JP2520946B2 - Air-cooled absorption refrigerator - Google Patents
Air-cooled absorption refrigeratorInfo
- Publication number
- JP2520946B2 JP2520946B2 JP63272491A JP27249188A JP2520946B2 JP 2520946 B2 JP2520946 B2 JP 2520946B2 JP 63272491 A JP63272491 A JP 63272491A JP 27249188 A JP27249188 A JP 27249188A JP 2520946 B2 JP2520946 B2 JP 2520946B2
- Authority
- JP
- Japan
- Prior art keywords
- stage
- absorber
- evaporator
- air
- final
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Description
【発明の詳細な説明】 <産業上の利用分野> 本発明は複数個の蒸発器,吸収器を組合せる多段式と
なる空冷吸収式冷凍機に関するものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a multi-stage air-cooled absorption refrigerating machine in which a plurality of evaporators and absorbers are combined.
<従来の技術> 従来の冷水を取り出す空冷吸収冷温水機となる空冷吸
収式冷凍機としては、例えば特開昭58−208559号公報が
知られている。この方式は、一対となる蒸発器と鉛直の
フィン付き冷却管部をもつ吸収器を上下に配設する組合
せとし、且つ該蒸発器部に熱交換となる単一の冷水管を
配管した単体(単段)の構成である。<Prior Art> An air-cooled absorption type refrigerator that serves as an air-cooled absorption chiller-heater for extracting cold water is known, for example, from Japanese Patent Laid-Open No. 58-208559. In this system, a pair of evaporators and an absorber having vertical finned cooling pipes are arranged vertically, and a single cold water pipe for heat exchange is connected to the evaporator (a single unit ( It is a single stage) configuration.
<発明が解決しようとする課題> しかし、この方法は、空冷吸収器が単段であるため、
冷却空気を多量に必要とするものである。また、吸収開
始点(吸収器入口濃液)の温度が低いため、低外気温度
時の立上り等の如く変動がある場合に晶析線(デューリ
ング線図において)に近ずき結晶し易くなる。即ち、第
3図のに示す従来単段型のデューリング線図(リチュー
ム・ブロマイド溶液の濃度−圧力曲線)について述べれ
ば、蒸発器の蒸発温度が6.5℃のとき64%濃度の吸収液
が50℃で吸収開始を行うが、この50℃点は晶析線に近い
ため、変動等により結晶を招き易い欠点がある。<Problems to be Solved by the Invention> However, in this method, since the air-cooled absorber has a single stage,
It requires a large amount of cooling air. Also, since the temperature at the absorption start point (concentrated liquid at the inlet of the absorber) is low, it tends to approach the crystallization line (in the Duhring diagram) and crystallize when there are fluctuations such as rising at low outside air temperature. . That is to say, referring to the conventional single-stage During diagram (concentration-pressure curve of the lithium bromide solution) shown in Fig. 3, when the evaporation temperature of the evaporator is 6.5 ° C, the absorption liquid of 64% concentration is 50%. The absorption starts at 0 ° C, but since this 50 ° C point is close to the crystallization line, there is a drawback that it is easy to induce crystals due to fluctuations and the like.
本発明は上記実情に鑑み、蒸発器と対をなす吸収器の
組合せを3段以上に多段化し、且つ一番低い温度で冷や
したい箇所に低い温度の冷却空気が当るようにし、効率
の良い外気の流れを取ることで上記欠点を一掃する空冷
吸収式冷凍機を提供することを目的としたものである。In view of the above situation, the present invention has multiple combinations of absorbers and absorbers in multiple stages, and allows cooling air of low temperature to impinge on a place desired to be cooled at the lowest temperature, thereby improving the efficiency of outside air. It is an object of the present invention to provide an air-cooled absorption type refrigerator that eliminates the above drawbacks by taking the above flow.
<課題を解決するための手段> 本発明は、複数個の蒸発器と複数個の吸収器を夫々組
合せる多段型の空冷吸収式冷凍機において、冷却空気が
最終段吸収器から中間段吸収器を経て第1段吸収器(一
番高い濃度の吸収液を導く吸収器を、第1段吸収器とい
う)へと直列に流れるよう複数個の吸収器を配列すると
共に、冷水を第1段蒸発器から最終段蒸発器を経て中間
段蒸発器に流れるよう冷水管を配管してなるものであ
る。<Means for Solving the Problems> The present invention relates to a multi-stage air-cooled absorption refrigerating machine in which a plurality of evaporators and a plurality of absorbers are respectively combined, and cooling air from the final stage absorber to the intermediate stage absorber. A plurality of absorbers are arranged so as to flow in series to the first-stage absorber (the absorber that guides the highest concentration of absorption liquid is called the first-stage absorber), and the cold water is evaporated in the first-stage. A cold water pipe is piped so that the water flows from the evaporator to the intermediate evaporator through the final evaporator.
<作用> 上記のような構成のため、再生器からの64%の濃液
を、先ず第1段吸収器に散布し、この上部位置の第1段
蒸発器で蒸発した冷媒蒸気を吸収し、この少し薄まった
濃液を中間位置となる中間段吸収器で散布し上部の中間
段蒸発器からの冷媒蒸気を吸収し、最後に最も薄まった
吸収液を最終段階吸収器に導きその下端から稀液(60
%)を再生器側に戻す。この場合、冷却空気(外気)は
前記吸収液の流れと逆に最初最終段吸収器を冷やし、次
に中間段吸収器を冷やし、最後に高温となった冷却空気
を第1段吸収器に当てる。また、冷却すべき冷水(13
℃)は、最初は第1段蒸発器に導き次に最終段蒸発器及
び中間段蒸発器の順に流れ7℃の冷水となる。また、こ
の吸収開始点の温度を高め得、晶析線より離すことがで
きる。<Operation> Due to the above-mentioned configuration, 64% concentrated liquid from the regenerator is first sprayed to the first stage absorber, and the refrigerant vapor evaporated in the first stage evaporator at the upper position is absorbed, This slightly diluted concentrated liquid is sprayed by the intermediate stage absorber located at the intermediate position to absorb the refrigerant vapor from the upper intermediate stage evaporator, and finally the thinnest absorbed liquid is guided to the final stage absorber and diluted from the lower end. Liquid (60
%) Back to the regenerator side. In this case, the cooling air (outside air) first cools the final stage absorber, then the intermediate stage absorber, and finally the hot cooling air is applied to the first stage absorber, which is the reverse of the flow of the absorbing liquid. . In addition, cold water (13
C.) is first led to the first-stage evaporator, and then flows to the final-stage evaporator and the intermediate-stage evaporator in this order, and becomes cold water of 7.degree. Further, the temperature at the absorption start point can be increased and can be separated from the crystallization line.
<実施例> 以下、本発明を実施例の図面に基づいて説明すれば、
次の通りである。<Examples> Hereinafter, the present invention will be described with reference to the drawings of Examples.
It is as follows.
1は上部に第1段蒸発器2を配設するフィン3付きの
空冷形第1段吸収器で、該第1段吸収器1の隣に前記同
様上部に中間段蒸発器4を配設した中間位置となる中間
段吸収器5を設け、冷却空気入口に空冷風最風上となる
最後に最終段蒸発器6を上部に配設した最終段吸収器7
を設置すると共に、冷水管8は第1段蒸発器2から最終
段蒸発器6を経て中間段蒸発器4を通る連続管の構成と
してなる。また、64%濃液の吸収液用散布部9を第1段
吸収器1の上部に設け、この下端のポンプ10に接続の次
段の散布部11を中間段吸収器5の上部に設け、この下端
のポンプ12に接続の散布部13を風上側となる最終段吸収
器7の上部に設け、該最終段吸収器7の下端のポンプ14
を設け、60%の稀液を再生器に戻す循環路を構成する。
また、15,16,17は冷媒管18より分岐した第1段蒸発器2
と中間段蒸発器4及び最終段蒸発器6用の散布部であ
る。19は第1段吸収器1の背部に設置する冷却ファンで
ある。Reference numeral 1 is an air-cooled first-stage absorber with fins 3 in which a first-stage evaporator 2 is arranged in the upper part, and next to the first-stage absorber 1, an intermediate-stage evaporator 4 is arranged in the upper part as described above. A final-stage absorber 7 having an intermediate-stage absorber 5 at an intermediate position and having a final-stage evaporator 6 at the top so that the cooling air inlet is at the most windward side of the cooling air.
In addition, the cold water pipe 8 is configured as a continuous pipe passing from the first stage evaporator 2 to the final stage evaporator 6 and then to the intermediate stage evaporator 4. Further, a 64% concentrated liquid absorbent dispersion portion 9 is provided on the upper portion of the first stage absorber 1, and a next stage dispersion portion 11 connected to the pump 10 at the lower end thereof is provided on the intermediate stage absorber 5. A spraying part 13 connected to the pump 12 at the lower end is provided above the final stage absorber 7 on the windward side, and a pump 14 at the lower end of the final stage absorber 7 is provided.
To construct a circulation path that returns 60% of the dilute liquid to the regenerator.
In addition, 15, 16 and 17 are the first stage evaporator 2 branched from the refrigerant pipe 18.
And a spraying section for the intermediate evaporator 4 and the final evaporator 6. Reference numeral 19 is a cooling fan installed on the back of the first-stage absorber 1.
次にこの作用を説明すれば、先ず吸収を3段階に分割
し、吸収液温度の低い吸収器から温度の高い順に配列し
た空冷吸収式冷凍機は、再生器(図示せず)からの64%
濃液の吸収液を、第1段吸収器1に散布し上方からの冷
媒蒸気を吸収し62.7%濃度とし、この吸収液をポンプア
ップして次段の中間段吸収器5に導き上方からの冷媒蒸
気を吸収し61.3%濃度とし、この吸収液を再度ポンプア
ップし最終段吸収器7で散布し同様上方からの冷媒蒸気
を吸収し60%濃度の稀液とし戻すものである。この場
合、冷却空気(外気)は、最初は最終段吸収器7から中
間段吸収器5を経て第1段吸収器1へと順次冷却して行
くものである。また13℃の冷水は、第1段蒸発器2で11
0℃冷水とし、次に最終段蒸発器6に導き、ここで9℃
冷水とし、これを中間段蒸発器4に通して冷却し7℃の
冷水を得るものである。即ち、一番低い温度でなければ
吸収しないところを風上とし、高い温度でも吸収しえる
ところは最後となる風を受けるようにしたものである。Explaining this action, first, the absorption is divided into three stages, and the air-cooled absorption refrigerating machine in which the absorption liquid temperature is arranged in the descending order from the absorption liquid temperature lower to the higher temperature is 64% from the regenerator (not shown).
The concentrated absorbing liquid is sprayed to the first-stage absorber 1 to absorb the refrigerant vapor from above to reach a 62.7% concentration, and this absorbing liquid is pumped up and guided to the intermediate-stage absorber 5 of the next stage, from above. Refrigerant vapor is absorbed to a concentration of 61.3%, and this absorbing liquid is pumped up again and sprayed in the final stage absorber 7 to absorb the refrigerant vapor from above and return it as a dilute liquid with a concentration of 60%. In this case, the cooling air (outside air) is first cooled from the final stage absorber 7 through the intermediate stage absorber 5 to the first stage absorber 1 sequentially. In addition, the cold water of 13 ° C is stored in the 1st stage evaporator 11
Cold water at 0 ℃, then led to the final stage evaporator 6, where 9 ℃
Cold water is passed through the intermediate stage evaporator 4 and cooled to obtain cold water at 7 ° C. That is, the part that does not absorb unless it is the lowest temperature is set as the windward, and the part that can absorb even at the highest temperature receives the last wind.
いまこの吸収器−蒸発器の関係を示すデューリング線
図(溶液の濃度−圧力曲線)について説明すると(第2
図参照)、この線図から明らかのように、第1段吸収器
では、吸収液は55℃から52.5℃になり、中間段吸収器で
は吸収液は47.5℃から44.5℃になり、最終段吸収器で
は、吸収液は47℃から44℃となり、単段の従来型より吸
収液温が高温側へシフトしている(単段型の場合、50℃
から42℃)。また、第1段蒸発器の蒸発温度は10.5℃、
最終段蒸発器では8.5℃、中間段蒸発器では6.5℃とな
る。なお、冷却空気入口温度35℃が3段冷却後は43℃に
加温される。Now, the Duhring diagram (solution concentration-pressure curve) showing this absorber-evaporator relationship will be explained (second
(Refer to the figure), as is clear from this diagram, in the first stage absorber, the absorption liquid changes from 55 ° C to 52.5 ° C, in the intermediate stage absorber the absorption liquid changes from 47.5 ° C to 44.5 ° C, and the final stage absorption increases. In the container, the absorption liquid temperature changed from 47 ℃ to 44 ℃, and the absorption liquid temperature shifted to the high temperature side compared to the single-stage conventional type (50 ℃ for the single-stage type).
To 42 ° C). Also, the evaporation temperature of the first-stage evaporator is 10.5 ° C,
The final stage evaporator is 8.5 ° C, and the intermediate stage evaporator is 6.5 ° C. The cooling air inlet temperature of 35 ° C is heated to 43 ° C after three-stage cooling.
<発明の効果> 上述のように本発明の空冷吸収式冷凍機は、複数個の
蒸発器と複数個の吸収器を、冷却空気を最終段吸収器か
ら中間段吸収器,第1段吸収器に流し、冷水を第1段蒸
発器から最終段蒸発器,中間段蒸発器へと流す構成とし
たことにより、冷却空気量を少なくすることができるた
め、冷却ファン動力を低下させた省エネルギー型の空冷
吸収式冷凍機が可能となる。更に、従来方式より高外気
温時でも空冷運転が可能となり、実用的効果が大きい。
更に、外気温度が低下しても第1段吸収器の吸収液温度
が高いため、多少の変動があっても結晶を招く虞もな
い。<Effects of the Invention> As described above, in the air-cooled absorption refrigerator of the present invention, a plurality of evaporators and a plurality of absorbers are provided, and cooling air is supplied from the final stage absorber to the intermediate stage absorber and the first stage absorber. Since the cooling water is made to flow through the first stage evaporator to the final stage evaporator and the intermediate stage evaporator, the cooling air amount can be reduced. An air-cooled absorption refrigerator can be used. Furthermore, compared to the conventional method, the air-cooling operation can be performed even at a high outside temperature, and the practical effect is large.
Furthermore, even if the outside air temperature decreases, the temperature of the absorbing liquid in the first-stage absorber is high, so there is no risk of causing crystals even if there is some fluctuation.
図面は本発明の実施例を示すもので、第1図は概略図、
第2図は同3段例のデューリング線図、第3図は従来の
単段型のデューリング線図である。 1……第1段吸収器、2……第1段蒸発器、4……中間
段蒸発器、5……中間段吸収器、6……最終段蒸発器、
7……最終段吸収器、8……冷水管、9,11,13……散布
部、10,12,14……ポンプ、15,16,17……冷媒散布部、18
……冷媒管、19……冷却ファン。FIG. 1 shows an embodiment of the present invention, FIG. 1 is a schematic diagram,
FIG. 2 is a Dühring diagram of the same three-stage example, and FIG. 3 is a conventional single-stage Dühring diagram. 1 ... 1st stage absorber, 2 ... 1st stage evaporator, 4 ... intermediate stage evaporator, 5 ... intermediate stage absorber, 6 ... final stage evaporator,
7 ... Final stage absorber, 8 ... Cold water pipe, 9,11,13 ... Spraying part, 10,12,14 ... Pump, 15,16,17 ... Refrigerant spraying part, 18
…… Refrigerant pipe, 19 …… Cooling fan.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 唯人 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 井汲 米造 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 田中 貴雄 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 平1−285750(JP,A) 特開 昭62−202972(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yuito Kobayashi, 2-18 Keihan Hondori, Moriguchi City, Osaka Prefecture, Sanyo Electric Co., Ltd. Sanyo Electric Co., Ltd. (72) Inventor Takao Tanaka 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (56) Reference JP-A-1-285750 (JP, A) JP-A-62 -202972 (JP, A)
Claims (1)
合せる多段型の空冷吸収式冷凍機において、冷却空気が
最終段吸収器から中間段吸収器を経て第1段吸収器へと
直列に流れるよう複数個の吸収器を配列すると共に、冷
水を第1段蒸発器から最終段蒸発器を経て中間段蒸発器
に流れるよう冷水管を配管してなることを特徴とした空
冷吸収式冷凍機。1. In a multi-stage air-cooled absorption refrigerating machine in which a plurality of evaporators and a plurality of absorbers are respectively combined, cooling air is passed from a final stage absorber to an intermediate stage absorber to a first stage absorber. A plurality of absorbers are arranged so as to flow in series with, and a cold water pipe is piped so that cold water flows from the first-stage evaporator to the final-stage evaporator to the intermediate-stage evaporator. Refrigerator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63272491A JP2520946B2 (en) | 1988-10-28 | 1988-10-28 | Air-cooled absorption refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63272491A JP2520946B2 (en) | 1988-10-28 | 1988-10-28 | Air-cooled absorption refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02118368A JPH02118368A (en) | 1990-05-02 |
JP2520946B2 true JP2520946B2 (en) | 1996-07-31 |
Family
ID=17514658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63272491A Expired - Fee Related JP2520946B2 (en) | 1988-10-28 | 1988-10-28 | Air-cooled absorption refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2520946B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7084932B1 (en) | 1999-12-28 | 2006-08-01 | Johnson Controls Technology Company | Video display system for a vehicle |
-
1988
- 1988-10-28 JP JP63272491A patent/JP2520946B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02118368A (en) | 1990-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2592625B2 (en) | Heat absorbing device and method | |
US4546620A (en) | Absorption machine with desorber-resorber | |
JP2897587B2 (en) | Absorption refrigerator | |
US3491545A (en) | Absorption refrigeration system | |
JP2000171119A (en) | Triple-effect absorption refrigerating machine | |
JP2520946B2 (en) | Air-cooled absorption refrigerator | |
US5806325A (en) | Absorption type refrigerator | |
JPH0446339B2 (en) | ||
JP2520945B2 (en) | Air-cooled absorption refrigerator | |
JP3397164B2 (en) | Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method | |
JP2000154946A (en) | Triple effect absorption refrigeration machine | |
JP2959210B2 (en) | Absorption refrigerator | |
JP2628023B2 (en) | Absorption refrigerator | |
JPH10122686A (en) | Air-cooled absorption refrigerating apparatus | |
KR100234062B1 (en) | Ammonia absorber cycle | |
JP2004198087A (en) | Absorption refrigerating device, and absorption refrigerating system | |
JPH0783530A (en) | Water and lithium bromide absorption refrigerator | |
JPH0731097Y2 (en) | Air-cooled absorption refrigerator | |
KR200221381Y1 (en) | Structure of generator in an absorption chiller | |
JP2875614B2 (en) | Air cooling absorption air conditioner | |
JPH06300389A (en) | Absorption type air conditioning equipment | |
KR0160866B1 (en) | Eliminator for absorptive type refrigerator | |
JPH0711367B2 (en) | Absorption refrigeration cycle | |
JP4557468B2 (en) | Absorption refrigerator | |
JP2806189B2 (en) | Absorption refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |