JP2000171119A - Triple-effect absorption refrigerating machine - Google Patents

Triple-effect absorption refrigerating machine

Info

Publication number
JP2000171119A
JP2000171119A JP10348340A JP34834098A JP2000171119A JP 2000171119 A JP2000171119 A JP 2000171119A JP 10348340 A JP10348340 A JP 10348340A JP 34834098 A JP34834098 A JP 34834098A JP 2000171119 A JP2000171119 A JP 2000171119A
Authority
JP
Japan
Prior art keywords
temperature regenerator
medium
temperature
stage
regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10348340A
Other languages
Japanese (ja)
Other versions
JP3824436B2 (en
Inventor
Osayuki Inoue
修行 井上
Toshio Matsubara
利男 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP34834098A priority Critical patent/JP3824436B2/en
Publication of JP2000171119A publication Critical patent/JP2000171119A/en
Application granted granted Critical
Publication of JP3824436B2 publication Critical patent/JP3824436B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a triple-effect absorption refrigerating machine which enlarges the heat recovery from a heat source and lowers the temperature and pressure of a high-temperature regenerator. SOLUTION: In a triple-effect absorption refrigerating machine which has a high- temperature regenerator 4, a middle-temperature regenerator 5, a low-temperature regenerator 6, a condenser 3, and an evaporator 1 for its main components, the middle- temperature regenerator 5 is composed of the two of the middle-temperature regenerator 5 heated with the refrigerant vapor from the high-temperature regenerator and the middle-temperature regenerator 10 heated with an external heat source after heating of the high-temperature regenerator, and it will do to so connect the solution pipe of the middle-temperature regenerator as to lead it from the middle-temperature regenerator 5 to the middle-temperature regenerator 10, and also the high-temperature regenerator 4 and the middle-temperature regenerator 5 are divided into plural stages, and solution is let flow in series severally to the high-temperature regenerator 4 and the middle-temperature regenerator 5 divided in plural stages, and also the refrigerant vapor from the high-temperature regenerator on the stage in lowest concentration is connected to the heating side of the middle-temperature regenerator on the stage in highest concentration, and likewise they are connected to be thinner in order or connected to be thicker in order.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸収冷凍機に係
り、特に熱効率が良く、経済的な高温及び中温再生器部
に特徴を有する三重効用吸収冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerator, and more particularly to a triple effect absorption refrigerator having high thermal efficiency and being characterized by an economical high and medium temperature regenerator.

【0002】[0002]

【従来の技術】冷媒に水あるいは主成分として水を用
い、吸収剤に塩類水溶液を用いる吸収冷凍機を対象とす
ると、高温再生器、中温再生器、低温再生器、凝縮器、
吸収器、蒸発器及び熱交換器類を主要構成機器とする三
重効用吸収冷凍機では、高温再生器の溶液温度が高く高
温再生器出口の加熱源温度がそれに伴い高くなって、加
熱源からの熱回収が不十分になりがちである。また、高
温再生器の圧力及び温度を低く抑えるため、低温再生器
あるいは中温再生器の濃度を上げられず、濃度幅を小さ
くしがちで、吸収器での濃度幅が小さくなり、吸収器能
力が低下する傾向にある。さらに、三重効用吸収冷凍機
のサイクルは各種存在するが、どのサイクルを用いて
も、高温再生器の内圧(溶液の飽和温度)及び溶液温度
が高くなりがちであり、圧力容器としての強度上の問題
あるいは高温による腐食の問題があった。
2. Description of the Related Art For an absorption refrigerator using water as a refrigerant or water as a main component and an aqueous salt solution as an absorbent, a high-temperature regenerator, a medium-temperature regenerator, a low-temperature regenerator, a condenser,
In triple-effect absorption refrigerators, which consist mainly of absorbers, evaporators and heat exchangers, the temperature of the solution in the high-temperature regenerator is high, and the temperature of the heating source at the outlet of the high-temperature regenerator rises accordingly. Heat recovery tends to be insufficient. In addition, since the pressure and temperature of the high-temperature regenerator are kept low, the concentration of the low-temperature regenerator or medium-temperature regenerator cannot be increased, and the concentration range tends to be small. It tends to decrease. Furthermore, although there are various types of triple effect absorption refrigerators, the internal pressure of the high-temperature regenerator (saturation temperature of the solution) and the temperature of the solution tend to be high regardless of which cycle is used. There was a problem or corrosion due to high temperature.

【0003】[0003]

【発明が解決しようとする課題】そこで、本発明は、上
記従来技術に鑑み、加熱源からの熱回収を大きくし、高
温再生器内の圧力及び温度を少しでも低下させて、強度
上の問題あるいは高温による腐食の問題を緩和させると
共に、吸収器濃度幅を大きくして、効率が良い三重効用
吸収冷凍機を提供することを課題とする。
SUMMARY OF THE INVENTION Accordingly, in view of the above-mentioned prior art, the present invention increases the heat recovery from a heating source and reduces the pressure and temperature in a high-temperature regenerator even slightly to reduce the strength. Another object of the present invention is to provide a triple-effect absorption refrigerator with high efficiency by reducing the problem of corrosion due to high temperature and increasing the concentration range of the absorber.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、高温再生器、中温再生器、低温再生
器、凝縮器、吸収器、蒸発器及び熱交換器類を主要構成
機器とし、これらを溶液配管、冷媒配管で結んだ三重効
用吸収冷凍機において、前記中温再生器を、高温再生器
からの冷媒蒸気で加熱する中温再生器と、高温再生器を
加熱した後の外部加熱源を用いて加熱する中温再生器の
2つで構成することとしたものである。前記吸収冷凍機
において、中温再生器の溶液配管は、高温再生器からの
冷媒蒸気で加熱される中温再生器で濃縮された溶液を、
高温再生器からの外部加熱源を用いて加熱される中温再
生器に導くように接続するのがよい。
In order to solve the above-mentioned problems, the present invention comprises a high-temperature regenerator, a medium-temperature regenerator, a low-temperature regenerator, a condenser, an absorber, an evaporator and a heat exchanger. In a triple effect absorption refrigerator connected with a solution pipe and a refrigerant pipe, the intermediate temperature regenerator is heated with refrigerant vapor from the high temperature regenerator, and the external heating after heating the high temperature regenerator. It consists of two medium temperature regenerators that heat using a source. In the absorption refrigerator, the solution pipe of the intermediate temperature regenerator is a solution concentrated in the intermediate temperature regenerator heated by the refrigerant vapor from the high temperature regenerator,
The connection is preferably made to lead to a medium temperature regenerator that is heated using an external heating source from a high temperature regenerator.

【0005】また、本発明では、高温再生器、中温再生
器、低温再生器、凝縮器、吸収器、蒸発器及び熱交換器
類を主要構成機器とし、これらを溶液配管、冷媒配管で
結んだ三重効用吸収冷凍機において、前記高温再生器と
中温再生器とを複数段に分割した複数段の高温再生器と
中温再生器とにそれぞれ溶液をシリーズに流すと共に、
濃度の最も薄い段の高温再生器からの冷媒蒸気を、濃度
の最も濃い段の中温再生器の加熱側に接続し、次いで薄
い段の高温再生器からの冷媒蒸気を、次いで濃い段の中
温再生器の加熱側に接続し、同様に、順次高温再生器か
らの冷媒蒸気を、中温再生器の加熱側に接続し、濃度の
最も濃い段の高温再生器からの冷媒蒸気を、濃度の最も
薄い段の中温再生器に接続することとしたものである。
In the present invention, a high-temperature regenerator, a medium-temperature regenerator, a low-temperature regenerator, a condenser, an absorber, an evaporator, and a heat exchanger are used as main components, and these are connected by a solution pipe and a refrigerant pipe. In the triple-effect absorption refrigerator, while the high-temperature regenerator and the medium-temperature regenerator are divided into a plurality of stages and a plurality of stages of high-temperature regenerators and medium-temperature regenerators, each of which flows the solution in series,
Connect the refrigerant vapor from the high-temperature regenerator with the lowest concentration to the heating side of the medium-temperature regenerator with the lowest concentration, then regenerate the refrigerant vapor from the high-temperature regenerator with the lowest concentration, and then regenerate the medium-temperature with the denser stage Connected to the heating side of the regenerator, and similarly, the refrigerant vapor from the high-temperature regenerator is sequentially connected to the heating side of the medium-temperature regenerator, and the refrigerant vapor from the high-temperature regenerator with the highest concentration is diluted with the least concentration. It is to be connected to the middle temperature regenerator of the stage.

【0006】前記吸収冷凍機において、複数段の高温再
生器と中温再生器とか、それぞれ2段づつ構成され、濃
度の薄い方の段の高温再生器からの冷媒蒸気を、濃度の
濃い方の段の中温再生器の加熱側に接続し、濃度の濃い
方の段の高温再生器からの冷媒蒸気を、濃度の薄い方の
段の中温再生器の加熱側に接続することができ、また、
さらに、 中温再生器には、高温再生器を加熱した外部
加熱源を用いて加熱する中温再生器を設けることがで
き、この場合、高温再生器からの冷媒蒸気で加熱される
2段の中温再生器で濃縮された溶液を、外部加熱源を用
いて加熱する中温再生器に導くように、溶液配管を接続
することができる。また、前記した本発明の三重効用吸
収冷凍機において、吸収器及び蒸発器を、それぞれ低段
と高段の2個に分割し、分割したこれら各単一の吸収器
と蒸発器とを、それぞれ一対として独立したシェル内に
設けると共に、濃溶液を先ず低段吸収器に導き、その
後、高段吸収器に導き、冷水は先ず、高段蒸発器に導
き、次いで低段蒸発器に導くようにそれぞれの配管経路
を構成することができる。
In the absorption refrigerator, two-stage high-temperature regenerators and intermediate-stage regenerators are provided, each having two stages. Refrigerant vapor from the high-temperature regenerator with the lower concentration is used to separate the refrigerant vapor from the higher-density stage. Connected to the heating side of the medium-temperature regenerator, and the refrigerant vapor from the high-temperature regenerator in the higher concentration stage can be connected to the heating side of the medium-temperature regenerator in the lower concentration stage,
Further, the intermediate-temperature regenerator can be provided with an intermediate-temperature regenerator that uses an external heating source that heats the high-temperature regenerator. In this case, a two-stage intermediate-temperature regenerator that is heated by refrigerant vapor from the high-temperature regenerator A solution pipe can be connected so that the solution concentrated in the vessel is guided to a medium-temperature regenerator for heating using an external heating source. Further, in the triple effect absorption refrigerator of the present invention described above, the absorber and the evaporator are each divided into two stages, a low stage and a high stage. A pair is provided in an independent shell, and the concentrated solution is first guided to the low-stage absorber, then to the high-stage absorber, and the cold water is first guided to the high-stage evaporator, and then to the low-stage evaporator. Each piping path can be configured.

【0007】[0007]

【発明の実施の形態】次に本発明を詳細に説明する。本
発明で外部熱源で加熱する中温再生器を追加したことに
より、外部熱源の熱回収を、高温再生器よりも沸騰温度
の低い中温再生器で行うことができ、熱回収量が増大す
る。また、冷媒蒸気で加熱濃縮された中温再生器からの
濃溶液あるいは高温再生器で加熱濃縮された中温再生器
からの濃い溶液あるいは高温再生器で濃縮された濃い溶
液をさらに回収熱で濃縮するので、吸収器に戻る濃度は
上昇し、吸収器での濃縮幅を大きくし、吸収器能力を充
分利用できる。
Next, the present invention will be described in detail. By adding a medium-temperature regenerator heated by an external heat source in the present invention, heat recovery of the external heat source can be performed by a medium-temperature regenerator having a lower boiling temperature than a high-temperature regenerator, and the amount of heat recovery increases. In addition, the concentrated solution from the intermediate temperature regenerator heated and concentrated by the refrigerant vapor or the concentrated solution from the intermediate temperature regenerator heated and concentrated by the high temperature regenerator or the concentrated solution concentrated by the high temperature regenerator is further concentrated by the recovered heat. The concentration returning to the absorber rises, the concentration width in the absorber is increased, and the capacity of the absorber can be fully utilized.

【0008】また、高温再生器及び中温再生器を複数段
に分割し、濃度の最も薄い高温再生器からの冷媒蒸気
を、濃度の最も濃い中温再生器の加熱側に接続し、溶液
をシリーズに流し順次濃縮させることにより、中温再生
器での濃度の違いによる沸騰温度(蒸発温度)の違いを
利用して、高温再生器内の高濃度領域沸騰圧力を、高温
再生器内の低濃度領域の沸騰圧力よりも低下させて、高
濃度領域の沸騰温度を低下させようとするものである。
本発明によると、高温再生器内の高濃度領域の冷媒蒸気
を中温再生器の低濃度領域の伝熱部に導いており、高温
再生器の高温度領域の沸騰温度を低下させることができ
る。また、特に、希溶液を低温再生器、中温再生器に導
くサイクルにおいては、低温、中温再生器での溶液の沸
騰温度を低くすることができ、より一層の沸騰温度の低
下をさせることができる。
Further, the high-temperature regenerator and the intermediate-temperature regenerator are divided into a plurality of stages, and the refrigerant vapor from the low-density high-temperature regenerator is connected to the heating side of the medium-density regenerator with the highest concentration, and the solution is formed into a series. By successively flowing and concentrating, the difference in boiling temperature (evaporation temperature) due to the difference in concentration in the medium-temperature regenerator is used to increase the boiling pressure in the high-concentration region in the high-temperature regenerator, It is intended to lower the boiling temperature in the high concentration region by lowering the pressure than the boiling pressure.
According to the present invention, the refrigerant vapor in the high-concentration region in the high-temperature regenerator is guided to the heat transfer section in the low-concentration region of the medium-temperature regenerator, so that the boiling temperature in the high-temperature region of the high-temperature regenerator can be reduced. In particular, in a cycle in which a dilute solution is led to a low-temperature regenerator and a medium-temperature regenerator, the boiling temperature of the solution in the low-temperature and medium-temperature regenerators can be reduced, and the boiling temperature can be further reduced. .

【0009】以下、図面を参照にして本発明を具体的に
説明するする。図1は、本発明の吸収冷凍機の一例を示
す概略工程図である。図1において、1は蒸発器、2は
吸収器、3は凝縮器、4は高温再生器、5は中温再生
器、6は低温再生器、7は低温熱交換器、8は中温熱交
換器、9は高温熱交換器、10は外部熱源中温再生器、
12は再生器ポンプ、13は溶液ポンプ、14は冷媒ポ
ンプ、15は外部熱源、16,17は冷却水、18は冷
水、20〜26は溶液配管、27〜30は冷媒配管であ
る。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic process diagram showing an example of the absorption refrigerator of the present invention. In FIG. 1, 1 is an evaporator, 2 is an absorber, 3 is a condenser, 4 is a high temperature regenerator, 5 is a medium temperature regenerator, 6 is a low temperature regenerator, 7 is a low temperature heat exchanger, and 8 is a medium temperature heat exchanger. , 9 is a high-temperature heat exchanger, 10 is an external heat source medium temperature regenerator,
12 is a regenerator pump, 13 is a solution pump, 14 is a refrigerant pump, 15 is an external heat source, 16 and 17 are cooling water, 18 is cold water, 20 to 26 are solution pipes, and 27 to 30 are refrigerant pipes.

【0010】図1の作用について説明すると、吸収器2
からの希溶液は溶液ポンプ13により、低温熱交換器7
の被加熱側に導入し、加熱側濃溶液と熱交換して温度を
高め、低温熱交換器7を出た後、分岐して一部の希溶液
を低温再生器6に導き、残部の希溶液を管22で中温熱
交換器8を経由して中温再生器5に導き、中温再生器5
で濃縮された濃溶液の一部は、管23で高温熱交換器9
の被加熱側を経由して高温再生器4に導入し、外部熱源
15により加熱濃縮し、濃溶液となった溶液は、管24
で高温熱交換器9の加熱側を経由し、中温再生器5で濃
縮された濃溶液の残部と共に、外部熱源で加熱される中
温再生器10に導かれる。溶液は、この中温再生器10
で、高温再生器4を経由してきた外部熱源15により、
加熱濃縮された後、中温熱交換器8の加熱側を経由し、
低温再生器6からの濃溶液と共に、低温熱交換器7の加
熱側に導く。低温熱交換器7の加熱側に入った濃溶液
は、被加熱側の希溶液を加熱し、それ自身は冷却され、
低温熱交換器7を出た後、吸収器2に入る。
The operation of FIG. 1 will be described.
From the low-temperature heat exchanger 7 by the solution pump 13.
And then heat exchange with the concentrated solution on the heating side to increase the temperature. After leaving the low-temperature heat exchanger 7, a part of the diluted solution is guided to the low-temperature regenerator 6, and the remaining diluted solution is The solution is led to the intermediate temperature regenerator 5 through the intermediate temperature heat exchanger 8 by the pipe 22 and is supplied to the intermediate temperature regenerator 5.
A part of the concentrated solution concentrated in the high-temperature heat exchanger 9
Is introduced into the high-temperature regenerator 4 through the heated side, and is heated and concentrated by the external heat source 15 to become a concentrated solution.
Through the heating side of the high-temperature heat exchanger 9 and the remainder of the concentrated solution concentrated in the intermediate-temperature regenerator 5 to the intermediate-temperature regenerator 10 heated by an external heat source. The solution is supplied to the medium temperature regenerator 10
Then, by the external heat source 15 that has passed through the high-temperature regenerator 4,
After being heated and concentrated, it passes through the heating side of the intermediate-temperature heat exchanger 8,
The concentrated solution from the low-temperature regenerator 6 is led to the heating side of the low-temperature heat exchanger 7. The concentrated solution that enters the heating side of the low-temperature heat exchanger 7 heats the dilute solution on the heated side, and cools itself,
After leaving the low-temperature heat exchanger 7, it enters the absorber 2.

【0011】高温再生器4で、外部熱源5により加熱さ
れ、溶液から発生した冷媒蒸気は、管27から中温再生
器5の加熱側に導かれ、中温再生器5に導入された希溶
液を加熱濃縮する。中温再生器5で発生した冷媒蒸気
は、外部熱源で加熱される中温再生器10からの冷媒蒸
気と共に管28で低温再生器6の加熱側に導かれ、低温
熱交換器8の被加熱側を経由して導かれた希溶液を加熱
濃縮し、加熱後の冷媒蒸気は凝縮して、凝縮器3に導か
れる。低温再生器6で発生した冷媒蒸気は、凝縮器3に
導かれ、冷却水17により、冷却されて凝縮する。凝縮
器3の冷媒は管29より蒸発器1に導かれ、ここで、冷
水18から熱を奪い冷凍効果を発揮して蒸発する。蒸発
した冷媒蒸気は、吸収器2にて、溶液に吸収される。吸
収の際の吸収熱は吸収器を流れる冷却水16により冷却
される。蒸発しない冷媒は、冷媒ポンプ14により管3
0を通り蒸発器1に循環され、また、冷媒を吸収した希
溶液は溶液ポンプ13で熱交換器を通って循環される。
中温再生器5から高温再生器4に導く際、再生器ポンプ
12側に優先的に導き、残りが溢れて、外部熱源で加熱
される中温再生器10に導かれる。
In the high-temperature regenerator 4, the refrigerant vapor heated by the external heat source 5 and generated from the solution is led from the pipe 27 to the heating side of the medium-temperature regenerator 5, and heats the dilute solution introduced into the medium-temperature regenerator 5. Concentrate. The refrigerant vapor generated in the intermediate-temperature regenerator 5 is guided to the heating side of the low-temperature regenerator 6 through the pipe 28 together with the refrigerant vapor from the intermediate-temperature regenerator 10 heated by an external heat source, and the heated side of the low-temperature heat exchanger 8 is heated. The dilute solution led via is concentrated by heating, and the refrigerant vapor after heating is condensed and led to the condenser 3. The refrigerant vapor generated in the low-temperature regenerator 6 is guided to the condenser 3 and is cooled and condensed by the cooling water 17. The refrigerant in the condenser 3 is guided from the pipe 29 to the evaporator 1, where the refrigerant takes heat from the cold water 18 to exhibit a refrigeration effect and evaporates. The evaporated refrigerant vapor is absorbed by the solution in the absorber 2. The heat of absorption at the time of absorption is cooled by cooling water 16 flowing through the absorber. The refrigerant that does not evaporate is transferred to the pipe 3 by the refrigerant pump 14.
The dilute solution having absorbed the refrigerant is circulated through the heat exchanger by the solution pump 13.
When guided from the intermediate-temperature regenerator 5 to the high-temperature regenerator 4, it is preferentially guided to the regenerator pump 12 side, and the rest overflows and is guided to the intermediate-temperature regenerator 10 heated by an external heat source.

【0012】図2は、本発明の三重効用吸収冷凍機の他
の例を示す概略工程図であり、図2の符号は、すべて図
1と同じ意味を有する。図2においては、図1との相違
点は、吸収器2からの希溶液が、図2では、低温熱交換
器7、中温熱交換器8、高温熱交換器9の被加熱側を通
った後で、分岐されて、一部がそれぞれ、低温再生器
6、中温再生器5、高温再生器4に導入されるように構
成されている点であり、中温再生器5からの濃溶液は高
温再生器4からの濃溶液と共に、全量外部熱源で加熱さ
れる中温再生器10に導入されている。このように構成
しても図1と同様の作用を有することができる。
FIG. 2 is a schematic process diagram showing another example of the triple effect absorption refrigerator of the present invention, and all the reference numerals in FIG. 2 have the same meaning as in FIG. In FIG. 2, the difference from FIG. 1 is that the dilute solution from the absorber 2 passes through the heated side of the low-temperature heat exchanger 7, the medium-temperature heat exchanger 8, and the high-temperature heat exchanger 9 in FIG. 2. Later, the branched solution is configured so that a part thereof is introduced into the low-temperature regenerator 6, the medium-temperature regenerator 5, and the high-temperature regenerator 4, respectively. Along with the concentrated solution from the regenerator 4, the whole amount is introduced into a medium temperature regenerator 10 which is heated by an external heat source. Even with such a configuration, the same operation as in FIG. 1 can be obtained.

【0013】図3(a)は、本発明の吸収冷凍機の別の
一例を示す概略工程図であり、図3(b)に吸収器と蒸
発器を2段とした部分拡大図を示す。図3においても符
号は図1と同じ意味を有する。図3では、吸収器2から
の希溶液は溶液ポンプ13により、低温熱交換器7の被
加熱側に導入し、加熱側の濃溶液と熱交換して温度を高
め、低温熱交換器7を出た後、分岐して一部の希溶液を
低温再生器6に導き、残部の希溶液を管22で中温熱交
換器8を経由して中温再生器5に導き、中温再生器5で
濃縮された濃溶液の一部は、管23で高温熱交換器9の
被加熱側を経由して高温再生器4aに導入して濃縮さ
れ、次いで高温再生器4bにてさらに濃縮された溶液
は、管24で高温熱交換器9の加熱側を経由し、中温再
生器5で濃縮された濃溶液の残部と共に、中温熱交換器
8の加熱側に導かれ、これを経由し、低温再生器6から
の濃溶液と共に、低温熱交換器7の加熱側に導く。低温
熱交換器7の加熱側に入った濃溶液は、被加熱側の希溶
液を加熱し、それ自身は冷却され、低温熱交換器7を出
た後、吸収器2に入る。
FIG. 3 (a) is a schematic process diagram showing another example of the absorption refrigerator of the present invention, and FIG. 3 (b) is a partially enlarged view showing two stages of an absorber and an evaporator. 3 also have the same meaning as in FIG. In FIG. 3, the dilute solution from the absorber 2 is introduced into the heated side of the low-temperature heat exchanger 7 by the solution pump 13 and exchanges heat with the concentrated solution on the heated side to increase the temperature. After exiting, it branches and guides a part of the dilute solution to the low-temperature regenerator 6, leads the remaining dilute solution to the medium-temperature regenerator 5 via the medium-temperature heat exchanger 8 through the pipe 22, and concentrates the medium at the medium-temperature regenerator 5. A part of the concentrated solution is introduced into the high-temperature regenerator 4a via the heated side of the high-temperature heat exchanger 9 via the pipe 23 and concentrated, and then the solution further concentrated in the high-temperature regenerator 4b is The pipe 24 passes through the heating side of the high-temperature heat exchanger 9, and is guided to the heating side of the medium-temperature heat exchanger 8 together with the remainder of the concentrated solution concentrated in the intermediate-temperature regenerator 5. Together with the concentrated solution from the above to the heating side of the low-temperature heat exchanger 7. The concentrated solution entering the heating side of the low-temperature heat exchanger 7 heats the dilute solution on the heated side, cools itself, exits the low-temperature heat exchanger 7 and enters the absorber 2.

【0014】高温再生器4では、外部熱源15により加
熱され、溶液は、4a、4bと順次濃縮され、この際発
生する4bからの冷媒蒸気は、管27から中温再生器5
の低濃度側の加熱部5aに導かれ、4aからの冷媒蒸気
は、中温再生器5の高濃度側の加熱部5bに導かれ、中
温再生器5に導入された希溶液は5a、5bの順に加熱
濃縮される。高温再生器4からの冷媒蒸気は加熱後凝縮
して、低温再生器6加熱側(又は凝縮器3)に導かれ
る。中温再生器5で発生した冷媒蒸気は、管28で低温
再生器6の加熱側に導かれ、低温熱交換器8の被加熱側
を経由して導かれた希溶液を加熱濃縮し、加熱後の冷媒
蒸気は凝縮し、凝縮器3に導かれる。低温再生器6で発
生した冷媒蒸気は、凝縮器3に導かれ、冷却水17によ
り、冷却されて凝縮する。
In the high-temperature regenerator 4, the solution is heated by the external heat source 15, and the solution is sequentially concentrated in the order of 4 a and 4 b.
The refrigerant vapor from 4a is guided to the high concentration side heating section 5b of the intermediate temperature regenerator 5, and the dilute solution introduced into the intermediate temperature regenerator 5 is supplied to the low concentration side heating section 5a. It is heated and concentrated in order. The refrigerant vapor from the high-temperature regenerator 4 is condensed after being heated and guided to the heating side (or the condenser 3) of the low-temperature regenerator 6. The refrigerant vapor generated in the intermediate-temperature regenerator 5 is guided to the heating side of the low-temperature regenerator 6 by a pipe 28, and the diluted solution guided through the heated side of the low-temperature heat exchanger 8 is heated and concentrated. Refrigerant vapor is condensed and led to the condenser 3. The refrigerant vapor generated in the low-temperature regenerator 6 is guided to the condenser 3 and is cooled and condensed by the cooling water 17.

【0015】凝縮器3の冷媒は管29より蒸発器1に導
かれ、ここで、冷水18から熱を奪い冷凍効果を発揮し
て、蒸発する。蒸発した冷媒蒸気は、吸収器2にて、溶
液に吸収される。吸収の際の吸収熱は吸収器を流れる冷
却水16により冷却される。蒸発しない冷媒は、冷媒ポ
ンプ14により管30を通り蒸発器1に循環され、ま
た、冷媒を吸収した希溶液は溶波ポンプ13で熱交換器
を通って循環される。中温再生器5から高温再生器4に
導く際、再生器ポンプ12側に優先的に導き、残りが溢
れて、中温熱交換器8の加熱側に導かれるようにしてい
る。
The refrigerant in the condenser 3 is led to the evaporator 1 through a pipe 29, where the refrigerant takes heat from the cold water 18 to exhibit a refrigerating effect and evaporates. The evaporated refrigerant vapor is absorbed by the solution in the absorber 2. The heat of absorption at the time of absorption is cooled by cooling water 16 flowing through the absorber. The refrigerant that does not evaporate is circulated to the evaporator 1 through the pipe 30 by the refrigerant pump 14, and the dilute solution that has absorbed the refrigerant is circulated through the heat exchanger by the wave pump 13. When the heat is guided from the intermediate temperature regenerator 5 to the high temperature regenerator 4, it is preferentially guided to the regenerator pump 12 side, and the rest overflows and is guided to the heating side of the intermediate temperature heat exchanger 8.

【0016】図4は、本発明の吸収冷凍機の他の例を示
す概略工程図であり、図4においては、吸収器2からの
希溶液が低温熱交換器7、中温熱交換器8、高温熱交換
器9の被加熱側を通った後で分岐されて、一部がそれぞ
れ低温再生器6、中温再生器5、高温再生器4に導入さ
れるように構成されており、また、中温再生器5からの
濃溶液は、高温再生器4からの濃溶液と共に全量中温熱
交換器の加熱側に導入されている点で図3とは相違して
いる。また、図5も本発明の吸収冷凍機の他の例を示す
概略工程図であり、図3との相違点は、外部熱源15で
加熱する中温再生器10を設けた点のみで相違してい
る。図6に、本発明の三重効用吸収冷凍機が、適用でき
る溶液サイクル図を示す。図6で(a)シリーズフロ
ー、(b)分岐フロー、(c)パラレルフロー、(d)
リパースフローであり、その他これらの組合せが適用で
き、どのサイクルに適用しても、沸騰温度の低下が図れ
る。
FIG. 4 is a schematic process diagram showing another example of the absorption refrigerator of the present invention. In FIG. 4, the dilute solution from the absorber 2 is supplied with a low-temperature heat exchanger 7, a medium-temperature heat exchanger 8, After passing through the heated side of the high-temperature heat exchanger 9, it is branched and partly introduced into the low-temperature regenerator 6, the medium-temperature regenerator 5, and the high-temperature regenerator 4, respectively. The difference from FIG. 3 is that the concentrated solution from the regenerator 5 is introduced together with the concentrated solution from the high-temperature regenerator 4 into the heating side of the medium-temperature heat exchanger. FIG. 5 is also a schematic process diagram showing another example of the absorption refrigerator of the present invention, and is different from FIG. 3 only in that an intermediate temperature regenerator 10 for heating with an external heat source 15 is provided. I have. FIG. 6 shows a solution cycle diagram applicable to the triple effect absorption refrigerator of the present invention. In FIG. 6, (a) series flow, (b) branch flow, (c) parallel flow, (d)
It is a repurse flow, and other combinations thereof can be applied, and the boiling temperature can be reduced no matter which cycle is used.

【0017】次に、冷水条件:入口13℃、出口7℃、
冷却水入口31℃の場合のサイクル例を比較してみる。
(冷媒に水を用い、吸収剤にLiBr水溶液を用い
る。)高温再生器と中温再生器とを一対のみとした場
合、 蒸発器の蒸発温度 5.5℃、 吸収器の溶液出口温度 36.0℃、 希溶液濃度 55.5wt% 凝縮温度 37.0℃、 低温再生器溶液出口温度 76.2℃ 中温再生器露点 80.1℃、 中温再生器溶液出口温度125.4℃ 高温再生器露点 129.3℃、 高温再生器溶液出口温度186.9℃ 高温再生器圧力 2.70kg/cm2A(1.67kg/cm2G)
Next, cold water conditions: inlet 13 ° C., outlet 7 ° C.
Let us compare the cycle examples when the cooling water inlet is at 31 ° C.
(Water is used as the refrigerant and LiBr aqueous solution is used as the absorbent.) When only one pair of the high-temperature regenerator and the medium-temperature regenerator is used, the evaporation temperature of the evaporator is 5.5 ° C., and the solution outlet temperature of the absorber is 36.0. C, Dilute solution concentration 55.5 wt% Condensation temperature 37.0 C, Low temperature regenerator solution outlet temperature 76.2 C Medium temperature regenerator dew point 80.1 C, Medium temperature regenerator solution outlet temperature 125.4 C High temperature regenerator dew point 129 0.3 ° C., high temperature regenerator solution outlet temperature 186.9 ° C. high temperature regenerator pressure 2.70 kg / cm 2 A (1.67 kg / cm 2 G)

【0018】 本発明によるフロー:図3 蒸発器の蒸発温度 5.5℃、 吸収器の溶液出口温度 36.0℃、 希溶液濃度 55.5wt% 凝縮温度 37.0℃、 低温再生器溶液出口温度 76.2℃ 中温再生器露点 80.1℃、 中温再生器溶液中間温度123.4℃ 80.1℃、 中温再生器溶液出口温度125.4℃ 高温再生器露点(a)129.3℃、 高温再生器溶液中間温度184.5℃ 高温再生器露点(b)127.3℃、 高温再生器溶液出口温度184.5℃ 高温再生器圧力 2.70kg/cm2A(1.67kg/cm2G) 本発明により、圧力はほぼ同等であるが、温度的に有利
になる。
Flow according to the present invention: FIG. 3 Evaporation temperature of evaporator 5.5 ° C., absorber solution outlet temperature 36.0 ° C., dilute solution concentration 55.5 wt% condensing temperature 37.0 ° C., low temperature regenerator solution outlet Temperature 76.2 ° C Medium temperature regenerator dew point 80.1 ° C, Medium temperature regenerator solution intermediate temperature 123.4 ° C 80.1 ° C, Medium temperature regenerator solution outlet temperature 125.4 ° C High temperature regenerator dew point (a) 129.3 ° C High temperature regenerator solution intermediate temperature 184.5 ° C High temperature regenerator dew point (b) 127.3 ° C High temperature regenerator solution outlet temperature 184.5 ° C High temperature regenerator pressure 2.70 kg / cm 2 A (1.67 kg / cm) the 2 G) the present invention, the pressure is substantially equal, to a temperature advantageous.

【0019】さらに、図3(b)に示すように、前記吸
収冷凍機において、吸収器及び蒸発器をそれぞれ低段
2’、1’と高段2’’、1’’の2個に分割し、分割
したこれら各単一の吸収器、蒸発器とを、それぞれ一対
として独立したシェル内に設けると共に、濃溶液を先ず
低段吸収器2’に導き、その後、高段吸収器2’’に導
くようにして、希溶液濃度を希薄にして、低温、中温各
再生器での沸騰温度をさらに低下させると、高温再生器
の圧力、温度を低下させることができ、さらに、効果が
でる。
Further, as shown in FIG. 3 (b), in the absorption refrigerator, the absorber and the evaporator are each divided into two stages of a low stage 2 ', 1' and a high stage 2 ", 1". Then, each of these divided single absorbers and evaporators is provided as a pair in an independent shell, and the concentrated solution is first guided to the low-stage absorber 2 ′, and then the high-stage absorber 2 ″ If the boiling point in each of the low-temperature and medium-temperature regenerators is further reduced by diluting the concentration of the dilute solution in such a manner as described above, the pressure and temperature of the high-temperature regenerator can be reduced, and further effects can be obtained.

【0020】[0020]

【発明の効果】本発明によると、外部熱源で加熱する中
温再生器を付加することにより、外部熱源の熱回収を充
分行って、熱効率を上げると共に、吸収器出入りの温度
幅を大きくとることができるので、吸収器能力を充分利
用して、冷凍機の能力を充分発揮する事ができる。ま
た、高温再生器と中温再生器とを複数段に分割し、溶液
をシリーズに流すようにしたことにより高温発生器の圧
力、温度を低下させることができ、腐食環境が緩和し、
また、圧力上の問題も緩和でき、従来から、二重効用で
用いられている軟鋼等の材料が使用できるようになっ
た。
According to the present invention, by adding a medium-temperature regenerator for heating with an external heat source, the heat recovery of the external heat source can be sufficiently performed, the thermal efficiency can be improved, and the temperature width between the entrance and exit of the absorber can be widened. Since the capacity of the refrigerator can be sufficiently utilized, the capacity of the refrigerator can be sufficiently exhibited. In addition, the high-temperature regenerator and the medium-temperature regenerator are divided into a plurality of stages, and by flowing the solution in series, the pressure and temperature of the high-temperature generator can be reduced, and the corrosive environment is alleviated.
In addition, pressure problems can be alleviated, and materials such as mild steel which has been conventionally used for double effects can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の吸収冷凍機の一例を示す概略工程図。FIG. 1 is a schematic process diagram showing an example of an absorption refrigerator of the present invention.

【図2】本発明の吸収冷凍機の他の例を示す概略工程
図。
FIG. 2 is a schematic process diagram showing another example of the absorption refrigerator of the present invention.

【図3】(a)本発明の吸収冷凍機の他の例を示す概略
工程図、(b)吸収器と蒸発器の別の例を示す部分構成
図。
FIG. 3A is a schematic process diagram illustrating another example of the absorption refrigerator of the present invention, and FIG. 3B is a partial configuration diagram illustrating another example of the absorber and the evaporator.

【図4】本発明の吸収冷凍機の他の例を示す概略工程
図。
FIG. 4 is a schematic process diagram showing another example of the absorption refrigerator of the present invention.

【図5】本発明の吸収冷凍機の他の例を示す概略工程
図。
FIG. 5 is a schematic process diagram showing another example of the absorption refrigerator of the present invention.

【図6】本発明の三重効用吸収冷凍機が適用できる溶液
サイクル図。
FIG. 6 is a solution cycle diagram to which the triple effect absorption refrigerator of the present invention can be applied.

【符号の説明】[Explanation of symbols]

1,1’,1’’:蒸発器、2,2’,2’’,A:吸
収器、3:凝縮器、4,4a,4b,GH:高温再生
器、5,5a,5b,GM:中温再生器、6,GL:低
温再生器、7:低温熱交換器、8:中温熱交換器、9:
高温熱交換器、10:外部熱源中温再生器、12:再生
器ポンプ、13:溶液ポンプ、14:冷媒ポンプ、1
5:外部熱源、16,17:冷却水、18:冷水、20
〜26溶液配管、27〜30:冷媒配管
1, 1 ′, 1 ″: evaporator, 2, 2 ′, 2 ″, A: absorber, 3: condenser, 4, 4a, 4b, GH: high temperature regenerator, 5, 5a, 5b, GM : Medium temperature regenerator, 6, GL: Low temperature regenerator, 7: Low temperature heat exchanger, 8: Medium temperature heat exchanger, 9:
High-temperature heat exchanger, 10: external heat source intermediate temperature regenerator, 12: regenerator pump, 13: solution pump, 14: refrigerant pump, 1
5: external heat source, 16, 17: cooling water, 18: cold water, 20
~ 26 solution piping, 27 ~ 30: refrigerant piping

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 高温再生器、中温再生器、低温再生器、
凝縮器、吸収器、蒸発器及び熱交換器類を主要構成機器
とし、これらを溶液配管、冷媒配管で結んだ三重効用吸
収冷凍機において、前記中温再生器を、高温再生器から
の冷媒蒸気で過熱する中温再生器と高温再生器を加熱し
た後の外部加熱源を用いて加熱する中温再生器の2つで
構成したことを特徴とする三重効用吸収冷凍機。
1. A high-temperature regenerator, a medium-temperature regenerator, a low-temperature regenerator,
Condenser, absorber, evaporator, and heat exchangers are the main components, and in a triple effect absorption refrigerator in which these are connected by a solution pipe and a refrigerant pipe, the medium-temperature regenerator uses refrigerant vapor from a high-temperature regenerator. A triple effect absorption refrigerator comprising: an overheated medium-temperature regenerator; and a medium-temperature regenerator that heats the high-temperature regenerator using an external heating source after heating.
【請求項2】 前記中温再生器の溶液配管は、高温再生
器からの冷媒蒸気で加熱される中温再生器で濃縮された
溶液を、高温再生器からの外部加熱源を用いて加熱され
る中温再生器に導くように接続することを特徴とする請
求項1記載の三重効用吸収冷凍機。
2. A solution pipe of the intermediate temperature regenerator is provided with a medium concentrated by a medium temperature regenerator heated by refrigerant vapor from the high temperature regenerator, and a medium temperature heated by an external heating source from the high temperature regenerator. The triple-effect absorption refrigerator according to claim 1, wherein the triple-effect absorption refrigerator is connected so as to be guided to a regenerator.
【請求項3】 前記高温再生器と冷媒蒸気で加熱される
中温再生器とは、それぞれ2段に分割されており、分割
された2段の高温再生器及び2段の中温再生器はそれぞ
れ溶液をシリーズに流すように構成すると共に、濃度の
薄い方の高温再生器からの冷媒蒸気を、濃度の濃い方の
中温再生器の加熱側に接続し、濃度の濃い方の高温再生
器からの冷媒蒸気を、濃度の薄い方の中温再生器の加熱
側に接続したことを特徴とする請求項1又は2記載の三
重効用吸収冷凍機。
3. The high-temperature regenerator and the medium-temperature regenerator heated by the refrigerant vapor are each divided into two stages, and the divided two-stage high-temperature regenerator and the two-stage medium-temperature regenerator are each provided with a solution. And the refrigerant vapor from the high-temperature regenerator with the lower concentration is connected to the heating side of the medium-temperature regenerator with the higher concentration, and the refrigerant from the high-temperature regenerator with the higher concentration is connected. 3. The triple effect absorption refrigerator according to claim 1, wherein the steam is connected to a heating side of a medium temperature regenerator having a lower concentration.
【請求項4】 高温再生器、中温再生器、低温再生器、
凝縮器、吸収器、蒸発器及び熱交換器類を主要構成機器
とし、これらを溶液配管、冷媒配管で結んだ三重効用吸
収冷凍機において、前記高温再生器と中温再生器とを複
数段に分割し、分割した複数段の高温再生器と中温再生
器とは、それぞれ溶液をシリーズに流すと共に、濃度の
最も薄い段の高温再生器からの冷媒蒸気を、濃度の最も
濃い段の中温再生器の加熱側に接続し、次いで薄い段の
高温再生器からの冷媒蒸気を、次いで濃い段の中温再生
器の加熱側に接続し、同様に、順次高温再生器からの冷
媒蒸気を、中温再生器の加熱側に接続し、濃度の最も濃
い段の高温再生器からの冷媒蒸気を、濃度の最も薄い段
の中温再生器の加熱側に接続することを特徴とする三重
効用吸収冷凍機。
4. A high temperature regenerator, a medium temperature regenerator, a low temperature regenerator,
In a triple-effect absorption refrigerator in which a condenser, an absorber, an evaporator, and a heat exchanger are main components and these are connected by a solution pipe and a refrigerant pipe, the high-temperature regenerator and the medium-temperature regenerator are divided into a plurality of stages. Then, the divided multi-stage high-temperature regenerator and medium-temperature regenerator flow the solution in series, and the refrigerant vapor from the low-density stage high-temperature regenerator passes through Connected to the heating side, then the refrigerant vapor from the high-temperature regenerator in the thinner stage, and then connected to the heating side of the medium-temperature regenerator in the deeper stage, and likewise, the refrigerant vapor from the high-temperature regenerator was successively A triple effect absorption refrigerator, wherein the refrigerant vapor from the high-temperature regenerator with the highest concentration is connected to the heating side of the medium-temperature regenerator with the lowest concentration.
【請求項5】 前記複数段の高温再生器と中温再生器と
が、それぞれ2段づつで構成され、濃度の薄い方の段の
高温再生器からの冷媒蒸気を、濃度の濃い方の段の中温
再生器の加熱側に接続し、濃度の濃い方の段の高温再生
器からの冷媒蒸気を、濃度の薄い方の段の中温再生器の
加熱側に接続することを特徴とする請求項4記載の三重
効用吸収冷凍機。
5. The multi-stage high-temperature regenerator and the intermediate-temperature regenerator are each constituted by two stages, and the refrigerant vapor from the low-density stage high-temperature regenerator is separated from the high-density stage by the higher-density stage. 5. A medium-temperature regenerator connected to a heating side, wherein refrigerant vapor from a high-density stage high-temperature regenerator is connected to a heating side of a low-concentration stage medium-temperature regenerator. The triple effect absorption refrigerator described.
【請求項6】 前記吸収器及び蒸発器は、それぞれ低段
と高段の2個に分割されており、分割されたこれら各単
一の吸収器と蒸発器とを、それぞれ一対として独立した
シェル内に設けると共に、濃溶液を先ず低段吸収器に導
き、その後、高段吸収器に導き、冷水は先ず、高段蒸発
器に導き、次いで低段蒸発器に導くようにそれぞれの配
管経路を構成したことを特徴とする請求項1〜5のいず
れか1項記載の三重効用吸収冷凍機。
6. The absorber and the evaporator are each divided into two stages, a low stage and a high stage, and each of the divided single absorber and evaporator is formed as a pair of independent shells. And the concentrated solution is first guided to the low-stage absorber, and then to the high-stage absorber, and the cold water is first guided to the high-stage evaporator and then to the low-stage evaporator. The triple effect absorption refrigerator according to any one of claims 1 to 5, wherein the absorption refrigerator is configured as follows.
JP34834098A 1998-12-08 1998-12-08 Triple effect absorption refrigerator Expired - Lifetime JP3824436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34834098A JP3824436B2 (en) 1998-12-08 1998-12-08 Triple effect absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34834098A JP3824436B2 (en) 1998-12-08 1998-12-08 Triple effect absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2000171119A true JP2000171119A (en) 2000-06-23
JP3824436B2 JP3824436B2 (en) 2006-09-20

Family

ID=18396378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34834098A Expired - Lifetime JP3824436B2 (en) 1998-12-08 1998-12-08 Triple effect absorption refrigerator

Country Status (1)

Country Link
JP (1) JP3824436B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014325A (en) * 2001-06-29 2003-01-15 Sanyo Electric Co Ltd Absorption refrigeration machine
JP2003014326A (en) * 2001-07-02 2003-01-15 Sanyo Electric Co Ltd Absorption refrigeration machine
JP2003035465A (en) * 2001-07-19 2003-02-07 Sanyo Electric Co Ltd Absorption refrigerating machine
JP2003056934A (en) * 2001-08-07 2003-02-26 Sanyo Electric Co Ltd Absorption refrigerating machine
WO2004029524A1 (en) * 2002-09-27 2004-04-08 Ebara Corporation Absorption refrigerator
EP1286121A3 (en) * 2001-08-09 2004-09-08 Ebara Corporation Absorption chiller-heater and generator for use in such absorption chiller-heater
EP1275915A3 (en) * 2001-07-09 2004-09-15 Ebara Corporation Absorption cold or hot water generating machine
CN100380069C (en) * 2002-09-27 2008-04-09 株式会社荏原制作所 Absorption refrigerator
CN100455950C (en) * 2001-07-09 2009-01-28 株式会社荏原制作所 Exhaust gas-driven absorption water cooling and warming machine
JP2010007903A (en) * 2008-06-25 2010-01-14 Ebara Refrigeration Equipment & Systems Co Ltd Heat pump and internal inspection method therefor
KR20180051566A (en) * 2016-09-23 2018-05-16 히타치 존슨 컨트롤즈 쿠쵸 가부시키가이샤 Absorption chiller
KR20190089997A (en) * 2017-02-16 2019-07-31 히타치 존슨 컨트롤즈 쿠쵸 가부시키가이샤 Absorption chiller

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014325A (en) * 2001-06-29 2003-01-15 Sanyo Electric Co Ltd Absorption refrigeration machine
JP4562321B2 (en) * 2001-06-29 2010-10-13 三洋電機株式会社 Absorption refrigerator
JP2003014326A (en) * 2001-07-02 2003-01-15 Sanyo Electric Co Ltd Absorption refrigeration machine
CN100455950C (en) * 2001-07-09 2009-01-28 株式会社荏原制作所 Exhaust gas-driven absorption water cooling and warming machine
EP1275915A3 (en) * 2001-07-09 2004-09-15 Ebara Corporation Absorption cold or hot water generating machine
CN101446458B (en) * 2001-07-09 2011-09-14 株式会社荏原制作所 Absorption cold or hot water generating machine
KR100878514B1 (en) * 2001-07-09 2009-01-13 가부시키가이샤 에바라 세이사꾸쇼 Absorption cold or hot water generating machine
EP2112443A3 (en) * 2001-07-09 2009-12-30 Ebara Corporation Absorption cold or hot water generating machine
JP2003035465A (en) * 2001-07-19 2003-02-07 Sanyo Electric Co Ltd Absorption refrigerating machine
JP4562325B2 (en) * 2001-07-19 2010-10-13 三洋電機株式会社 Absorption refrigerator
JP4557468B2 (en) * 2001-08-07 2010-10-06 三洋電機株式会社 Absorption refrigerator
JP2003056934A (en) * 2001-08-07 2003-02-26 Sanyo Electric Co Ltd Absorption refrigerating machine
EP1286121A3 (en) * 2001-08-09 2004-09-08 Ebara Corporation Absorption chiller-heater and generator for use in such absorption chiller-heater
CN100380069C (en) * 2002-09-27 2008-04-09 株式会社荏原制作所 Absorption refrigerator
WO2004029524A1 (en) * 2002-09-27 2004-04-08 Ebara Corporation Absorption refrigerator
US7225634B2 (en) 2002-09-27 2007-06-05 Ebara Corporation Absorption refrigerating machine
JP2010007903A (en) * 2008-06-25 2010-01-14 Ebara Refrigeration Equipment & Systems Co Ltd Heat pump and internal inspection method therefor
KR20180051566A (en) * 2016-09-23 2018-05-16 히타치 존슨 컨트롤즈 쿠쵸 가부시키가이샤 Absorption chiller
KR102017436B1 (en) * 2016-09-23 2019-10-14 히타치 존슨 컨트롤즈 쿠쵸 가부시키가이샤 Absorption Chiller
KR20190089997A (en) * 2017-02-16 2019-07-31 히타치 존슨 컨트롤즈 쿠쵸 가부시키가이샤 Absorption chiller
KR102206209B1 (en) * 2017-02-16 2021-01-22 히타치 존슨 컨트롤즈 쿠쵸 가부시키가이샤 Absorption chiller

Also Published As

Publication number Publication date
JP3824436B2 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
JP2000171119A (en) Triple-effect absorption refrigerating machine
US4546620A (en) Absorption machine with desorber-resorber
JP2897587B2 (en) Absorption refrigerator
JP4056028B2 (en) Triple effect absorption refrigerator
US5467614A (en) Dual-circuit, multiple-effect refrigeration system and method
JP2000154946A (en) Triple effect absorption refrigeration machine
JP3591324B2 (en) Absorption refrigerator
JPH03152362A (en) Absorption refrigerator
KR101906042B1 (en) Absorption heat pump with multi-generator
JPH11237137A (en) Absorption refrigerator
JP2520946B2 (en) Air-cooled absorption refrigerator
JP3948814B2 (en) Multi-effect absorption refrigerator
JP2959210B2 (en) Absorption refrigerator
KR100234062B1 (en) Ammonia absorber cycle
JP3948815B2 (en) Multi-effect absorption refrigerator
JP2003121021A (en) Double effect absorption refrigerating machine
US3389572A (en) Multiple-effect absorption refrigeration systems
JP2628023B2 (en) Absorption refrigerator
JP4557468B2 (en) Absorption refrigerator
JPS6122225B2 (en)
JP2000018753A (en) Absorption refrigerating machine
JP3486382B2 (en) Absorption refrigerator
JPH09229510A (en) Absorption refrigenerating machine
JP2520945B2 (en) Air-cooled absorption refrigerator
JP2000074521A (en) Absorption refrigerating machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term