JP2875614B2 - Air cooling absorption air conditioner - Google Patents

Air cooling absorption air conditioner

Info

Publication number
JP2875614B2
JP2875614B2 JP2235623A JP23562390A JP2875614B2 JP 2875614 B2 JP2875614 B2 JP 2875614B2 JP 2235623 A JP2235623 A JP 2235623A JP 23562390 A JP23562390 A JP 23562390A JP 2875614 B2 JP2875614 B2 JP 2875614B2
Authority
JP
Japan
Prior art keywords
air
absorption
solution
cooled
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2235623A
Other languages
Japanese (ja)
Other versions
JPH04116353A (en
Inventor
富久 大内
章 西口
大資 久島
晴一郎 坂口
能文 功力
道彦 相沢
裕明 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2235623A priority Critical patent/JP2875614B2/en
Priority to US07/755,159 priority patent/US5205137A/en
Publication of JPH04116353A publication Critical patent/JPH04116353A/en
Application granted granted Critical
Publication of JP2875614B2 publication Critical patent/JP2875614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空冷吸収冷暖房機に係り、特に、空冷吸収
器と再生器との溶液流路に熱物質交換装置を配置して熱
交換温度差を大きくするのに好適な空冷吸収冷暖房機に
関するものである。
Description: TECHNICAL FIELD The present invention relates to an air-cooling absorption air conditioner, and more particularly, to a heat exchange temperature by disposing a heat-substance exchange device in a solution flow path between an air-cooling absorber and a regenerator. The present invention relates to an air-cooling absorption cooling / heating machine suitable for increasing the difference.

〔従来の技術〕[Conventional technology]

近年、フロンガス不使用の空気調和用熱源機器として
吸収式冷暖房機が注目され、特に空冷化に適した空冷吸
収冷凍サイクルの開発が進められている。
2. Description of the Related Art In recent years, an absorption-type air conditioner has attracted attention as an air-conditioning heat source device that does not use Freon gas.

従来の装置は、例えば特開昭62−202972号公報記載の
ように、外部熱源で吸収溶液を加熱して冷媒蒸気を発生
させて濃縮する高温再生器、発生した冷媒蒸気の凝縮熱
を熱源として吸収溶液を加熱して冷媒蒸気を発生させて
濃縮する低温再生器、該低温再生器で発生した冷媒蒸気
を空気で冷却して濃縮液化させる空冷凝縮器、空冷凝縮
器で生成した液冷媒を蒸発させる蒸発器、蒸発器で発生
した冷媒蒸気を高温再生器または低温再生器から導いた
濃い吸収液に吸収させるとともに空気で冷却する空冷吸
収器、高温再生器および低温再生器からの高温の濃溶液
と空冷吸収器で生成された低温の希溶液とを熱交換させ
る低温熱交換器および高温熱交換器、空冷吸収器および
空冷凝縮器に冷却空気を送る空冷ファン、溶液を循環さ
せる溶液ポンプ、冷媒を循環させる冷媒ポンプから構成
されていた。
Conventional devices include, for example, as described in JP-A-62-202972, a high-temperature regenerator that heats an absorbing solution with an external heat source to generate and concentrate refrigerant vapor, and uses the heat of condensation of the generated refrigerant vapor as a heat source. A low-temperature regenerator that heats the absorption solution to generate refrigerant vapor and concentrates it, an air-cooled condenser that cools the refrigerant vapor generated by the low-temperature regenerator with air to condense and liquefy, and evaporates the liquid refrigerant generated by the air-cooled condenser Evaporator, air-cooled absorber that absorbs the refrigerant vapor generated by the evaporator into the rich absorbent guided from the high-temperature regenerator or low-temperature regenerator and cools it with air, and the high-temperature concentrated solution from the high-temperature regenerator and low-temperature regenerator A low-temperature heat exchanger and a high-temperature heat exchanger that exchange heat with the low-temperature dilute solution generated by the air-cooled absorber, an air-cooled fan that sends cooling air to the air-cooled absorber and the air-cooled condenser, a solution pump that circulates the solution, and a refrigerant It was composed of a refrigerant pump for circulating.

ここに冷房時は、蒸発器の伝熱管群内を流れる冷水は
伝熱管群上を流下する冷媒の蒸発潜熱で冷却され、これ
によつて冷房能力を得る。また、暖房時は、高温再生器
で発生した高温冷媒蒸気を温水熱交換器に導いて濃縮さ
せて伝熱管群内を流れる温水を加熱し、これによつて暖
房能力を得るものである。
Here, during cooling, the cold water flowing in the heat transfer tube group of the evaporator is cooled by the latent heat of evaporation of the refrigerant flowing down on the heat transfer tube group, thereby obtaining the cooling capacity. During heating, the high-temperature refrigerant vapor generated in the high-temperature regenerator is guided to a hot water heat exchanger and concentrated to heat the hot water flowing in the heat transfer tube group, thereby obtaining a heating capacity.

この場合、結晶固化しない濃度および大気圧力を越え
ないで冷房運転できる空冷吸収冷凍サイクルを構成させ
るために、空冷吸収器の出口溶液の吸収剤濃度を水冷機
と同じ程度に低くする必要があつた。そこで、特に空冷
吸収器は複数個の吸収ユニツトから構成し、冷却空気と
の熱交換は、入口側の比較的低温の空気によつて空冷吸
収器の溶液出口に近い低温,低濃度の吸収ユニツトを冷
却するようにし、出口側の比較的高温の冷却空気によつ
て空冷吸収器に流入する比較的高温,高濃度の溶液があ
る吸収ユニツトを冷却するようにさせていた。このよう
に、複数のユニツトから構成される空冷吸収器を使つ
て、冷却空気と溶液の濃度による冷媒蒸気圧力平衡温度
の違いを利用した多パス直交向流熱交換サイクルを構成
させて、冷却空気と吸収液との熱交換を理想的な向流熱
交換に近付けて温度効率を高くすることによつて、水−
臭化リチウム系の二重効用吸収冷凍サイクルの空冷化を
実現していた。このように、サイクル中でもつとも吸収
剤濃度の薄い溶液は空冷吸収器で生成されていた。
In this case, in order to configure an air-cooled absorption refrigeration cycle that can perform cooling operation without exceeding the concentration that does not solidify and the atmospheric pressure, it was necessary to make the absorbent concentration of the outlet solution of the air-cooled absorber as low as that of the water cooler. . In particular, the air-cooled absorber is composed of a plurality of absorption units, and the heat exchange with the cooling air is performed by the relatively low-temperature air at the inlet side of the low-temperature, low-concentration absorption unit near the solution outlet of the air-cooled absorber. The cooling unit at the outlet side cools the absorption unit having a relatively high-temperature and high-concentration solution flowing into the air-cooled absorber. In this way, using the air-cooled absorber composed of a plurality of units, a multi-pass orthogonal countercurrent heat exchange cycle utilizing the difference in the refrigerant vapor pressure equilibrium temperature depending on the concentration of the cooling air and the solution is formed, and the cooling air is cooled. By increasing the temperature efficiency by bringing the heat exchange between the water and the absorbent close to the ideal countercurrent heat exchange,
Air cooling of a lithium bromide double effect absorption refrigeration cycle was realized. As described above, the solution having a low absorbent concentration was generated in the air-cooled absorber at all times during the cycle.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来技術は、冷却空気と吸収溶液の熱交換温度効
率の向上には好適であるが熱交換温度差そのものを大き
くする点については配慮されておらず、空冷吸収器5の
伝熱面積寸法が大きいという問題点があつた。
The above prior art is suitable for improving the heat exchange temperature efficiency between the cooling air and the absorbing solution, but does not take into consideration the increase in the heat exchange temperature difference itself, and the heat transfer area of the air-cooled absorber 5 is reduced. There was a problem of being large.

本発明は、上記従来技術の問題点を解決するためにな
されたもので、冷却空気と吸収溶液との熱交換温度差を
大きくし、空冷吸収器を小形コンパクトにするととも
に、冷却空気の出入口温度差を大きくして、冷却風量を
小さくしうる低騒音の空冷吸収冷暖房機を提供すること
を、その目的とするものである。
The present invention has been made in order to solve the above-mentioned problems of the prior art, and has been made to increase the heat exchange temperature difference between the cooling air and the absorbing solution, to make the air-cooled absorber compact and compact, and to reduce the inlet / outlet temperature of the cooling air. It is an object of the present invention to provide a low-noise air-cooling absorption air conditioner that can reduce the amount of cooling air by increasing the difference.

また、本発明の他の目的は、高温再生器の作動温度お
よび吸収剤濃度を低くすることによつて、腐食耐久性の
ある空冷吸収冷暖房機を提供することにある。
Another object of the present invention is to provide an air-cooled absorption air conditioner having corrosion resistance by lowering the operating temperature and the absorbent concentration of the high-temperature regenerator.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明に係る空冷吸収冷
暖房機の構成は、高温再生器,低温再生器,空冷凝縮
器,蒸発器,空冷吸収器,高温熱交換器,低温熱交換
器,溶液ポンプ,冷媒ポンプ、およびこれらを作動的に
接続する配管系を備えてなる空冷吸収冷暖房機におい
て、高温再生器または低温再生器から空冷吸収器に戻る
濃溶液を導いてフラッシュ蒸発させる再生室と、空冷吸
収器で生成された希溶液にフラッシュ蒸発冷媒蒸気を吸
収させる吸収室とを、溶液除去手段を介して対向するよ
うに配置して吸収/再生室ユニットを構成し、この吸収
/再生室ユニットを複数段配設して、その初段は空冷吸
収器に接続され、終段は再生器側へ接続される配管系を
備え、複数段の吸収/再生室ユニットにおける再生室の
各段は、溶液散布手段と、該溶液散布手段の下方に波形
または鋸歯形に整形された網状充填物が複数段互い違い
に配置され水平方向に開口部が設けられた気液界面面積
拡大手段とを有し、液滴除去手段を介して対向する吸収
室に接続され、溶液ポンプを介して次の段の再生室の溶
液散布手段または空冷吸収器のいずれかに接続したもの
である。
In order to achieve the above object, the configuration of the air-cooling absorption cooling / heating machine according to the present invention includes a high-temperature regenerator, a low-temperature regenerator, an air-cooled condenser, an evaporator, an air-cooling absorber, a high-temperature heat exchanger, a low-temperature heat exchanger, and a solution. A pump, a refrigerant pump, and an air-cooling absorption air-conditioner including a piping system for operatively connecting the pump and the refrigerant, and a regeneration chamber that guides the concentrated solution returned from the high-temperature regenerator or the low-temperature regenerator to the air-cooled absorber and flash-evaporates; An absorption / regeneration chamber unit is configured by arranging an absorption chamber for absorbing the flash evaporated refrigerant vapor in the dilute solution generated by the air-cooled absorber via a solution removing means, and forming an absorption / regeneration chamber unit. Are arranged in a plurality of stages, the first stage being connected to an air-cooled absorber, the last stage being provided with a piping system connected to the regenerator side, and each stage of the regeneration chamber in the multi-stage absorption / regeneration chamber unit is provided with a solution. Spraying means; A gas-liquid interface area enlarging means in which a plurality of stages of corrugated or saw-tooth shaped net-like fillers are arranged alternately below the solution spraying means and provided with openings in the horizontal direction; And connected to either the solution spraying means or the air-cooled absorber of the next-stage regeneration chamber via a solution pump.

また、同様に、複数段の吸収/再生室ユニットにおけ
る吸収室の各段は、 溶液散布手段と、該溶液散布手段の下方に波形または
鋸歯形に整形された網状充填物が複数段互い違いに配置
され水平方向に開口部が設けられた気液界面面積拡大手
段とを有し、液滴除去手段を介して対向する再生室に接
続され、溶液ポンプを介して次の段の吸収室の溶液散布
手段または、低温熱交換器または高温熱交換器のいずれ
かに接続したものである。
Similarly, in each stage of the absorption chamber in the multiple-stage absorption / regeneration chamber unit, the solution spraying means and the corrugated or sawtooth-shaped net-like packing are alternately arranged below the solution spraying means. And a gas-liquid interface area enlarging means provided with an opening in the horizontal direction, connected to the opposite regeneration chamber via the droplet removing means, and spraying the solution in the next absorption chamber via the solution pump. Means or connected to either a low temperature heat exchanger or a high temperature heat exchanger.

なお、より具体的に、実施例で後述する第1図,第2
図を参照して説明する。
More specifically, FIG. 1 and FIG.
This will be described with reference to the drawings.

すなわち、上記目的を達成する技術的手段は、高温再
生器1または低温再生器2から空冷吸収器5に戻る濃溶
液流路途中および、空冷吸収器5で生成された希溶液を
高温再生器1または低温再生器2に送る流路途中に熱物
質交換装置14を配置して、前記濃溶液から冷媒蒸気を発
生させて前記希溶液に吸収させたものである。
That is, the technical means for achieving the above-mentioned object is that the dilute solution generated in the air-cooled absorber 5 is returned to the air-cooled absorber 5 from the high-temperature regenerator 1 or the low-temperature regenerator 2. Alternatively, a heat-substance exchange device 14 is disposed in the middle of the flow path for sending to the low-temperature regenerator 2, and the refrigerant vapor is generated from the concentrated solution and absorbed in the dilute solution.

ここに、前記熱物質交換装置14は、濃溶液から冷媒蒸
気を発生させる再生室15と、希溶液に再生室15で発生し
た冷媒蒸気を導いて吸収させる吸収室16、再生室15で発
生した冷媒蒸気を吸収室16に導く手段とから構成されて
いる。また、該再生室15と吸収室16は複数組設けるもの
である。
Here, the heat and mass exchange device 14 is generated in the regeneration chamber 15 for generating refrigerant vapor from the concentrated solution, the absorption chamber 16 for guiding and absorbing the refrigerant vapor generated in the regeneration chamber 15 to the dilute solution, and generated in the regeneration chamber 15. Means for guiding the refrigerant vapor to the absorption chamber 16. Also, a plurality of sets of the regeneration chamber 15 and the absorption chamber 16 are provided.

ここに、再生室15は濃溶液散布手段18,気液界面面積
拡大手段19,溶液ミストが吸収室に流失することを防止
する液滴除去手段20,生成された濃溶液を次の再生室ま
たは空冷吸収器5に送る溶液輸送手段に係る濃溶液ポン
プ21からなる。
Here, the regenerating chamber 15 is a concentrated solution spraying means 18, a gas-liquid interface area enlarging means 19, a droplet removing means 20 for preventing the solution mist from flowing to the absorption chamber, and the generated concentrated solution is supplied to the next regenerating chamber or It comprises a concentrated solution pump 21 relating to a solution transport means for sending to the air-cooled absorber 5.

また、吸収室は希溶液散布手段22,気液界面面積拡大
手段23,溶液ミストが再生室に流失することを防止する
液滴除去手段24,生成された希溶液を次の吸収室または
高温再生器1または低温再生器2に送る溶液輸送手段に
係る希溶液ポンプ25および吸収室16の抽気手段26,再生
室15の液面制御手段を構成する連通管30および吸収室16
の液面制御手段を構成する仕切せき31などからなるもの
である。
In addition, the absorption chamber includes a dilute solution spraying unit 22, a gas-liquid interface area enlarging unit 23, a droplet removing unit 24 for preventing the solution mist from flowing to the regenerating chamber, Diluent pump 25 and a bleeding means 26 for the absorption chamber 16 and a communication pipe 30 and an absorption chamber 16 which constitute liquid level control means for the regeneration chamber 15.
Of the liquid level control means.

〔作用〕[Action]

上記技術的手段による働きを、実施例で後述する第1
図,第2図を参照して具体的に説明する。
The function of the above technical means is described in the first embodiment, which will be described later in the first embodiment.
This will be specifically described with reference to FIGS.

高温再生器1または低温再生器2から空冷吸収器5に
戻る濃溶液は高温,高濃度で冷媒蒸気圧力が高い。一
方、空冷吸収器5で生成された希溶液は低温,低濃度で
冷媒蒸気圧力が低い。熱物質交換装置14は、この冷媒蒸
気圧力差を利用して濃溶液から希溶液に冷媒蒸気を移動
させて熱物質交換を行わせるものである。すなわち、高
温再生器1または低温再生器2から空冷吸収器5に戻る
濃溶液を熱物質交換装置14の再生室15に導き冷媒蒸気を
発生させ、一方、空冷吸収器5で生成された希溶液を該
熱物質交換装置14の吸収室16に導き、前記冷媒蒸気を吸
収させる。これにより、高温再生器1または低温再生器
2から空冷吸収器5に戻る濃溶液は熱物質交換装置14に
おいて冷媒蒸気を発生し、濃縮されて空冷吸収器5に導
かれる。また、逆に、空冷吸収器5で生成された希溶液
は熱物質交換装置14において冷媒蒸気を吸収して、希釈
されて高温再生器1または低温再生器2に送られる。
The concentrated solution returning from the high-temperature regenerator 1 or the low-temperature regenerator 2 to the air-cooled absorber 5 has a high temperature, a high concentration, and a high refrigerant vapor pressure. On the other hand, the dilute solution generated by the air-cooled absorber 5 has a low temperature, a low concentration, and a low refrigerant vapor pressure. The heat-substance exchange device 14 uses this refrigerant-vapor pressure difference to move refrigerant vapor from a concentrated solution to a dilute solution to perform heat-substance exchange. That is, the concentrated solution returning from the high-temperature regenerator 1 or the low-temperature regenerator 2 to the air-cooled absorber 5 is guided to the regeneration chamber 15 of the heat-substance exchanger 14 to generate refrigerant vapor, while the dilute solution generated by the air-cooled absorber 5 is generated. Is introduced into the absorption chamber 16 of the heat and mass exchange device 14 to absorb the refrigerant vapor. As a result, the concentrated solution returning from the high-temperature regenerator 1 or the low-temperature regenerator 2 to the air-cooled absorber 5 generates refrigerant vapor in the heat-substance exchanger 14, is concentrated, and is guided to the air-cooled absorber 5. Conversely, the dilute solution generated in the air-cooled absorber 5 absorbs the refrigerant vapor in the heat-substance exchanger 14, is diluted and sent to the high-temperature regenerator 1 or the low-temperature regenerator 2.

以上のように、空冷吸収器5の溶液出口濃度よりも吸
収剤濃度が薄い溶液を高温再生器1または低温再生器2
に送ることができ、空冷吸収器5の出口溶液の吸収剤濃
度を従来技術よりも濃くしても、高温再生器1または低
温再生器2は同じ作動温度,濃度で操作できる。すなわ
ち、吸収冷凍サイクルの空冷吸収器5部分のみを従来技
術よりも高温,高濃度に運転でき、冷却空気との熱交換
温度差を大きくできる。
As described above, the solution whose absorbent concentration is lower than the solution outlet concentration of the air-cooled absorber 5 is supplied to the high-temperature regenerator 1 or the low-temperature regenerator 2.
And the high-temperature regenerator 1 or the low-temperature regenerator 2 can be operated at the same operating temperature and concentration even if the absorbent concentration of the outlet solution of the air-cooled absorber 5 is higher than in the prior art. That is, only the air-cooled absorber 5 of the absorption refrigeration cycle can be operated at a higher temperature and a higher concentration than in the prior art, and the difference in heat exchange temperature with the cooling air can be increased.

再生室15の上部に配置された濃溶液散布手段18により
高温の溶液が再生室15に分散散布される。これにより溶
液は機内圧力平衡濃度に速やかに濃縮される。
The high-temperature solution is dispersed and sprayed into the regeneration chamber 15 by the concentrated solution spraying means 18 arranged above the regeneration chamber 15. As a result, the solution is quickly concentrated to the equilibrium pressure in the apparatus.

気液界面面積拡大手段19は液滴を細かくしすぎると冷
媒蒸気流動に随伴して吸収室16に流出するので、例えば
針金や金網あるいはプラスチツク製の糸や網などの上に
溶液を拡げて、気液界面を拡大させて冷媒発生を促進す
ると共に溶液のキヤリオーバーを防止する。液滴除去手
段20は前記溶液のキヤリオーバーを防止するものであ
る。
If the gas-liquid interface area enlarging means 19 makes the droplets too fine, it flows out into the absorption chamber 16 accompanying the refrigerant vapor flow, so that the solution is spread on, for example, a wire or a wire net or a plastic thread or net, The gas-liquid interface is enlarged to promote the generation of the refrigerant and prevent the solution from being carried over. The droplet removing means 20 prevents carryover of the solution.

溶液輸送手段は、位置のヘツド差を利用する場合は各
再生室間にU字液シールが必要となる。濃溶液ポンプ21
を利用すればNPSHの関係から必然的にU字液シールが構
成され、各再生室間の圧力差を維持する。
When the solution transport means uses the head difference between the positions, a U-shaped liquid seal is required between the regeneration chambers. Concentrated solution pump 21
If U is used, a U-shaped liquid seal is inevitably formed due to the relationship of NPSH, and the pressure difference between the regeneration chambers is maintained.

なお、液シールとは、例えば管に液の溜る部分を形成
し、液の溜った部分の両側で連通しないようにするもの
である。ここで、U字液シールは、管をU字型に曲げて
管内に液を入れ、液の溜った部分の両側で連通しないよ
うにしたものである。
In addition, the liquid seal is, for example, a part that forms a pool of liquid in a tube so as not to communicate on both sides of the pool of liquid. Here, the U-shaped liquid seal is formed by bending a pipe into a U-shape to put the liquid into the pipe, and to prevent communication on both sides of a portion where the liquid is stored.

また、ここで、NPSH(Net Positive Suction Headの
略)は、ポンプの押し込み揚程を云い、ポンプのインペ
ラによって発生する負圧によりキャビテーションが発生
しないように、正圧をかけるための液深さに相当する。
Also, here, NPSH (abbreviation of Net Positive Suction Head) refers to the indentation head of the pump and corresponds to the liquid depth for applying a positive pressure so that cavitation does not occur due to the negative pressure generated by the impeller of the pump. I do.

一方、吸収室16には希溶液散布手段22により低温の希
溶液が導かれ、再生室15からの冷媒蒸気を吸収して温度
上昇するとともに濃度が薄くなる。気液界面面積拡大手
段23は液滴をより細かくして、あるいは充填物に展開し
て冷媒蒸気を吸収し易くするものである。液滴除去手段
24は希溶液のはね返りが再生室15に流出することを防止
する装置である。金網などを吸収室16の下方に敷くこと
により跳ね返りによる液滴発生をかなり防止できる。
On the other hand, a low-temperature dilute solution is introduced into the absorption chamber 16 by the dilute solution spraying means 22, and absorbs refrigerant vapor from the regeneration chamber 15 to increase the temperature and decrease the concentration. The gas-liquid interface area enlarging means 23 makes the droplets finer or spreads out into the packing material to make it easier to absorb the refrigerant vapor. Droplet removing means
Numeral 24 denotes a device for preventing the rebound of the dilute solution from flowing out into the regeneration chamber 15. By laying a wire mesh or the like below the absorption chamber 16, the generation of droplets due to rebound can be considerably prevented.

溶液輸送手段は、位置のヘツド差を利用する場合は各
吸収室間にU字液シールが必要となる。希溶液ポンプ25
を利用すればNPSHの関係から必然的にU字液シールが構
成され、各吸収室間の圧力差を維持する。
When the solution transport means uses the head difference between the positions, a U-shaped liquid seal is required between the absorption chambers. Dilute solution pump 25
If U is used, a U-shaped liquid seal is inevitably formed from the relationship of NPSH, and the pressure difference between the absorption chambers is maintained.

最後に、連通管30,仕切せき31は、各再生室の溢れ防
止,吸収室の溢れ防止として作用し、過大な量の溶液が
熱物質交換装置14内に滞留してサイクルが構成できなく
なることを防止する作用をする。
Finally, the communication pipe 30 and the partition 31 function to prevent overflow of each regeneration chamber and overflow of the absorption chamber, so that an excessive amount of solution stays in the heat-material exchange device 14 and a cycle cannot be formed. Acts to prevent.

ここで、空冷吸収器5に着目すると、空冷吸収器5
は、蒸発器4の冷媒蒸発圧力平衡温度で冷却空気と熱交
換しているので、空冷吸収器5出口の吸収剤濃度レベル
を熱物質交換装置14により例えば1%濃くすると、吸収
液の圧力平衡温度は、臭化リチウム水溶液では約1.8K高
温になる。冷却空気との熱交換温度差は、従来は吸収器
出口溶液温度が約40℃、冷却空気入口温度が約35℃であ
るから、約5Kである。このように本発明を実施すること
により、吸収器出口溶液温度が約41.8℃に高くできるか
ら、熱交換温度差は約6.8Kとなり、同じ熱通過率が得ら
れるとすると空冷吸収器5はおよそ5/6.8=0.73と、約2
7%小形化できる。なお、空冷吸収器5に垂直管内吸収
の伝熱管を使用すると、単位幅あたりの液膜流量が多い
ほど熱伝達率が増大する結果が得られており、小形化に
よつて液膜流量を増加できるため、熱通過率も増加する
効果があり、前記計算値27%よりも大幅な小形化,高性
能化の効果が得られる。
Here, paying attention to the air-cooled absorber 5, the air-cooled absorber 5
Heat exchanges with the cooling air at the refrigerant evaporation pressure equilibrium temperature of the evaporator 4. Therefore, if the concentration of the absorbent at the outlet of the air-cooled absorber 5 is increased by, for example, 1% by the heat-substance exchange device 14, the pressure balance of the absorbing liquid The temperature is about 1.8K higher in aqueous lithium bromide solution. The heat exchange temperature difference between the cooling air and the cooling air is about 5K because the temperature of the solution at the outlet of the absorber is about 40 ° C and the temperature of the inlet of the cooling air is about 35 ° C. By implementing the present invention in this way, the temperature of the solution at the outlet of the absorber can be increased to about 41.8 ° C., so that the heat exchange temperature difference is about 6.8 K, and if the same heat transfer rate is obtained, the air-cooled absorber 5 is approximately 5 / 6.8 = 0.73, about 2
7% smaller. When a heat transfer tube for absorption in a vertical pipe is used for the air-cooled absorber 5, the result is that the heat transfer coefficient increases as the liquid film flow rate per unit width increases, and the liquid film flow rate increases due to miniaturization. Therefore, there is an effect that the heat transmission rate is increased, and the effect of downsizing and performance enhancement that is significantly larger than the calculated value of 27% can be obtained.

〔実施例〕〔Example〕

以下、本発明の各実施例を第1図ないし第10図を参照
して説明する。
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 10.

第1図は、本発明の一実施例に係る空冷吸収冷暖房機
のサイクル系統図、第2図は、第1図の熱物質交換装置
の構成図、第3図は、第1図のサイクルにおけるデユー
リング線図、第4図は、充填物の構成を示す部分斜視図
である。
FIG. 1 is a cycle system diagram of an air-cooling absorption air conditioner according to one embodiment of the present invention, FIG. 2 is a configuration diagram of a heat-substance exchange device of FIG. 1, and FIG. FIG. 4 is a partial perspective view showing the configuration of the filler.

第1図に示す空冷吸収冷暖房機は、吸収溶液を加熱し
て冷媒蒸気を発生させて濃縮する高温再生器1、高温再
生器1で発生した冷媒蒸気の凝縮熱を熱源として吸収溶
液を加熱して冷媒蒸気を発生させて濃縮する低温再生器
2、低温再生器2で発生した冷媒蒸気を空気で冷却して
凝縮液化させる空冷凝縮器3、空冷凝縮器3で生成した
液冷媒を蒸発させる蒸発器4、蒸発器4で発生した冷媒
蒸気を濃い吸収液に吸収させるとともに空気で冷却する
空冷吸収器5、空冷吸収器5で生成された希溶液が導か
れる熱物質交換装置14、濃溶液と希溶液を熱交換させる
低温熱交換器6、高温再生器1で生成された濃溶液と高
温再生器1に流入する希溶液とを熱交換させる高温熱交
換器7、空冷吸収器5に冷却空気を送る空冷フアン8a、
および空冷凝縮器3に冷却空気を送る空冷フアン8b、空
冷吸収器5の溶液を循環させる溶液ポンプ9a,9b、空冷
凝縮器3で生成された冷媒をフラツシユ蒸発室27に送る
冷媒ポンプ10から構成されている。
The air-cooling absorption air conditioner shown in FIG. 1 heats an absorption solution to generate a refrigerant vapor and concentrates the refrigerant, and heats the absorption solution using heat of condensation of the refrigerant vapor generated in the high temperature regenerator 1 as a heat source. Low-temperature regenerator 2 for generating and condensing refrigerant vapor by cooling, air-cooled condenser 3 for cooling and condensing and liquefying refrigerant vapor generated in low-temperature regenerator 2 with air, and evaporating liquid refrigerant generated in air-cooled condenser 3 , An air-cooled absorber 5 that absorbs the refrigerant vapor generated in the evaporator 4 into a thick absorbent and cools the air with air, a hot-material exchanger 14 to which the dilute solution generated by the air-cooled absorber 5 is guided, and a concentrated solution. The low-temperature heat exchanger 6 for exchanging heat of the dilute solution, the high-temperature heat exchanger 7 for exchanging heat between the concentrated solution generated by the high-temperature regenerator 1 and the dilute solution flowing into the high-temperature regenerator 1, and cooling air to the air-cooled absorber 5 Send air cooled Juan 8a,
And an air-cooled fan 8b for sending cooling air to the air-cooled condenser 3, solution pumps 9a and 9b for circulating the solution in the air-cooled absorber 5, and a refrigerant pump 10 for sending the refrigerant generated in the air-cooled condenser 3 to the flash evaporation chamber 27. Have been.

冷房時は、蒸発器4の伝熱管群内を流れる冷水11は伝
熱管群上を流下する冷媒の蒸発潜熱で冷却され、これに
よつて冷房能力を得る。
During cooling, the cold water 11 flowing in the heat transfer tube group of the evaporator 4 is cooled by the latent heat of evaporation of the refrigerant flowing down on the heat transfer tube group, thereby obtaining a cooling capacity.

また、暖房時は、高温再生器1で発生した高温冷媒蒸
気を温水熱交換器12に導いて凝縮させて伝熱管群内を流
れる温水13を加熱し、これによつて暖房能力を得るもの
である。
At the time of heating, the high-temperature refrigerant vapor generated in the high-temperature regenerator 1 is guided to the hot water heat exchanger 12 to be condensed and heat the hot water 13 flowing in the heat transfer tube group, thereby obtaining the heating capacity. is there.

ここで、前記空冷凝縮器3で生成された冷媒は冷媒ポ
ンプ10により、配管50を経てフラッシユ蒸発室27に送ら
れ、フラッシユ蒸発室27から液冷媒は配管52によつて蒸
発器4へ導かれ、発生した冷媒蒸気は冷媒流路51により
熱物質交換装置14に導かれる。
Here, the refrigerant generated in the air-cooled condenser 3 is sent to the flash evaporation chamber 27 via the pipe 50 by the refrigerant pump 10, and the liquid refrigerant is guided from the flash evaporation chamber 27 to the evaporator 4 via the pipe 52. The generated refrigerant vapor is guided to the thermal mass exchanger 14 by the refrigerant flow path 51.

ここに、空冷吸収器5は二つのブロツクから構成さ
れ、冷却空気出口に近い側の吸収器5aに濃い溶液が導か
れて蒸発器4で発生した冷媒蒸気を吸収するとともに冷
却されてやや薄い吸収液が生成され、この溶液は溶液ポ
ンプ9aで冷却空気入り口に近い側の吸収器5bに送られて
冷却され、冷媒蒸気を吸収して空冷吸収器5の出口希溶
液が生成される。
Here, the air-cooled absorber 5 is composed of two blocks, and the concentrated solution is guided to the absorber 5a near the cooling air outlet to absorb the refrigerant vapor generated in the evaporator 4 and to be cooled and slightly absorbed. A liquid is generated, and this solution is sent to the absorber 5b on the side near the cooling air inlet by the solution pump 9a and cooled, and absorbs refrigerant vapor to generate a dilute solution at the outlet of the air-cooled absorber 5.

次に、第2図を参照して、熱物質移動手段に係る熱物
質交換装置14を詳細に説明する。
Next, with reference to FIG. 2, the heat mass exchange device 14 relating to the heat mass transfer means will be described in detail.

熱物質交換装置14は、複数組(本例では3組)の吸収
/再生室ユニツト14A,14B,14Cからなつている。
The heat and mass exchange device 14 comprises a plurality of sets (three sets in this example) of absorption / regeneration chamber units 14A, 14B, 14C.

吸収/再生室ユニツト(14A,14B,14C)の構成は、再
生器側から空冷吸収器5側へ戻る濃溶液を導いてフラツ
シユ蒸発させる再生室15(15a,15b,15cの総称)と、空
冷吸収器5で生成された希溶液にフラツシユ蒸発冷媒蒸
気を吸収させる吸収室16(16a,16b,16cの総称)とを、
溶液除去手段20,24(エリミネータ)を介して対向する
ように配置され、冷媒蒸気流路が確保されているもので
ある。
The absorption / regeneration unit (14A, 14B, 14C) is composed of a regeneration chamber 15 (collectively 15a, 15b, and 15c) for conducting a concentrated solution from the regenerator to the air-cooled absorber 5 and flash-evaporating the concentrated solution. An absorption chamber 16 (general term for 16a, 16b, 16c) for absorbing the flash evaporated refrigerant vapor into the dilute solution generated by the absorber 5 is
They are arranged so as to face each other via the solution removing means 20, 24 (eliminator), and a refrigerant vapor flow path is secured.

吸収/再生室ユニツト14A,14B,14Cにおける各段の再
生室15a,15b,15cは、その再生室15の上部にパンチング
プレートで作られた濃溶液散布手段18(18a,18b,18c)
が配置されており、その下方に気液界面面積拡大手段19
が充填されている。
The regeneration chambers 15a, 15b, 15c of each stage in the absorption / regeneration chamber units 14A, 14B, 14C are provided with concentrated solution spraying means 18 (18a, 18b, 18c) made of a punching plate above the regeneration chamber 15.
Is disposed under the gas-liquid interface area expanding means 19.
Is filled.

気液界面面積を拡大する充填物は、第4図に示すよう
に、波形網状充填物19a,鋸歯状充填物19b等が複数段互
い違いに配置され、矢印に示す蒸気流動方向(水平方
向)に開口部が設けられて冷媒蒸気流路が確保されてい
る。
As shown in FIG. 4, the packing for expanding the gas-liquid interface area has a corrugated net-like packing 19a, a saw-tooth packing 19b, etc., which are arranged alternately in a plurality of stages, in a vapor flow direction (horizontal direction) indicated by an arrow. An opening is provided to secure a refrigerant vapor flow path.

このような再生室15は液滴除去手段20、すなわちエリ
ミネータを介して対向する吸収室16に接続される。
Such a regeneration chamber 15 is connected to the absorption chamber 16 which is opposed via a droplet removing means 20, that is, an eliminator.

各段の再生室15a,15b,15cの下部に次の段への濃溶液
輸送手段である濃溶液ポンプ21(21a,21b,21c)が配設
されている。
A concentrated solution pump 21 (21a, 21b, 21c) as a concentrated solution transport means to the next stage is provided below the regeneration chambers 15a, 15b, 15c of each stage.

一方、吸収/再生室ユニツト14A,14B,14Cにおける各
段の吸収室16a,16b,16cは、その吸収室16の上部に希溶
液散布手段22(22a,22b,22c)が配置されており、その
下方に気液界面面積拡大手段23が充填されている。
On the other hand, in each of the absorption chambers 16a, 16b, 16c of the absorption / regeneration chamber units 14A, 14B, 14C, a dilute solution spraying means 22 (22a, 22b, 22c) is disposed above the absorption chamber 16. Below this, a gas-liquid interface area enlarging means 23 is filled.

気液界面面積を拡大する充填物は、再生室の充填物と
同様に、波形または鋸歯形に整形された網状充填物が複
数段互い違いに配置され水平方向に開口部が設けられて
いる。
Like the packing in the regeneration chamber, the packing for expanding the gas-liquid interface area has a net-like packing shaped like a corrugated or saw-toothed shape, which is alternately arranged in a plurality of stages, and has an opening in the horizontal direction.

このような吸収室16は、溶液ミストが再生室15に流失
することを防止する液滴除去手段24、すなわちエリミネ
ータを介して対向する再生室15に接続される。
Such an absorption chamber 16 is connected to the opposing regeneration chamber 15 via a droplet removing means 24 for preventing the solution mist from flowing to the regeneration chamber 15, that is, an eliminator.

各段の吸収室16a,16b,16cの下部に次の段への希溶液
輸送手段である希溶液ポンプ25(25a,25b,25c)が配設
されている。
A dilute solution pump 25 (25a, 25b, 25c) as a dilute solution transport means to the next stage is disposed below the absorption chambers 16a, 16b, 16c of each stage.

熱物質交換装置14まわりの作用と液面制御について説
明する。
The operation around the heat and mass exchange device 14 and the liquid level control will be described.

空冷吸収器5で生成された希溶液は、吸収器5bから容
器ポンプ9b,配管40により熱物質交換装置14の初段の吸
収/再生ユニツト14Aの吸収室16aに送られ希溶液散布手
段22aから気液界面面積拡大手段23に散布される。希溶
液は希溶液ポンプ25aにより次の段の吸収室16bに送ら
れ、以下同様にしてさらに希溶液ポンプ25bにより次の
段(終段)の吸収室16cに送られ、希溶液ポンプ25c,配
管41により再生器側へ送られる。すなわり、希溶液は、
低温熱交換器6を経て二分され、一方は配管41bにより
低温再生器2に送給され、もう一方は高温熱交換器7を
経て配管41aにより高温再生器1に送られる。
The dilute solution generated by the air-cooled absorber 5 is sent from the absorber 5b to the absorption chamber 16a of the first-stage absorption / regeneration unit 14A of the heat-substance exchange unit 14 by the container pump 9b and the pipe 40 from the absorber 5b, and the diluted solution spraying means 22a. It is sprayed on the liquid interface area enlarging means 23. The dilute solution is sent to the absorption chamber 16b of the next stage by the dilute solution pump 25a, and further similarly sent to the absorption chamber 16c of the next stage (final stage) by the dilute solution pump 25b. It is sent to the regenerator side by 41. In other words, the dilute solution
One is sent to the low-temperature regenerator 2 via the pipe 41b, and the other is sent to the high-temperature regenerator 1 via the high-temperature heat exchanger 7 via the pipe 41a.

高温再生器1の溶液は外部熱源により加熱されて濃縮
され、配管42aにより高温熱交換器7に導かれて希溶液
と熱交換し、低温再生器2から配管42bにより導かれた
濃溶液とともに配管42を経て熱物質交換装置14の終段の
吸収/再生ユニツト14Cに送られる。すなわち、濃溶液
は、再生室15cに導かれ、濃溶液散布手段18cから気液界
面拡大手段19に散布される。そこで濃溶液は、冷媒蒸気
を自己の持つている熱エネルギーによつて蒸発させて溶
液自身は温度が低下するとともに濃縮され濃溶液ポンプ
21cにより次の再生室15bに送られる。なお、再生室15c
で発生した冷媒蒸気は吸収室16cに導かれ希溶液に吸収
される。再生室15bでは、再生室15cよりも低圧で冷媒蒸
気を自己の持つている熱エネルギーによつて蒸発させて
溶液自身は温度が低下すると共に濃縮され濃溶液ポンプ
21bにより次の再生室15aに送られる。なお、再生室15b
で発生した冷媒蒸気は吸収室16bに導かれ希溶液に吸収
される。
The solution in the high-temperature regenerator 1 is heated and concentrated by an external heat source, guided to the high-temperature heat exchanger 7 by the pipe 42a to exchange heat with the dilute solution, and is piped together with the concentrated solution guided from the low-temperature regenerator 2 by the pipe 42b. After passing through 42, it is sent to the absorption / regeneration unit 14C at the final stage of the thermal mass exchange device 14. That is, the concentrated solution is guided to the regeneration chamber 15c, and is sprayed from the concentrated solution spraying means 18c to the gas-liquid interface expanding means 19. Therefore, the concentrated solution evaporates the refrigerant vapor by its own thermal energy, and the solution itself is concentrated as the temperature decreases, and the concentrated solution pump
It is sent to the next regeneration room 15b by 21c. In addition, reproduction room 15c
Is generated in the absorption chamber 16c and is absorbed by the dilute solution. In the regeneration chamber 15b, the refrigerant vapor is evaporated at a lower pressure than the regeneration chamber 15c by its own thermal energy, so that the solution itself decreases in temperature and is concentrated, and the concentrated solution pump is concentrated.
It is sent to the next regeneration room 15a by 21b. The regeneration room 15b
The refrigerant vapor generated in the above is guided to the absorption chamber 16b and is absorbed by the dilute solution.

再生室15aでは再生室15bよりも低圧で冷媒蒸気を自己
の持つている熱エネルギーによつて蒸発させて溶液自身
は温度が低下すると共に濃縮され濃溶液ポンプ21a,配管
43により空冷吸収器5の高温側ブロツクである吸収器5a
に導かれる。
In the regeneration chamber 15a, the refrigerant vapor is evaporated by its own thermal energy at a lower pressure than the regeneration chamber 15b, so that the solution itself is reduced in temperature and concentrated, and the concentrated solution pump 21a and piping
43, the absorber 5a which is a high-temperature side block of the air-cooled absorber 5
Is led to.

なお、再生室15aで発生した冷媒蒸気は吸収室16aに導
かれ希溶液に吸収される。さらに、吸収室16aにはフラ
ツシユ蒸発器27で蒸発した冷媒蒸気も供給され、希溶液
に吸収させる。したがつて、蒸発器4には空冷凝縮器3
で生成した液冷媒よりも低温の液冷媒が供給され、空冷
吸収器5の冷媒吸収量を少なくでき熱負荷を軽減できる
ため、空冷吸収器5の効率を高くできる効果がある。
The refrigerant vapor generated in the regeneration chamber 15a is guided to the absorption chamber 16a and is absorbed by the dilute solution. Further, the refrigerant vapor evaporated by the flash evaporator 27 is also supplied to the absorption chamber 16a, and is absorbed by the dilute solution. Therefore, the evaporator 4 includes the air-cooled condenser 3
Since the liquid refrigerant having a lower temperature than the liquid refrigerant generated in the step (1) is supplied and the amount of refrigerant absorbed by the air-cooled absorber 5 can be reduced and the heat load can be reduced, there is an effect that the efficiency of the air-cooled absorber 5 can be increased.

また、吸収室16cから吸収室16bに抽気管26cを経由し
て不凝縮ガスが抽気され、その吸収室16bから抽気管26b
を経由して吸収室16aに不凝縮ガスを抽気している。さ
らに、吸収室16aからは抽気管26aによつて自動抽気装置
28に抽気捕集され、排気装置(図示せず)によつて自動
的に機外に放出されている。したがつて、器内の不凝縮
ガスを効率良く排気でき、機器の物質移動効率を高く維
持できるとともに、溶液循環がスムーズに行くという効
果がある。
Further, the non-condensable gas is extracted from the absorption chamber 16c to the absorption chamber 16b via the bleed pipe 26c, and the bleed pipe 26b is extracted from the absorption chamber 16b.
The non-condensable gas is bled into the absorption chamber 16a via the. Further, an automatic bleeding device is connected to the bleeding pipe 26a from the absorption chamber 16a.
The air is bled and collected at 28 and is automatically discharged out of the machine by an exhaust device (not shown). Therefore, there is an effect that the non-condensable gas in the vessel can be efficiently exhausted, the mass transfer efficiency of the apparatus can be maintained high, and the solution circulation can be smoothly performed.

前述のように、各再生室の上部には濃溶液散布手段18
が配置されており、スプレー用のパンチ穴から熱くて濃
い溶液がその下方に配置された気液界面面積拡大手段19
上に散布されて、表面積が大きいため、冷媒蒸気発生が
効率よく行われる。
As described above, the concentrated solution spraying means 18 is provided above each regeneration chamber.
Is disposed, and a hot and thick solution is provided through a punch hole for spraying.
Since it is sprayed on and has a large surface area, refrigerant vapor is generated efficiently.

また、充填物には、波形または鋸歯形に折り曲げた金
網が配置されているので、落下した液滴が細かな飛沫と
なつて吸収室16に流出することを防止している。
In addition, since a wire mesh that is bent in a corrugated or saw-tooth shape is arranged in the filler, the dropped droplets are prevented from flowing into the absorption chamber 16 as fine droplets.

なお、充填物が無くても、液滴とするだけでも冷媒蒸
気発生が速やかに行われる。
In addition, even if there is no filling material, refrigerant vapor is quickly generated even if it is made into a droplet.

各吸収/再生室ユニツト14A,14B,14Cは、溶液連通管3
0(30b,30cの総称)で接続され、再生室15の液面が制御
されている。
Each absorption / regeneration room unit 14A, 14B, 14C
The connection is made at 0 (collectively 30b and 30c), and the liquid level in the regeneration chamber 15 is controlled.

再生室15aの下部と再生室15bの気相部とはU字液シー
ルを介して連通管30bで接続され、また再生室15bの下部
と再生室15cの気相部とがU字液シールを介して連通管3
0cで接続されている。再生室15cの液面が上昇した場合
はは該連通管30cを介して次の段の再生室15bに送られ
る。
The lower part of the regeneration chamber 15a and the gas phase of the regeneration chamber 15b are connected by a communication pipe 30b via a U-shaped liquid seal, and the lower part of the regeneration chamber 15b and the gas phase of the regeneration chamber 15c form a U-shaped liquid seal. Through the communication pipe 3
Connected at 0c. When the liquid level in the regeneration chamber 15c rises, it is sent to the next-stage regeneration chamber 15b via the communication pipe 30c.

なお、図示しないが、空冷吸収器5aの下部と再生室15
aをU字液シールを介して連通管で接続することが望ま
しい。このように構成することにより、再生室15に過大
な量の濃溶液が滞留することはない。
Although not shown, the lower part of the air-cooled absorber 5a and the regeneration chamber 15
It is desirable to connect a with a communication pipe via a U-shaped liquid seal. With such a configuration, an excessive amount of the concentrated solution does not stay in the regeneration chamber 15.

例えば、配管の結晶固化時も、前記連通管30の流路を
確保できるため、希溶液側に濃溶液を流入させることが
なく、サイクルを継続できる利点がある。なお、希溶液
側に濃溶液が流入するとサイクルの高温再生器1および
低温再生器2の溶液濃度がとくに濃くなり、作動圧力が
高くなるとともに作動温度も高くなつて、重大な故障を
生じる恐れがある。
For example, since the flow path of the communication pipe 30 can be ensured even when the piping is solidified, there is an advantage that the cycle can be continued without flowing the concentrated solution into the dilute solution side. When the concentrated solution flows into the dilute solution, the concentration of the solution in the high-temperature regenerator 1 and the low-temperature regenerator 2 in the cycle becomes particularly high, and the operating pressure and operating temperature increase, which may cause a serious failure. is there.

次に、希溶液系に関しては、本実施例では、再生室15
と吸収室16とは、その下部において液面制御手段に係る
仕切せき31(31a,31b,31cの総称)で溶液の行き来が妨
げられている。吸収室16の液面が高くなつた場合は、該
仕切せき31を溢れて再生室15に希溶液が流入する。この
場合、前記連通管30の再生室15の開孔部は、前記仕切せ
き31より低い位置にする。以上のようにして再生室15a,
15b,15cおよび吸収室16a,16b,16cの液面バランスをとる
ことができる。
Next, regarding the dilute solution system, in this embodiment, the regeneration chamber 15 is used.
In the lower part of the absorption chamber 16, a partition 31 (general term for 31 a, 31 b, 31 c) related to the liquid level control means prevents the solution from flowing. When the liquid level in the absorption chamber 16 rises, the dilute solution overflows the partition 31 and flows into the regeneration chamber 15. In this case, the opening of the regeneration chamber 15 of the communication pipe 30 is located at a position lower than the partition 31. As described above, the reproduction room 15a,
The liquid levels of 15b, 15c and the absorption chambers 16a, 16b, 16c can be balanced.

なお、吸収室16および再生室15の冷媒蒸気の流れ方向
に関する奥行きは小さい方が圧力損失を小さくでき、高
効率である。したがつて、吸収室16および再生室15は相
対して直方体状に構成され、複数個の吸収/再生ユニツ
トを一体で製造すれば安価にできるメリツトがある。あ
るいは、再生室15を囲んで吸収室16を配置する同心円筒
状に構成したり、または吸収室16を囲んで再生室15を同
心円筒状に配置してもよい。
The smaller the depth of the absorption chamber 16 and the regeneration chamber 15 in the flow direction of the refrigerant vapor, the smaller the pressure loss and the higher the efficiency. Therefore, the absorption chamber 16 and the regeneration chamber 15 are formed in a rectangular parallelepiped shape, and there is a merit that the cost can be reduced by integrally manufacturing a plurality of absorption / regeneration units. Alternatively, it may be configured in a concentric cylindrical shape in which the absorption chamber 16 is arranged around the regeneration chamber 15, or the regeneration chamber 15 may be arranged in a concentric cylinder shape surrounding the absorption chamber 16.

次に、本実施例のサイクル系統を第3図に示すデユー
リング線図で説明する。サイクルは時計廻りに廻つて構
成される。図中の符号が各機器に対応し、a,b,cは各段
再生/吸収室ユニツトの作動圧力を示す。
Next, the cycle system of this embodiment will be described with reference to a dueling diagram shown in FIG. The cycle is constructed clockwise. The symbols in the figure correspond to the respective devices, and a, b, and c indicate the operating pressure of each stage regeneration / absorption chamber unit.

図に示すように、吸収器5の希溶液は吸収室16の冷媒
蒸気を吸収し、希溶液は階段状に圧力が段々にaからb,
cと高くなつて希釈され、吸収室16で生成される希溶液
は吸収器5のそれよりも薄くなる。
As shown in the figure, the dilute solution in the absorber 5 absorbs the refrigerant vapor in the absorption chamber 16, and the dilute solution gradually increases in pressure from a to b,
The diluted solution which is diluted as high as c and is produced in the absorption chamber 16 becomes thinner than that of the absorber 5.

一方、再生室15で生成される濃溶液は、低温再生器2
および高温再生器1で生成された濃溶液が混合したもの
よりも濃い濃溶液が生成され、吸収器5に供給される。
このようにサイクルは、高温再生器1および低温再生器
2の側が左側、すなわち低温側にシフトし、吸収器5の
側が右側、すなわち高温側にシフトする。これにより放
熱箇所の吸収器5の側では冷却媒体である冷却空気との
熱交換温度差を大きくでき、機器をコンパクト化できる
効果がある。
On the other hand, the concentrated solution generated in the regeneration chamber 15 is supplied to the low-temperature regenerator 2
A concentrated solution that is thicker than the mixture of the concentrated solution generated in the high-temperature regenerator 1 and the concentrated solution is supplied to the absorber 5.
Thus, in the cycle, the high temperature regenerator 1 and the low temperature regenerator 2 shift to the left side, that is, the low temperature side, and the absorber 5 side shifts to the right side, that is, the high temperature side. As a result, the heat exchange temperature difference with the cooling air as the cooling medium can be increased on the side of the absorber 5 at the heat radiating point, and the device can be made compact.

次に、第5図は、本発明の他の実施例に係る空冷吸収
冷暖房機のサイクル系統図、第6図は、第5図のサイク
ルにおけるデユーリング線図である。図中、第1図と同
一符号は第1図の実施例と同等部分であるから、その説
明を省略する。
Next, FIG. 5 is a cycle system diagram of an air-cooling absorption air conditioner according to another embodiment of the present invention, and FIG. 6 is a dueling diagram in the cycle of FIG. In the figure, the same reference numerals as those in FIG. 1 denote the same parts as those in the embodiment of FIG.

第5図の実施例において第1図の実施例と異なる点
は、溶液循環系の流れ方式である。
The difference between the embodiment of FIG. 5 and the embodiment of FIG. 1 lies in the flow system of the solution circulation system.

吸収器5で生成された希溶液はまず熱物質交換装置14
を経由し、配管41,高温熱交換器7,配管41aを経て高温再
生器1に送られて濃縮される。生成された濃溶液は、配
管42a,高温熱交換器7,配管42cを経て低温再生器2に送
られてさらに濃縮され、配管42d,42を経て熱物質交換装
置14を経由して吸収器5に戻る、いわゆるシリーズフロ
ーに構成されている。
The dilute solution generated by the absorber 5 is first passed through the thermal mass exchange device 14.
And is sent to the high-temperature regenerator 1 via the pipe 41, the high-temperature heat exchanger 7, and the pipe 41a to be concentrated. The generated concentrated solution is sent to the low-temperature regenerator 2 through the pipe 42a, the high-temperature heat exchanger 7, and the pipe 42c, and is further concentrated. , So-called series flow.

この場合、低温再生器2の溶液濃度が既に高温再生器
1で濃縮されて濃いために、高温再生器1の作動圧力が
第1図の実施例のパラレルフローに比べて高圧になり、
特に空冷吸収冷暖房機では大気圧力を越える危険性が高
かつた。ここに、低温再生器2の濃度が濃いと、凝縮器
3の圧力に平衡する溶液温度も高くなるため、溶液加熱
源である高温再生器1の発生蒸気の凝縮温度が高くなつ
てサイクルの作動圧力が高圧になる。ところが、熱物質
交換装置14の働きによつてサイクルの再生器側が低温
に、吸収器側が高温にシフトし、第6図のデユーリング
線図に示すように低温再生器2の溶液濃度は吸収器5に
戻る溶液濃度よりも薄くて良いため、作動圧力を低くで
き、安全性の高い空冷吸収冷暖房機を提供できる効果が
ある。
In this case, since the solution concentration of the low-temperature regenerator 2 has already been concentrated by the high-temperature regenerator 1 and is high, the operating pressure of the high-temperature regenerator 1 becomes higher than the parallel flow of the embodiment of FIG.
In particular, there is a high risk of exceeding the atmospheric pressure in an air-cooled absorption air conditioner. Here, when the concentration of the low-temperature regenerator 2 is high, the temperature of the solution that balances with the pressure of the condenser 3 also increases. The pressure becomes high. However, the regenerator side of the cycle shifts to a low temperature and the absorber side shifts to a high temperature due to the operation of the heat and mass exchange device 14, and the solution concentration of the low temperature regenerator 2 decreases as shown in the Dueling diagram of FIG. Since the concentration of the solution may be lower than that of the solution, the working pressure can be reduced, and an air-cooling absorption air conditioner with high safety can be provided.

また、第5図の実施例では、フラツシユ蒸発室27は無
い。熱物質交換装置14は3段に構成されており、再生室
15で発生した冷媒蒸気が水平方向に設置された吸収室16
に移動する横型である点は第1図,第2図の実施例と同
じであるが、再生室15と吸収室16を縦に積み重ねた構造
の縦型に構成しても同じ機能となるものであり、ここで
は説明を省略する。
In the embodiment shown in FIG. 5, the flash evaporation chamber 27 is not provided. The heat and mass exchange device 14 is composed of three stages,
Absorption chamber 16 in which refrigerant vapor generated in 15 is installed horizontally
1 and 2 is the same as that of the embodiment shown in FIGS. 1 and 2, but the same function can be obtained even if the regeneration chamber 15 and the absorption chamber 16 are vertically stacked. Therefore, the description is omitted here.

次に、第7図は、本発明のさらに他の実施例に係る空
冷吸収冷暖房機のサイクル系統図、第8図は、第7図の
サイクルにおけるデユーリング線図である。図中、第1
図と同一符号は第1図の実施例と同等部分であるから、
その説明を省略する。
Next, FIG. 7 is a cycle system diagram of an air-cooling absorption air conditioner according to still another embodiment of the present invention, and FIG. 8 is a dueling diagram in the cycle of FIG. In the figure, the first
Since the same reference numerals as those in the drawing are the same as those in the embodiment of FIG.
The description is omitted.

第7図の実施例において第1図の実施例と異なる点
は、溶液循環系の流れ方式である。
The difference between the embodiment of FIG. 7 and the embodiment of FIG. 1 lies in the flow system of the solution circulation system.

吸収室5で生成された希溶液は、まず熱物質交換装置
14を経由し、配管41,41bを経て低温再生器2に送られて
濃縮され、溶液ポンプ9c,配管42bにより高温熱交換器7
を経て、配管42eにより高温再生器1に送られてより高
濃度に濃縮される。濃縮された溶液は、配管42fにより
高温熱交換器7を経たのち、廃案42により熱物質交換装
置14を経由し吸収器5に戻る、いわゆるリバースサイク
ルに構成されている。
The dilute solution generated in the absorption chamber 5 is first heated
14, is sent to the low-temperature regenerator 2 via pipes 41 and 41b, and is concentrated. The solution pump 9c and the high-temperature heat exchanger 7 are connected by the pipe 42b.
Is sent to the high-temperature regenerator 1 via the pipe 42e and is concentrated to a higher concentration. The concentrated solution passes through the high-temperature heat exchanger 7 via the pipe 42f, and then returns to the absorber 5 via the heat-substance exchange device 14 according to the waste plan 42, which is a so-called reverse cycle.

この方式では、第8図のデユーリング線図に示すよう
に、吸収器5の吸収温度レベルを高温側にシフトできる
ために、吸収器5の溶液と冷却空気との熱交換温度差を
大きくとれ、吸収器5をコンパクトにできる効果があ
る。また、冷却空気の出入り口温度差を大きくできるた
めに冷却風量を小さくでき、低騒音の空冷吸収冷暖房機
を提供できる効果がある。
In this method, the absorption temperature level of the absorber 5 can be shifted to a higher temperature side, as shown in the Düling diagram of FIG. 8, so that the heat exchange temperature difference between the solution of the absorber 5 and the cooling air can be increased. There is an effect that the absorber 5 can be made compact. Further, since the temperature difference between the entrance and exit of the cooling air can be increased, the amount of cooling air can be reduced, and there is an effect that a low-noise air-cooling absorption air-conditioning machine can be provided.

次に、第9図は、本発明のさらに他の実施例に係る空
冷吸収冷暖房機のサイクル系統図、第10図は、第9図の
サイクルにおけるデユーリング線図である。図中、第1
図と同一符号のものは第1図の実施例と同等部分である
から、その説明を省略する。
Next, FIG. 9 is a cycle system diagram of an air-cooling absorption cooling / heating machine according to still another embodiment of the present invention, and FIG. 10 is a dueling diagram in the cycle of FIG. In the figure, the first
The components having the same reference numerals as those in the drawing are the same as those in the embodiment of FIG.

第9図の実施例において、第1図の実施例と異なる点
は、溶液循環系の流れ方式である。
The difference between the embodiment of FIG. 9 and the embodiment of FIG. 1 lies in the flow system of the solution circulation system.

吸収器5で生成された希溶液は、まず熱物質交換装置
14を経由して2分され、一部は配管41bにより低温再生
器2に送られて濃縮され、他方は高温熱交換器7を経て
配管41aにより高温再生器1に送られて濃縮される。濃
縮された溶液は、配管42aにより高温熱交換器7を経た
のち、配管42cにより低温再生器2に導かれ、さらに濃
縮されて、配管42d,42により熱物質交換装置14を経由し
て吸収器5に戻る、パラレルフローにシリーズフローサ
イクルを複合化した構成となつている。
The dilute solution generated in the absorber 5 is first converted into a heat-material exchange device
The mixture is divided into two via the pipe 14, a part of which is sent to the low-temperature regenerator 2 by the pipe 41 b and concentrated, and the other is sent to the high-temperature regenerator 1 by the pipe 41 a via the high-temperature heat exchanger 7 and concentrated. The concentrated solution passes through the high-temperature heat exchanger 7 through the pipe 42a, is led to the low-temperature regenerator 2 through the pipe 42c, is further concentrated, and is further concentrated through the thermal substance exchanger 14 through the pipes 42d and 42. Returning to 5, the configuration is such that a series flow cycle is combined with a parallel flow.

この方式でも、第10図のデユーリング線図に示すよう
に、吸収器5の吸収温度レベルを高温側にシフトできる
ため、吸収器5の溶液と冷却空気との熱交換温度差を大
きくとれ、吸収器5をコンパクトにできる効果がある。
また、冷却空気の出入り口温座差を大きくできるために
冷却風量を少なくでき、これによつて低騒音の空冷吸収
冷暖房機を提供できる効果がある。
Also in this method, as shown in the Dülling diagram of FIG. 10, the absorption temperature level of the absorber 5 can be shifted to a higher temperature side, so that the heat exchange temperature difference between the solution of the absorber 5 and the cooling air can be increased, and the absorption temperature can be increased. This has the effect of making the vessel 5 compact.
Further, since the temperature difference between the inlet and outlet of the cooling air can be increased, the amount of the cooling air can be reduced, thereby providing an effect of providing a low-noise air-cooling absorption cooling and heating machine.

熱物質交換装置14の液面制御は一軸多連装ポンプのNP
SH不足による液送り量の減少で調整しても良い。各ポン
プのNPSH不足でもキヤンドモード冷却に影響するポンプ
のインペラのみ溶液再循環等で保護すれば、その他のポ
ンプについては空転しても特に問題無い。このような1
軸多連装ポンプを用いることにより、溶液量が少なくて
効率よく熱物質交換できる熱物質交換装置14を提供でき
る効果がある。
The liquid level control of the heat and mass exchange unit 14 is NP
Adjustment may be made by reducing the liquid feed amount due to SH shortage. Even if the NPSH of each pump is insufficient, if only the pump impeller which affects the cooling in the candid mode is protected by solution recirculation, etc., there is no problem even if other pumps run idle. Such one
The use of the multi-shaft multiple pump has the effect of providing a heat-material exchange device 14 that can exchange heat-material efficiently with a small amount of solution.

なお、上記の各実施例では、複数段の吸収/再生室ユ
ニツトが間隔をおいて並設されている例を説明したが、
本発明はこれに限るものではない。図示して説明しない
が、複数段の吸収室と複数段の再生室とが互いに隣り合
わせに密接して配設される構成とすることも可能であ
る。これにより各シエルの材料を節減でき、熱物質交換
装置をコンパクトにすることができる。
In each of the above embodiments, an example in which a plurality of absorption / regeneration chamber units are arranged side by side at an interval has been described.
The present invention is not limited to this. Although not shown and described, it is also possible to adopt a configuration in which a plurality of stages of absorption chambers and a plurality of stages of regeneration chambers are arranged closely adjacent to each other. As a result, the material of each shell can be saved, and the thermal mass exchange apparatus can be made compact.

〔発明の効果〕〔The invention's effect〕

以上詳細に説明したように、本発明によれば、熱物質
交換装置を配設することにより吸収器の吸収温度レベル
を高温側にシフトできるために、吸収器の溶液と冷却空
気との熱交換温度差を大きくとれ、空冷吸収器を小形コ
ンパクトにするとともに、冷却空気の出入口温度差を大
きくできるために冷却風量を小さくでき、低騒音の空冷
吸収冷暖房機を提供することができる。
As described above in detail, according to the present invention, since the absorption temperature level of the absorber can be shifted to the higher temperature side by disposing the thermal mass exchange device, the heat exchange between the solution of the absorber and the cooling air is performed. It is possible to provide a low-noise air-cooling absorption air conditioner that can reduce the temperature difference and make the air-cooling absorber small and compact, and also can increase the temperature difference between the inlet and outlet of the cooling air, thereby reducing the amount of cooling air.

また、高温再生器の作動温度および吸収剤濃度を低く
することによつて、腐食耐久性のある空冷吸収冷暖房機
を提供することができる。
Further, by lowering the operating temperature and the absorbent concentration of the high-temperature regenerator, it is possible to provide an air-cooling absorption air-conditioning machine having corrosion resistance.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の一実施例に係る空冷吸収冷暖房機の
サイクル系統図、第2図は、第1図の熱物質交換装置の
構成図、第3図は、第1図のサイクルにおけるデユーリ
ング線図、第4図は、充填物の構成を示す部分斜視図、
第5図は、本発明の他の実施例に係る空冷吸収冷暖房機
のサイクル系統図、第6図は、第5図のサイクルにおけ
るデユーリング線図、第7図は、本発明のさらに他の実
施例に係る空冷吸収冷暖房機のサイクル系統図、第8図
は、第7図のサイクルにおけるデユーリング線図、第9
図は、本発明のさらに他の実施例に係る空冷吸収冷暖房
機のサイクル系統図、第10図は、第9図のサイクルにお
けるデユーリング線図である。 1……高温再生器、2……低温再生器、3……空冷凝縮
器、4……蒸発器、5……空冷吸収器、6……低温熱交
換器、7……高温熱交換器、9a,9b……溶液ポンプ、10
……冷媒ポンプ、14……熱物質交換装置、14A,14B,14C
……吸収/再生室ユニツト、15,15a,15b,15c……再生
室、16,16a,16b,16c……吸収室、18,18a,18b,18c……濃
溶液散布手段、19……気液界面面積拡大手段、19a……
波形網状充填物、19b……鋸歯状充填物、20,24……液滴
除去手段、21a,21b,21c……濃溶液ポンプ、22,22a,22b,
22c……希溶液散布手段、23……気液界面面積拡大手
段、25a,25b,25c……希溶液ポンプ、30b,30c……連通
管、31a,31b,31c……仕切せき。
FIG. 1 is a cycle system diagram of an air-cooling absorption air conditioner according to one embodiment of the present invention, FIG. 2 is a configuration diagram of a heat-substance exchange device of FIG. 1, and FIG. FIG. 4 is a partial perspective view showing the structure of the filler,
FIG. 5 is a cycle diagram of an air-cooling absorption air conditioner according to another embodiment of the present invention, FIG. 6 is a Dueling diagram in the cycle of FIG. 5, and FIG. 7 is still another embodiment of the present invention. FIG. 8 is a cycle diagram of the air-cooling absorption air conditioner according to the example, FIG.
FIG. 10 is a cycle system diagram of an air-cooling absorption air conditioner according to still another embodiment of the present invention, and FIG. 10 is a dueling diagram in the cycle of FIG. 1 high-temperature regenerator, 2 low-temperature regenerator, 3 air-cooled condenser, 4 evaporator, 5 air-cooled absorber, 6 low-temperature heat exchanger, 7 high-temperature heat exchanger, 9a, 9b …… Solution pump, 10
…… Refrigerant pump, 14 …… Thermal heat exchanger, 14A, 14B, 14C
…… Absorption / regeneration room unit, 15,15a, 15b, 15c …… Regeneration room, 16,16a, 16b, 16c …… Absorption room, 18,18a, 18b, 18c… Concentrated solution spraying means, 19 …… Liquid interface area expansion means, 19a ……
Corrugated mesh filling, 19b ... saw-tooth filling, 20, 24 ... droplet removing means, 21a, 21b, 21c ... concentrated solution pump, 22, 22a, 22b,
22c ... dilute solution spraying means, 23 ... gas-liquid interface area enlarging means, 25a, 25b, 25c ... dilute solution pump, 30b, 30c ... communicating pipe, 31a, 31b, 31c ... partition.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂口 晴一郎 茨城県土浦市神立町502番地 株式会社 日立製作所機械研究所内 (72)発明者 功力 能文 茨城県土浦市神立町502番地 株式会社 日立製作所機械研究所内 (72)発明者 相沢 道彦 茨城県土浦市神立町603番地 株式会社 日立製作所土浦工場内 (72)発明者 依田 裕明 茨城県土浦市神立町603番地 株式会社 日立製作所土浦工場内 (56)参考文献 特開 昭53−1355(JP,A) 実開 昭60−1401(JP,U) 実開 平1−88093(JP,U) 特公 昭56−17582(JP,B2) 特公 昭40−28452(JP,B1) (58)調査した分野(Int.Cl.6,DB名) F25B 15/00 303 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Seichiro Sakaguchi 502 Kandate-cho, Tsuchiura-shi, Ibaraki Pref. Machinery Research Laboratory, Hitachi, Ltd. Inside the Machinery Research Laboratory (72) Inventor Michihiko Aizawa 603 Kandamachi, Tsuchiura-shi, Ibaraki Pref., Tsuchiura Plant, Hitachi, Ltd. References JP-A-53-1355 (JP, A) JP-A-60-1401 (JP, U) JP-A-1-88093 (JP, U) JP-B-56-17882 (JP, B2) JP-B-40 -28452 (JP, B1) (58) Fields investigated (Int. Cl. 6 , DB name) F25B 15/00 303

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高温再生器,低温再生器,空冷凝縮器,蒸
発器,空冷吸収器,高温熱交換器,低温熱交換器,溶液
ポンプ,冷媒ポンプ、およびこれらを作動的に接続する
配管系を備えてなる空冷吸収冷暖房機において、 高温再生器または低温再生器から空冷吸収器に戻る濃溶
液を導いてフラッシュ蒸発させる再生室と、空冷吸収器
で生成された希溶液にフラッシュ蒸発冷媒蒸気を吸収さ
せる吸収室とを、溶液除去手段を介して対向するように
配置して吸収/再生室ユニットを構成し、 この吸収/再生室ユニットを複数段配設して、その初段
は空冷吸収器に接続され、終段は再生器側へ接続される
配管系を備え、 複数段の吸収/再生室ユニットにおける再生室の各段
は、 溶液散布手段と、該溶液散布手段の下方に波形または鋸
歯形に整形された網状充填物が複数段互い違いに配置さ
れ水平方向に開口部が設けられた気液界面面積拡大手段
とを有し、液滴除去手段を介して対向する吸収室に接続
され、溶液ポンプを介して次の段の再生室の溶液散布手
段または空冷吸収器のいずれかに接続したことを特徴と
する空冷吸収冷暖房機。
1. A high-temperature regenerator, a low-temperature regenerator, an air-cooled condenser, an evaporator, an air-cooled absorber, a high-temperature heat exchanger, a low-temperature heat exchanger, a solution pump, a refrigerant pump, and a piping system for operatively connecting these. In the air-cooled absorption air conditioner comprising: a regeneration chamber that guides the concentrated solution returning from the high-temperature regenerator or the low-temperature regenerator to the air-cooled absorber and flash-evaporates the flash-evaporated refrigerant vapor into the dilute solution generated by the air-cooled absorber. An absorption / regeneration chamber unit is configured by arranging the absorption chamber to be absorbed so as to face through a solution removing means, and a plurality of absorption / regeneration chamber units are arranged, and the first stage is provided with an air-cooled absorber. A plurality of absorption / regeneration chamber units, each stage of the regeneration chamber is provided with a solution spraying means, and a corrugated or saw-toothed shape below the solution spraying means. Shaped into A gas-liquid interface area enlarging means provided with openings in the horizontal direction in which the net-like packing is alternately arranged in a plurality of stages, and connected to the absorption chamber opposed through the droplet removing means, and via the solution pump An air-cooled absorption air conditioner connected to one of a solution spraying means and an air-cooled absorber in a regeneration chamber in the next stage.
【請求項2】高温再生器,低温再生器,空冷凝縮器,蒸
発器,空冷吸収器,高温熱交換器,低温熱交換器,溶液
ポンプ,冷媒ポンプ、およびこれらを作動的に接続する
配管系を備えてなる空冷吸収冷暖房機において、 高温再生器または低温再生器から空冷吸収器に戻る濃溶
液を導いてフラッシュ蒸発させる再生室と、空冷吸収器
で生成された希溶液にフラッシュ蒸発冷媒蒸気を吸収さ
せる吸収室とを、溶液除去手段を介して対向するように
配置して吸収/再生室ユニットを構成し、 この吸収/再生室ユニットを複数段配設し、その初段は
空冷吸収器に接続され、終段は再生器側へ接続される配
管系を備え、 複数段の吸収/再生室ユニットにおける吸収室の各段
は、 溶液散布手段と、該溶液散布手段の下方に波形または鋸
歯形に整形された網状充填物が複数段互い違いに配置さ
れ水平方向に開口部が設けられた気液界面面積拡大手段
とを有し、液滴除去手段を介して対向する再生室に接続
され、溶液ポンプを介して次の段の吸収室の溶液散布手
段または、低温熱交換器または高温熱交換器のいずれか
に接続したことを特徴とする空冷吸収冷暖房機。
2. A high-temperature regenerator, a low-temperature regenerator, an air-cooled condenser, an evaporator, an air-cooled absorber, a high-temperature heat exchanger, a low-temperature heat exchanger, a solution pump, a refrigerant pump, and a piping system for operatively connecting these. In the air-cooled absorption air conditioner comprising: a regeneration chamber that guides the concentrated solution returning from the high-temperature regenerator or the low-temperature regenerator to the air-cooled absorber and flash-evaporates the flash-evaporated refrigerant vapor into the dilute solution generated by the air-cooled absorber. An absorption / regeneration chamber unit is configured by arranging the absorption chamber to be absorbed so as to face through a solution removing means, and a plurality of absorption / regeneration chamber units are arranged, and the first stage is connected to an air-cooled absorber. The final stage is provided with a piping system connected to the regenerator side, and each stage of the absorption chamber in the multiple-stage absorption / regeneration chamber unit is provided with a solution spraying means and a wavy or saw-toothed shape below the solution spraying means. Shaped net And a gas-liquid interface area enlarging means provided with openings in the horizontal direction in which a plurality of step-like packings are alternately arranged, connected to a regenerating chamber opposed via a droplet removing means, and via a solution pump. An air-cooled absorption air conditioner connected to a solution spraying means of a next stage absorption chamber or one of a low-temperature heat exchanger and a high-temperature heat exchanger.
JP2235623A 1990-09-05 1990-09-07 Air cooling absorption air conditioner Expired - Fee Related JP2875614B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2235623A JP2875614B2 (en) 1990-09-07 1990-09-07 Air cooling absorption air conditioner
US07/755,159 US5205137A (en) 1990-09-05 1991-09-05 Absorption air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2235623A JP2875614B2 (en) 1990-09-07 1990-09-07 Air cooling absorption air conditioner

Publications (2)

Publication Number Publication Date
JPH04116353A JPH04116353A (en) 1992-04-16
JP2875614B2 true JP2875614B2 (en) 1999-03-31

Family

ID=16988756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2235623A Expired - Fee Related JP2875614B2 (en) 1990-09-05 1990-09-07 Air cooling absorption air conditioner

Country Status (1)

Country Link
JP (1) JP2875614B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013539007A (en) * 2010-09-29 2013-10-17 サネンゲン リミテッド Vapor absorption refrigeration

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531355A (en) * 1976-06-28 1978-01-09 Hitachi Ltd Double effect absorption type refrigerator
JPS5617582A (en) * 1979-07-23 1981-02-19 Fujitsu Ltd Image sensor
JPS601401U (en) * 1983-06-16 1985-01-08 積水樹脂株式会社 Filling material for mass exchange towers, heat exchange towers, etc.
JPH0188093U (en) * 1987-12-03 1989-06-09

Also Published As

Publication number Publication date
JPH04116353A (en) 1992-04-16

Similar Documents

Publication Publication Date Title
US7234309B2 (en) Method and apparatus for evaporative cooling of a cooling fluid
JP2011133123A (en) Refrigerating cycle device
JP3445941B2 (en) Multi-stage evaporative absorption type absorption chiller / heater and large temperature difference air conditioning system equipped with the same
JP2007278572A (en) Absorption type refrigerating device
US5205137A (en) Absorption air conditioner
JP5402186B2 (en) Refrigeration equipment
JP2875614B2 (en) Air cooling absorption air conditioner
JP3102483B2 (en) Absorption refrigerator
US3550394A (en) Condensate heating of intermediate strength solution in two-stage absorption machine
JPH0446339B2 (en)
JP5338270B2 (en) Absorption refrigeration system
JP3997594B2 (en) Air-cooled absorber
JP2858908B2 (en) Absorption air conditioner
KR100213780B1 (en) Water supply system of absortion type cooler
KR920007600B1 (en) Double effect air-cooled absorption refrigerating machine
JP2009236440A (en) Gas heat pump type air conditioning device or refrigerating device
JP2019211138A (en) Air conditioner
KR100334933B1 (en) Absorber of plate heat exchanger type in Absorption heating and cooling system
JP2523579B2 (en) Air-cooled absorption type water heater
JP5402187B2 (en) Refrigeration equipment
KR0139349Y1 (en) Circulation of condensed water of evaporator for absorption type refrigerator
JPH11237137A (en) Absorption refrigerator
JP4282225B2 (en) Absorption refrigerator
JP2520946B2 (en) Air-cooled absorption refrigerator
KR0126759Y1 (en) Absorption room cooler

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees