JP2000074521A - Absorption refrigerating machine - Google Patents

Absorption refrigerating machine

Info

Publication number
JP2000074521A
JP2000074521A JP10247341A JP24734198A JP2000074521A JP 2000074521 A JP2000074521 A JP 2000074521A JP 10247341 A JP10247341 A JP 10247341A JP 24734198 A JP24734198 A JP 24734198A JP 2000074521 A JP2000074521 A JP 2000074521A
Authority
JP
Japan
Prior art keywords
temperature
absorber
concentration
evaporator
pressure side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10247341A
Other languages
Japanese (ja)
Inventor
Takatoshi Takigawa
孝寿 瀧川
Hajime Yatsuhashi
元 八橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP10247341A priority Critical patent/JP2000074521A/en
Publication of JP2000074521A publication Critical patent/JP2000074521A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

PROBLEM TO BE SOLVED: To improve the coefficient of performance COP of an absorption refrigerating machine. SOLUTION: An evaporator 1 and an absorber 2 forming a double effect absorption cycle 10 are formed in a multistage. In a low pressure side absorber 14, absorbing solution of high concentration is used at relatively high temperature, so that the crystallization of absorbent can be avoided. In a high pressure side absorber 13, the concentration of the absorbing solution is relatively low, so that the concentration range from the inlet side to the outlet side of the whole part of the absorber 2 can be increased. If the temperature difference between the inlet side and the outlet side when cooling water is cooled by a cold and hot water pipe 15 from a high pressure side evaporator 11 to a low pressure side evaporator 12 is higher than rated 5 deg.C, the coefficient of performance COP can be more improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水を冷媒とし、臭
化リチウムなどの吸収能力を持つ物質を使用する吸収式
冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerator using water as a refrigerant and a substance having an absorption capacity such as lithium bromide.

【0002】[0002]

【従来の技術】従来から、水を冷媒として、臭化リチウ
ム(リチウムブロマイド:LiBr)などの水分を吸収
する能力を有する物質を吸収剤として、吸収剤の水溶液
と冷媒とを循環させながら吸収式冷凍サイクルを構成し
て冷凍を行う吸収式冷凍機が広く用いられている。水を
冷媒とする吸収式冷凍機では、蒸発器内に設ける伝熱管
内に流す被冷却物である冷水を、7℃程度まで冷却する
ことができる。蒸発器で蒸発した冷媒である水を再び吸
収液に吸収させるために、吸収器が設けられ、吸収器に
高濃度の吸収液を供給するために再生器が設けられ、再
生器から発生する冷媒蒸気を凝縮させるために凝縮器が
設けられる。これらの蒸発器、吸収器、再生器および凝
縮器は、単効用型の吸収冷凍機の基本的な構成要素であ
る。吸収式冷凍機としての効率を高めるために、再生器
を高温再生器と低温再生器とに分け、熱効率の向上を図
る二重効用型吸収式冷凍機も利用されている。
2. Description of the Related Art Conventionally, water has been used as a refrigerant, and a substance having an ability to absorb moisture such as lithium bromide (lithium bromide: LiBr) has been used as an absorbent. Absorption refrigerators that constitute a refrigerating cycle and perform freezing are widely used. In an absorption refrigerator using water as a refrigerant, it is possible to cool cold water, which is an object to be cooled, flowing through a heat transfer tube provided in an evaporator to about 7 ° C. An absorber is provided to absorb the water, which is the refrigerant evaporated by the evaporator, into the absorbent again, and a regenerator is provided to supply the absorber with a high concentration of the absorbent, and the refrigerant generated from the regenerator is provided. A condenser is provided to condense the vapor. These evaporators, absorbers, regenerators and condensers are the basic components of a single-effect absorption refrigerator. In order to increase the efficiency as an absorption refrigerator, a regenerator is divided into a high-temperature regenerator and a low-temperature regenerator, and a double-effect absorption refrigerator for improving thermal efficiency is also used.

【0003】図4は、二重効用型吸収冷凍機での吸収液
の温度と溶液濃度との関係を示す。図4で、斜線を施し
て示す部分の面積が大きいほど、冷凍機としての成績係
数COPが向上する。成績係数を大きくするためには、
溶液の濃度幅、すなわちで示す吸収器の入口側の濃度
と、で示す吸収器の出口側の濃度との差を大きくする
ことが考えられるけれども、高濃度側では臭化リチウム
が結晶化するおそれがある。また低濃度側では、溶液温
度および冷媒温度によって濃度が決まり、濃度幅を広げ
ても、冷媒の吸収能力は向上しない。また、吸収器の入
口側での溶液濃度は5%が限度である。そこで蒸発器お
よび吸収器の組合せを複数段にして、蒸発器上段側の冷
媒温度を上げることにより、濃度幅を増大させる技術が
知られている。
FIG. 4 shows the relationship between the temperature of an absorbing solution and the solution concentration in a double effect absorption refrigerator. In FIG. 4, the larger the area of the hatched portion, the higher the coefficient of performance COP as a refrigerator. To increase the coefficient of performance,
Although it is conceivable to increase the difference between the concentration range of the solution, that is, the concentration on the inlet side of the absorber shown by, and the concentration on the outlet side of the absorber shown by, lithium bromide may crystallize on the high concentration side. There is. On the low concentration side, the concentration is determined by the solution temperature and the refrigerant temperature, and even if the concentration range is widened, the refrigerant absorption capacity does not improve. The solution concentration on the inlet side of the absorber is limited to 5%. Therefore, a technique has been known in which the combination of an evaporator and an absorber is provided in a plurality of stages, and the refrigerant temperature in the upper stage of the evaporator is increased to increase the concentration range.

【0004】蒸発器および吸収器の組合わせを複数段に
設け、図5に示すように溶液の濃度幅を広げる先行技術
は、特公昭53−35662、特公昭53−35663
および特開昭49−103239などに開示されてい
る。これらの先行技術では、吸収器および蒸発器を複数
段に分けることについての基本的な構成が開示されてい
る。
The prior art of providing a combination of an evaporator and an absorber in a plurality of stages and widening the concentration range of the solution as shown in FIG. 5 is disclosed in JP-B-53-35662 and JP-B-53-35663.
And JP-A-49-103239. These prior arts disclose a basic configuration for dividing an absorber and an evaporator into a plurality of stages.

【0005】[0005]

【発明が解決しようとする課題】図4に示すような溶液
サイクルを形成する吸収器が単段式の二重効用吸収式冷
凍機では、冷却水入口温度が32℃、冷水出口温度が7
℃の定格条件下で、吸収器の入口と出口との濃度幅を約
5wt%にしている。このため、成績係数COPは1.
2程度である。このときのCOPは(冷凍能力)/(実
際の再生器入熱量)とし、以下、そのように定義する。
成績係数COPは冷凍機の効率に関連しているので、こ
れを向上させることが要望されている。しかしながら、
吸収器が単段式の二重効用型冷凍機では、濃度幅を約5
wt%以上に拡大して成績係数COPを向上させようと
すると、吸収器入口に至る溶液の濃度が大きくなりす
ぎ、吸収剤が結晶化してしまうおそれがある。また、高
温再生器や低温再生器で、圧力や温度が上昇する問題も
ある。
In a double effect absorption refrigerator having a single-stage type absorber having a solution cycle as shown in FIG. 4, the cooling water inlet temperature is 32 ° C. and the cold water outlet temperature is 7 ° C.
Under the rated condition of ° C., the concentration width between the inlet and the outlet of the absorber is set to about 5 wt%. Therefore, the coefficient of performance COP is 1.
About 2. The COP at this time is (refrigeration capacity) / (actual regenerator heat input), and is defined as follows.
Since the coefficient of performance COP is related to the efficiency of the refrigerator, it is desired to improve it. However,
In a double-effect refrigerator with a single-stage absorber, the concentration range is about 5
If an attempt is made to increase the coefficient of performance COP by increasing the concentration to not less than wt%, the concentration of the solution reaching the inlet of the absorber becomes too large, and the absorbent may be crystallized. In addition, there is a problem that pressure and temperature increase in a high-temperature regenerator and a low-temperature regenerator.

【0006】図5で示すように、吸収器を多段式にすれ
ば、濃度幅が大きくなり成績係数COPが向上すること
が期待される。しかしながら、前述の各先行技術では、
成績係数COPを向上させるために濃度幅をどのように
するかについて、具体的には記載されていない。
As shown in FIG. 5, if the absorber is made into a multistage type, it is expected that the concentration range becomes large and the coefficient of performance COP is improved. However, in each of the above prior arts,
It does not specifically describe how to set the concentration range in order to improve the coefficient of performance COP.

【0007】本発明の目的は、成績係数を向上させて、
冷凍機としての効率を高めることができる吸収式冷凍機
を提供することである。
An object of the present invention is to improve the coefficient of performance,
An object of the present invention is to provide an absorption refrigerator capable of increasing the efficiency as a refrigerator.

【0008】[0008]

【課題を解決するための手段】本発明は、水を冷媒と
し、臭化リチウムを吸収剤とする吸収式冷凍機におい
て、吸収器(2)および蒸発機(1)の組合わせを、複
数段設けて、複数段の吸収器(13,14)全体に対す
る入口側の吸収液濃度と出口側の吸収液濃度との差であ
る濃度幅が、7.8wt%を越えることを特徴とする吸
収式冷凍機である。
SUMMARY OF THE INVENTION The present invention relates to an absorption refrigerator having water as a refrigerant and lithium bromide as an absorbent, wherein a combination of an absorber (2) and an evaporator (1) is provided in a plurality of stages. The absorption type wherein the concentration width, which is the difference between the concentration of the absorbing solution on the inlet side and the concentration of the absorbing solution on the outlet side, with respect to the entire plurality of absorbers (13, 14) exceeds 7.8 wt%. It is a refrigerator.

【0009】本発明に従えば、吸収器(2)および蒸発
器(1)の組合わせを複数段設け、複数段の吸収器(1
3,14)全体に対して入口側の吸収液濃度と出口側の
吸収液濃度との差である濃度幅を増大すると、成績係数
COPを高めることができる。複数段の蒸発器(11,
12)で冷媒温度を変えることができるので、高圧側蒸
発器(11)では冷媒温度が上がって低温度側の溶液濃
度を下げることにより、濃度幅が増大してCOPが向上
する。
According to the present invention, a combination of the absorber (2) and the evaporator (1) is provided in a plurality of stages, and the plurality of stages of the absorber (1) are combined.
3, 14) By increasing the concentration range, which is the difference between the concentration of the absorbent on the inlet side and the concentration of the absorbent on the outlet side, the coefficient of performance COP can be increased. Multi-stage evaporator (11,
Since the refrigerant temperature can be changed in 12), in the high-pressure side evaporator (11), the refrigerant temperature rises and the solution concentration on the low temperature side decreases, so that the concentration range increases and the COP improves.

【0010】また本発明は、冷水出口温度が7℃、冷却
水入口温度が32℃であることを特徴とする。
The present invention is further characterized in that the outlet temperature of the cooling water is 7 ° C. and the inlet temperature of the cooling water is 32 ° C.

【0011】本発明に従えば、冷凍機として定格の動作
である冷水出口温度が7℃、冷却水入口温度が32℃で
も、高い成績係数COPを得ることができる。従来の吸
収式冷凍機でも、これらの温度条件を高くすれば、成績
係数も高くなるけれども、実用的な使用条件からは外れ
てしまう。
According to the present invention, a high coefficient of performance COP can be obtained even when the chilled water outlet temperature is 7 ° C. and the chilled water inlet temperature is 32 ° C., which is a rated operation as a refrigerator. Even in the conventional absorption refrigerator, if these temperature conditions are increased, the coefficient of performance is increased, but it deviates from practical use conditions.

【0012】また本発明は、吸収式冷凍サイクルの構成
要素として、高温再生器(3)、低温再生器(4)、凝
縮器(5)、高温熱交換器(6)、低温熱交換器(7)
および吸収液ポンプ(8)をさらに含み、二重効用吸収
サイクル(10)を構成することを特徴とする。
Also, the present invention provides a high-temperature regenerator (3), a low-temperature regenerator (4), a condenser (5), a high-temperature heat exchanger (6), and a low-temperature heat exchanger (3) as components of an absorption refrigeration cycle. 7)
And an absorbent pump (8), which constitutes a double-effect absorption cycle (10).

【0013】本発明に従えば、高温再生器(3)および
低温再生器(4)と高温熱交換器(6)および低温熱交
換器(7)とを含んで二重効用吸収サイクルを構成する
ので、単一の再生器で吸収液を濃縮する単効用の場合に
比較して、低温再生器(4)では高温再生器(3)の余
剰熱を利用するため成績係数COPを一層向上させるこ
とができる。このとき、複数段の吸収器(13,14)
全体に対する入口側の吸収液濃度と出口側の吸収液濃度
との差である濃度幅が7.8%を越えると成績係数CO
Pを1.45以上に高めることができる(図3)。
According to the present invention, the high-temperature regenerator (3) and the low-temperature regenerator (4) and the high-temperature heat exchanger (6) and the low-temperature heat exchanger (7) constitute a double-effect absorption cycle. Therefore, the low-temperature regenerator (4) uses the excess heat of the high-temperature regenerator (3) to further improve the coefficient of performance COP, as compared with the single-effect type in which the absorbent is concentrated by a single regenerator. Can be. At this time, a plurality of absorbers (13, 14)
When the concentration width, which is the difference between the concentration of the absorbent on the inlet side and the concentration of the absorbent on the outlet side, exceeds 7.8%, the coefficient of performance CO
P can be increased to 1.45 or more (FIG. 3).

【0014】また本発明で前記複数段の吸収器(13,
14)および蒸発器(11,12)は、下段側が上段側
よりも蒸発圧力が高くなるように、それぞれ上下方向に
配置されることを特徴とする。
In the present invention, the multi-stage absorber (13,
14) and the evaporators (11, 12) are characterized in that they are arranged vertically in such a manner that the lower stage has a higher evaporation pressure than the upper stage.

【0015】本発明に従えば、複数段の吸収器(13,
14)および蒸発器(11,12)は、上下に配置さ
れ、下段側が上段側より蒸発圧力が高い。最上段には、
最も高濃度の吸収液が供給される低圧側吸収器(4)
と、水蒸気圧が最も低くなる低圧側蒸発器(12)とが
配置される。最下段には、高圧側吸収器(13)と高圧
側蒸発器(11)とが配置される。低圧側の吸収器(1
4)から高圧側の吸収器(13)までの間では、落下式
に吸収液を移動させることも可能なので、吸収液を輸送
するポンプを設けなくてもよく、ポンプの設置台数を少
なくすることができる。
According to the present invention, a plurality of absorbers (13,
14) and the evaporators (11, 12) are arranged vertically, and the lower side has a higher evaporation pressure than the upper side. At the top,
The low pressure side absorber to which the highest concentration absorbent is supplied (4)
And a low-pressure side evaporator (12) having the lowest steam pressure. At the lowest stage, a high-pressure side absorber (13) and a high-pressure side evaporator (11) are arranged. Low pressure side absorber (1
From 4) to the high pressure side absorber (13), it is possible to move the absorbing liquid in a dropping manner, so that there is no need to provide a pump for transporting the absorbing liquid, and the number of pumps to be installed is reduced. Can be.

【0016】また本発明は、前記複数段の蒸発器(1
1,12)全体に対して、冷水の出口側の温度と入口側
の温度との差が5℃を越えることを特徴とする。
The present invention also relates to the above-described multi-stage evaporator (1).
1,12) The difference between the temperature on the outlet side of the cold water and the temperature on the inlet side of the whole exceeds 5 ° C.

【0017】本発明に従えば、複数段の蒸発器(11,
12)全体に対して、冷水の出口側の温度と入口側の温
度との差が5℃を越えるので、各段の蒸発器での出口側
と入口側との冷水の温度差も大きくとることができ、高
圧側蒸発器(11)の冷媒温度を上げることができる。
一般に吸収式冷凍機では、蒸発器での冷水の入口側と出
口側との温度差を5℃として運転しているけれども、蒸
発器を複数段で構成すると、各段の蒸発器での温度差が
小さくなってしまい、高圧側の蒸発器の冷媒温度が上が
らず、複数段にする効果が限定される。複数段の蒸発器
(11,12)全体での入口と出口との冷水の温度差を
5℃よりも大きくすれば、各段での温度差も大きくな
り、高圧側の蒸発器での蒸発温度をさらに上げることが
でき、高圧側の吸収器での溶液出口濃度をさらに薄くす
ることができるので、吸収器全体での濃度幅を拡大し、
成績係数の向上を図ることができる。冷水出入口温度差
を従来の5℃から15→7℃の8℃差にすると濃度幅は
11%に達し、COPは1.55に達する(図3)。
According to the present invention, a plurality of evaporators (11,
12) Since the difference between the temperature of the outlet side of the cold water and the temperature of the inlet side exceeds 5 ° C, the temperature difference between the outlet side and the inlet side of the evaporator at each stage must be large. And the refrigerant temperature of the high-pressure side evaporator (11) can be raised.
In general, an absorption refrigerator is operated with the temperature difference between the inlet side and the outlet side of the cold water at the evaporator being 5 ° C. However, when the evaporator is composed of a plurality of stages, the temperature difference at each stage of the evaporator is different. Becomes small, the refrigerant temperature of the evaporator on the high pressure side does not rise, and the effect of the multiple stages is limited. If the temperature difference between the chilled water at the inlet and the outlet at the entire evaporator (11, 12) in the plurality of stages is made larger than 5 ° C., the temperature difference in each stage also becomes large, and the evaporation temperature in the evaporator on the high pressure side becomes large. Can be further increased, and the solution outlet concentration in the high pressure side absorber can be further reduced, so that the concentration range in the entire absorber is expanded,
The coefficient of performance can be improved. If the temperature difference between the inlet and outlet of the cold water is changed from the conventional 5 ° C. to an 8 ° C. difference of 15 → 7 ° C., the concentration width reaches 11% and the COP reaches 1.55 (FIG. 3).

【0018】[0018]

【発明の実施の形態】図1は、本発明の実施の一形態と
しての吸収式冷凍機の概略的な配管構成を示す。吸収式
冷凍機は、蒸発器(1)、吸収器(2)、高温再生器
(3)、低温再生器(4)、凝縮器(5)、高温熱交換
器(6)、低温熱交換器(7)および吸収液ポンプ
(8)などを、主要な構成要素として含み、さらに高温
再生器(3)の熱源としてのバーナ(9)も含んで二重
効用吸収サイクル(10)を構成する。二重効用吸収サ
イクル(10)では、水を冷媒とし、臭化リチウムを吸
収剤として、臭化リチウム水溶液を吸収液として吸収液
ポンプ(8)で循環させる。
FIG. 1 shows a schematic piping configuration of an absorption refrigerator as an embodiment of the present invention. The absorption refrigerator includes an evaporator (1), an absorber (2), a high-temperature regenerator (3), a low-temperature regenerator (4), a condenser (5), a high-temperature heat exchanger (6), and a low-temperature heat exchanger. (7) and an absorbent pump (8) are included as main components, and a burner (9) as a heat source of the high temperature regenerator (3) is also included to constitute a double effect absorption cycle (10). In the double-effect absorption cycle (10), water is used as a refrigerant, lithium bromide is used as an absorbent, and an aqueous solution of lithium bromide is used as an absorbent, and circulated by an absorbent pump (8).

【0019】二重効用吸収サイクル(10)では、蒸発
器(1)で冷媒である水を蒸発させ、気化に要する熱を
冷水から奪って冷水の冷却を行う。蒸発器(1)で蒸発
した冷媒は、吸収器(2)内の溶液中に吸収される。吸
収器(2)で冷媒を吸収する吸収液は、高温再生器
(3)および低温再生器(4)では、臭化リチウム水溶
液から冷媒である水を蒸発させて、溶液の濃度を高め
る。凝縮器(5)では、蒸発した冷媒である水を凝縮さ
せる。高温熱交換器(6)では、高温再生器(3)で冷
媒を蒸発させて濃度を高めた中間濃度の溶液と、吸収器
(2)で冷媒を吸収して濃度が薄められた低濃度の吸収
液との間で熱交換を行う。熱交換によって温度が上昇し
た低濃度の溶液は、高温再生器(3)に戻って、吸収力
の再生が行われる。吸収器(2)から高温再生器(3)
に吸収液ポンプ(8)で送り込まれる希溶液は、高温熱
交換器(6)で高温再生器(3)からの中間濃度溶液と
の間で熱交換器を行う前に、低温熱交換器(7)で低温
再生器(4)から吸収器(2)に供給される高濃度の吸
収液との間で熱交換を行う。
In the double effect absorption cycle (10), water as a refrigerant is evaporated in the evaporator (1), and heat required for vaporization is taken from the cold water to cool the cold water. The refrigerant evaporated in the evaporator (1) is absorbed in the solution in the absorber (2). In the high-temperature regenerator (3) and the low-temperature regenerator (4), the absorbing liquid that absorbs the refrigerant in the absorber (2) evaporates water as a refrigerant from the aqueous solution of lithium bromide to increase the concentration of the solution. In the condenser (5), water as the evaporated refrigerant is condensed. In the high-temperature heat exchanger (6), a medium-concentration solution in which the concentration is increased by evaporating the refrigerant in the high-temperature regenerator (3) and a low-concentration solution in which the concentration is reduced by absorbing the refrigerant in the absorber (2) Heat exchange is performed with the absorbing solution. The low-concentration solution whose temperature has been increased by the heat exchange returns to the high-temperature regenerator (3), and the absorbent is regenerated. Absorber (2) to high temperature regenerator (3)
The dilute solution fed by the absorbent pump (8) into the low-temperature heat exchanger (6) before the heat exchange with the intermediate-concentration solution from the high-temperature regenerator (3) in the high-temperature heat exchanger (6). In 7), heat exchange is performed with the high-concentration absorbent supplied from the low-temperature regenerator (4) to the absorber (2).

【0020】本実施形態の蒸発器(1)および吸収器
(2)は、それぞれ複数段に構成されている。蒸発器
(1)は、高圧側蒸発器(11)および低圧側蒸発器
(12)に分けて構成される。また、吸収器(2)は、
高圧側吸収器(13)および低圧側吸収器(14)に分
けて構成される。高圧側蒸発器(11)は、低圧側蒸発
器(12)よりも下側に配置され、冷却対象となる冷水
が流れる冷温水管(15)は、下側の高圧側蒸発器(1
1)側が入側であり、上側の低圧側蒸発器(12)は出
側となる。高圧側蒸発器(11)に連通する高圧側吸収
器(13)は、低圧側蒸発器(12)に連通する低圧側
吸収器(14)よりも下側に配置される。
The evaporator (1) and the absorber (2) of the present embodiment are each composed of a plurality of stages. The evaporator (1) is divided into a high-pressure side evaporator (11) and a low-pressure side evaporator (12). In addition, the absorber (2)
It is divided into a high pressure side absorber (13) and a low pressure side absorber (14). The high-pressure side evaporator (11) is disposed lower than the low-pressure side evaporator (12), and the cold / hot water pipe (15) through which cold water to be cooled flows flows through the lower high-pressure side evaporator (1).
The 1) side is the inlet side, and the upper low-pressure side evaporator (12) is the outlet side. The high pressure side absorber (13) communicating with the high pressure side evaporator (11) is disposed below the low pressure side absorber (14) communicating with the low pressure side evaporator (12).

【0021】高圧側吸収器(13)および低圧側吸収器
(14)内で吸収液を冷却する冷却水管(16)は、下
側の高圧側吸収器(13)が入側で上側の低圧側吸収器
(14)が出側となるように設けられる。低圧側吸収器
(14)には、低温再生器(4)から低温熱交換器
(7)を介し、濃溶液管(17)で濃溶液が供給され
る。高圧側吸収器(13)からは、冷媒を吸収して希釈
された吸収液が、吸収液ポンプ(8)で希溶液管(1
8)を介して低温熱交換器(7)、高温熱交換器(6)
から高温再生器(3)に送り込まれる。蒸発器(1)全
体として冷温水管(15)に供給される入側での低温水
の温度を12℃とし、出側での冷温水の温度を7℃とす
ると、高圧側蒸発器(11)と低圧側蒸発器(12)と
の全体で5℃の温度差となる。このときは、高圧側吸収
器(13)の冷却水管(16)への冷却水入口温度を3
2℃とし、低圧側吸収器(14)の冷却水管(16)か
らの冷却水出口温度は36℃程度となる。高圧側吸収器
(13)内の吸収液の温度は39℃となる。
The cooling water pipe (16) for cooling the absorbing liquid in the high-pressure side absorber (13) and the low-pressure side absorber (14) includes a lower high-pressure side absorber (13) on the input side and an upper low-pressure side. An absorber (14) is provided on the outlet side. The low-pressure side absorber (14) is supplied with the concentrated solution from the low-temperature regenerator (4) via the low-temperature heat exchanger (7) through the concentrated solution pipe (17). From the high-pressure side absorber (13), the absorbing solution diluted by absorbing the refrigerant is diluted by the absorbing solution pump (8) into the dilute solution pipe (1).
8) via low temperature heat exchanger (7), high temperature heat exchanger (6)
From the high temperature regenerator (3). Assuming that the temperature of the low-temperature water on the inlet side supplied to the cold / hot water pipe (15) as a whole is 12 ° C. and the temperature of the cold / hot water on the outlet side is 7 ° C., the high-pressure side evaporator (11) There is a temperature difference of 5 ° C. as a whole between the evaporator and the low pressure side evaporator (12). At this time, the cooling water inlet temperature to the cooling water pipe (16) of the high pressure side absorber (13) is set to 3
The cooling water outlet temperature from the cooling water pipe (16) of the low-pressure side absorber (14) is about 36 ° C. The temperature of the absorbent in the high-pressure side absorber (13) becomes 39 ° C.

【0022】図2は、図1の二重効用吸収サイクル(1
0)で吸収液の状態変化を示す。図2(a)は、前述の
ように、蒸発器(1)での冷水の出入口の温度差Δt=
5℃の場合のサイクル線図の例を示す。A点は、高温再
生器(3)での出側での状態を示し、溶液温度は154
℃まで上昇していることが分かる。Bは低温再生器
(4)の出側での吸収液の状態を示し、溶液温度は93
℃まで上昇していることが分かる。Cは高圧側吸収器
(13)の入側での状態を示し、吸収液の温度は52℃
であり、濃度は64wt%であることを示している。D
は、低圧側吸収器(14)の出側での吸収液の状態を示
し、吸収液の温度は36℃であり、濃度は56.2wt
%である。この場合の吸収器(2)全体としての濃度幅
は64−56.2=7.8wt%となる。
FIG. 2 shows the double-effect absorption cycle (1) of FIG.
0) indicates a state change of the absorbing solution. FIG. 2A shows the temperature difference Δt between the inlet and outlet of the cold water in the evaporator (1) as described above.
The example of the cycle diagram in the case of 5 degreeC is shown. Point A shows the state at the outlet side of the high-temperature regenerator (3).
It turns out that it has risen to ° C. B shows the state of the absorbent at the outlet of the low-temperature regenerator (4), and the solution temperature is 93
It turns out that it has risen to ° C. C indicates the state at the inlet of the high-pressure side absorber (13), and the temperature of the absorbing solution is 52 ° C.
Which indicates that the concentration is 64 wt%. D
Indicates the state of the absorbent at the outlet side of the low-pressure side absorber (14), the temperature of the absorbent is 36 ° C., and the concentration is 56.2 wt.
%. In this case, the concentration range of the absorber (2) as a whole is 64-56.2 = 7.8 wt%.

【0023】図2(b)は、蒸発器(1)全体での冷水
の温度差をΔt=8℃した大温度差仕様の場合吸収液の
状態変化を示す。大温度差仕様とすることによって、高
圧側蒸発器(11)の出側での冷水の温度を15℃まで
高めるので、高圧側蒸発器(11)内の蒸発圧力を図2
(a)に示す7.8mmHから8.7mmHまで高める
ことができ、高圧側吸収器(13)内での吸収液の温度
が36℃である図2(a)の場合と同等の条件では、吸
収液の濃度を53wt%まで下げることができる。この
結果、濃度幅は64−53=11wt%となり、高温再
生器(3)での圧力と溶液温度とを図2(a)に示す場
合よりも下げることができる。
FIG. 2B shows a state change of the absorbing liquid in the case of a large temperature difference specification in which the temperature difference of the cold water in the entire evaporator (1) is Δt = 8 ° C. Since the temperature of the cold water at the outlet side of the high-pressure side evaporator (11) is increased to 15 ° C. by adopting the large temperature difference specification, the evaporation pressure in the high-pressure side evaporator (11) is increased as shown in FIG.
(A) can be increased from 7.8 mmH to 8.7 mmH, and under the same conditions as in FIG. 2 (a) where the temperature of the absorbing liquid in the high-pressure side absorber (13) is 36 ° C., The concentration of the absorbing solution can be reduced to 53% by weight. As a result, the concentration range becomes 64-53 = 11 wt%, and the pressure and the solution temperature in the high-temperature regenerator (3) can be reduced as compared with the case shown in FIG.

【0024】図3は、吸収器(2)全体での吸収液の濃
度幅と成績係数COPとの関係を示す。仮想線で示すグ
ラフは、従来の吸収器および蒸発器が単段式の場合の二
重効用吸収冷凍サイクルでの成績係数の変化を示す。実
線は、図2(a)に示すように、全体としての冷水の温
度差Δtが5℃の場合、たとえば冷温水管(15)の入
側での冷温水の温度が12℃であり、出側での冷温水の
温度が7℃である場合の変化を示す。破線は図2(b)
に示すようにΔt=8℃の場合の変化を示す。この場
合、冷温水管(15)の入側の温度が15℃であり、出
側の温度が7℃となる。図3から、吸収器(2)への入
側と出側での吸収液の濃度差である濃度幅が7.8wt
%以上であれば、冷水温度Δt=5℃の場合でも成績係
数COPが1.45以上となり、従来のCOP1.2程
度と比較して20%以上向上させることが可能となる。
また、冷水の温度差Δtを5℃以上とすれば、濃度幅も
大きくしやすくなり、濃度幅が11%で成績係数COP
が1.55も達成可能であることが分かる。
FIG. 3 shows the relationship between the concentration range of the absorbing solution and the coefficient of performance COP in the entire absorber (2). The graph indicated by the imaginary line shows the change in the coefficient of performance in the double effect absorption refrigeration cycle when the conventional absorber and evaporator are of a single-stage type. As shown in FIG. 2A, when the temperature difference Δt of the cold water as a whole is 5 ° C., for example, the temperature of the cold / hot water at the inlet of the cold / hot water pipe (15) is 12 ° C. Shows the change when the temperature of the cold / hot water at 7 ° C. is 7 ° C. The broken line is shown in FIG.
The change when Δt = 8 ° C. is shown as shown in FIG. In this case, the temperature on the inlet side of the cold / hot water pipe (15) is 15 ° C., and the temperature on the outlet side is 7 ° C. From FIG. 3, it can be seen that the concentration width, which is the concentration difference of the absorbing solution between the inlet side and the outlet side to the absorber (2), is 7.8 wt.
% Or more, the coefficient of performance COP becomes 1.45 or more even when the cold water temperature Δt = 5 ° C., and it can be improved by 20% or more compared to the conventional COP of about 1.2.
Further, if the temperature difference Δt of the cold water is 5 ° C. or more, the concentration range is easily increased, and the concentration range is 11% and the coefficient of performance COP is increased.
It can be seen that 1.55 can be achieved.

【0025】以上説明した実施形態では、蒸発器(1)
および吸収器(2)をそれぞれ2段構成としているけれ
ども、2段以上の多段構成として、さらに濃度幅を大き
くしたり成績係数を向上させたりすることも可能であ
る。
In the embodiment described above, the evaporator (1)
Although the absorber and the absorber (2) each have a two-stage configuration, it is possible to further increase the concentration width and improve the coefficient of performance by using a multi-stage configuration of two or more stages.

【0026】[0026]

【発明の効果】以上のように本発明によれば、蒸発器
(11,12)を、複数段に分けてそれぞれ冷媒温度を
変えて、低濃度側の濃度をさらに低くできるので、吸収
器(13,14)全体への溶液の入口側の濃度と出口側
の濃度との差である濃度幅が7.8wt%を越えても、
結晶化などの問題は生じないで、冷凍能力と再生器への
流熱量との比を示す成績係数COPを高めることができ
る。
As described above, according to the present invention, the evaporators (11, 12) can be divided into a plurality of stages and the refrigerant temperature can be changed to further lower the concentration on the low concentration side. 13, 14) Even if the concentration width, which is the difference between the concentration of the solution on the inlet side and the concentration on the outlet side, exceeds 7.8 wt%,
The coefficient of performance COP, which indicates the ratio between the refrigeration capacity and the amount of heat flowing into the regenerator, can be increased without causing problems such as crystallization.

【0027】また本発明によれば、実用的な運転条件で
成績係数COPを高めることができる。
According to the present invention, the coefficient of performance COP can be increased under practical operating conditions.

【0028】また本発明によれば、再生器を高温再生器
(3)および低温再生器(4)とに分ける二重効用吸収
式冷凍サイクル(10)を構成するので、成績係数CO
Pを1.45以上に高めることができる。
Further, according to the present invention, a double effect absorption refrigeration cycle (10) is provided which divides the regenerator into a high-temperature regenerator (3) and a low-temperature regenerator (4).
P can be increased to 1.45 or more.

【0029】また本発明によれば、複数段の吸収器(1
3,14)および蒸発器(11,12)は、高圧側が下
になるように上下に配置するので、吸収器(13,1
4)間に溶液を輸送するポンプを取付ける必要がなく、
横配置ではポンプが必要となることに比較して、構成を
簡略化し、製造コストの低減を図ることができる。
According to the present invention, a plurality of absorbers (1)
Since the evaporators (11, 12) and the evaporators (11, 12) are arranged one above the other with the high pressure side down, the absorber (13, 1)
4) There is no need to install a pump to transport the solution between them,
Compared to the necessity of a pump in the horizontal arrangement, the configuration can be simplified and the manufacturing cost can be reduced.

【0030】また本発明によれば、複数段での蒸発器
(11,12)で冷却される冷水の入口側と出口側との
温度差を5℃以上とするので、高圧側の蒸発温度をさら
に上げて、吸収器の出口側での吸収液濃度をさらに小さ
くすることができ、吸収器(13,14)全体への溶液
の濃度幅を拡大して、温度差が5℃以下のときよりも成
績係数COPを向上させることができる。
According to the present invention, the temperature difference between the inlet side and the outlet side of the cold water cooled by the evaporators (11, 12) in a plurality of stages is set to 5 ° C. or more, so that the evaporation temperature on the high pressure side is reduced. By further raising, the concentration of the absorbing solution at the outlet side of the absorber can be further reduced, and the concentration range of the solution over the entire absorber (13, 14) is expanded, so that the temperature difference is less than 5 ° C. Can also improve the coefficient of performance COP.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態の二重効用吸収サイクル
(10)を示す簡略化した配管系統図である。
FIG. 1 is a simplified piping diagram showing a double-effect absorption cycle (10) according to an embodiment of the present invention.

【図2】図1の二重効用吸収サイクイル(10)での吸
収液の状態変化を示すサイクル線図である。
FIG. 2 is a cycle diagram showing a state change of an absorbent in a double-effect absorption cyclile (10) of FIG.

【図3】図1の実施形態で得られる濃度幅と成績係数C
OPとの関係を示すグラフである。
FIG. 3 shows a density range and a coefficient of performance C obtained in the embodiment of FIG.
It is a graph which shows the relationship with OP.

【図4】従来からの単段式二重効用吸収サイクルでの吸
収液の状態変化を示すサイクル線図である。
FIG. 4 is a cycle diagram showing a state change of an absorbent in a conventional single-stage double-effect absorption cycle.

【図5】先行技術による多段式二重効用冷凍サイクルで
の吸収液の状態変化の傾向を示すサイクル線図である。
FIG. 5 is a cycle diagram showing a tendency of a state change of an absorbent in a multistage double effect refrigeration cycle according to the prior art.

【符号の説明】[Explanation of symbols]

1 蒸発器 2 吸収器 3 高温再生器 4 低温再生器 5 凝縮器 6 高温熱交換器 7 低温熱交換器 8 吸収液ポンプ 10 二重効用吸収サイクル 11 高圧側蒸発器 12 低圧側蒸発器 13 高圧側吸収器 14 低圧側吸収器 15 冷温水管 16 冷却水管 DESCRIPTION OF SYMBOLS 1 Evaporator 2 Absorber 3 High temperature regenerator 4 Low temperature regenerator 5 Condenser 6 High temperature heat exchanger 7 Low temperature heat exchanger 8 Absorbent pump 10 Double effect absorption cycle 11 High pressure side evaporator 12 Low pressure side evaporator 13 High pressure side Absorber 14 Low-pressure side absorber 15 Cold and hot water pipe 16 Cooling water pipe

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水を冷媒とし、臭化リチウムを吸収剤と
する吸収式冷凍機において、 吸収器(2)および蒸発機(1)の組合わせを、複数段
設けて、 複数段の吸収器(13,14)全体に対する入口側の吸
収液濃度と出口側の吸収液濃度との差である濃度幅が、
7.8wt%を越えることを特徴とする吸収式冷凍機。
1. An absorption refrigerator having water as a refrigerant and lithium bromide as an absorbent, wherein a plurality of combinations of an absorber (2) and an evaporator (1) are provided, and a plurality of stages of absorbers are provided. The concentration width, which is the difference between the concentration of the absorbent on the inlet side and the concentration of the absorbent on the outlet side with respect to (13, 14), is
An absorption refrigerator characterized by exceeding 7.8 wt%.
【請求項2】 冷水出口温度が7℃、冷却水入口温度が
32℃であることを特徴とする請求項1記載の吸収式冷
凍機。
2. The absorption chiller according to claim 1, wherein the chilled water outlet temperature is 7 ° C. and the chilled water inlet temperature is 32 ° C.
【請求項3】 吸収式冷凍サイクルの構成要素として、
高温再生器(3)、低温再生器(4)、凝縮器(5)、
高温熱交換器(6)、低温熱交換器(7)および吸収液
ポンプ(8)をさらに含み、二重効用吸収サイクル(1
0)を構成することを特徴とする請求項1または2記載
の吸収式冷凍機。
3. A component of the absorption refrigeration cycle,
High temperature regenerator (3), low temperature regenerator (4), condenser (5),
It further comprises a high-temperature heat exchanger (6), a low-temperature heat exchanger (7) and an absorbent pump (8), and comprises a double-effect absorption cycle (1).
The absorption refrigerator according to claim 1, wherein the absorption refrigerator comprises:
【請求項4】 前記複数段の吸収器(13,14)およ
び蒸発器(11,12)は、下段側が上段側よりも蒸発
圧力が高くなるように、それぞれ上下方向に配置される
ことを特徴とする請求項1〜3のいずれかに記載の吸収
式冷凍機。
4. The plurality of absorbers (13, 14) and the evaporators (11, 12) are arranged vertically so that the lower stage has a higher evaporation pressure than the upper stage. An absorption refrigerator according to any one of claims 1 to 3.
【請求項5】 前記複数段の蒸発器(11,12)全体
に対して、冷水の出口側の温度と入口側の温度との差が
5℃を越えることを特徴とする請求項1〜4のいずれか
に記載の吸収式冷凍機。
5. The method according to claim 1, wherein the difference between the temperature on the outlet side and the temperature on the inlet side of the chilled water exceeds 5 ° C. for the whole of the plurality of evaporators (11, 12). The absorption refrigerator according to any one of the above.
JP10247341A 1998-09-01 1998-09-01 Absorption refrigerating machine Pending JP2000074521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10247341A JP2000074521A (en) 1998-09-01 1998-09-01 Absorption refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10247341A JP2000074521A (en) 1998-09-01 1998-09-01 Absorption refrigerating machine

Publications (1)

Publication Number Publication Date
JP2000074521A true JP2000074521A (en) 2000-03-14

Family

ID=17161975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10247341A Pending JP2000074521A (en) 1998-09-01 1998-09-01 Absorption refrigerating machine

Country Status (1)

Country Link
JP (1) JP2000074521A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277089A (en) * 2001-03-22 2002-09-25 Tokyo Gas Co Ltd Absorption refrigerator
CN102155812A (en) * 2011-05-03 2011-08-17 大连三洋制冷有限公司 Lithium bromide absorption heat pump set used in field for recycling low temperature waste heat

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277089A (en) * 2001-03-22 2002-09-25 Tokyo Gas Co Ltd Absorption refrigerator
CN102155812A (en) * 2011-05-03 2011-08-17 大连三洋制冷有限公司 Lithium bromide absorption heat pump set used in field for recycling low temperature waste heat

Similar Documents

Publication Publication Date Title
JP3445941B2 (en) Multi-stage evaporative absorption type absorption chiller / heater and large temperature difference air conditioning system equipped with the same
JP3966770B2 (en) Absorption cooling system
KR19990022970A (en) Compression and Absorption Hybrid Heat Pump
JP3824436B2 (en) Triple effect absorption refrigerator
JPH08159594A (en) Multiple effect absorption refrigerator
JP2000074521A (en) Absorption refrigerating machine
JP3397164B2 (en) Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method
US6324865B1 (en) Triple-effect absorption chillers with vapor compression units
KR20080094985A (en) Hot-water using absorption chiller
JP2000081254A (en) Absorption refrigerator
JP3948814B2 (en) Multi-effect absorption refrigerator
JP2628023B2 (en) Absorption refrigerator
KR102130336B1 (en) Absorption refrigeration system with reverse osmosis filter
JPH11237137A (en) Absorption refrigerator
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
JP4278609B2 (en) Absorption refrigerator
JP3948815B2 (en) Multi-effect absorption refrigerator
WO2002018851A1 (en) Absorption refrigerating machine
JP3762217B2 (en) refrigerator
JP2520946B2 (en) Air-cooled absorption refrigerator
KR100313485B1 (en) Absorption refrigeration system with multi refrigeration channel
JP3486382B2 (en) Absorption refrigerator
CN114251864A (en) Absorption refrigerator
JP2000018753A (en) Absorption refrigerating machine
JP2606030B2 (en) Multi-effect absorption refrigerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040803