気
2,3 低温側再生器(中温再生器、低温再生器)
8,28 吸収器(第1吸収器)
9,29 吸収器(第2吸収器)
L 分流前の希溶液
La 高温側希溶液
Lb,Lc 低温側希溶液
La’ 高温側濃溶液
Lb’,Lc’ 低温側濃溶液
L’ 合流濃溶液
d1,d2 溶液濃度
d1’,d2’ 溶液濃度
Δd1,Δd2 溶液濃度変化幅
6,26 第1蒸発器
7,27 第2蒸発器
C 冷却対象熱媒
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an absorption refrigerator, and more particularly, to a multi-effect absorption refrigerator that uses refrigerant vapor generated in a high-temperature regenerator as a heating source in the low-temperature regenerator.
[0002]
[Prior art]
FIG. 2 shows an example of a conventional multi-effect absorption refrigerator (triple effect example). As shown in FIG. 2, the high temperature side regenerator 1 and the low temperature side regenerators 2 and 3 (medium temperature regenerator and low temperature regenerator). ), The solution concentrations of the dilute solutions La, Lb, and Lc supplied to the regenerators 1 to 3 are equal to each other when the dilute solution La, Lb, and Lc are sent in parallel.
[0003]
In the figure, 4 is a heater, 5 is a condenser, 6 is an evaporator, 8 is an absorber, P1 is a solution pump, P3 is a refrigerant pump, C is a heat medium to be cooled, W is a heat medium for cooling, N Are solution heat exchangers, respectively.
[0004]
In addition, as shown in FIG. 3 , for the generation of the diluted solution, first and second evaporators 6A and 6B for sequentially evaporating the refrigerant R ′ condensed by the condenser are provided, and the return concentrated solution from the regenerator is provided. L ′ is provided with first and second absorbers 8A and 8B that sequentially absorb the refrigerant vapor generated in the first and second evaporators 6A and 6B. In this configuration, the heat medium C to be cooled is second evaporated. The first absorption is achieved by passing the evaporator 6B through the first evaporator 6A in order, and setting the refrigerant evaporation temperature in the second evaporator 6B higher than the refrigerant evaporation temperature required in the first evaporator 6A. A two-stage absorption method is known in which refrigerant is absorbed to a lower solution concentration in the second absorber 8B as compared with refrigerant absorption in the vessel 8A.
[0005]
That is, according to this two-stage absorption method, the solution concentration of the dilute solution L to be sent to the regenerator after the refrigerant absorption can be lowered as compared with the normal one-stage absorption method, whereby the solution concentration in the regenerator can be reduced. Can be increased (that is, the increase range of the solution concentration in the solution concentration regeneration due to the generation of the refrigerant vapor) to increase the generation efficiency of the refrigerant vapor in the regenerator.
[0006]
[Problems to be solved by the invention]
However, as described above, when dilute solutions having the same solution concentration are supplied in parallel to each regenerator in the multi-effect type, the solution concentration of the dilute solution supplied to each regenerator is assumed by adopting a two-stage absorption method. Even if the efficiency of refrigerant vapor generation in each regenerator is improved by reducing the efficiency, there is a limit to the improvement of the overall apparatus efficiency (coefficient of performance), and there is still room for improvement.
[0007]
In contrast to this situation, the main problem of the present invention is to effectively improve the overall efficiency of the multi-effect absorption refrigerator by rational improvement in terms of solution circulation.
[0008]
[Means for Solving the Problems]
[1] In the invention according to claim 1, in the solution circulation in which the dilute solution is sent in parallel from the separate absorbers to the high temperature side regenerator and the low temperature side regenerator, the high temperature side dilute solution sent to the high temperature side regenerator The solution concentration of the low temperature side dilute solution sent to the low temperature side regenerator is made lower than the solution concentration of the low temperature side regenerator. Also, the high temperature side concentrated solution sent from the high temperature side regenerator and the low temperature side concentrated solution sent from the low temperature side regenerator are merged, and the merged concentrated solution is absorbed by the refrigerant in the first absorber, And the low temperature side dilute solution which sends the dilute solution produced | generated by the 1st absorber to a low temperature side regenerator, and the high temperature side dilute solution which sends a refrigerant | coolant further to a high temperature side regenerator after further absorbing a refrigerant | coolant with a 2nd absorber. Divide into
[0009]
That is, in the multi-effect mode, the refrigerant vapor generated in the high temperature side regenerator is used as a heating source for generating refrigerant vapor in the low temperature side regenerator. Is lower than the solution concentration of the low temperature side dilute solution that is sent to the low temperature side regenerator, and the change width of the solution concentration in the high temperature side regenerator is larger than the change concentration of the solution concentration in the low temperature side regenerator (that is, If the amount of refrigerant vapor generated in the high-temperature side regenerator is increased without increasing the heating amount in the high-temperature side regenerator), the heating amount in the low-temperature side regenerator increases accordingly. The amount of refrigerant vapor generated in the regenerator also increases, thereby effectively improving the overall efficiency (coefficient of performance) of the apparatus.
[0010]
In the invention described in claim 1, among the dilute solutions sent in parallel from the different absorbers to the high temperature side regenerator and the low temperature side regenerator, the solution of the high temperature side dilute solution sent to the high temperature side regenerator Since only the concentration is selectively lowered, for example, even if the two-stage absorption method is adopted, the amount of the solution whose concentration is to be reduced is smaller than the case where the solution concentration of the dilute solution supplied to each regenerator is reduced as described above. The amount of the high-temperature dilute solution sent to the high-temperature side regenerator can be reduced more effectively by that amount, and the change range of the solution concentration in the high-temperature side regenerator can be reduced to the low-concentration side. It can be expanded more effectively.
[0011]
That is, according to the first aspect of the present invention, as described above, the variation range of the solution concentration in the high temperature side regenerator can be more effectively expanded to the low concentration side, and the amount of refrigerant vapor generated in the high temperature side regenerator can be effectively increased. And the accompanying increase in the amount of refrigerant vapor generated in the low-temperature side regenerator as described above can be effectively increased, and the concentration of the diluted solution supplied to each regenerator is simply averaged. The overall efficiency of the device can be improved extremely effectively compared to the reduction in the temperature, and the required efficiency can be improved by effectively expanding the variation range of the solution concentration in the high temperature side regenerator. The running cost can be greatly reduced by reducing the amount of heating required to obtain the refrigerating capacity and the power consumption of the solution pump.
Further, in the case of the dilute solution generation form as described above, the solution whose concentration is reduced to the same concentration as that of the low temperature side dilute solution in the first absorber is further absorbed by the refrigerant in the second absorber so that the low concentration high temperature side dilute solution is obtained. (So-called two-stage absorption method), the amount of solution whose concentration is to be decreased is small compared to the case where a low-temperature high-temperature dilute solution is generated all at once by only one-stage refrigerant absorption with respect to the concentrated solution sent from the regenerator. In combination with this, it becomes easy to efficiently and reliably lower the solution concentration of the high-temperature dilute solution to be generated, and thereby the effect of the above-described invention can be obtained more reliably and stably.
Further, in this dilute solution generation form, a low-concentration high-temperature dilute solution is used in a two-stage absorption method while the first absorber that generates the low-temperature dilute solution is also used as a pre-stage absorber in the two-stage absorption method. For example, the low temperature side concentrated solution sent from the low temperature side regenerator and the high temperature side concentrated solution sent from the high temperature side regenerator are separated from the absorber for the low temperature side dilute solution and a high temperature different from this. Compared to the two-stage absorption type absorber for the side dilute solution, where the refrigerant is absorbed separately, the configuration of the absorber part as a whole device can be simplified and the device can be manufactured easily. it can.
[0012]
[2] In the invention according to claim 2, in the solution circulation in which the dilute solution is sent in parallel from each of the different absorbers to the high temperature side regenerator and the low temperature side regenerator, the high temperature side dilute solution sent to the high temperature side regenerator The solution concentration of the high temperature side concentrated solution sent from the high temperature side regenerator is sent from the low temperature side regenerator. Lower the solution concentration of the low temperature side concentrated solution, and merge the high temperature side concentrated solution sent from the high temperature side regenerator with the low temperature side concentrated solution sent from the low temperature side regenerator, and The refrigerant is absorbed in the first absorber, and the diluted solution generated in the first absorber is sent to the low-temperature side regenerator, and the refrigerant is further absorbed in the second absorber, and then the high-temperature side Divide into hot dilute solution sent to regenerator.
[0013]
In other words, in this way, while the refrigerant vapor generation amount in the high temperature side regenerator is kept large by the increase of the refrigerant vapor generation amount by lowering the solution concentration of the supplied dilute solution, the delivery from the high temperature side regenerator is maintained. In the form in which the pressure of the generated refrigerant vapor is kept high against the decrease in the regeneration temperature due to the decrease in the solution concentration of the concentrated solution (that is, the decrease in the final regeneration concentration in the solution concentration regeneration in the high temperature side regenerator) The regeneration temperature in the high temperature side regenerator required to secure the regeneration temperature can be reduced, and the overall efficiency of the apparatus can be improved by the decrease in the necessary regeneration temperature.
[0014]
As in the first aspect of the invention, of the dilute solutions sent in parallel from the different absorbers to the high temperature side regenerator and the low temperature side regenerator, the high temperature side dilute solution sent to the high temperature side regenerator Since only the solution concentration is selectively lowered, the amount of the solution whose concentration is to be reduced is smaller than when the solution concentration of the dilute solution supplied to each regenerator is reduced. It becomes possible to reduce the solution concentration of the dilute solution more effectively, further reducing the regeneration temperature in the high temperature side regenerator due to the decrease in the solution concentration on the sending side while maintaining the amount of refrigerant vapor generated as described above. Therefore, the overall efficiency of the apparatus can be improved effectively, and the required refrigeration can be improved by reducing the required regeneration temperature in the high-temperature side regenerator. Reduces the amount of heat required to gain capacity Running costs Te can be greatly reduced.
Further, in the case of the dilute solution generation form as described above, the solution whose concentration is reduced to the same concentration as that of the low temperature side dilute solution in the first absorber is further absorbed by the refrigerant in the second absorber so that the low concentration high temperature side dilute solution is obtained. (So-called two-stage absorption method), the amount of solution whose concentration is to be decreased is small compared to the case where a low-temperature high-temperature dilute solution is generated all at once by only one-stage refrigerant absorption with respect to the concentrated solution sent from the regenerator. In combination with this, it becomes easy to efficiently and reliably lower the solution concentration of the high-temperature dilute solution to be generated, and thereby the effect of the above-described invention can be obtained more reliably and stably.
Further, in this dilute solution generation form, a low-concentration high-temperature dilute solution is used in a two-stage absorption method while the first absorber that generates the low-temperature dilute solution is also used as a pre-stage absorber in the two-stage absorption method. For example, the low temperature side concentrated solution sent from the low temperature side regenerator and the high temperature side concentrated solution sent from the high temperature side regenerator are separated from the absorber for the low temperature side dilute solution and a high temperature different from this. Compared to the two-stage absorption type absorber for the side dilute solution, where the refrigerant is absorbed separately, the configuration of the absorber part as a whole device can be simplified and the device can be manufactured easily. it can.
[0015]
In the multi-effect type, in order to secure the regeneration temperature in the low temperature side regenerator, the regeneration temperature in the high temperature side regenerator is much higher than the regeneration temperature (generally 90 to 100 ° C.) in the case of single effect. However, according to the second aspect of the present invention, the high temperature side regenerator has a problem that it is difficult to prevent corrosion due to the high temperature. By effectively reducing the regeneration temperature in the apparatus, the problem of device corrosion due to high temperatures can be effectively avoided.
[0016]
Incidentally, in the case of triple effect, the regeneration temperature in the high temperature side regenerator becomes 200 ° C. or more as described above, but generally the corrosiveness to the iron or the like of the lithium bromide solution used for the absorbing solution suddenly exceeds 200 ° C. Since it increases, the ability to lower the regeneration temperature required for the high temperature side regenerator as described above is extremely effective in preventing device corrosion.
[0017]
[3] In the invention according to claim 3, the solution concentration of the high temperature side dilute solution sent to the high temperature side regenerator is made lower than the solution concentration of the low temperature side dilute solution sent to the low temperature side regenerator, The change range of the solution concentration is larger than the change range of the solution concentration at the low temperature side regenerator, and the solution concentration of the high temperature side concentrated solution sent from the high temperature side regenerator is changed to the low temperature value sent from the low temperature side regenerator. The concentration of the concentrated solution is lower than the concentration of the side concentrated solution, and the high temperature side concentrated solution delivered from the high temperature side regenerator and the low temperature side concentrated solution delivered from the low temperature side regenerator are merged, and the combined concentrated solution is Refrigerant is absorbed in one absorber, and the diluted solution produced in the first absorber is supplied to the low-temperature side regenerator, and the refrigerant is further absorbed in the second absorber and then regenerated on the high-temperature side. Divide into hot dilute solution to be sent to the vessel.
[0018]
That is, of the dilute solutions sent in parallel from different absorbers to the high temperature side regenerator and the low temperature side regenerator, the solution concentration of the high temperature side dilute solution sent to the high temperature side regenerator may be selectively lowered. For example, the amount of the solution whose concentration is to be reduced becomes small, and by effectively utilizing the fact that the solution concentration of the high temperature side dilute solution sent to the high temperature side regenerator can be effectively reduced, Both the expansion of the change range of the solution concentration and the reduction of the regeneration temperature in the high temperature side regenerator by lowering the concentration of the concentrated solution sent from the high temperature side regenerator are performed. Thus, both the effect of the invention of claim 1 and the effect of the invention of claim 2 can be obtained.
Further, in the case of the dilute solution generation form as described above, the solution whose concentration is reduced to the same concentration as that of the low temperature side dilute solution in the first absorber is further absorbed by the refrigerant in the second absorber so that the low concentration high temperature side dilute solution is obtained. (So-called two-stage absorption method), the amount of solution whose concentration is to be decreased is small compared to the case where a low-temperature high-temperature dilute solution is generated all at once by only one-stage refrigerant absorption with respect to the concentrated solution sent from the regenerator. In combination with this, it becomes easy to efficiently and surely reduce the solution concentration of the high-temperature side dilute solution to be generated, and thereby the effect of the invention of claim 1 and the invention of claim 2 are achieved. Both of the effects can be obtained more reliably and stably.
Further, in this dilute solution generation form, a low-concentration high-temperature dilute solution is used in a two-stage absorption method while the first absorber that generates the low-temperature dilute solution is also used as a pre-stage absorber in the two-stage absorption method. For example, the low temperature side concentrated solution sent from the low temperature side regenerator and the high temperature side concentrated solution sent from the high temperature side regenerator are separated from the absorber for the low temperature side dilute solution and a high temperature different from this. Compared to the two-stage absorption type absorber for the side dilute solution, where the refrigerant is absorbed separately, the configuration of the absorber part as a whole device can be simplified and the device can be manufactured easily. it can.
[0022]
[4] In the invention according to claim 4 , the first refrigerant that absorbs the generated refrigerant vapor in the first absorber that generates the low-temperature side diluted solution, and the generated refrigerant vapor in the second absorber that generates the high-temperature side diluted solution. And a second evaporator that absorbs the cooling medium, and the cooling target heat medium is sequentially cooled from the second evaporator to the first evaporator. By sequential cooling (in other words, two-stage cooling), the refrigerant evaporation temperature in the second evaporator is made higher than the refrigerant evaporation temperature in the first evaporator, so that the high-temperature side dilute solution generated in the second absorber The solution concentration can be made lower than the solution concentration of the low-temperature dilute solution generated by the first absorber.
[0023]
As described above, the solution concentration of the high-temperature side dilute solution among the dilute solutions supplied in parallel to the regenerators is selectively reduced, and the amount of solution to be reduced in concentration is small. As described above, it is possible to effectively contribute the temperature and heat quantity of the refrigerant to be cooled that is still high before cooling, while increasing the refrigerant evaporation temperature and lowering the solution concentration of the diluted solution generated in the second absorber. Accordingly, it is possible to effectively reduce the solution concentration of the high-temperature side dilute solution, and to obtain the effect of the invention according to claim 1 or 2 more reliably and stably.
[0025]
[5] In the invention according to claim 5 , in the apparatus configuration in which the intermediate temperature regenerator and the low temperature regenerator are provided as the low temperature side regenerator, the generated refrigerant vapor in the high temperature side regenerator is used as the heating source of the intermediate temperature regenerator, Since the refrigerant vapor generated in the intermediate temperature regenerator or the condensate refrigerant after being used as a heating source in the intermediate temperature regenerator is used as a heating source for the low temperature regenerator (ie, at least a triple effect type). The improvement in the overall efficiency due to the increase in the number of stages of the multi-effect type in which the refrigerant vapor generated in the high temperature side regenerator is used as the heating source in the low temperature side regenerator, and the improvement in the overall efficiency according to the invention of claim 1 or 2 are combined. In addition, the absorption chiller with extremely high overall efficiency can be obtained.
[0026]
In such a multi-effect format, the higher the number of stages, the higher the required regeneration temperature in the high temperature side regenerator (the uppermost regenerator). The ratio of the amount of heat that effectively contributes to the generation of refrigerant vapor in the high-temperature side regenerator of the amount of heating by the heater decreases due to the expansion of the temperature difference from the dilute solution supply temperature (that is, the efficiency of refrigerant vapor generation in the high-temperature side regenerator) The invention according to claim 1 or 2 improves the efficiency of the apparatus and prevents the corrosion of the apparatus. Above, it becomes more effective as the number of stages of the multiple utility format increases.
[0027]
In the case of a multi-effect type of quadruple effect or more, as a high temperature side regenerator for the low temperature regenerator and the medium temperature regenerator, a plurality of multiple utility relationships between the high temperature side regenerator and the low temperature side regenerator are provided. The apparatus configuration in which the regenerator is provided is adopted.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an integrated triple effect absorption refrigerator that combines a solution circulation system into one. 1 is a high-temperature regenerator, 2 is a medium-temperature regenerator, and 3 is a low-temperature regenerator. The refrigerant vapor Ra generated from the solution La in the high-temperature regenerator 1 is sent to the heating heat exchanger 2a of the medium-temperature regenerator 2, and the refrigerant vapor Rb from the solution Lb in the medium-temperature regenerator 2 is used as a heating source. Is generated.
[0029]
Further, the high-temperature condensate refrigerant Ra ′ sent from the heating heat exchanger 2 a of the intermediate temperature regenerator 2 and the refrigerant vapor Rb generated in the intermediate temperature regenerator 2 are supplied to the heating heat exchangers 3 a and 3 b of the low temperature regenerator 3. The refrigerant vapor Rc is generated from the solution Lc in the low-temperature regenerator 3 using the high-temperature liquid refrigerant Ra ′ and the refrigerant vapor Rb as heating sources.
[0030]
2g and 3g, when a combustion device such as a gas burner is used as the heater 4, the high-temperature combustion gas E generated by the combustion device is used as a heating source for generating refrigerant vapor in the high-temperature regenerator 1; It is a heat exchanger for heating to be effectively used as part of a heating source for generating refrigerant vapor in the intermediate temperature regenerator 2 and the low temperature regenerator 3.
[0031]
The condensate refrigerants Ra ′ and Rb ′ sent from the heat exchangers 3a and 3b for heating of the low-temperature regenerator 3 and the refrigerant vapor Rc generated in the low-temperature regenerator 3 are combined in the condenser 5 to cool the uncondensed components. The refrigerant is condensed by cooling by the heat exchanger 5a, and the liquid refrigerant is sent from the condenser 5 to the first and second evaporators 6 and 7 by being divided into two streams Rx ′ and Ry ′, and these liquid refrigerants Rx ′, Ry ′ is evaporated in each of the evaporators 6 and 7 by taking heat of vaporization from the heat medium C to be cooled (circulated cold water in this example).
[0032]
6a and 7a are evaporation heat exchangers (that is, heat exchangers for generating cold water) for exchanging heat between the refrigerants Rx ′ and Ry ′ in the evaporation process and the heat medium C to be cooled in the evaporators 6 and 7, The cooling target heat medium C is passed through the evaporating heat exchanger 7a of the second evaporator 7 and the evaporating heat exchanger 6a of the first evaporator 6 in this order, so that the evaporating heat exchanger of the second evaporator 7 is passed. 7a, the temperature is decreased from t1 to t2, and subsequently the temperature is decreased from t2 to t3 in the evaporating heat exchanger 6a of the first evaporator 6. From this two-stage cooling, the refrigerant Ry in the second evaporator 7 is decreased. The evaporation temperature tb of 'is made higher than the evaporation temperature ta of the refrigerant Rx' in the first evaporator 6.
[0033]
On the other hand, the concentrated solutions La ′, Lb ′, and Lc ′ after generation of refrigerant vapor (that is, after concentration) delivered from the regenerators 1, 2, and 3 are merged and sent to the first absorber 8 for the first absorption. In the evaporator 8, the refrigerant vapor Rx generated in the first evaporator 6 is absorbed by the combined concentrated solution L ′. And the dilute solution L produced | generated by refrigerant | coolant absorption with the 1st absorber 8 is shunted into two stream L1, L2, and one side L1 is further shunted into two stream Lb, Lc as a low temperature side dilute solution, It distributes and supplies to the low temperature regenerator 3, while the L 2 is sent to the second absorber 9.
[0034]
In the second absorber 9, as described above, the rare refrigerant supplied from the first absorber 8 under the condition that the refrigerant evaporation temperature tb in the second evaporator 7 is higher than the refrigerant evaporation temperature ta in the first evaporator 6. The solution L2 further absorbs the refrigerant vapor Ry generated in the second evaporator 7, and thereby the solution concentration d2 is lower than the solution concentration d1 of the low temperature side dilute solutions Lb and Lc sent to the intermediate / low temperature regenerators 2 and 3. A dilute solution La is generated, and the low concentration dilute solution La is supplied to the high temperature regenerator 1 as a high temperature side dilute solution.
[0035]
In the triple effect absorption refrigerating machine of the first embodiment, the solution concentration d2 of the high temperature side dilute solution La sent to the high temperature regenerator 1 (high temperature side regenerator) is changed to the medium temperature / low temperature regenerators 2, 3 as described above. By making it lower than the solution concentration d1 of the low-temperature dilute solutions Lb and Lc sent to the (low-temperature regenerator), the change width Δd2 of the solution concentration in the high-temperature regenerator 1 can be reduced. The solution concentration d2 ′ (= d2 + Δd2) of the high temperature side concentrated solution La ′ sent from the high temperature regenerator 1 is set larger than the change width Δd1 of the solution concentration (Δd2> Δd1), or the medium temperature / low temperature regenerator 2, 3 is set to be lower (d2 ′ <d1 ′) than the solution concentration d1 ′ (= d1 + Δd1) of the low-temperature side concentrated solutions Lb ′ and Lc ′ delivered from 3.
[0036]
In addition, as an example of a specific operation value, in a form in which water is used as the refrigerant and a lithium bromide solution is used as the absorbing liquid, t1≈15 ° C., t2≈12 ° C., t3≈7 ° C., ta≈5 ° C., tb ≈10 ° C., d 1 ≈58% (solution temperature 40 ° C.), d 2 ≈55% (solution temperature 40 ° C.), and d 1 ′ = 63%, whereas when Δd 2> Δd 1, 60% <d 2 ′ ≦ 63%, and when d2 ′ <d1 ′, 58% ≦ d2 ′ <63%.
[0037]
W is a cooling heat medium (water in this example) supplied to the cooling heat exchanger 5a of the condenser 5 and the cooling heat exchangers 8a and 9a of the first and second absorbers 8 and 9, and P1 is a low-pressure solution. The pump P2 is a high-pressure solution pump for the high temperature side dilute solution, and P3 and P4 are refrigerant pumps for circulating and spraying the liquid refrigerants Rx ′ and Ry ′ in the first and second evaporators 6 and 7, respectively.
[0038]
Reference numerals 10 to 14 denote heat recovery first to fifth heat exchangers for heat exchange between the concentrated solution and the dilute solution. In the first heat exchanger 10, the concentrated solution La ′ sent from the high temperature regenerator 1 is heated to a high temperature. Heat exchange is performed with the dilute solution La supplied to the regenerator 1, and in the second heat exchanger 11, the concentrated concentrated solution La ′ from the first heat exchanger 10 and the concentrated concentrated solution Lb ′ from the intermediate temperature regenerator 2 are merged. The concentrated solution is heat exchanged with the dilute solution La supplied to the first heat exchanger 10, and the third heat exchanger 12 converts the combined concentrated solutions La ′ and Lb ′ sent from the second heat exchanger 11 into an intermediate temperature regenerator. Heat exchange with the feed dilute solution Lb to 2.
[0039]
Further, in the fourth heat exchanger 13, the combined concentrated solution of the combined concentrated solutions La ′ and Lb ′ delivered from the third heat exchanger 12 and the delivered concentrated solution Lc ′ from the low-temperature regenerator 3 is subjected to the second heat exchange. In the fifth heat exchanger 14, the combined concentrated solution L ′ delivered from the fourth heat exchanger 13 is supplied to the third diluted heat supply La to be supplied to the third heat exchanger 12. Heat exchange is performed with respect to the dilute solution L1 before being divided into the solution Lb and the dilute solution Lc supplied to the low temperature regenerator 3.
[0040]
That is, in this heat exchange configuration, the low temperature side rare solutions Lb ′ and Lc ′ sent from the intermediate temperature / low temperature regenerators 2 and 3 (low temperature side regenerator) are sent to the intermediate temperature / low temperature regenerators 2 and 3. Before exchanging heat with the solutions Lb and Lc in the third and fifth heat exchangers 12 and 14, the hot side dilute solution La and the second and fourth heat exchangers 11 to be sent to the high temperature regenerator 1 (high temperature side regenerator). , 13 is preferentially heat-exchanged, and thereafter, the high-temperature side diluted solution La is heat-exchanged with the high-temperature side concentrated solution La ′ delivered from the high-temperature regenerator 1 by the first heat exchanger 10, and By increasing the supply temperature of the dilute solution to the high-temperature regenerator 1 by this preferential heat exchange, the refrigerant vapor generation efficiency in the high-temperature regenerator 1 and, consequently, the overall efficiency (coefficient of performance) greatly affected by the influence are further improved. It is.
[0056]
[Other Embodiments]
In each of the above-described embodiments, a triple effect absorption refrigerator has been shown. However, in implementing the present invention, the number of multi-effect stages in which the generated refrigerant vapor in the high temperature side regenerator is used as a heating source in the low temperature side regenerator is shown. The present invention is not limited to the triple effect, but can be applied to a double effect or a multiple effect absorption refrigerator having a quadruple effect or more.
[0057]
When there are multiple low-temperature regenerators with triple effects or more, a form in which a dilute solution is supplied in parallel to these low-temperature regenerators, a form in which they are supplied in series, or a parallel supply and a series supply Any of the combined forms may be adopted.
[0058]
The combination of the refrigerant and the absorbing liquid is not limited to the combination of water and the lithium bromide solution. For example, various combinations such as a combination of ammonia as the refrigerant and water as the absorbing liquid are possible.
[0059]
The heater in the high temperature side regenerator may be either a combustion type using gas fuel or liquid fuel, or a type using high temperature steam or high temperature water as a heat source.
[0060]
The multi-effect absorption refrigerator according to the present invention is not limited to a dedicated refrigerator, but may be implemented as an absorption chiller / heater or an absorption heat pump.
[Brief description of the drawings]
FIG. 1 is a refrigeration circuit diagram showing an embodiment . FIG. 2 is a refrigeration circuit diagram showing a conventional example. FIG. 3 is a partial refrigeration circuit diagram showing another conventional example.
1 High temperature side regenerator Ra 'Refrigerant vapor 2,3 Low temperature side regenerator (medium temperature regenerator, low temperature regenerator)
8,28 Absorber (first absorber)
9,29 Absorber (second absorber)
L Dilute solution before diversion La High temperature side dilute solution Lb, Lc Low temperature side dilute solution La 'High temperature side concentrated solution Lb', Lc 'Low temperature side concentrated solution L' Combined concentrated solution d1, d2 Solution concentration d1 ', d2' Solution concentration Δd1, Δd2 Solution concentration change width 6,26 First evaporator 7, 27 Second evaporator C Cooling target heat medium

Claims (5)

高温側再生器で発生させた冷媒蒸気を低温側再生器での加熱源にする多重効用吸収式冷凍機であって、
前記高温側再生器と前記低温側再生器とに対し各別の吸収器から希溶液を並列的に送る溶液循環において、
前記高温側再生器に送る高温側希溶液の溶液濃度を前記低温側再生器に送る低温側希溶液の溶液濃度よりも低くして、前記高温側再生器での溶液濃度の変化幅を前記低温側再生器での溶液濃度の変化幅よりも大きくしてあり、
前記高温側再生器から送出される高温側濃溶液と前記低温側再生器から送出される低温側濃溶液とを合流させて、その合流濃溶液を第1吸収器において冷媒吸収させ、
その第1吸収器で生成される希溶液を、前記低温側再生器に送る前記低温側希溶液と、第2吸収器でさらに冷媒吸収させた上で前記高温側再生器に送る前記高温側希溶液とに分流する構成にしてある多重効用吸収式冷凍機。
A multi-effect absorption refrigerator that uses the refrigerant vapor generated in the high temperature side regenerator as a heating source in the low temperature side regenerator,
In the solution circulation in which a dilute solution is sent in parallel from different absorbers to the high temperature side regenerator and the low temperature side regenerator,
The solution concentration of the high temperature side dilute solution sent to the high temperature side regenerator is made lower than the solution concentration of the low temperature side dilute solution sent to the low temperature side regenerator, and the variation range of the solution concentration in the high temperature side regenerator is reduced to the low temperature side regenerator. Ri greater Citea than the change width of the solution concentration of the side regenerator,
The high temperature side concentrated solution delivered from the high temperature side regenerator and the low temperature side concentrated solution delivered from the low temperature side regenerator are merged, and the merged concentrated solution is absorbed by the refrigerant in the first absorber,
The dilute solution produced in the first absorber is sent to the low temperature side regenerator, and the high temperature side dilute solution is further absorbed in the second absorber and then sent to the high temperature side regenerator. A multi-effect absorption refrigerator that is divided into a solution .
高温側再生器で発生させた冷媒蒸気を低温側再生器での加熱源にする多重効用吸収式冷凍機であって、
前記高温側再生器と前記低温側再生器とに対し各別の吸収器から希溶液を並列的に送る溶液循環において、
前記高温側再生器に送る高温側希溶液の溶液濃度を前記低温側再生器に送る低温側希溶液の溶液濃度よりも低くして、前記高温側再生器から送出される高温側濃溶液の溶液濃度を、前記低温側再生器から送出される低温側濃溶液の溶液濃度よりも低くしてあり、
前記高温側再生器から送出される高温側濃溶液と前記低温側再生器から送出される低温側濃溶液とを合流させて、その合流濃溶液を第1吸収器において冷媒吸収させ、
その第1吸収器で生成される希溶液を、前記低温側再生器に送る前記低温側希溶液と、第2吸収器でさらに冷媒吸収させた上で前記高温側再生器に送る前記高温側希溶液とに分流する構成にしてある多重効用吸収式冷凍機。
A multi-effect absorption refrigerator that uses the refrigerant vapor generated in the high temperature side regenerator as a heating source in the low temperature side regenerator,
In the solution circulation in which a dilute solution is sent in parallel from different absorbers to the high temperature side regenerator and the low temperature side regenerator,
A solution of a high temperature side concentrated solution sent from the high temperature side regenerator by lowering the solution concentration of the high temperature side dilute solution sent to the high temperature side regenerator to be lower than the solution concentration of the low temperature side dilute solution sent to the low temperature side regenerator. concentration, Citea Ri lower than the solution concentration of the low-temperature side concentrated solution to be delivered from the low temperature side regenerator,
The high temperature side concentrated solution delivered from the high temperature side regenerator and the low temperature side concentrated solution delivered from the low temperature side regenerator are merged, and the merged concentrated solution is absorbed by the refrigerant in the first absorber,
The dilute solution produced in the first absorber is sent to the low temperature side regenerator, and the high temperature side dilute solution is further absorbed in the second absorber and then sent to the high temperature side regenerator. A multi-effect absorption refrigerator that is divided into a solution .
高温側再生器で発生させた冷媒蒸気を低温側再生器での加熱源にする多重効用吸収式冷凍機であって、
前記高温側再生器と前記低温側再生器とに対し各別の吸収器から希溶液を並列的に送る溶液循環において、
前記高温側再生器に送る高温側希溶液の溶液濃度を前記低温側再生器に送る低温側希溶液の溶液濃度よりも低くして、前記高温側再生器での溶液濃度の変化幅を前記低温側再生器での溶液濃度の変化幅よりも大きくし、かつ、前記高温側再生器から送出される高温側濃溶液の溶液濃度を、前記低温側再生器から送出される低温側濃溶液の溶液濃度よりも低くしてあり、
前記高温側再生器から送出される高温側濃溶液と前記低温側再生器から送出される低温側濃溶液とを合流させて、その合流濃溶液を第1吸収器において冷媒吸収させ、
その第1吸収器で生成される希溶液を、前記低温側再生器に送る前記低温側希溶液と、第2吸収器でさらに冷媒吸収させた上で前記高温側再生器に送る前記高温側希溶液とに分流する構成にしてある多重効用吸収式冷凍機。
A multi-effect absorption refrigerator that uses the refrigerant vapor generated in the high temperature side regenerator as a heating source in the low temperature side regenerator,
In the solution circulation in which a dilute solution is sent in parallel from different absorbers to the high temperature side regenerator and the low temperature side regenerator,
The solution concentration of the high temperature side dilute solution sent to the high temperature side regenerator is made lower than the solution concentration of the low temperature side dilute solution sent to the low temperature side regenerator, and the variation range of the solution concentration in the high temperature side regenerator is reduced to the low temperature side regenerator. The solution concentration of the hot concentrated solution sent from the high temperature side regenerator is larger than the change width of the solution concentration in the side regenerator, and the solution concentration of the low temperature side concentrated solution sent from the low temperature side regenerator Ri Citea lower than the concentration,
The high temperature side concentrated solution delivered from the high temperature side regenerator and the low temperature side concentrated solution delivered from the low temperature side regenerator are merged, and the merged concentrated solution is absorbed by the refrigerant in the first absorber,
The dilute solution produced in the first absorber is sent to the low temperature side regenerator, and the high temperature side dilute solution is further absorbed in the second absorber and then sent to the high temperature side regenerator. A multi-effect absorption refrigerator that is divided into a solution .
前記低温側希溶液を生成する前記第1吸収器において発生冷媒蒸気を吸収させる第1蒸発器と、前記高温側希溶液を生成する前記第2吸収器において発生冷媒蒸気を吸収させる第2蒸発器とを設け、
冷却対象熱媒を前記第2蒸発器から前記第1蒸発器の順に通過させる形態で、それら蒸発器において順次冷却する構成にしてある請求項1〜3のいずれか1項に記載の多重効用吸収式冷凍機。
A first evaporator that absorbs the generated refrigerant vapor in the first absorber that generates the low temperature side diluted solution, and a second evaporator that absorbs the generated refrigerant vapor in the second absorber that generates the high temperature side diluted solution. And
In the form of passing a cooling target heat medium from the second evaporator in the order of the first evaporator, a multiple effect absorption according to claim 1 that is a configuration of sequentially cooling in those evaporator Type refrigerator.
前記低温側再生器として中温再生器と低温再生器を設け、
前記高温側再生器での発生冷媒蒸気を前記中温再生器の加熱源にするとともに、その中温再生器での発生冷媒蒸気又はその中温再生器で加熱源として用いた後の凝縮液冷媒を前記低温再生器の加熱源にする多重効用形式にしてある請求項1〜4のいずれか1項に記載の多重効用吸収式冷凍機。
An intermediate temperature regenerator and a low temperature regenerator are provided as the low temperature side regenerator,
The generated refrigerant vapor in the high temperature side regenerator is used as a heating source for the intermediate temperature regenerator, and the generated refrigerant vapor in the intermediate temperature regenerator or the condensate refrigerant after being used as a heating source in the intermediate temperature regenerator is the low temperature The multi-effect absorption refrigerator according to any one of claims 1 to 4, wherein the multi-effect type is used as a heat source for the regenerator .
JP06150398A 1998-03-12 1998-03-12 Multi-effect absorption refrigerator Expired - Fee Related JP3948814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06150398A JP3948814B2 (en) 1998-03-12 1998-03-12 Multi-effect absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06150398A JP3948814B2 (en) 1998-03-12 1998-03-12 Multi-effect absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH11257775A JPH11257775A (en) 1999-09-24
JP3948814B2 true JP3948814B2 (en) 2007-07-25

Family

ID=13172973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06150398A Expired - Fee Related JP3948814B2 (en) 1998-03-12 1998-03-12 Multi-effect absorption refrigerator

Country Status (1)

Country Link
JP (1) JP3948814B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101906042B1 (en) 2017-03-22 2018-10-08 한국해양대학교 산학협력단 Absorption heat pump with multi-generator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175331B (en) * 2013-03-13 2016-04-27 李华玉 Branch circulation type II absorption heat pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101906042B1 (en) 2017-03-22 2018-10-08 한국해양대학교 산학협력단 Absorption heat pump with multi-generator

Also Published As

Publication number Publication date
JPH11257775A (en) 1999-09-24

Similar Documents

Publication Publication Date Title
US3483710A (en) Cascade absorption refrigeration system
CA2755034C (en) Rankine cycle integrated with absorption chiller
JPS6248147B2 (en)
KR19990022970A (en) Compression and Absorption Hybrid Heat Pump
GB2166534A (en) Absorption refrigeration system
US5467614A (en) Dual-circuit, multiple-effect refrigeration system and method
JP2003021429A (en) Absorption cooling system
JP2000171119A (en) Triple-effect absorption refrigerating machine
JP2007263482A (en) Composite heat pump system
JP3948814B2 (en) Multi-effect absorption refrigerator
WO1997025573A1 (en) Triple-effect absorption cycle with condensate-to-solution sensible heat exchanger
JP3948815B2 (en) Multi-effect absorption refrigerator
JP3591324B2 (en) Absorption refrigerator
JP2008020094A (en) Absorption type heat pump device
KR20080094985A (en) Hot-water using absorption chiller
JP2004190886A (en) Absorption refrigerating machine and absorption refrigerating system
JPS6122225B2 (en)
JP2628023B2 (en) Absorption refrigerator
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
JP3486382B2 (en) Absorption refrigerator
JP2000266422A (en) Absorption refrigerating machine
JP3785737B2 (en) Refrigeration equipment
KR100234062B1 (en) Ammonia absorber cycle
JP2606030B2 (en) Multi-effect absorption refrigerator
JP4557468B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees