JP2010007903A - Heat pump and internal inspection method therefor - Google Patents

Heat pump and internal inspection method therefor Download PDF

Info

Publication number
JP2010007903A
JP2010007903A JP2008165222A JP2008165222A JP2010007903A JP 2010007903 A JP2010007903 A JP 2010007903A JP 2008165222 A JP2008165222 A JP 2008165222A JP 2008165222 A JP2008165222 A JP 2008165222A JP 2010007903 A JP2010007903 A JP 2010007903A
Authority
JP
Japan
Prior art keywords
endoscope
heat pump
passage
endoscope insertion
insertion portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008165222A
Other languages
Japanese (ja)
Other versions
JP5165473B2 (en
Inventor
Osayuki Inoue
修行 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Refrigeration Equipment and Systems Co Ltd
Original Assignee
Ebara Refrigeration Equipment and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Refrigeration Equipment and Systems Co Ltd filed Critical Ebara Refrigeration Equipment and Systems Co Ltd
Priority to JP2008165222A priority Critical patent/JP5165473B2/en
Publication of JP2010007903A publication Critical patent/JP2010007903A/en
Application granted granted Critical
Publication of JP5165473B2 publication Critical patent/JP5165473B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump having a structure inspecting inside of can barrels in a wide range and preventing corrosion of the can barrels due to the atmosphere, and an internal inspection method of the heat pump. <P>SOLUTION: The heat pump is provided with the plurality of can barrels 50 forming an absorber, an evaporator, a regenerator and a condenser, respectively; a nitrogen gas introduction part 51 communicated with the plurality of can barrels 50; an endoscope insertion part 55 mounted to any of the plurality of can barrels 50 and having a passage 55a communicated with the can barrel 50; a fitting member 60 having a throughhole 65 communicated with the passage 55a of the endoscope insertion part 55; and a valve 56 provided on the passage 55a of the endoscope insertion part 55. The through-hole 55 has a diameter slightly larger than the outer diameter of an endoscope 59. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ヒートポンプおよびその内部点検方法に関し、特に吸収器や再生器などを形成する圧力容器(缶胴)の内部点検に適した構成を有する吸収ヒートポンプおよびその内部点検方法に関する。   The present invention relates to a heat pump and an internal inspection method thereof, and more particularly to an absorption heat pump having a configuration suitable for internal inspection of a pressure vessel (can body) forming an absorber, a regenerator, and the like and an internal inspection method thereof.

LiBr(臭化リチウム)などの塩類水溶液を吸収剤とする吸収冷凍機および吸収ヒートポンプ(以下、これらを総称して吸収ヒートポンプという)は、一般に、吸収器、蒸発器、再生器、および凝縮器を主構成機器として備えている。吸収器や再生器を形成する缶胴(シェル)と呼ばれる密閉容器には、内部点検用の点検ホールが設けられており、点検員はこの点検ホールを通じて目視により缶胴の内部を点検し、内部が腐食していないかどうかを調べる。   Absorption refrigerators and absorption heat pumps (hereinafter collectively referred to as absorption heat pumps) using an aqueous salt solution such as LiBr (lithium bromide) as an absorbent generally include an absorber, an evaporator, a regenerator, and a condenser. It is provided as a main component device. An airtight container called a shell (shell) that forms an absorber or regenerator has an inspection hole for internal inspection, and the inspector visually inspects the inside of the can body through this inspection hole. Check for corrosion.

しかしながら、缶胴のサイズに比べて、点検ホールは小さいため、缶胴の内部を十分に点検することは難しい。例えば、蒸発器容量が100〜2000冷凍トンの吸収ヒートポンプの場合、缶胴の直径は数百mmから数千mmであり、またその長さは数千mmになる。これに対し、点検ホールの直径は約500mmである。このため、点検ホールを通じて直接肉眼で点検できる範囲は限られ、検査できない範囲が多く残る。さらに、点検中に、大気が缶胴に侵入して、内部金属の腐食進行が懸念される。   However, since the inspection hole is smaller than the size of the can body, it is difficult to sufficiently inspect the inside of the can body. For example, in the case of an absorption heat pump having an evaporator capacity of 100 to 2000 refrigeration tons, the diameter of the can body is several hundred mm to several thousand mm, and its length is several thousand mm. On the other hand, the diameter of the inspection hole is about 500 mm. For this reason, the range that can be directly inspected with the naked eye through the inspection hall is limited, and many areas that cannot be inspected remain. Furthermore, during the inspection, there is a concern that air enters the can body and the corrosion of the internal metal progresses.

特開2006−112686号公報JP 2006-112686 A 特開2000−171119号公報JP 2000-171119 A

本発明は上述した従来の問題点に鑑みてなされたもので、缶胴の内部を広範囲で点検することができ、さらに大気による缶胴の腐食を防ぐことができる構造を有するヒートポンプおよびその内部点検方法を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and it is possible to inspect the interior of the can body over a wide range, and further to prevent corrosion of the can body due to the atmosphere, and the internal inspection thereof. It aims to provide a method.

上述した目的を達成するために、本発明の一態様は、吸収器、蒸発器、再生器、および凝縮器をそれぞれ形成する複数の缶胴と、前記複数の缶胴に連通する窒素ガス導入部と、前記複数の缶胴のいずれかに取り付けられ、該缶胴に連通する通路を有する内視鏡挿入部と、前記内視鏡挿入部の前記通路に連通する貫通孔を有するフィッティング部材と、前記内視鏡挿入部の前記通路に設けられた弁とを備え、前記貫通孔は、内視鏡の外径よりもやや大きい径を有することを特徴とするヒートポンプである。   In order to achieve the above-described object, one aspect of the present invention includes a plurality of can bodies that respectively form an absorber, an evaporator, a regenerator, and a condenser, and a nitrogen gas introduction unit that communicates with the plurality of can bodies. An endoscope insertion portion attached to one of the plurality of can bodies and having a passage communicating with the can body; and a fitting member having a through hole communicating with the passage of the endoscope insertion portion; And a valve provided in the passage of the endoscope insertion portion, wherein the through hole has a diameter slightly larger than an outer diameter of the endoscope.

本発明の好ましい態様は、前記フィッティング部材は、前記内視鏡挿入部に着脱可能に取り付けられることを特徴とする。
本発明の好ましい態様は、前記内視鏡をガイドするガイド部材を、前記内視鏡挿入部が取り付けられた前記缶胴の内部に設けたことを特徴とする。
In a preferred aspect of the present invention, the fitting member is detachably attached to the endoscope insertion portion.
In a preferred aspect of the present invention, a guide member for guiding the endoscope is provided inside the can body to which the endoscope insertion portion is attached.

本発明の他の態様は、ヒートポンプの缶胴に窒素ガスを供給して前記缶胴を窒素ガスで満たし、内視鏡の外径よりもやや大きい径の貫通孔に前記内視鏡を挿入し、前記貫通孔と前記缶胴とを繋ぐ通路に設けられた弁を開き、前記弁および前記通路を通じて前記内視鏡を前記缶胴内に挿入する工程を含み、前記弁を開いている間、該缶胴を満たす窒素ガスの圧力を周囲雰囲気の圧力よりも高い圧力に維持することを特徴とするヒートポンプの内部点検方法である。   In another aspect of the present invention, nitrogen gas is supplied to the can body of the heat pump to fill the can body with nitrogen gas, and the endoscope is inserted into a through hole having a diameter slightly larger than the outer diameter of the endoscope. And opening a valve provided in a passage connecting the through hole and the can body, and inserting the endoscope into the can body through the valve and the passage, and while opening the valve, An internal inspection method for a heat pump, characterized in that the pressure of nitrogen gas filling the can body is maintained at a pressure higher than that of the surrounding atmosphere.

本発明によれば、点検員は内視鏡を用いて缶胴内部の広い範囲を点検することができる。さらに、点検作業は、缶胴の内部を窒素ガスで満たしながら行われるので、大気が缶胴内部に侵入することがない。したがって、大気との接触を原因とする缶胴の腐食を防止することができる。   According to the present invention, the inspector can inspect a wide range inside the can body using the endoscope. Furthermore, since the inspection work is performed while filling the inside of the can body with nitrogen gas, the atmosphere does not enter the inside of the can body. Therefore, corrosion of the can body caused by contact with the atmosphere can be prevented.

以下、本発明の実施形態について説明する。図1は、本発明の一実施形態に係る二段昇温型吸収ヒートポンプの構成例を示す図である。図1に示すように、二段昇温型吸収ヒートポンプは主要構成機器として、高温吸収器AH、低温吸収器A、高温蒸発器EH、低温蒸発器E、再生器G、凝縮器C、高温溶液熱交換器X2、低温溶液熱交換器X1を具備している。   Hereinafter, embodiments of the present invention will be described. FIG. 1 is a diagram illustrating a configuration example of a two-stage temperature rising type absorption heat pump according to an embodiment of the present invention. As shown in FIG. 1, the two-stage temperature rising type absorption heat pump is composed mainly of a high temperature absorber AH, a low temperature absorber A, a high temperature evaporator EH, a low temperature evaporator E, a regenerator G, a condenser C, and a high temperature solution. A heat exchanger X2 and a low temperature solution heat exchanger X1 are provided.

再生器Gの濃溶液は溶液ポンプ1により濃溶液管2、低温溶液熱交換器X1の被加熱側、高温溶液熱交換器X2の被加熱側を通って高温吸収器AHに導入されるようになっている。凝縮器Cの凝縮冷媒液は冷媒ポンプ3により、冷媒管4、制御弁5を通って低温蒸発器Eに、冷媒管4及び制御弁6を通って高温蒸発器EHSに導入されるようになっている。低温蒸発器Eで発生した冷媒蒸気は流路7を通って低温吸収器Aに導入され、高温蒸発器EHSで発生した冷媒蒸気は流路8を通って高温吸収器AHに導入されるようになっている。   The concentrated solution of the regenerator G is introduced into the high temperature absorber AH by the solution pump 1 through the concentrated solution tube 2, the heated side of the low temperature solution heat exchanger X1, and the heated side of the high temperature solution heat exchanger X2. It has become. The condensed refrigerant liquid in the condenser C is introduced by the refrigerant pump 3 through the refrigerant pipe 4 and the control valve 5 into the low temperature evaporator E, and through the refrigerant pipe 4 and the control valve 6 into the high temperature evaporator EHS. ing. The refrigerant vapor generated in the low temperature evaporator E is introduced into the low temperature absorber A through the flow path 7, and the refrigerant vapor generated in the high temperature evaporator EHS is introduced into the high temperature absorber AH through the flow path 8. It has become.

高温吸収器AH内にスプレイ9が配置され、濃溶液管2により導入される濃溶液は該スプレイ9から高温吸収器AH内に散布され、上記高温蒸発器EHSからの冷媒蒸気を吸収して吸収熱を発すると共に、該濃縮液は中濃度の中濃度溶液となり、中濃度溶液管10、高温溶液熱交換器X2の加熱側を通って濃溶液管2を通る濃溶液を加熱し、逆止弁11及び制御弁12を通って低温吸収器Aに導入される。該導入された中間濃度溶液と分岐管26で分岐されて導入される濃溶液とは、混合して低温吸収器A内に配設されたスプレイ13から散布され、低温蒸発器Eからの冷媒蒸気を吸収して吸収熱を発すると共に、希溶液となる。   The spray 9 is disposed in the high temperature absorber AH, and the concentrated solution introduced by the concentrated solution tube 2 is sprayed from the spray 9 into the high temperature absorber AH and absorbs and absorbs the refrigerant vapor from the high temperature evaporator EHS. At the same time as the heat is generated, the concentrated solution becomes a medium concentration solution, and the concentrated solution passing through the concentrated solution tube 2 through the medium concentration solution tube 10 and the heating side of the high temperature solution heat exchanger X2 is heated. 11 and the control valve 12 are introduced into the cold absorber A. The introduced intermediate concentration solution and the concentrated solution branched and introduced by the branch pipe 26 are mixed and sprayed from the spray 13 disposed in the low temperature absorber A, and the refrigerant vapor from the low temperature evaporator E is mixed. It absorbs and emits heat of absorption, and becomes a dilute solution.

上記低温吸収器A内の希溶液は希溶液配管14、低温溶液熱交換器X1の加熱側を通って再生器G内に導入され、再生器G内に配設されたスプレイ15から該再生器G内に配置された温水管16上に散布される。該散布された希溶液は温水管16に供給される温水203により加熱され、冷媒蒸気が発生すると共に濃縮され濃溶液となる。該発生した冷媒蒸気は流路17を通って凝縮器Cに導入され、該凝縮器C内に配設された冷水管18を通る冷却水204に冷却されて凝縮し凝縮冷媒液となる。   The dilute solution in the low temperature absorber A is introduced into the regenerator G through the dilute solution pipe 14 and the heating side of the low temperature solution heat exchanger X1, and the regenerator is supplied from the spray 15 provided in the regenerator G. It is spread | dispersed on the hot water pipe | tube 16 arrange | positioned in G. The sprayed dilute solution is heated by the hot water 203 supplied to the hot water pipe 16, and refrigerant vapor is generated and concentrated to become a concentrated solution. The generated refrigerant vapor is introduced into the condenser C through the flow path 17 and is cooled and condensed by the cooling water 204 passing through the cold water pipe 18 disposed in the condenser C to be a condensed refrigerant liquid.

低温吸収器A及び高温蒸発器EHSのそれぞれの内部には熱交換用管20,21が配設され、該熱交換用管20,21は作動媒体搬送管19,19に接続されており、循環ポンプ22により作動媒体が熱交換用管20,21を循環するようになっている。この作動媒体の循環により、低温吸収器Aで発生した熱を高温蒸発器EHSに送るようになっている。高温蒸発器EHS内にはスプレイ23が配設され、該スプレイ23に上記制御弁6を通って導入される冷媒液が供給され循環するようになっている。また、スプレイ23には冷媒ポンプ24により高温蒸発器EHS内の冷媒液も供給されるようになっている。該スプレイ23から熱交換用管21上に冷媒液を散布することにより、該冷媒液は熱交換用管21を循環する作動媒体により加熱され蒸発し、該蒸発した冷媒蒸気は上記のように流路8を通って高温吸収器AHに導入される。   Inside each of the low temperature absorber A and the high temperature evaporator EHS, heat exchange pipes 20 and 21 are arranged, and the heat exchange pipes 20 and 21 are connected to the working medium transport pipes 19 and 19 for circulation. The working medium circulates through the heat exchange pipes 20 and 21 by the pump 22. Due to the circulation of the working medium, the heat generated in the low temperature absorber A is sent to the high temperature evaporator EHS. A spray 23 is disposed in the high-temperature evaporator EHS, and a refrigerant liquid introduced through the control valve 6 is supplied to the spray 23 and circulated. Further, the refrigerant liquid in the high-temperature evaporator EHS is also supplied to the spray 23 by the refrigerant pump 24. By spraying the refrigerant liquid from the spray 23 onto the heat exchanging pipe 21, the refrigerant liquid is heated and evaporated by the working medium circulating in the heat exchanging pipe 21, and the evaporated refrigerant vapor flows as described above. It is introduced into the high-temperature absorber AH through the path 8.

また、低温蒸発器E内には温水管25が配設され、該温水管に供給される温水により、低温蒸発器E内の冷媒液は加熱され、発生した冷媒蒸気は上記のように低温吸収器Aに導入される。また、濃溶液管2を通って送られる濃溶液は低温溶液熱交換器X1の被加熱側を通って加熱された後、分岐管26で一部が分岐され低温吸収器Aに導入されるようになっている。また、この導入される濃溶液の流量はオリフィス27で制限されるようになっている。   Further, a hot water pipe 25 is disposed in the low temperature evaporator E, the refrigerant liquid in the low temperature evaporator E is heated by the hot water supplied to the hot water pipe, and the generated refrigerant vapor is absorbed at a low temperature as described above. Introduced into vessel A. Further, the concentrated solution sent through the concentrated solution pipe 2 is heated through the heated side of the low temperature solution heat exchanger X1, and then partially branched by the branch pipe 26 and introduced into the low temperature absorber A. It has become. The flow rate of the concentrated solution to be introduced is restricted by the orifice 27.

高温吸収器AHにはその液面レベルを検出する液面センサ28が設けられており、該液面センサ28の検出信号がインバータ29に入力され、溶液ポンプ1の回転速度を制御できるようになっている。また、低温吸収器Aにはその出口液面レベルを検出する液面センサ30が設けられ、該液面センサ30の検出信号が制御弁12に入力されその開度を制御できるようになっている。また、低温蒸発器Eにはその液面レベルを検出する液面センサ31が設けられ、該液面センサ31の検出信号が制御弁5に入力されその開度を制御できるようになっている。また、高温蒸発器EHSにはその液面レベルを検出する液面センサ32が設けられ、該液面センサ32の検出信号が制御弁6に入力されその開度を制御できるようになっている。   The high temperature absorber AH is provided with a liquid level sensor 28 for detecting the liquid level, and a detection signal of the liquid level sensor 28 is input to the inverter 29 so that the rotational speed of the solution pump 1 can be controlled. ing. Further, the low-temperature absorber A is provided with a liquid level sensor 30 for detecting the outlet liquid level, and a detection signal of the liquid level sensor 30 is input to the control valve 12 so that the opening degree can be controlled. . Further, the low-temperature evaporator E is provided with a liquid level sensor 31 for detecting the liquid level, and a detection signal of the liquid level sensor 31 is input to the control valve 5 so that the opening degree can be controlled. Further, the high temperature evaporator EHS is provided with a liquid level sensor 32 for detecting the liquid level, and a detection signal of the liquid level sensor 32 is inputted to the control valve 6 so that the opening degree thereof can be controlled.

高温吸収器AH内には被加熱媒体として水を供給する配管33が配設され、該配管33にポンプ34により気液分離器35から水が供給され加熱され、発生した蒸気は配管36を通って気液分離器35に導かれ、水蒸気201が蒸気排出管37から蒸気の利用先に供給される。また、気液分離器35には給水ポンプ38により給水管39を通して加熱媒体としての水202が供給されるようになっている。該給水管39を通る水202は熱交換器40で温水管41を通る温水203で加熱され、熱交換器42で希溶液配管14を通る希溶液で加熱されて、気液分離器35に導入されるようになっている。気液分離器35には液面レベルを検出する液面センサ43が設けられ、検出信号が例えばインバータ(図示せず)駆動される給水ポンプ38のインバータに入力されポンプ回転速度を制御できるようになっている。   A pipe 33 for supplying water as a medium to be heated is disposed in the high-temperature absorber AH. Water is supplied from the gas-liquid separator 35 to the pipe 33 by the pump 34 and heated, and the generated steam passes through the pipe 36. Then, it is guided to the gas-liquid separator 35 and the steam 201 is supplied from the steam discharge pipe 37 to the steam usage destination. The gas-liquid separator 35 is supplied with water 202 as a heating medium through a water supply pipe 39 by a water supply pump 38. Water 202 passing through the water supply pipe 39 is heated by the heat exchanger 40 with hot water 203 passing through the hot water pipe 41, heated by the dilute solution passing through the dilute solution pipe 14 by the heat exchanger 42, and introduced into the gas-liquid separator 35. It has come to be. The gas-liquid separator 35 is provided with a liquid level sensor 43 for detecting the liquid level, and the detection signal is input to an inverter of a feed water pump 38 driven by an inverter (not shown), for example, so that the pump rotation speed can be controlled. It has become.

上記構成の二段昇温型吸収ヒートポンプにおいて、再生器Gの温水管16と低温蒸発器Eの温水管25に熱源としての温水203を供給し、凝縮器Cの冷水管に冷却水204を供給することで、高温吸収器AHの被加熱側で熱源の温水よりも高温の蒸気を得ることができる。   In the two-stage temperature rising absorption heat pump configured as described above, hot water 203 as a heat source is supplied to the hot water pipe 16 of the regenerator G and the hot water pipe 25 of the low temperature evaporator E, and cooling water 204 is supplied to the cold water pipe of the condenser C. Thus, steam having a temperature higher than that of the hot water of the heat source can be obtained on the heated side of the high-temperature absorber AH.

次に、高温吸収器AHや高温蒸発器EHSなどを形成する缶胴の内部を点検するための機構について説明する。図2は二段昇温型吸収ヒートポンプの缶胴を点検するための機構を説明する模式図である。図2において、符号50は、高温吸収器AHや高温蒸発器EHSなどを形成する金属製の缶胴(密閉容器)を表している。図2に示すように、缶胴50には、その内部空間に連通する窒素ガス導入部51が取り付けられている。この窒素ガス導入部51の通路は弁52によって開閉自在となっている。缶胴50の点検時には、窒素ガス導入部51は窒素ガス供給源53に接続される。   Next, a mechanism for checking the inside of the can body forming the high temperature absorber AH, the high temperature evaporator EHS, and the like will be described. FIG. 2 is a schematic diagram illustrating a mechanism for inspecting the can body of the two-stage temperature rising type absorption heat pump. In FIG. 2, the code | symbol 50 represents the metal can body (sealed container) which forms the high temperature absorber AH, the high temperature evaporator EHS, etc. FIG. As shown in FIG. 2, the can body 50 is attached with a nitrogen gas introducing portion 51 communicating with the internal space. The passage of the nitrogen gas introduction part 51 can be freely opened and closed by a valve 52. When inspecting the can body 50, the nitrogen gas introduction part 51 is connected to the nitrogen gas supply source 53.

缶胴50には内視鏡挿入部55がさらに取り付けられている。図3は内視鏡挿入部55を示す拡大断面図である。図3に示すように、内視鏡挿入部55は、缶胴50に連通する通路55aを有している。この通路55aにはボール弁56が配置されており、ボール弁56を回転させることにより、通路55aが開閉されるようになっている。内視鏡挿入部55の開口端部(通路55aの端部)は、蓋57によって閉じられている。この蓋57は、ヒートポンプの運転中にボール弁56の誤操作などによって缶胴50の内部の高圧蒸気が外部に漏れてしまうことを防ぐために設けられている。このように、ボール弁56と蓋57とにより二重の閉止構造が構成されている。   An endoscope insertion portion 55 is further attached to the can body 50. FIG. 3 is an enlarged cross-sectional view showing the endoscope insertion portion 55. As shown in FIG. 3, the endoscope insertion portion 55 has a passage 55 a that communicates with the can body 50. A ball valve 56 is disposed in the passage 55a, and the passage 55a is opened and closed by rotating the ball valve 56. The opening end portion (end portion of the passage 55 a) of the endoscope insertion portion 55 is closed by a lid 57. The lid 57 is provided to prevent high-pressure steam inside the can body 50 from leaking to the outside due to an erroneous operation of the ball valve 56 or the like during operation of the heat pump. Thus, the ball valve 56 and the lid 57 constitute a double closing structure.

蓋57は内視鏡挿入部55に着脱可能に取り付けられており、缶胴50の点検時には蓋57が内視鏡挿入部55から取り外される。そして、蓋57に代えて、以下に示すフィッティング部材60が内視鏡挿入部55の開口端部に取り付けられる。   The lid 57 is detachably attached to the endoscope insertion portion 55, and the lid 57 is removed from the endoscope insertion portion 55 when the can body 50 is inspected. Then, instead of the lid 57, a fitting member 60 shown below is attached to the opening end of the endoscope insertion portion 55.

図4(a)は、内視鏡挿入部55にフィッティング部材60を取り付けた状態を示す拡大断面図であり、図4(b)は図4(a)に示す矢印IV方向から見たフィッティング部材60を示す図である。なお、図4(a)はボール弁56を開いた状態を示している。
フィッティング部材60は、内視鏡挿入部55の開口端部に取り付けられる。より具体的には、フィッティング部材60の端部は、内視鏡挿入部55の開口端部に螺合しており、フィッティング部材60と内視鏡挿入部55とは気密に連結されている。フィッティング部材60は、フランジ状の一対の支持部材61と、これらの支持部材61の間に挟まれたリング部材62とを備えている。リング部材62は、内視鏡挿入部55の通路55aに連通する貫通孔65を有している。この貫通孔65は、内視鏡59の外径よりもやや大きい径を有しており、貫通孔65に内視鏡59が挿入されるようになっている。
4A is an enlarged cross-sectional view showing a state where the fitting member 60 is attached to the endoscope insertion portion 55, and FIG. 4B is a fitting member viewed from the direction of the arrow IV shown in FIG. 4A. FIG. FIG. 4A shows a state where the ball valve 56 is opened.
The fitting member 60 is attached to the opening end portion of the endoscope insertion portion 55. More specifically, the end of the fitting member 60 is screwed into the opening end of the endoscope insertion portion 55, and the fitting member 60 and the endoscope insertion portion 55 are connected in an airtight manner. The fitting member 60 includes a pair of flange-shaped support members 61 and a ring member 62 sandwiched between the support members 61. The ring member 62 has a through hole 65 that communicates with the passage 55 a of the endoscope insertion portion 55. The through hole 65 has a diameter slightly larger than the outer diameter of the endoscope 59, and the endoscope 59 is inserted into the through hole 65.

リング部材62は樹脂から形成されている。内視鏡59がその長手方向に移動しやすいように、リング部材62の内周面は半円形の断面を有している。さらに内視鏡59が移動しやすいように、リング部材62の少なくとも内周面をテフロン(登録商標)で被覆することが好ましい。貫通孔65の直径は、使用される内視鏡59のサイズに応じて決定される。異なるサイズの内視鏡に対応できるように、異なる直径の貫通孔を有する複数のフィッティング部材を用意してもよい。使用される内視鏡としては、工業用のファイバースコープなどの市販の内視鏡が挙げられる。   The ring member 62 is made of resin. The inner peripheral surface of the ring member 62 has a semicircular cross section so that the endoscope 59 can easily move in the longitudinal direction. Furthermore, it is preferable to cover at least the inner peripheral surface of the ring member 62 with Teflon (registered trademark) so that the endoscope 59 can easily move. The diameter of the through hole 65 is determined according to the size of the endoscope 59 used. A plurality of fitting members having through holes with different diameters may be prepared so as to be compatible with endoscopes of different sizes. Examples of endoscopes used include commercially available endoscopes such as industrial fiberscopes.

点検時には、ボール弁56を操作して内視鏡挿入部55の通路55aが開かれ、ボール弁56の開口部および通路55aを通じて、内視鏡59が缶胴50内に挿入される。通路55aに配置される弁としては、内視鏡59が移動しやすいように、弁を開いたときに直線状の開口部が形成されるような弁であることが好ましい。さらに、弁を閉じたときに、高圧の蒸気の漏れを確実に防ぐことができるものであることが好ましい。このような観点から、ボール弁が好ましく使用される。使用可能な他の弁としては、ゲート弁が挙げられる。   At the time of inspection, the ball valve 56 is operated to open the passage 55a of the endoscope insertion portion 55, and the endoscope 59 is inserted into the can body 50 through the opening of the ball valve 56 and the passage 55a. The valve disposed in the passage 55a is preferably a valve that forms a linear opening when the valve is opened so that the endoscope 59 can easily move. Furthermore, it is preferable that the high-pressure steam can be reliably prevented from leaking when the valve is closed. From such a viewpoint, a ball valve is preferably used. Other valves that can be used include gate valves.

フィッティング部材の他の例としては、図5に示すような、スリーブ状のフィッティング部材60が挙げられる。この例においても、フィッティング部材60の端部は、内視鏡挿入部55の開口端部に螺合しており、フィッティング部材60と内視鏡挿入部55とは気密に連結されている。フィッティング部材60には、同様に、内視鏡挿入部55の通路55aに連通する貫通孔65が形成されており、貫通孔65の直径は内視鏡59の外径よりもやや大きい。   Another example of the fitting member is a sleeve-like fitting member 60 as shown in FIG. Also in this example, the end of the fitting member 60 is screwed into the opening end of the endoscope insertion portion 55, and the fitting member 60 and the endoscope insertion portion 55 are connected in an airtight manner. Similarly, the fitting member 60 has a through hole 65 communicating with the passage 55 a of the endoscope insertion portion 55, and the diameter of the through hole 65 is slightly larger than the outer diameter of the endoscope 59.

次に、缶胴50の内部を点検する方法について説明する。まず、窒素ガス導入部51を窒素ガス供給源53に接続し、弁52を開き、窒素ガスを窒素ガス供給源53から缶胴50に供給する。窒素ガスの供給圧力は、周囲雰囲気の圧力よりも高く設定される。次いで、蓋57を外し、フィッティング部材60を内視鏡挿入部55に取り付ける。内視鏡59をフィッティング部材60の貫通孔65に挿入し、その状態でボール弁56を開く。そして、内視鏡59をボール弁56および通路55aを通じて缶胴50の内部に挿入し、缶胴50の内部を内視鏡59を用いて点検する。   Next, a method for inspecting the inside of the can body 50 will be described. First, the nitrogen gas introduction part 51 is connected to the nitrogen gas supply source 53, the valve 52 is opened, and nitrogen gas is supplied from the nitrogen gas supply source 53 to the can body 50. The supply pressure of nitrogen gas is set higher than the pressure of the surrounding atmosphere. Next, the lid 57 is removed, and the fitting member 60 is attached to the endoscope insertion portion 55. The endoscope 59 is inserted into the through hole 65 of the fitting member 60, and the ball valve 56 is opened in this state. Then, the endoscope 59 is inserted into the can body 50 through the ball valve 56 and the passage 55 a, and the inside of the can body 50 is inspected using the endoscope 59.

ボール弁56を開いている間、缶胴50の内部圧力は周囲雰囲気の圧力(一般には大気圧)よりも高く維持される。これにより、缶胴50の内部を満たしている窒素は、フィッティング部材60の貫通孔65と内視鏡59との間の微小な隙間から外部に漏れる。この漏洩する窒素ガスは周囲の空気が缶胴50内へ侵入することを防ぎ、これにより缶胴50の内部の腐食が防止される。   While the ball valve 56 is open, the internal pressure of the can body 50 is maintained higher than the ambient pressure (generally atmospheric pressure). Thereby, the nitrogen filling the inside of the can body 50 leaks to the outside through a minute gap between the through hole 65 of the fitting member 60 and the endoscope 59. This leaking nitrogen gas prevents ambient air from entering the can body 50, thereby preventing corrosion inside the can body 50.

缶胴50内を内視鏡59がスムーズに進行できるように、缶胴50の内部にガイド部材を設けてもよい。例えば、図6(a)及び図6(b)に示すように、フック状の複数のガイド部材67を缶胴50の内面に取り付けることができる。これらの複数のガイド部材67は、内視鏡59の視界を遮らないように、ある程度の間隔で配置される。このようなガイド部材67を缶胴50の内部に配置することにより、内視鏡59を缶胴50の所望の位置まで送り込むことができる。   A guide member may be provided inside the can body 50 so that the endoscope 59 can proceed smoothly in the can body 50. For example, as shown in FIGS. 6A and 6B, a plurality of hook-shaped guide members 67 can be attached to the inner surface of the can body 50. The plurality of guide members 67 are arranged at a certain interval so as not to obstruct the field of view of the endoscope 59. By arranging such a guide member 67 inside the can body 50, the endoscope 59 can be sent to a desired position of the can body 50.

缶胴50の点検が終了した後は、内視鏡59を缶胴50から引き抜き、ボール弁56を閉じる。次いで、窒素ガスの供給を停止する。そして、フィッティング部材60を内視鏡挿入部55から取り外し、さらに内視鏡挿入部55の開口端部に蓋57を取り付ける。点検作業の直後は、缶胴50の内部には窒素ガスが充填されているので、ヒートポンプの運転を開始する前に、真空ポンプなどを缶胴50に接続して、窒素ガスを缶胴50から排気する。   After the inspection of the can body 50 is completed, the endoscope 59 is pulled out from the can body 50 and the ball valve 56 is closed. Next, the supply of nitrogen gas is stopped. Then, the fitting member 60 is removed from the endoscope insertion portion 55, and a lid 57 is attached to the opening end portion of the endoscope insertion portion 55. Immediately after the inspection work, since the inside of the can body 50 is filled with nitrogen gas, before starting the operation of the heat pump, a vacuum pump or the like is connected to the can body 50 and the nitrogen gas is removed from the can body 50. Exhaust.

内視鏡挿入部55は1つの缶胴当たり複数設けることができる。また、複数の缶胴50にそれぞれ内視鏡挿入部55を設けてもよい。この場合でも、窒素ガス導入部51は1つでよい。これは、複数の缶胴50は配管を通じて互いに連通しているからである。点検の対象となる缶胴としては、図1に示す二段昇温型吸収ヒートポンプでは、運転中に高圧となる高温吸収器AHや高温蒸発器EHSの缶胴が選択される。一方、高温再生器、中温再生器、低温再生器、凝縮器、吸収器、蒸発器を主要構成機器として備えた三重効用吸収冷凍機(特許文献1参照)では、点検の対象となる缶胴としては、高圧となる高温再生器が選択される。このように、本実施形態は、様々なタイプのヒートポンプに適用することができる。   A plurality of endoscope insertion portions 55 can be provided per can body. Moreover, you may provide the endoscope insertion part 55 in each of the some can body 50. FIG. Even in this case, only one nitrogen gas introducing portion 51 is required. This is because the plurality of can bodies 50 communicate with each other through piping. As the can body to be inspected, in the two-stage temperature rising type absorption heat pump shown in FIG. 1, the can body of the high temperature absorber AH or the high temperature evaporator EHS that becomes high pressure during operation is selected. On the other hand, in a triple effect absorption refrigerator having a high temperature regenerator, a medium temperature regenerator, a low temperature regenerator, a condenser, an absorber, and an evaporator as main components (see Patent Document 1), as a can body to be inspected A high temperature regenerator with high pressure is selected. Thus, this embodiment can be applied to various types of heat pumps.

上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうることである。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲とすべきである。   The embodiment described above is described for the purpose of enabling the person having ordinary knowledge in the technical field to which the present invention belongs to implement the present invention. Various modifications of the above embodiment can be naturally made by those skilled in the art, and the technical idea of the present invention can be applied to other embodiments. Therefore, the present invention should not be limited to the described embodiments, but should be the widest scope according to the technical idea defined by the claims.

本発明の一実施形態に係る二段昇温型吸収ヒートポンプの構成例を示す図である。It is a figure which shows the structural example of the two-stage temperature rising type absorption heat pump which concerns on one Embodiment of this invention. 二段昇温型吸収ヒートポンプの缶胴を点検するための機構を説明する模式図である。It is a schematic diagram explaining the mechanism for inspecting the can body of a two-step temperature rising type absorption heat pump. 内視鏡挿入部を示す拡大断面図である。It is an expanded sectional view showing an endoscope insertion part. 図4(a)は、内視鏡挿入部にフィッティング部材を取り付けた状態を示す拡大断面図であり、図4(b)は図4(a)に示す矢印IV方向から見たフィッティング部材を示す図である。4A is an enlarged cross-sectional view showing a state where the fitting member is attached to the endoscope insertion portion, and FIG. 4B shows the fitting member viewed from the direction of arrow IV shown in FIG. FIG. フィッティング部材の他の例を示す断面図である。It is sectional drawing which shows the other example of a fitting member. 図6(a)は、複数のガイド部材を缶胴の内面に取り付けた例を示す図であり、図6(b)はガイド部材を矢印VI方向から見た図である。FIG. 6A is a view showing an example in which a plurality of guide members are attached to the inner surface of the can body, and FIG. 6B is a view of the guide members as seen from the direction of the arrow VI.

符号の説明Explanation of symbols

AH 高温吸収器
A 低温吸収器
EH 高温蒸発器
E 低温蒸発器
G 再生器
C 凝縮器
X1 低温溶液熱交換器
X2 高温溶液熱交換器
1 溶液ポンプ
2 濃溶液管
3 冷媒ポンプ
4 冷媒管
5 制御弁
6 制御弁
7 流路
8 流路
9 スプレイ
10 中濃度溶液管
11 逆止弁
12 制御弁
13 スプレイ
14 希溶液配管
15 スプレイ
16 温水管
17 流路
18 冷水管
19 作動媒体搬送管
20 熱交換用管
21 熱交換用管
22 循環ポンプ
23 スプレイ
24 冷媒ポンプ
25 温水管
26 分岐管
27 オリフィス
28 液面センサ
29 インバータ
30 液面センサ
31 液面センサ
32 液面センサ
33 配管
34 ポンプ
35 気液分離器
36 配管
37 蒸気排出管
38 給水ポンプ
39 給水管
40 熱交換器
41 温水管
42 熱交換器
43 液面センサ
50 缶胴
51 窒素ガス導入部
52 弁
53 窒素ガス供給源
55 内視鏡挿入部
55a 通路
56 ボール弁
57 蓋
59 内視鏡
60 フィッティング部材
61 支持部材
62 リング部材
65 貫通孔
67 ガイド部材
AH High temperature absorber A Low temperature absorber EH High temperature evaporator E Low temperature evaporator G Regenerator C Condenser X1 Low temperature solution heat exchanger X2 High temperature solution heat exchanger 1 Solution pump 2 Concentrated solution tube 3 Refrigerant pump 4 Refrigerant tube
5 Control valve
6 control valve 7 flow path 8 flow path 9 spray 10 medium concentration solution pipe 11 check valve 12 control valve 13 spray 14 dilute solution pipe 15 spray 16 hot water pipe 17 flow path 18 cold water pipe 19 working medium transport pipe 20 heat exchange pipe 21 Heat exchange pipe 22 Circulation pump 23 Spray 24 Refrigerant pump 25 Hot water pipe 26 Branch pipe 27 Orifice 28 Liquid level sensor 29 Inverter 30 Liquid level sensor 31 Liquid level sensor 32 Liquid level sensor 33 Pipe 34 Pump 35 Gas-liquid separator 36 Pipe 37 Steam discharge pipe 38 Water supply pump 39 Water supply pipe 40 Heat exchanger 41 Hot water pipe 42 Heat exchanger 43 Liquid level sensor 50 Can body 51 Nitrogen gas introduction part 52 Valve 53 Nitrogen gas supply source 55 Endoscope insertion part 55a Passage 56 Ball Valve 57 Lid 59 Endoscope 60 Fitting member 61 Support member 62 Ring member 65 Through hole 67 Guide member

Claims (4)

吸収器、蒸発器、再生器、および凝縮器をそれぞれ形成する複数の缶胴と、
前記複数の缶胴に連通する窒素ガス導入部と、
前記複数の缶胴のいずれかに取り付けられ、該缶胴に連通する通路を有する内視鏡挿入部と、
前記内視鏡挿入部の前記通路に連通する貫通孔を有するフィッティング部材と、
前記内視鏡挿入部の前記通路に設けられた弁とを備え、
前記貫通孔は、内視鏡の外径よりもやや大きい径を有することを特徴とするヒートポンプ。
A plurality of can bodies, each forming an absorber, an evaporator, a regenerator, and a condenser;
A nitrogen gas introduction part communicating with the plurality of can bodies;
An endoscope insertion portion attached to any of the plurality of can bodies and having a passage communicating with the can body;
A fitting member having a through hole communicating with the passage of the endoscope insertion portion;
A valve provided in the passage of the endoscope insertion portion,
The heat pump according to claim 1, wherein the through hole has a diameter slightly larger than an outer diameter of the endoscope.
前記フィッティング部材は、前記内視鏡挿入部に着脱可能に取り付けられることを特徴とする請求項1に記載のヒートポンプ。   The heat pump according to claim 1, wherein the fitting member is detachably attached to the endoscope insertion portion. 前記内視鏡をガイドするガイド部材を、前記内視鏡挿入部が取り付けられた前記缶胴の内部に設けたことを特徴とする請求項1または2に記載のヒートポンプ。   The heat pump according to claim 1 or 2, wherein a guide member that guides the endoscope is provided inside the can body to which the endoscope insertion portion is attached. ヒートポンプの缶胴に窒素ガスを供給して前記缶胴を窒素ガスで満たし、
内視鏡の外径よりもやや大きい径の貫通孔に前記内視鏡を挿入し、
前記貫通孔と前記缶胴とを繋ぐ通路に設けられた弁を開き、
前記弁および前記通路を通じて前記内視鏡を前記缶胴内に挿入する工程を含み、
前記弁を開いている間、該缶胴を満たす窒素ガスの圧力を周囲雰囲気の圧力よりも高い圧力に維持することを特徴とするヒートポンプの内部点検方法。
Supplying nitrogen gas to the can body of the heat pump to fill the can body with nitrogen gas,
Insert the endoscope into a through hole having a diameter slightly larger than the outer diameter of the endoscope,
Open a valve provided in a passage connecting the through hole and the can body,
Inserting the endoscope into the can body through the valve and the passage,
An internal inspection method for a heat pump, wherein the pressure of nitrogen gas filling the can body is maintained at a pressure higher than the pressure of the ambient atmosphere while the valve is open.
JP2008165222A 2008-06-25 2008-06-25 Heat pump and its internal inspection method Active JP5165473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008165222A JP5165473B2 (en) 2008-06-25 2008-06-25 Heat pump and its internal inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008165222A JP5165473B2 (en) 2008-06-25 2008-06-25 Heat pump and its internal inspection method

Publications (2)

Publication Number Publication Date
JP2010007903A true JP2010007903A (en) 2010-01-14
JP5165473B2 JP5165473B2 (en) 2013-03-21

Family

ID=41588629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008165222A Active JP5165473B2 (en) 2008-06-25 2008-06-25 Heat pump and its internal inspection method

Country Status (1)

Country Link
JP (1) JP5165473B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231578A (en) * 2012-04-06 2013-11-14 Ebara Refrigeration Equipment & Systems Co Ltd Absorption heat pump
KR20170111423A (en) * 2016-03-28 2017-10-12 엘지전자 주식회사 Detection device for turbomachine system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104842A (en) * 1980-12-22 1982-06-30 Kawasaki Heavy Ind Ltd Inspection device for inside of high-pressure gas vessel
JPH0166063U (en) * 1987-10-22 1989-04-27
JPH095640A (en) * 1995-06-19 1997-01-10 Olympus Optical Co Ltd Industrial endoscopic device
JPH09229868A (en) * 1996-02-28 1997-09-05 Tomoe Corp Image-pickup means holder to be inserted into pipe
JP2000171119A (en) * 1998-12-08 2000-06-23 Ebara Corp Triple-effect absorption refrigerating machine
JP2006112686A (en) * 2004-10-13 2006-04-27 Ebara Corp Two stage temperature rising type absorption heat pump
JP2007085619A (en) * 2005-09-21 2007-04-05 Ebara Refrigeration Equipment & Systems Co Ltd High-temperature regenerator and absorption refrigerating machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104842A (en) * 1980-12-22 1982-06-30 Kawasaki Heavy Ind Ltd Inspection device for inside of high-pressure gas vessel
JPH0166063U (en) * 1987-10-22 1989-04-27
JPH095640A (en) * 1995-06-19 1997-01-10 Olympus Optical Co Ltd Industrial endoscopic device
JPH09229868A (en) * 1996-02-28 1997-09-05 Tomoe Corp Image-pickup means holder to be inserted into pipe
JP2000171119A (en) * 1998-12-08 2000-06-23 Ebara Corp Triple-effect absorption refrigerating machine
JP2006112686A (en) * 2004-10-13 2006-04-27 Ebara Corp Two stage temperature rising type absorption heat pump
JP2007085619A (en) * 2005-09-21 2007-04-05 Ebara Refrigeration Equipment & Systems Co Ltd High-temperature regenerator and absorption refrigerating machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231578A (en) * 2012-04-06 2013-11-14 Ebara Refrigeration Equipment & Systems Co Ltd Absorption heat pump
KR20170111423A (en) * 2016-03-28 2017-10-12 엘지전자 주식회사 Detection device for turbomachine system
KR102555373B1 (en) 2016-03-28 2023-07-13 엘지전자 주식회사 Detection device for turbomachine system

Also Published As

Publication number Publication date
JP5165473B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
KR20080052408A (en) Heating tank and storage tank
JP5165473B2 (en) Heat pump and its internal inspection method
NO20131687A1 (en) Heat exchanger tubes and method using the same
CN103104767A (en) Rotary connector specially used at ultralow temperature
CN112433553A (en) Saturated outdoor circulation type environment control equipment for living cabin
US6550272B2 (en) Absorption chiller/absorption chiller-heater having safety device
HRP20201636T1 (en) Device and method for a security drain of working fluid
JP2008286441A (en) Absorption refrigerator
CN105402953B (en) Shell and tube exchanger and there is its refrigeration system
CN105066503B (en) Small-size leakproof independently-operating ammonia refrigerator
CN209355534U (en) A kind of effective multistage diffusion connector of evaporator feed flow
US6393863B1 (en) Absorption chiller/absorption chiller-heater having safety device
JP2017053499A (en) Absorption type refrigerator
JPH0694338A (en) Safety device of ammonia absorption freezer machine
JP2007327662A (en) Maintenance method of absorption-type refrigerating machine and cooling freezing device
EP3907395A1 (en) Waste heat recovery device, and method for controlling same
JP2010054133A (en) Multistage absorption type absorption chiller and heater
JP2009162468A (en) Receiver drier integrated type condenser
JP2001041614A (en) Absorption refrigerating machine
JP2006214698A (en) Extraction device
KR101617734B1 (en) Chemical tank temperature maintenance for reducing exhaust gas of engine, and vessel or ocean cosnstruction including the same
JP2010260398A (en) Air conditioner for vehicle
JP7313356B2 (en) Motorless Purge System and Method for Removing Non-Condensable Gases from Closed Cycle Absorption Transformer Heat Pump and Closed Cycle Absorption Chiller Systems
JP2008309365A (en) Cooling device
CN214148163U (en) Outdoor air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5165473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250