JP2011133123A - Refrigerating cycle device - Google Patents

Refrigerating cycle device Download PDF

Info

Publication number
JP2011133123A
JP2011133123A JP2009290492A JP2009290492A JP2011133123A JP 2011133123 A JP2011133123 A JP 2011133123A JP 2009290492 A JP2009290492 A JP 2009290492A JP 2009290492 A JP2009290492 A JP 2009290492A JP 2011133123 A JP2011133123 A JP 2011133123A
Authority
JP
Japan
Prior art keywords
refrigerant
ejector
refrigerant circuit
generator
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009290492A
Other languages
Japanese (ja)
Inventor
Inkan Ri
允煥 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009290492A priority Critical patent/JP2011133123A/en
Publication of JP2011133123A publication Critical patent/JP2011133123A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Jet Pumps And Other Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerant circuit of high efficiency, satisfying load condition by combining an ejector refrigerant circuit with a refrigerant circuit using a compressor, as the ejector refrigerant circuit applying solar heat as a heat source, has difficulty in supplying heat quantity to satisfy the load condition, and has low COP (coefficient of performance). <P>SOLUTION: In the vapor compression type refrigerant circuit 110, the compressor 9, a condenser 2a, a supercooler 11, an expanding mechanism 5a and an evaporator 1 are connected in this order, and a first refrigerant is circulated therein. In the ejector type refrigerant circuit 120, an ejector 6, a condenser 2b, and an expanding mechanism 5b are connected in this order, and a second refrigerant is circulated therein. The second refrigerant circulated in the ejector type refrigerant circuit 120 flows out from the expanding mechanism 5b in a liquid state, flows into the supercooler 11, absorbs heat from the first refrigerant in the vapor compression type refrigerant circuit 110 passing through the supercooler 11, to be evaporated, further flows in a suction opening 62 of the ejector in a gas state, flows out from an outlet 63 of the ejector, and successively circulates in the condenser 2b, the expanding mechanism 5b and the supercooler 11. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、蒸気圧縮式冷媒回路とエジェクタ式冷媒回路とを組み合わせた複合冷媒回路に関する。   The present invention relates to a composite refrigerant circuit that combines a vapor compression refrigerant circuit and an ejector refrigerant circuit.

パネル面積当りのエネルギー利用率を高めて、太陽光発電システムの経済性を向上させることを目的に、従来利用されていなかった熱を回収する集熱パネルを一枚のパネルに複合化した太陽光電熱ハイブリッドパネルが開発されている。この太陽光電熱ハイブリッドパネルからの排熱を駆動熱源とすることで冷凍・空調システムを運転する冷媒回路として、デシカントサイクル、エジェクタ式冷媒回路、吸収式サイクル、吸着サイクル、ケミカルサイクルなどがある。その中でも吸収式サイクルは低温熱源を駆動源とする場合に有効である。しかし、吸収式サイクルを用いたシステムはその構成とメンテナンスが複雑であるため、初期コストや運転コストが高い。一方、エジェクタを使用したサイクルは設置コスト、運転コスト、信頼性などの面でメリットがあるため、従来から検討されてきた(例えば、特許文献1,2)。   In order to increase the energy utilization rate per panel area and improve the economic efficiency of the photovoltaic power generation system, a solar panel that combines a heat collection panel that collects heat that has not been used in the past into a single panel. Thermal hybrid panels have been developed. There are a desiccant cycle, an ejector-type refrigerant circuit, an absorption-type cycle, an adsorption cycle, a chemical cycle, and the like as a refrigerant circuit that operates the refrigeration / air-conditioning system by using the exhaust heat from the solar electric hybrid panel as a driving heat source. Among them, the absorption cycle is effective when a low-temperature heat source is used as a driving source. However, since the system using the absorption cycle is complicated in configuration and maintenance, the initial cost and the operation cost are high. On the other hand, since a cycle using an ejector has advantages in terms of installation cost, operation cost, reliability, and the like, it has been conventionally studied (for example, Patent Documents 1 and 2).

特開昭60−175980号公報JP-A-60-175980 特開2001−194025号公報JP 2001-194025 A

太陽熱からの収集熱を熱源とするエジェクタ式冷媒回路システムは、日射量が変動するため単独システムでは全負荷条件に対して成立するのは困難であるとともに、駆動熱源の温度が低いためCOP(Coefficient Of Performance)が比較的に低い。しかしながら、上記のエジェクタ式冷媒回路システムは、回路構成が簡単であるため設置コストが安価である点、電気駆動部が少ないため運転コストが安価である点、比較的低い熱源温度で作動可能である点、機械的稼動部分が少ないため信頼性が高い点など、多数の重要なメリットがある。   An ejector-type refrigerant circuit system that uses the collected heat from solar heat as a heat source is difficult to achieve for all load conditions in a single system because the amount of solar radiation fluctuates, and because the temperature of the drive heat source is low, COP (Coefficient Of Performance) is relatively low. However, the above-described ejector-type refrigerant circuit system has a simple circuit configuration, so that the installation cost is low, the operation cost is low because there are few electric drive units, and it can operate at a relatively low heat source temperature. There are many important merits such as high reliability because there are few mechanical working parts.

本発明は、エジェクタ式冷媒回路のメリットを有し、太陽熱を駆動熱源とするエジェクタ式冷媒回路を、通常の蒸気圧縮式冷媒回路と組み合せて複合冷媒回路化することで、冷凍・空調システム全体の年間性能を向上させることを目的とする。   The present invention has the advantage of an ejector-type refrigerant circuit, and an ejector-type refrigerant circuit that uses solar heat as a driving heat source is combined with an ordinary vapor compression refrigerant circuit to form a composite refrigerant circuit. The purpose is to improve the annual performance.

この発明の冷凍サイクル装置は、
圧縮機、第1の放熱器、過冷却器、第1の膨張機構、蒸発器が、これらの順に閉回路状に第1冷媒の循環流路で接続され、第1冷媒がこれらの順に循環する第1の冷媒回路と、
圧縮機を代替するエジェクタ、第2の放熱器、第2の膨張機構が、これらの順に閉回路状に第2冷媒の循環流路で接続され、第2冷媒がこれらの順に循環する第2の冷媒回路と
を備え、
前記第2の冷媒回路を循環する前記第2冷媒は、
前記第2の膨張機構から液状態で流出して前記第1の冷媒回路の前記過冷却器に流入し、前記過冷却器を通過する前記第1の冷媒回路の前記第1冷媒から吸熱して蒸発し、気体状態で前記エジェクタの吸引口に流入し、前記エジェクタの出口から流出して、前記第2の放熱器、前記第2の膨張機構、前記過冷却器の順に循環することを特徴とする。
The refrigeration cycle apparatus of the present invention is
The compressor, the first radiator, the supercooler, the first expansion mechanism, and the evaporator are connected in the order of these in a closed circuit shape with the circulation path of the first refrigerant, and the first refrigerant circulates in this order. A first refrigerant circuit;
An ejector that substitutes for the compressor, a second radiator, and a second expansion mechanism are connected in a closed circuit form in this order by a circulation path of the second refrigerant, and the second refrigerant circulates in this order. A refrigerant circuit,
The second refrigerant circulating in the second refrigerant circuit is
The liquid flows out from the second expansion mechanism, flows into the subcooler of the first refrigerant circuit, and absorbs heat from the first refrigerant of the first refrigerant circuit passing through the subcooler. It evaporates, flows into the suction port of the ejector in a gaseous state, flows out of the outlet of the ejector, and circulates in the order of the second radiator, the second expansion mechanism, and the subcooler. To do.

本発明により、エジェクタ式冷媒回路と、通常の蒸気圧縮式冷媒回路とを組み合わせることにより、日射量の変動と関係なく、システムが全条件に対して成立することが可能な、エジェクタ式冷媒回路を用いた冷凍サイクル装置を提供できる。   According to the present invention, there is provided an ejector-type refrigerant circuit that can be established for all conditions regardless of fluctuations in solar radiation by combining an ejector-type refrigerant circuit and a normal vapor compression refrigerant circuit. The used refrigeration cycle apparatus can be provided.

実施の形態1における、エジェクタを使用した通常の冷凍サイクルを示す図。The figure which shows the normal refrigerating cycle which uses the ejector in Embodiment 1. FIG. 実施の形態1における、エジェクタの原理を説明する図。FIG. 3 is a diagram for explaining the principle of an ejector in the first embodiment. 実施の形態1における、複合冷媒回路のP−h線図。FIG. 2 is a Ph diagram of a composite refrigerant circuit in the first embodiment. 実施の形態1における、複合冷媒回路100Aの回路図。FIG. 3 is a circuit diagram of a composite refrigerant circuit 100A in the first embodiment. 実施の形態2の、複合冷媒回路100Bの回路図。The circuit diagram of the composite refrigerant circuit 100B of Embodiment 2. FIG. 実施の形態3の、複合冷媒回路100Cの回路図。The circuit diagram of 100 C of composite refrigerant circuits of Embodiment 3. FIG. 実施の形態4の、複合冷媒回路200Cの回路図。The circuit diagram of the composite refrigerant circuit 200C of Embodiment 4. FIG.

図1は、太陽熱を熱源とするエジェクタ式冷媒回路を示す図である。図1に示すように、エジェクタ6が、通常の冷媒回路における圧縮機を代替する。エジェクタ6内の圧縮作用は、太陽熱集熱機構(太陽光電熱ハイブリッドパネル7)から提供される熱源により行われる。図1の冷媒回路は、エジェクタ6を、蒸発器1から出たガス冷媒の圧縮手段とする。この冷媒回路では、蒸発器1、エジェクタ6、凝縮器2が順次に接続され、凝縮器2で液となって出た冷媒は分岐部40で分岐する。分岐後の冷媒の一方は、毛細管、電子弁のような膨張機構5に流入する。膨張機構5により低温低圧となった冷媒は、蒸発器1に戻り外部負荷により加熱されて蒸発する。蒸発したガス冷媒は、エジェクタ吸引口62から吸引されて昇圧された後、エジェクタ出口63から流出して再び凝縮器2に流入する。凝縮器2を出た液冷媒の他方は分岐部40で分岐し、加圧機構であるポンプ4を介して発生器3に流入し、太陽熱を吸熱した作動媒体と発生器3において熱交換されることにより過熱ガス状態となってエジェクタ6の駆動流体の流入口61に流入する。   FIG. 1 is a diagram showing an ejector refrigerant circuit that uses solar heat as a heat source. As shown in FIG. 1, an ejector 6 replaces a compressor in a normal refrigerant circuit. The compression action in the ejector 6 is performed by a heat source provided from a solar heat collecting mechanism (solar electric heat hybrid panel 7). In the refrigerant circuit of FIG. 1, the ejector 6 is used as a compression means for the gas refrigerant that has exited the evaporator 1. In this refrigerant circuit, the evaporator 1, the ejector 6, and the condenser 2 are connected in order, and the refrigerant that has come out as a liquid in the condenser 2 branches at the branching section 40. One of the branched refrigerant flows into the expansion mechanism 5 such as a capillary tube or an electronic valve. The refrigerant that has become low temperature and low pressure by the expansion mechanism 5 returns to the evaporator 1 and is heated by an external load to evaporate. The evaporated gas refrigerant is sucked from the ejector suction port 62 and pressurized, and then flows out from the ejector outlet 63 and flows into the condenser 2 again. The other of the liquid refrigerant exiting the condenser 2 branches at the branching section 40 and flows into the generator 3 through the pump 4 which is a pressurizing mechanism, and heat exchange is performed in the generator 3 with the working medium that has absorbed solar heat. As a result, an overheated gas state is obtained and flows into the driving fluid inlet 61 of the ejector 6.

(エジェクタ6)
図2は、エジェクタ冷媒回路に使用されるエジェクタの原理図である。図2(a)はエジェクタ断面を示し、図2(b)は、各位置x1〜x3、x5における各圧力P1〜P3、P5を示す。エジェクタは高圧の駆動流体を加速させることで吸引流体を加速させた後、駆動流体と吸引流体の混合流体を減速させることにより、高圧流体を低圧の吸引流体の圧縮に利用するデバイスである。エジェクタに流入したガス冷媒(駆動流体)は駆動ノズルで膨張加速し、蒸発器からのガス冷媒を吸引する。また、発生器で冷媒をガス化する熱源は、太陽熱パネル、太陽光電熱ハイブリッドパネルなどの集熱機構から供給する。そのため、太陽熱を吸熱した作動媒体が太陽熱パネルもしくは太陽光電熱ハイブリッドパネルと発生器間を循環するループ流路を設ける。
(Ejector 6)
FIG. 2 is a principle diagram of an ejector used in the ejector refrigerant circuit. FIG. 2A shows the ejector cross section, and FIG. 2B shows the pressures P1 to P3 and P5 at the positions x1 to x3 and x5. An ejector is a device that uses a high-pressure fluid to compress a low-pressure suction fluid by accelerating the suction fluid by accelerating a high-pressure drive fluid and then decelerating a mixed fluid of the drive fluid and the suction fluid. The gas refrigerant (driving fluid) flowing into the ejector is expanded and accelerated by the driving nozzle, and sucks the gas refrigerant from the evaporator. Moreover, the heat source which gasifies a refrigerant | coolant with a generator is supplied from heat collection mechanisms, such as a solar thermal panel and a solar electric hybrid panel. Therefore, a loop flow path is provided in which the working medium that has absorbed solar heat circulates between the solar panel or solar electric hybrid panel and the generator.

以下の実施の形態1〜4で説明する複合冷媒回路100A〜100C,200Cは、圧縮機9を圧縮手段とする通常の蒸気圧縮式冷媒回路110(第1の冷媒回路)と、エジェクタ6を圧縮手段とするエジェクタ式冷媒回路120(第2の冷媒回路)との、循環冷媒の流路が別々となる構成が特徴である。この構成により次の図3の説明で述べる効果がある。   The composite refrigerant circuits 100A to 100C and 200C described in the following first to fourth embodiments compress an ordinary vapor compression refrigerant circuit 110 (first refrigerant circuit) using the compressor 9 as a compression means and the ejector 6. The ejector-type refrigerant circuit 120 (second refrigerant circuit) as a means is characterized by a configuration in which the flow path of the circulating refrigerant is separate. This configuration has the effect described in the following description of FIG.

(冷媒について)
以下では、蒸気圧縮式冷媒回路110を循環する冷媒を第1冷媒といい、エジェクタ式冷媒回路120を循環する冷媒を第2冷媒といい、さらに、後述の図5などの太陽光電熱ハイブリッドパネル、発生器、ポンプからなる循環流路を流れる冷媒を第3冷媒という。
(About refrigerant)
Hereinafter, the refrigerant that circulates in the vapor compression refrigerant circuit 110 is referred to as a first refrigerant, the refrigerant that circulates in the ejector refrigerant circuit 120 is referred to as a second refrigerant, and further, a solar electric heat hybrid panel such as FIG. The refrigerant flowing through the circulation flow path including the generator and the pump is referred to as a third refrigerant.

図3は、実施の形態1〜4で説明する複合冷媒回路100A〜100C,200Cにおける冷媒回路のP−h線図を示す。従来型の冷媒回路では、凝縮器出口の冷媒の過冷却度が殆んど取れていないサイクル(通常サイクル71)である。これに対し、実施の形態1〜4で説明する複合冷媒回路では、複合サイクル72として示すように過冷却度を多くとり、凝縮圧力を低く抑えることが特徴である。凝縮圧力を抑えることにより、蒸発器の出入り口エンタルピ差を増加させることができ、定格の能力を得るのに、冷媒循環量を減らすことができるので、最終的に圧縮機の動力を減らすことが可能となる。
実施の形態1〜4で説明する複合冷媒回路では、圧縮機吐出冷媒ガスの熱、太陽光電熱ハイブリッドパネルからの収集熱を駆動熱源とするエジェクタ式冷媒回路を用い、この過冷却度を得ることにより、冷房負荷の集中する日中に、その場で運転の高効率化を図ることができる。
FIG. 3 shows a Ph diagram of the refrigerant circuit in the composite refrigerant circuits 100A to 100C and 200C described in the first to fourth embodiments. The conventional refrigerant circuit is a cycle (normal cycle 71) in which the degree of supercooling of the refrigerant at the condenser outlet is hardly taken. In contrast, the composite refrigerant circuits described in the first to fourth embodiments are characterized in that the degree of supercooling is increased as shown in the composite cycle 72 and the condensation pressure is kept low. By suppressing the condensing pressure, it is possible to increase the enthalpy difference between the entrance and exit of the evaporator, and to obtain the rated capacity, it is possible to reduce the amount of refrigerant circulation, so it is possible to ultimately reduce the compressor power It becomes.
In the composite refrigerant circuit described in the first to fourth embodiments, the degree of supercooling is obtained by using an ejector type refrigerant circuit that uses the heat of the refrigerant gas discharged from the compressor and the heat collected from the solar electric hybrid panel as a driving heat source. Thus, it is possible to increase the efficiency of operation on the spot during the day when the cooling load is concentrated.

(エジェクタ6の駆動熱源のタイプ)
実施の形態1〜4で説明する複合冷媒回路は、以下のタイプのいずれかである。すなわち、エジェクタ式冷媒回路120のエジェクタ6は、駆動熱源として、
(A)圧縮機吐出冷媒ガスの熱を利用するAタイプ、
(B)太陽光電熱ハイブリッドパネルからの収集熱を利用するBタイプ、
(C)両方を使用するCタイプ、
の3つのタイプのうちのいずれかである。実施の形態1はAタイプを説明し、実施の形態2はBタイプを説明し、実施の形態3、4はCタイプを説明する。
(Type of drive heat source for ejector 6)
The composite refrigerant circuit described in the first to fourth embodiments is one of the following types. That is, the ejector 6 of the ejector type refrigerant circuit 120 serves as a drive heat source.
(A) A type using the heat of the refrigerant gas discharged from the compressor,
(B) B type using the heat collected from the solar electric hybrid panel,
(C) C type using both,
One of the three types. The first embodiment describes the A type, the second embodiment describes the B type, and the third and fourth embodiments describe the C type.

(蒸気圧縮式冷媒回路110の構成)
実施の形態1〜4で説明する複合冷媒回路における主たる冷媒回路である通常の蒸気圧縮式冷媒回路110(第1の冷媒回路)は、後述する図4〜図7に示すように、構成要素として圧縮機9、凝縮器2a(第1の放熱器)、過冷却器11、膨張機構5a(第1の膨張機構)、蒸発器1を備える冷媒回路である。蒸気圧縮式冷媒回路110は、圧縮機9、凝縮器2a、過冷却器11、膨張機構5a、蒸発器1が、これらの順に閉回路状に第1冷媒の循環流路で接続され、第1冷媒がこれらの順に循環する。
(Configuration of vapor compression refrigerant circuit 110)
A normal vapor compression refrigerant circuit 110 (first refrigerant circuit), which is the main refrigerant circuit in the composite refrigerant circuit described in the first to fourth embodiments, is a component as shown in FIGS. The refrigerant circuit includes a compressor 9, a condenser 2 a (first radiator), a supercooler 11, an expansion mechanism 5 a (first expansion mechanism), and an evaporator 1. In the vapor compression refrigerant circuit 110, the compressor 9, the condenser 2a, the supercooler 11, the expansion mechanism 5a, and the evaporator 1 are connected in this order in a closed circuit shape through the circulation path of the first refrigerant. The refrigerant circulates in this order.

(エジェクタ式冷媒回路120の構成)
実施の形態1〜4で説明する複合冷媒回路における補助的な冷媒回路であるエジェクタ式冷媒回路120(第2の冷媒回路)は、後述する図4〜図7に示すように、圧縮機を代替するエジェクタ6、凝縮器2b(第2の放熱器)、膨張機構5b(第2の膨張機構)、冷媒ポンプ4、凝縮器2bを出た液冷媒からガス冷媒を発生させる発生器3、蒸気圧縮式冷媒回路110の過冷却器11との一体型蒸発器等を備える。エジェクタ式冷媒回路120は、エジェクタ6、凝縮器2b、膨張機構5bが、これらの順に閉回路状に第2冷媒の循環流路で接続され、第2冷媒がこれらの順に循環する。
(Configuration of ejector refrigerant circuit 120)
An ejector refrigerant circuit 120 (second refrigerant circuit), which is an auxiliary refrigerant circuit in the composite refrigerant circuit described in the first to fourth embodiments, replaces the compressor as shown in FIGS. Ejector 6, condenser 2b (second radiator), expansion mechanism 5b (second expansion mechanism), refrigerant pump 4, generator 3 for generating gas refrigerant from liquid refrigerant that has exited condenser 2b, vapor compression An evaporator integrated with the supercooler 11 of the refrigerant circuit 110 is provided. In the ejector refrigerant circuit 120, the ejector 6, the condenser 2b, and the expansion mechanism 5b are connected in a closed circuit shape in this order in the circulation path of the second refrigerant, and the second refrigerant circulates in that order.

実施の形態1.
図4は、実施の形態1の複合冷媒回路100A(Aタイプ)の回路構成を示す図である。図4を参照して実施の形態1の複合冷媒回路100Aを説明する。複合冷媒回路100A(冷凍サイクル装置)は、圧縮機吐出冷媒ガスの熱を、エジェクタ式冷媒回路120(エジェクタ6)の駆動熱源とする回路(Aタイプ)である。
Embodiment 1 FIG.
FIG. 4 is a diagram illustrating a circuit configuration of the composite refrigerant circuit 100A (A type) according to the first embodiment. The composite refrigerant circuit 100A of Embodiment 1 will be described with reference to FIG. The composite refrigerant circuit 100A (refrigeration cycle apparatus) is a circuit (A type) that uses the heat of the refrigerant gas discharged from the compressor as a driving heat source for the ejector refrigerant circuit 120 (ejector 6).

(蒸気圧縮式冷媒回路110の構成)
図4に示すように、蒸気圧縮式冷媒回路110では、冷媒が、圧縮機9、発生器3、凝縮器2a(第1の放熱器)、過冷却器11、膨張機構5a(第1の膨張機構)、蒸発器1の順で流れる。圧縮機9から吐出された冷媒(第1冷媒)は、発生器3に流入して通過した後に、凝縮器2aに向かう。
(Configuration of vapor compression refrigerant circuit 110)
As shown in FIG. 4, in the vapor compression refrigerant circuit 110, the refrigerant is the compressor 9, the generator 3, the condenser 2a (first radiator), the supercooler 11, and the expansion mechanism 5a (first expansion). Mechanism) and the evaporator 1 in this order. The refrigerant discharged from the compressor 9 (first refrigerant) flows into the generator 3 and passes therethrough, and then travels toward the condenser 2a.

(エジェクタ式冷媒回路120の構成)
エジェクタ式冷媒回路120では、図4に示すように、凝縮器2bと膨張機構5bとの間の分岐部40から分岐してエジェクタ6の駆動流体の流入口61に接続する分岐流路41の途中に、発生器3が配置される。
(Configuration of ejector refrigerant circuit 120)
In the ejector-type refrigerant circuit 120, as shown in FIG. 4, a halfway of a branch flow path 41 branched from a branch portion 40 between the condenser 2b and the expansion mechanism 5b and connected to the driving fluid inlet 61 of the ejector 6 is provided. In addition, the generator 3 is arranged.

(液冷媒21)
エジェクタ式冷媒回路120では、凝縮器2bで液化して流出した液冷媒(第2冷媒)の一方の液冷媒21は、分岐部40から分岐流路41に分岐して加圧機構である冷媒ポンプP(4)を介し発生器3に流入し、圧縮機9を出た作動媒体(第1冷媒)から吸熱(熱交換)し、蒸発する。そして、この蒸発によりガス状に相変化した冷媒は、再びエジェクタ6の駆動流体の流入口61に流入し、エジェクタ6の駆動流体となる。発生器3では、通常の蒸気圧縮式冷媒回路110の第1冷媒は、ガス状で冷却される。
(Liquid refrigerant 21)
In the ejector-type refrigerant circuit 120, one liquid refrigerant 21 of the liquid refrigerant (second refrigerant) liquefied and discharged by the condenser 2b branches from the branch portion 40 to the branch flow path 41, and is a refrigerant pump that is a pressurizing mechanism. It flows into the generator 3 via P (4), absorbs heat (heat exchange) from the working medium (first refrigerant) exiting the compressor 9, and evaporates. Then, the refrigerant that has undergone a gas phase change due to the evaporation again flows into the driving fluid inlet 61 of the ejector 6 and becomes the driving fluid of the ejector 6. In the generator 3, the first refrigerant in the normal vapor compression refrigerant circuit 110 is cooled in a gaseous state.

(液冷媒22)
他方の液冷媒22(第2冷媒)は、毛細管、電子弁のような膨張機構5b(第2の膨張機構)に流入する。膨張機構5bにより低温低圧となった液冷媒22は、エジェクタ式冷媒回路120の蒸発熱を用いて凝縮器2a出口の液冷媒の過冷却度を増加させるために設けられた蒸気圧縮式冷媒回路110の過冷却器11に流入し、熱交換して蒸発した後、エジェクタ6に吸引される。すなわち、他方の液冷媒22は、膨張機構5bから液状態で流出して過冷却器11に流入し、過冷却器11を通過する蒸気圧縮式冷媒回路110の第1冷媒から吸熱して蒸発し、気体状態でエジェクタ吸引口62に流入し、エジェクタ出口63から流出して、凝縮器2b、膨張機構5b、過冷却器11の順に循環する。
(Liquid refrigerant 22)
The other liquid refrigerant 22 (second refrigerant) flows into an expansion mechanism 5b (second expansion mechanism) such as a capillary tube or an electronic valve. The liquid refrigerant 22 that has become low temperature and low pressure by the expansion mechanism 5b is used to increase the degree of supercooling of the liquid refrigerant at the outlet of the condenser 2a by using the evaporation heat of the ejector type refrigerant circuit 120. The vapor compression refrigerant circuit 110 is provided. Then, it is sucked into the ejector 6 after evaporating through heat exchange. That is, the other liquid refrigerant 22 flows out from the expansion mechanism 5b in a liquid state, flows into the subcooler 11, and absorbs heat from the first refrigerant of the vapor compression refrigerant circuit 110 passing through the subcooler 11 to evaporate. Then, the gas flows into the ejector suction port 62, flows out from the ejector outlet 63, and circulates in the order of the condenser 2b, the expansion mechanism 5b, and the supercooler 11.

以上のように、複合冷媒回路100Aは、圧縮機吐出冷媒ガスの熱をエジェクタ6の駆動熱源とするエジェクタ式冷媒回路120と、通常の蒸気圧縮式冷媒回路110とを組み合わせた。よって、日射量の変動と関係なく、システムが全条件に対して成立する冷凍サイクル装置を提供できる。また、エジェクタ式冷媒回路120を循環する第2冷媒と蒸気圧縮式冷媒回路110を循環する第1冷媒とを過冷却器11で熱交換させ、第1冷媒を過冷却するので、図3の説明で述べた効果を得ることができる。   As described above, the composite refrigerant circuit 100A combines the ejector refrigerant circuit 120 that uses the heat of the refrigerant gas discharged from the compressor as a driving heat source for the ejector 6, and the normal vapor compression refrigerant circuit 110. Therefore, it is possible to provide a refrigeration cycle apparatus in which the system is established for all conditions regardless of variations in the amount of solar radiation. Further, since the second refrigerant circulating in the ejector refrigerant circuit 120 and the first refrigerant circulating in the vapor compression refrigerant circuit 110 are heat-exchanged by the supercooler 11, the first refrigerant is supercooled, so that FIG. The effect described in can be obtained.

実施の形態2.
次に実施の形態2の複合冷媒回路100Bを説明する。図5は、複合冷媒回路100Bの回路構成を示す図である。複合冷媒回路100Bは、補助冷媒回路であるエジェクタ式冷媒回路120(エジェクタ6)の駆動熱源として、太陽光電熱ハイブリッドパネル7からの収集熱を使用するタイプ(Bタイプ)である。
Embodiment 2. FIG.
Next, the composite refrigerant circuit 100B of Embodiment 2 will be described. FIG. 5 is a diagram illustrating a circuit configuration of the composite refrigerant circuit 100B. The composite refrigerant circuit 100B is a type (B type) that uses the collected heat from the solar electric hybrid panel 7 as a driving heat source for an ejector refrigerant circuit 120 (ejector 6) that is an auxiliary refrigerant circuit.

(蒸気圧縮式冷媒回路110)
図5に示すように、通常の蒸気圧縮式冷媒回路110では、第1冷媒が、圧縮機9、凝縮器2a、過冷却器11、膨張機構5a、蒸発器1の順で流れる。
(Vapor compression refrigerant circuit 110)
As shown in FIG. 5, in the normal vapor compression refrigerant circuit 110, the first refrigerant flows in the order of the compressor 9, the condenser 2 a, the subcooler 11, the expansion mechanism 5 a, and the evaporator 1.

(第3の冷媒回路)
複合冷媒回路100Bでは、第3の冷媒回路として、太陽光電熱ハイブリッドパネル7と発生器3とが第3冷媒の循環流路で接続され、太陽光電熱ハイブリッドパネル7によって加熱された第3冷媒が発生器3を通過する。
(Third refrigerant circuit)
In the composite refrigerant circuit 100B, as the third refrigerant circuit, the solar electric hybrid panel 7 and the generator 3 are connected by a circulation path of the third refrigerant, and the third refrigerant heated by the solar electric hybrid panel 7 is the third refrigerant circuit. Pass through generator 3.

(エジェクタ式冷媒回路120)
エジェクタ式冷媒回路120では、発生器3が、凝縮器2bと膨張機構5bとの間の分岐部40から分岐してエジェクタ6の駆動流体の流入口61に接続する分岐流路41の途中に配置されている。
(Ejector type refrigerant circuit 120)
In the ejector-type refrigerant circuit 120, the generator 3 is disposed in the middle of the branch flow path 41 that branches from the branch portion 40 between the condenser 2b and the expansion mechanism 5b and connects to the driving fluid inlet 61 of the ejector 6. Has been.

(液冷媒31)
凝縮器2bで液化して流出した液冷媒(第2冷媒)の一方の液冷媒31は、分岐部40から分岐流路41に分岐して加圧機構である冷媒ポンプP(4)を介し発生器3に流入し、太陽光電熱ハイブリッドパネル7から集熱した作動媒体(第3冷媒)と熱交換(吸熱)し、蒸発する。蒸発によりガス状に相変化した第2冷媒は、再びエジェクタ6の駆動流体の流入口61に流入する。
(Liquid refrigerant 31)
One liquid refrigerant 31 of the liquid refrigerant (second refrigerant) liquefied and discharged by the condenser 2b is branched from the branch portion 40 to the branch flow path 41 and is generated via the refrigerant pump P (4) which is a pressurizing mechanism. The refrigerant flows into the vessel 3 and exchanges heat (absorbs heat) with the working medium (third refrigerant) collected from the solar electric hybrid panel 7 and evaporates. The second refrigerant whose phase has changed in a gaseous state due to evaporation again flows into the driving fluid inlet 61 of the ejector 6.

(液冷媒32)
凝縮器2bで液化して流出した液冷媒のうち、分岐部40で分岐した他方の液冷媒32は、毛細管、電子弁のような膨張機構5bに流入する。膨張機構5bにより低温低圧となった液冷媒32は、エジェクタ式冷媒回路120の蒸発熱を用いて凝縮器2a出口の液冷媒の過冷却度を増加させるために設けられた蒸気圧縮式冷媒回路110の過冷却器11に流入し、熱交換して蒸発した後、エジェクタ6に吸引される。すなわち、実施の形態1と同様に、他方の液冷媒32は、膨張機構5bから液状態で流出して過冷却器11に流入し、過冷却器11を通過する蒸気圧縮式冷媒回路110の第1冷媒から吸熱して蒸発し、気体状態でエジェクタ吸引口62に流入し、エジェクタ出口63から流出して、凝縮器2b、膨張機構5b、過冷却器11の順に循環する。
(Liquid refrigerant 32)
Of the liquid refrigerant liquefied and discharged by the condenser 2b, the other liquid refrigerant 32 branched by the branching section 40 flows into the expansion mechanism 5b such as a capillary tube or an electronic valve. The liquid refrigerant 32 that has become low temperature and low pressure by the expansion mechanism 5b is used to increase the degree of supercooling of the liquid refrigerant at the outlet of the condenser 2a by using the evaporation heat of the ejector type refrigerant circuit 120. The vapor compression refrigerant circuit 110 is provided. Then, it is sucked into the ejector 6 after evaporating through heat exchange. That is, as in the first embodiment, the other liquid refrigerant 32 flows out of the expansion mechanism 5b in a liquid state, flows into the subcooler 11, and passes through the subcooler 11, and the second refrigerant refrigerant 110 of the vapor compression refrigerant circuit 110 passes through the subcooler 11. One refrigerant absorbs heat and evaporates, flows into the ejector suction port 62 in a gaseous state, flows out from the ejector outlet 63, and circulates in the order of the condenser 2b, the expansion mechanism 5b, and the subcooler 11.

以上のように、複合冷媒回路100Bは、太陽光電熱ハイブリッドパネル7からの収集熱をエジェクタ6の駆動熱源とするエジェクタ式冷媒回路120と、通常の蒸気圧縮式冷媒回路110とを組み合わせた。よって、日射量の変動と関係なく、システムが全条件に対して成立する冷凍サイクル装置を提供できる。また、エジェクタ式冷媒回路120を循環する第2冷媒と蒸気圧縮式冷媒回路110を循環する第1冷媒とを過冷却器11で熱交換させ、第1冷媒を過冷却するので、図3の説明で述べた効果を得ることができる。   As described above, the composite refrigerant circuit 100B combines the ejector refrigerant circuit 120 that uses the collected heat from the solar electric hybrid panel 7 as a driving heat source of the ejector 6, and the normal vapor compression refrigerant circuit 110. Therefore, it is possible to provide a refrigeration cycle apparatus in which the system is established for all conditions regardless of variations in the amount of solar radiation. Further, since the second refrigerant circulating in the ejector refrigerant circuit 120 and the first refrigerant circulating in the vapor compression refrigerant circuit 110 are heat-exchanged by the supercooler 11, the first refrigerant is supercooled, so that FIG. The effect described in can be obtained.

実施の形態3.
次に実施の形態3の複合冷媒回路100Cを説明する。複合冷媒回路100Cは、補助冷媒回路であるエジェクタ式冷媒回路120(エジェクタ6)の駆動熱源として、圧縮機吐出冷媒ガス(圧縮機9により圧縮されたガス状の第1冷媒)の熱と、太陽光電熱ハイブリッドパネル7からの収集熱との両方を使用するタイプ(Cタイプ)である。
Embodiment 3 FIG.
Next, the composite refrigerant circuit 100C of Embodiment 3 will be described. The composite refrigerant circuit 100C serves as a drive heat source for an ejector refrigerant circuit 120 (ejector 6), which is an auxiliary refrigerant circuit, and the heat of compressor discharge refrigerant gas (a gaseous first refrigerant compressed by the compressor 9) This is a type (C type) that uses both the heat collected from the photoelectric thermal hybrid panel 7.

(複合冷媒回路100Cの構成)
図6は、複合冷媒回路100Cの回路構成示す。複合冷媒回路100Cは、実施の形態1の複合冷媒回路100Aに、実施の形態2で説明した「第3の冷媒回路」(太陽光電熱ハイブリッドパネル、第2発生器、ポンプからなる冷媒循環回路)を加えた構成である。
(Configuration of composite refrigerant circuit 100C)
FIG. 6 shows a circuit configuration of the composite refrigerant circuit 100C. The composite refrigerant circuit 100C is the same as the composite refrigerant circuit 100A of the first embodiment, but the “third refrigerant circuit” described in the second embodiment (a refrigerant circulation circuit including a solar electric hybrid panel, a second generator, and a pump). It is the structure which added.

図6に示すように、通常の蒸気圧縮式冷媒回路110では、複合冷媒回路100Aと同様に、第1冷媒が、圧縮機9、第1発生器3a、凝縮器2a、過冷却器11、膨張機構5a、蒸発器1の順で循環する。   As shown in FIG. 6, in the normal vapor compression refrigerant circuit 110, the first refrigerant is the compressor 9, the first generator 3a, the condenser 2a, the subcooler 11, the expansion, as in the composite refrigerant circuit 100A. It circulates in order of the mechanism 5a and the evaporator 1.

(液冷媒21)
一方、エジェクタ式冷媒回路120では、複合冷媒回路100Aと同様に、凝縮器2bで液化して出た液冷媒の一方の液冷媒21は、分岐部40で分岐して加圧機構である冷媒ポンプP(4)を介し第1発生器3aに流入する。そして、液冷媒21は、第1発生器3aにおいて圧縮機9を出た作動媒体と熱交換し温度が上昇(この時点では液体である)する。熱交換により昇温して第1発生器3aを出た液冷媒21は、第2発生機器3bに流入し、太陽光電熱ハイブリッドパネル7から集熱した作動媒体(第3冷媒)と熱交換して加熱され、蒸発する。蒸発によりガス状に相変化した第2冷媒は、再びエジェクタ6の駆動流体の流入口61に流入する。
(Liquid refrigerant 21)
On the other hand, in the ejector-type refrigerant circuit 120, like the composite refrigerant circuit 100A, one liquid refrigerant 21 of the liquid refrigerant liquefied by the condenser 2b is branched by the branching section 40 and is a refrigerant pump that is a pressurizing mechanism. It flows into the 1st generator 3a via P (4). And the liquid refrigerant 21 heat-exchanges with the working medium which left the compressor 9 in the 1st generator 3a, and temperature rises (it is a liquid at this time). The liquid refrigerant 21 that has been heated by heat exchange and has exited the first generator 3a flows into the second generator 3b and exchanges heat with the working medium (third refrigerant) collected from the solar electric hybrid panel 7. Heated and evaporated. The second refrigerant whose phase has changed in a gaseous state due to evaporation again flows into the driving fluid inlet 61 of the ejector 6.

(液冷媒22)
分岐部40で分岐した他方の液冷媒22は、毛細管、電子弁のような膨張機構5bに流入する。膨張機構5bにより低温低圧となった液冷媒22は、エジェクタ式冷媒回路の蒸発熱を用いて凝縮器出口の液冷媒の過冷却度を増加させるために設けられた蒸気圧縮式冷媒回路110の過冷却器11に流入し、熱交換して蒸発した後、エジェクタ6のエジェクタ吸引口62から吸引される。
(Liquid refrigerant 22)
The other liquid refrigerant 22 branched by the branch part 40 flows into the expansion mechanism 5b such as a capillary tube or an electronic valve. The liquid refrigerant 22 that has become low temperature and low pressure by the expansion mechanism 5b uses the heat of evaporation of the ejector type refrigerant circuit to increase the degree of supercooling of the liquid refrigerant at the outlet of the condenser. After flowing into the cooler 11 and evaporating through heat exchange, the air is sucked from the ejector suction port 62 of the ejector 6.

以上のように、複合冷媒回路100Cは、圧縮機吐出冷媒ガスの熱及び太陽光電熱ハイブリッドパネルからの収集熱との両方の熱をエジェクタ6の駆動熱源とするエジェクタ式冷媒回路120と、通常の蒸気圧縮式冷媒回路110とを組み合わせた。よって、日射量の変動と関係なく、システムが全条件に対して成立する冷凍サイクル装置を提供できる。また、エジェクタ式冷媒回路120を循環する第2冷媒と蒸気圧縮式冷媒回路110を循環する第1冷媒とを過冷却器11で熱交換させ、第1冷媒を過冷却するので、図3の説明で述べた効果を得ることができる。   As described above, the composite refrigerant circuit 100C includes an ejector-type refrigerant circuit 120 that uses both the heat of the refrigerant gas discharged from the compressor and the heat collected from the solar electric hybrid panel as a driving heat source for the ejector 6, A vapor compression refrigerant circuit 110 was combined. Therefore, it is possible to provide a refrigeration cycle apparatus in which the system is established for all conditions regardless of variations in the amount of solar radiation. Further, since the second refrigerant circulating in the ejector refrigerant circuit 120 and the first refrigerant circulating in the vapor compression refrigerant circuit 110 are heat-exchanged by the supercooler 11, the first refrigerant is supercooled, so that FIG. The effect described in can be obtained.

実施の形態4.
次に実施の形態4の複合冷媒回路200Cを説明する。
図7は、複合冷媒回路200Cの回路構成を示す図である。図7に示すように、複合冷媒回路200Cは、実施の形態3の複合冷媒回路100Cのエジェクタ6と過冷却器11との間に、内部熱交換器10を加えた構成である。
Embodiment 4 FIG.
Next, the composite refrigerant circuit 200C of Embodiment 4 will be described.
FIG. 7 is a diagram illustrating a circuit configuration of the composite refrigerant circuit 200C. As shown in FIG. 7, the composite refrigerant circuit 200 </ b> C has a configuration in which an internal heat exchanger 10 is added between the ejector 6 and the subcooler 11 of the composite refrigerant circuit 100 </ b> C of the third embodiment.

(蒸気圧縮式冷媒回路110)
通常の蒸気圧縮式冷媒回路110では、複合冷媒回路100Cと同様に、第1冷媒が、圧縮機9、第1発生器3a、凝縮器2a、過冷却器11、膨張機構5a、蒸発器1の順で流れる。
(Vapor compression refrigerant circuit 110)
In the normal vapor compression refrigerant circuit 110, the first refrigerant is the compressor 9, the first generator 3a, the condenser 2a, the subcooler 11, the expansion mechanism 5a, and the evaporator 1 as in the composite refrigerant circuit 100C. It flows in order.

(エジェクタ式冷媒回路120)
エジェクタ式冷媒回路120では、過冷却器11とエジェクタ6との流路の間に内部熱交換器10が配置されている。
(Ejector type refrigerant circuit 120)
In the ejector refrigerant circuit 120, the internal heat exchanger 10 is disposed between the flow path between the supercooler 11 and the ejector 6.

(液冷媒21)
エジェクタ式冷媒回路120では、凝縮器2bで液化して流出した液冷媒の一方の液冷媒21は、分岐部40から分岐流路41に分岐して加圧機構である冷媒ポンプP(4)を介し第1発生器3aに流入し、圧縮機9を出た作動媒体(第1冷媒)と熱交換(この時点で液体である)し温度が上昇する。この熱交換により昇温して第1発生器3aを出た液冷媒は、第2発生機器3bに流入し太陽光電熱ハイブリッドパネル7から集熱した作動媒体(第3冷媒)と熱交換(吸熱)し、蒸発する。蒸発によりガス状に相変化した冷媒は再びエジェクタ6の駆動流体の流入口61(駆動ノズル)に流入する。
(Liquid refrigerant 21)
In the ejector-type refrigerant circuit 120, one liquid refrigerant 21 of the liquid refrigerant liquefied and discharged by the condenser 2b is branched from the branch portion 40 to the branch flow path 41, and the refrigerant pump P (4) which is a pressurizing mechanism is provided. Then, it flows into the first generator 3a, exchanges heat with the working medium (first refrigerant) exiting the compressor 9 (is liquid at this point), and the temperature rises. The liquid refrigerant heated up by this heat exchange and exiting the first generator 3a flows into the second generator 3b and exchanges heat with the working medium (third refrigerant) collected from the solar electric hybrid panel 7. ) And evaporate. The refrigerant whose phase has changed in a gaseous state due to evaporation again flows into the driving fluid inlet 61 (driving nozzle) of the ejector 6.

(液冷媒22)
凝縮器2bで液化して流出し、分岐部40で分岐した他方の液冷媒22は、過冷却器11とエジェクタ6の吸入配管との間に設けられた内部熱交換器10において、過冷却器11を出てエジェクタ吸引口62から吸引されるガス冷媒と熱交換した後、膨張機構5bに流入する。この場合、分岐部40で分岐した液冷媒22は、内部熱交換器10において、過冷却器11から流出してエジェクタ6に向かうガス冷媒に熱を与え、その後、膨張機構5bに流入する。このように、内部熱交換器10は凝縮器2bを出た液冷媒22と、エジェクタ吸引口62から吸引されるガス冷媒とを熱交換させることにより、サイクルの性能を向上させる。そして、膨張機構5bにより低温低圧となった液冷媒22は、エジェクタ式冷媒回路120の蒸発熱を用いて凝縮器出口の液冷媒の過冷却度を増加させるために設けられた蒸気圧縮式冷媒回路110の過冷却器11に流入し、熱交換して蒸発した後、上述の内部熱交換器10を通過してエジェクタ吸引口62から吸引される。
(Liquid refrigerant 22)
The other liquid refrigerant 22 liquefied and flowed out by the condenser 2 b and branched by the branching section 40 is supplied to the supercooler in the internal heat exchanger 10 provided between the supercooler 11 and the suction pipe of the ejector 6. After exiting 11 and exchanging heat with the gas refrigerant sucked from the ejector suction port 62, it flows into the expansion mechanism 5b. In this case, in the internal heat exchanger 10, the liquid refrigerant 22 branched at the branching section 40 flows out from the supercooler 11 and gives heat to the gas refrigerant directed toward the ejector 6, and then flows into the expansion mechanism 5b. Thus, the internal heat exchanger 10 improves the cycle performance by exchanging heat between the liquid refrigerant 22 exiting the condenser 2b and the gas refrigerant sucked from the ejector suction port 62. Then, the liquid refrigerant 22 that has become low temperature and low pressure by the expansion mechanism 5b is used to increase the degree of supercooling of the liquid refrigerant at the outlet of the condenser by using the evaporation heat of the ejector type refrigerant circuit 120. After flowing into the subcooler 11 of 110 and evaporating through heat exchange, it passes through the internal heat exchanger 10 and is sucked from the ejector suction port 62.

以上のように、複合冷媒回路200Cは、圧縮機吐出冷媒ガスの熱及び太陽光電熱ハイブリッドパネルからの収集熱との両方の熱をエジェクタ6の駆動熱源とするエジェクタ式冷媒回路120と、通常の蒸気圧縮式冷媒回路110とを組み合わせた。よって、日射量の変動と関係なく、システムが全条件に対して成立する冷凍サイクル装置を提供できる。また、エジェクタ式冷媒回路120を循環する第2冷媒と蒸気圧縮式冷媒回路110を循環する第1冷媒とを過冷却器11で熱交換させ、第1冷媒を過冷却するので、図3の説明で述べた効果を得ることができる。   As described above, the composite refrigerant circuit 200C includes the ejector-type refrigerant circuit 120 that uses both the heat of the refrigerant gas discharged from the compressor and the collected heat from the solar electric hybrid panel as the driving heat source of the ejector 6, A vapor compression refrigerant circuit 110 was combined. Therefore, it is possible to provide a refrigeration cycle apparatus in which the system is established for all conditions regardless of variations in the amount of solar radiation. Further, since the second refrigerant circulating in the ejector refrigerant circuit 120 and the first refrigerant circulating in the vapor compression refrigerant circuit 110 are heat-exchanged by the supercooler 11, the first refrigerant is supercooled, so that FIG. The effect described in can be obtained.

1 蒸発器、2a,2b 凝縮器、3,3a 発生器、4 冷媒ポンプ、5a,5b 膨張機構、6 エジェクタ、61 駆動流体の流入口、62 エジェクタ吸引口、63 エジェクタ出口、7 太陽光電熱ハイブリッドパネル、8 水ポンプ、9 圧縮機、10 内部熱交換器、11 過冷却器、21,22 冷媒、31,32 冷媒、40 分岐部、41 分岐流路、100A,100B,100C,200C 複合冷媒回路、110 蒸気圧縮式冷媒回路、120 エジェクタ式冷媒回路。   DESCRIPTION OF SYMBOLS 1 Evaporator, 2a, 2b Condenser, 3, 3a generator, 4 Refrigerant pump, 5a, 5b Expansion mechanism, 6 Ejector, 61 Inlet of driving fluid, 62 Ejector suction port, 63 Ejector outlet, 7 Solar electric hybrid Panel, 8 Water pump, 9 Compressor, 10 Internal heat exchanger, 11 Subcooler, 21, 22 Refrigerant, 31, 32 Refrigerant, 40 Branch part, 41 Branch flow path, 100A, 100B, 100C, 200C Composite refrigerant circuit 110 Vapor compression refrigerant circuit, 120 Ejector refrigerant circuit.

Claims (6)

圧縮機、第1の放熱器、過冷却器、第1の膨張機構、蒸発器が、これらの順に閉回路状に第1冷媒の循環流路で接続され、第1冷媒がこれらの順に循環する第1の冷媒回路と、
圧縮機を代替するエジェクタ、第2の放熱器、第2の膨張機構が、これらの順に閉回路状に第2冷媒の循環流路で接続され、第2冷媒がこれらの順に循環する第2の冷媒回路と
を備え、
前記第2の冷媒回路を循環する前記第2冷媒は、
前記第2の膨張機構から液状態で流出して前記第1の冷媒回路の前記過冷却器に流入し、前記過冷却器を通過する前記第1の冷媒回路の前記第1冷媒から吸熱して蒸発し、気体状態で前記エジェクタの吸引口に流入し、前記エジェクタの出口から流出して、前記第2の放熱器、前記第2の膨張機構、前記過冷却器の順に循環することを特徴とする冷凍サイクル装置。
The compressor, the first radiator, the supercooler, the first expansion mechanism, and the evaporator are connected in the order of these in a closed circuit shape with the circulation path of the first refrigerant, and the first refrigerant circulates in this order. A first refrigerant circuit;
An ejector that substitutes for the compressor, a second radiator, and a second expansion mechanism are connected in a closed circuit form in this order by a circulation path of the second refrigerant, and the second refrigerant circulates in this order. A refrigerant circuit,
The second refrigerant circulating in the second refrigerant circuit is
The liquid flows out from the second expansion mechanism, flows into the subcooler of the first refrigerant circuit, and absorbs heat from the first refrigerant of the first refrigerant circuit passing through the subcooler. It evaporates, flows into the suction port of the ejector in a gaseous state, flows out of the outlet of the ejector, and circulates in the order of the second radiator, the second expansion mechanism, and the subcooler. Refrigeration cycle equipment.
前記第2の冷媒回路の前記エジェクタは、
前記第1の冷媒回路の前記圧縮機により吐出された気体状態の第1冷媒の保有する熱と、前記第1の冷媒回路及び前記第2の冷媒回路とは異なる第3の冷媒回路を循環する第3冷媒の保有する熱との、少なくともいずれかを駆動熱源とすることを特徴とする請求項1記載の冷凍サイクル装置。
The ejector of the second refrigerant circuit is
The heat of the first refrigerant in the gaseous state discharged by the compressor of the first refrigerant circuit circulates through a third refrigerant circuit different from the first refrigerant circuit and the second refrigerant circuit. The refrigeration cycle apparatus according to claim 1, wherein at least one of heat held by the third refrigerant is used as a driving heat source.
前記第2の冷媒回路は、さらに、
前記第2の放熱器と前記第2の膨張機構との間の分岐部から分岐して前記エジェクタの駆動流体の流入口に接続する分岐流路の途中に、発生器が配置され、
前記圧縮機から吐出された第1冷媒は、
前記発生器に流入して通過した後に前記第1の放熱器に向かい、
前記第2の冷媒回路を循環する第2冷媒は、
前記第2の放熱器から流出し、一部が前記分岐流路に分岐して前記発生器に流入し、前記発生器を通過する第1冷媒から吸熱し、前記分岐経路を介して前記エジェクタの駆動流体の流入口に流入し、前記エジェクタの駆動流体となることを特徴とする請求項2記載の冷凍サイクル装置。
The second refrigerant circuit further includes:
A generator is arranged in the middle of a branch flow path that branches from a branch portion between the second radiator and the second expansion mechanism and connects to an inlet of the drive fluid of the ejector,
The first refrigerant discharged from the compressor is
To the first radiator after flowing into and passing through the generator,
The second refrigerant circulating in the second refrigerant circuit is
Outflow from the second radiator, a part branches into the branch flow path, flows into the generator, absorbs heat from the first refrigerant passing through the generator, and passes through the branch path to the ejector. 3. The refrigeration cycle apparatus according to claim 2, wherein the refrigeration cycle apparatus flows into an inlet of a driving fluid and becomes a driving fluid of the ejector.
前記第3の冷媒回路は、
太陽光電熱ハイブリッドパネルと第2発生器とが第3冷媒の循環流路で接続され、前記太陽光電熱ハイブリッドパネルによって加熱された第3冷媒が前記第2発生器を通過する冷媒循環回路であり、
前記第2発生器は、
前記分岐経路において前記エジェクタと前記第1発生器との間に配置され、
前記第1発生器を流出した第2冷媒は、
前記第2発生器で前記第3冷媒から吸熱し、吸熱後に前記エジェクタの駆動流体の流入口に流入することを特徴とする請求項3記載の冷凍サイクル装置。
The third refrigerant circuit includes:
A solar electric hybrid panel and a second generator are connected by a circulation path of a third refrigerant, and the third refrigerant heated by the solar electric hybrid panel passes through the second generator. ,
The second generator includes:
Arranged in the branch path between the ejector and the first generator;
The second refrigerant flowing out of the first generator is
4. The refrigeration cycle apparatus according to claim 3, wherein the second generator absorbs heat from the third refrigerant and flows into the inlet of the drive fluid of the ejector after the heat absorption.
前記第2の冷媒回路は、
前記過冷却器と前記エジェクタとの流路の間に熱交換器が配置され、
前記分岐部から前記第2の膨張機構に向かう第2冷媒は、
前記第2の膨張機構に流入する前に前記熱交換器に流入し、前記熱交換器において前記過冷却器から流出して前記エジェクタに向かう第2冷媒に熱を与えた後、前記第2の膨張機構に流入することを特徴とする請求項3または4のいずれかに記載の冷凍サイクル装置。
The second refrigerant circuit is
A heat exchanger is disposed between the flow path between the subcooler and the ejector,
The second refrigerant heading from the branch portion to the second expansion mechanism is
Before flowing into the second expansion mechanism, it flows into the heat exchanger. In the heat exchanger, the second refrigerant flows out of the supercooler and heats the second refrigerant toward the ejector. The refrigeration cycle apparatus according to any one of claims 3 and 4, wherein the refrigeration cycle apparatus flows into an expansion mechanism.
前記第3の冷媒回路は、
太陽光電熱ハイブリッドパネルと発生器とが第3冷媒の循環流路で接続され、前記太陽光電熱ハイブリッドパネルによって加熱された第3冷媒が前記発生器を通過する冷媒循環回路であり、
前記発生器は、
前記第2の放熱器と前記第2の膨張機構との間の分岐部から分岐して前記エジェクタの駆動流体の流入口に接続する分岐流路の途中に配置され、
前記分岐経路から分岐した第2冷媒は、
前記発生器で前記第3冷媒から吸熱し、吸熱後に前記エジェクタの駆動流体の流入口に流入することを特徴とする請求項2記載の冷凍サイクル装置。
The third refrigerant circuit includes:
The solar electric hybrid panel and the generator are connected by a circulation path of a third refrigerant, and the third refrigerant heated by the solar electric hybrid panel is a refrigerant circulation circuit that passes through the generator.
The generator is
It is arranged in the middle of a branch flow path that branches from a branch portion between the second radiator and the second expansion mechanism and connects to an inflow port of the drive fluid of the ejector,
The second refrigerant branched from the branch path is
3. The refrigeration cycle apparatus according to claim 2, wherein the generator absorbs heat from the third refrigerant and, after absorbing heat, flows into an inlet of a drive fluid of the ejector.
JP2009290492A 2009-12-22 2009-12-22 Refrigerating cycle device Pending JP2011133123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009290492A JP2011133123A (en) 2009-12-22 2009-12-22 Refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009290492A JP2011133123A (en) 2009-12-22 2009-12-22 Refrigerating cycle device

Publications (1)

Publication Number Publication Date
JP2011133123A true JP2011133123A (en) 2011-07-07

Family

ID=44346060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009290492A Pending JP2011133123A (en) 2009-12-22 2009-12-22 Refrigerating cycle device

Country Status (1)

Country Link
JP (1) JP2011133123A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103471273A (en) * 2013-09-02 2013-12-25 中国科学院理化技术研究所 Mixed working medium refrigeration cycle system
CN104033967A (en) * 2013-03-08 2014-09-10 中原工学院 Underground water cooling type pre-heating type solar ejection air conditioning equipment
CN104848584A (en) * 2015-05-06 2015-08-19 天津大学 Combined heat pump system with solar injection and solar photovoltaic steam injection and compression
JP2015525335A (en) * 2012-06-12 2015-09-03 エンドレス ソーラー コーポレイション リミテッド Solar energy system and thermal energy transfer method
CN104930751A (en) * 2015-05-29 2015-09-23 浙江工业大学 Injection-compression refrigerating system provided with subcooler and utilizing low-grade heat energy
CN105258381A (en) * 2015-10-14 2016-01-20 侯根香 Solar jetting type dual-refrigeration device
CN105387647A (en) * 2015-12-10 2016-03-09 浪潮电子信息产业股份有限公司 Novel high-efficient data center refrigeration air conditioning system
CN105716324A (en) * 2016-03-16 2016-06-29 北京建筑大学 Double-heat-source efficient air conditioner system based on compression-injection combination and application
US9459027B2 (en) 2014-04-22 2016-10-04 King Fahd University Of Petroleum And Minerals Intermittent absorption refrigeration system
WO2018016318A1 (en) * 2016-07-19 2018-01-25 株式会社石川エナジーリサーチ Cooling device, vehicle, and gas heat pump air conditioner
US10094577B2 (en) 2012-06-12 2018-10-09 Endless Solar Corporation Ltd Solar energy system
CN109855323A (en) * 2019-03-26 2019-06-07 天津商业大学 Refrigeration system is subcooled in injecting type
CN109869940A (en) * 2019-03-26 2019-06-11 天津商业大学 Injecting type critical-cross carbon dioxide double-stage compressive refrigerating system
CN113819678A (en) * 2021-10-22 2021-12-21 安徽普泛能源技术有限公司 Multi-heat-source generator unit with ejector and absorption type refrigerating system thereof
CN114251875A (en) * 2016-05-03 2022-03-29 开利公司 Ejector enhanced heat recovery refrigeration system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190662A (en) * 1982-04-28 1983-11-07 サンウエーブ工業株式会社 Supercooling heat pump
JPH11159441A (en) * 1997-11-26 1999-06-15 Arumo:Kk Solar cogeneration
JP2005134104A (en) * 2003-10-09 2005-05-26 Matsushita Electric Ind Co Ltd Solar system and operation method of solar system
JP2007248022A (en) * 2006-03-20 2007-09-27 Tokyo Gas Co Ltd Air conditioning system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190662A (en) * 1982-04-28 1983-11-07 サンウエーブ工業株式会社 Supercooling heat pump
JPH11159441A (en) * 1997-11-26 1999-06-15 Arumo:Kk Solar cogeneration
JP2005134104A (en) * 2003-10-09 2005-05-26 Matsushita Electric Ind Co Ltd Solar system and operation method of solar system
JP2007248022A (en) * 2006-03-20 2007-09-27 Tokyo Gas Co Ltd Air conditioning system

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015525335A (en) * 2012-06-12 2015-09-03 エンドレス ソーラー コーポレイション リミテッド Solar energy system and thermal energy transfer method
US10598392B2 (en) 2012-06-12 2020-03-24 Endless Solar Corporation Ltd Solar energy system
US10094577B2 (en) 2012-06-12 2018-10-09 Endless Solar Corporation Ltd Solar energy system
CN104033967A (en) * 2013-03-08 2014-09-10 中原工学院 Underground water cooling type pre-heating type solar ejection air conditioning equipment
CN104033967B (en) * 2013-03-08 2017-02-08 中原工学院 Underground water cooling type pre-heating type solar ejection air conditioning equipment
CN103471273B (en) * 2013-09-02 2015-06-10 中国科学院理化技术研究所 Mixed working medium refrigeration cycle system
CN103471273A (en) * 2013-09-02 2013-12-25 中国科学院理化技术研究所 Mixed working medium refrigeration cycle system
US9459027B2 (en) 2014-04-22 2016-10-04 King Fahd University Of Petroleum And Minerals Intermittent absorption refrigeration system
CN104848584A (en) * 2015-05-06 2015-08-19 天津大学 Combined heat pump system with solar injection and solar photovoltaic steam injection and compression
CN104930751A (en) * 2015-05-29 2015-09-23 浙江工业大学 Injection-compression refrigerating system provided with subcooler and utilizing low-grade heat energy
CN104930751B (en) * 2015-05-29 2017-10-13 浙江工业大学 Injection compression refrigerating system with subcooler and utilization low grade heat energy
CN105258381A (en) * 2015-10-14 2016-01-20 侯根香 Solar jetting type dual-refrigeration device
CN105387647A (en) * 2015-12-10 2016-03-09 浪潮电子信息产业股份有限公司 Novel high-efficient data center refrigeration air conditioning system
CN105716324A (en) * 2016-03-16 2016-06-29 北京建筑大学 Double-heat-source efficient air conditioner system based on compression-injection combination and application
CN105716324B (en) * 2016-03-16 2017-10-17 北京建筑大学 The double heat source high-efficiency air-conditioning system being combined based on compression injection and application
CN114251875A (en) * 2016-05-03 2022-03-29 开利公司 Ejector enhanced heat recovery refrigeration system
WO2018016318A1 (en) * 2016-07-19 2018-01-25 株式会社石川エナジーリサーチ Cooling device, vehicle, and gas heat pump air conditioner
CN109855323A (en) * 2019-03-26 2019-06-07 天津商业大学 Refrigeration system is subcooled in injecting type
CN109869940A (en) * 2019-03-26 2019-06-11 天津商业大学 Injecting type critical-cross carbon dioxide double-stage compressive refrigerating system
CN109869940B (en) * 2019-03-26 2024-07-23 天津商业大学 Injection type transcritical carbon dioxide double-stage compression refrigeration system
CN113819678A (en) * 2021-10-22 2021-12-21 安徽普泛能源技术有限公司 Multi-heat-source generator unit with ejector and absorption type refrigerating system thereof

Similar Documents

Publication Publication Date Title
JP2011133123A (en) Refrigerating cycle device
US10612821B1 (en) Heat-pump system with combined vapor expansion-compression stages and single-effect vapor absorption unit
JP3662557B2 (en) Heat pump system
JP2006052934A (en) Heat exchange apparatus and refrigerating machine
KR20110093219A (en) Air-conditioning system using exhaustion heat recovery ejector
JP2011094814A (en) Refrigerating cycle device and refrigerant compressing method
JP2011099640A (en) Hybrid heat pump
JP2012145309A (en) Heat source system
US11221161B1 (en) Heat-pump system with combined vapor expansion-compression stages and single-effect vapor absorption unit
JP5240040B2 (en) Refrigeration equipment
KR101288884B1 (en) Heat pump type cool and hot water supply device
JP5402186B2 (en) Refrigeration equipment
JP2004190885A (en) Absorption compression refrigerating machine and refrigerating system
JPH0953864A (en) Engine type cooling device
JP2007051788A (en) Refrigerating device
JP6613404B2 (en) Refrigeration system
KR100973328B1 (en) Unitary cascade heat pump system using geothermal heat source near the sea
JP5434207B2 (en) Refrigeration equipment
JP2009236440A (en) Gas heat pump type air conditioning device or refrigerating device
KR101507448B1 (en) Co-generation system
JP5229076B2 (en) Refrigeration equipment
JP3821286B2 (en) Refrigeration system combining absorption type and compression type and its operating method
JP2772868B2 (en) Absorption refrigerator
JP5402187B2 (en) Refrigeration equipment
JP5310224B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120508