JP4562325B2 - Absorption refrigerator - Google Patents

Absorption refrigerator Download PDF

Info

Publication number
JP4562325B2
JP4562325B2 JP2001220052A JP2001220052A JP4562325B2 JP 4562325 B2 JP4562325 B2 JP 4562325B2 JP 2001220052 A JP2001220052 A JP 2001220052A JP 2001220052 A JP2001220052 A JP 2001220052A JP 4562325 B2 JP4562325 B2 JP 4562325B2
Authority
JP
Japan
Prior art keywords
heat exchanger
absorption liquid
temperature regenerator
regenerator
temperature heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001220052A
Other languages
Japanese (ja)
Other versions
JP2003035465A (en
Inventor
雅裕 古川
春樹 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001220052A priority Critical patent/JP4562325B2/en
Publication of JP2003035465A publication Critical patent/JP2003035465A/en
Application granted granted Critical
Publication of JP4562325B2 publication Critical patent/JP4562325B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷房などの冷却運転に使用する三重効用吸収冷凍機に係わるものである。
【0002】
【従来の技術】
この種の吸収冷凍機としては、例えば吸収器で冷媒を吸収した吸収液が低温熱交換器、中温熱交換器、高温熱交換器、高温再生器、高温熱交換器、中温再生器、中温熱交換器、低温再生器、低温熱交換器を順次経由して吸収器に還流するように配管した、例えば特開2000−257976公報の図1、図2に提案された三重効用吸収冷凍機などが周知である。
【0003】
前記特開2000−257976公報に提案された、いわゆるシリーズフローの三重効用吸収冷凍機においては、再生圧力が大気圧を大きく超えて500kPa程度にもなるために圧力容器となり、製造上の制約が大きくなる。また、主要部品の肉厚増加に伴うイニシャルコストの増加も避けられない。
【0004】
一方、そのCOPは1.5程度に過ぎず、製造コストの増加の割には熱効率の改善効果が乏しいと云った問題点があった。
【0005】
【発明が解決しようとする課題】
したがって、製造コストが大幅に上昇することがないように、再生圧力の大幅な上昇を抑えることができ、且つ、COPの改善が図れる三重効用吸収冷凍機を提供する必要があり、それが解決すべき課題となっていた。
【0006】
【問題を解決するための手段】
本発明は上記従来技術の課題を解決するための具体的手段として、吸収液を加熱して吸収液に含まれる冷媒を蒸発分離し、冷媒が吸収できるように吸収液を再生する再生器として高温再生器、中温再生器、低温再生器を備えると共に、異なる温度の吸収液同士が熱交換する熱交換器として高温熱交換器、中温熱交換器、低温熱交換器を備え、かつ、冷媒を吸収して吸収器から吐出される吸収液が、低温熱交換器、中温熱交換器、高温熱交換器、高温再生器、高温熱交換器、中温再生器、中温熱交換器、低温再生器、低温熱交換器を経由して前記吸収器に還流する本流側の吸収液が流れる吸収液管を備えた吸収冷凍機において、前記吸収器から吐出される吸収液の一部が、高温熱交換器に向かう前記吸収液管において、低温熱交換器での熱交換後と、中温熱交換器での熱交換後と、の二箇所でそれぞれ分岐するように構成されているとともに、最初に分岐した方の吸収液は、前記中温熱交換器から低温再生器へ向かう前記本流側の吸収液が流れる吸収液と途中で合流してから、低温再生器に直接流入し、後で分岐した方の吸収液は、前記高温熱交換器から中温再生器へ向かう前記本流側の吸収液と途中で合流してから、中温再生器に直接流入するように分岐され、かつ、前記吸収器から低温熱交換器へ向かう全吸収液のうちの、1/4づつが、それぞれ前記低温再生器と中温再生器とに向かい、前記最終分岐後に、残りである、前記全吸収液のうちの1/2の吸収液が前記高温再生機に向かうように構成されている吸収冷凍機、を提供することにより、前記した従来技術の課題を解決するものである。
【0007】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて詳細に説明する。
【0008】
〔第1の実施形態〕
本発明の第1の実施形態を、図1に基づいて詳細に説明する。図中1は高温再生器、2は中温再生器、3は低温再生器、4は凝縮器、5は蒸発器、6は吸収器、7は低温熱交換器、8は中温熱交換器、9は高温熱交換器、10、11は吸収液ポンプ、12は冷媒ポンプであり、それぞれは図1に示したように実線で示した吸収液管と破線で示した冷媒管とで接続され、吸収液と冷媒がそれぞれ循環可能に構成されている。
【0009】
なお、蒸発器5には冷水管13が通され、吸収器6と凝縮器4には冷却水管14が直列に通されている。
【0010】
したがって、上記構成になる吸収冷凍機においては、吸収液ポンプ10、11および冷媒ポンプ12を運転し、高温再生器1に添設した図示しないバーナで天然ガスなどを燃焼させると、高温再生器1においては燃焼熱により吸収液が加熱され、吸収液から蒸発分離した冷媒蒸気と、濃縮された吸収液とが得られる。
【0011】
高温再生器1で生成された高温の冷媒蒸気は、中温再生器2に入り、中温再生器2内にある吸収液、すなわち高温再生器1における前記加熱により冷媒を蒸発分離して吸収液濃度が高められ、高温熱交換器9で熱交換して冷却され供給された吸収液を加熱して冷媒を蒸発させる。
【0012】
中温再生器2で吸収液から蒸発分離した冷媒蒸気は、低温再生器3に入り、低温再生器3内にある吸収液、すなわち中温再生器2における前記加熱により冷媒を蒸発分離して吸収液濃度が高められ、中温熱交換器8で熱交換して冷却された吸収液と、吸収器6で冷媒を吸収して吸収液濃度が低下し、吸収液ポンプ10により低温熱交換器7で熱交換して加熱された一部の吸収液とが合流し低温再生器3に流入した吸収液を加熱して冷媒を蒸発させる。
【0013】
低温再生器3における加熱により吸収液から蒸発分離した冷媒蒸気は凝縮器4に入り、冷却水管14内を流れる冷却水に放熱して凝縮し、中温再生器2、低温再生器3それぞれで吸収液に放熱して凝縮し、中温再生器2、低温再生器3それぞれから流入する冷媒液と一緒になって蒸発器5に入る。
【0014】
蒸発器5に入って底部に溜まった冷媒液は、冷媒ポンプ12により上方から散布され、冷水管13の内部を流れる水と熱交換して蒸発し、冷水管13の内部を流れる水を冷却する。
【0015】
蒸発器5で蒸発した冷媒は吸収器6に入り、低温再生器3における前記加熱で冷媒を蒸発分離し、吸収液の濃度が一層高まった吸収液、すなわち低温再生器3から吸収液ポンプ11により低温熱交換器7を経由して冷却供給され、上方から散布される吸収液に吸収される。
【0016】
吸収器6で冷媒を吸収して吸収液濃度が低下した吸収液は、吸収液ポンプ10の運転により低温熱交換器7で熱交換して加熱された後、所定の比率、例えば1:1の比率で分岐し、一方の吸収液は中温熱交換器8、高温熱交換器9を経由して高温再生器1に戻され、他方の吸収液は低温再生器3に供給され加熱される。
【0017】
上記のように吸収冷凍機が運転されると、冷水管13の内部を流れて蒸発器5に入った冷水は、蒸発器5内において冷媒の気化熱により冷却され、その冷却された冷水が冷水管13を介して図示しない冷却負荷に循環供給できるので、冷房などの冷却運転が熱効率に優れた三重効用により行える。
【0018】
そして、高温再生器1においては、冷媒を吸収して吸収器6から吸収液濃度が低下して吐出した吸収液の一部が流入し加熱されるので、高温再生器1で吸収液から蒸発分離する冷媒蒸気の量は吸収器6から吐出した吸収液の全量が流入するときと比較すると減少する。そのため、高温再生器1内の圧力上昇は顕著に抑制され、400kPa程度となる。
【0019】
しかも、蒸発器5、吸収器6を2段化するなどの熱効率の改善を図ることで、COPは1.7程度に改善される。
【0020】
〔第2の実施形態〕
本発明の第2の実施形態を、図2に基づいて説明する。この第2の実施形態の吸収冷凍機が、前記図1に示した第1の実施形態の吸収冷凍機と相違する点は、吸収器6から吐出し、吸収液ポンプ10により搬送されている吸収液が分岐する部位と、分岐した吸収液の行方にある。
【0021】
なお、理解を容易にするため、この第2の実施形態の吸収冷凍機においても、前記図1に示した第1の実施形態の吸収冷凍機と同様の機能を有する部分には同一の符号を付した(第3の実施形態においても同じ)。
【0022】
すなわち、図2に示した第2の実施形態の吸収冷凍機においては、中温熱交換器8で熱交換して加熱された吸収液が所定の比率、例えば1:1で分岐し、一方の吸収液は高温熱交換器9を経由して高温再生器1に戻され、他方の吸収液は中温再生器2に供給され加熱される。
【0023】
したがって、この第2の実施形態の吸収冷凍機においても、冷媒を吸収して吸収器6から吸収液濃度が低下して吐出した吸収液の一部が高温再生器1に流入し加熱されるので、前記図1に示した第1の実施形態の吸収冷凍機と同様、高温再生器1内の圧力上昇は顕著に抑制される。
【0024】
〔第3の実施形態〕
本発明の第3の実施形態を、図3に基づいて説明する。この第3の実施形態の吸収冷凍機は、前記図1に示した第1の実施形態の吸収冷凍機と、前記図2に示した第2の実施形態の吸収冷凍機の両方の構成を備えている。
【0025】
すなわち、図3に示した第3の実施形態の吸収冷凍機においては、吸収器6から吐出し、吸収液ポンプ10により搬送されている吸収液(つまり全吸収液)は、低温熱交換器7で熱交換して加熱された後と、中温熱交換器8で熱交換して加熱された後の二箇所で分岐し、始めに分岐した吸収液(分岐側の吸収液)は低温再生器3に流入し、後で分岐した吸収液(分岐側の吸収液)は中温再生器2に流入する。
【0026】
なお、各分岐点における吸収液の分岐比率には特に制限はないが、通常は吸収液ポンプ10により搬送されている吸収液の1/4づつが低温再生器3と中温再生器2に流入し、1/2が高温再生器1に流入するように分岐させる。
【0027】
したがって、この第3の実施形態の吸収冷凍機においても、冷媒を吸収して吸収器6から吸収液濃度が低下して吐出した吸収液の一部が高温再生器1に流入し加熱されるので、前記第1、第2の実施形態の吸収冷凍機と同様、高温再生器1内の圧力上昇は顕著に抑制される。
なお、最初に分岐した方の(分岐側の)吸収液は、図3に示すように、中温熱交換器8から低温再生器3へ向かう本流側の吸収液と途中で合流してから、低温再生器3に直接流入するように構成されている。一方、後で分岐した方の(分岐側の)吸収液も、同様に図3に示すように、高温熱交換器9から中温再生器2へ向かう本流側の吸収液と途中で合流してから、中温再生器2に直接流入するように分岐されるように構成されている。
【0028】
なお、本発明は上記実施形態に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。
【0029】
例えば、高温熱交換器9で熱交換して加熱され、高温再生器1に流入している吸収液などを、高温再生器1に添設したバーナから排出される高温の燃焼排ガスなどにより加熱するための熱回収器を設けることができる。
【0030】
【発明の効果】
以上説明したように、本発明の吸収冷凍機によれば、高温再生器に流入する吸収液の量が減少し、それにより高温再生器で発生する冷媒蒸気の量が減少するので、高温再生器内の圧力上昇が抑制される。
【0031】
そのため、製造上の制約が大きくなることがないし、主要部品を圧肉部材で製作する必要もなくなるので、イニシャルコストの増加も回避できる。
【0032】
また、COPを向上させることも可能であるので、大気の温暖化に大きな影響があるCO2の削減にも大きな効果がある。
【図面の簡単な説明】
【図1】第1の実施形態の説明図である。
【図2】第2の実施形態の説明図である。
【図3】第3の実施形態の説明図である。
【符号の説明】
1 高温再生器
2 中温再生器
3 低温再生器
4 凝縮器
5 蒸発器
6 吸収器
7 低温熱交換器
8 中温熱交換器
9 高温熱交換器
10、11 吸収液ポンプ
12 冷媒ポンプ
13 冷水管
14 冷却水管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a triple effect absorption refrigerator used for cooling operation such as cooling.
[0002]
[Prior art]
As this type of absorption refrigerator, for example, the absorption liquid that has absorbed the refrigerant in the absorber is a low temperature heat exchanger, a medium temperature heat exchanger, a high temperature heat exchanger, a high temperature regenerator, a high temperature heat exchanger, a medium temperature regenerator, a medium temperature heat For example, a triple effect absorption refrigerator proposed in FIG. 1 and FIG. 2 of JP 2000-257976 A, which is connected to an absorber through a exchanger, a low-temperature regenerator, and a low-temperature heat exchanger in order. It is well known.
[0003]
In the so-called series flow triple effect absorption refrigerator proposed in Japanese Patent Laid-Open No. 2000-257976, since the regeneration pressure greatly exceeds atmospheric pressure and reaches about 500 kPa, it becomes a pressure vessel, and manufacturing restrictions are large. Become. In addition, an increase in initial cost due to an increase in the thickness of main parts is inevitable.
[0004]
On the other hand, the COP is only about 1.5, and there is a problem that the effect of improving the thermal efficiency is scarce for an increase in manufacturing cost.
[0005]
[Problems to be solved by the invention]
Therefore, there is a need to provide a triple effect absorption refrigerator that can suppress a significant increase in regeneration pressure and that can improve COP so as not to significantly increase the manufacturing cost. It was a problem to be solved.
[0006]
[Means for solving problems]
As a specific means for solving the above-described problems of the prior art, the present invention provides a high-temperature regenerator that heats the absorption liquid to evaporate and separate the refrigerant contained in the absorption liquid and regenerate the absorption liquid so that the refrigerant can be absorbed. It is equipped with a regenerator, medium temperature regenerator, and low temperature regenerator, as well as a high temperature heat exchanger, medium temperature heat exchanger, low temperature heat exchanger as a heat exchanger that exchanges heat between absorbing liquids of different temperatures , and absorbs refrigerant The absorbed liquid discharged from the absorber is low temperature heat exchanger, medium temperature heat exchanger, high temperature heat exchanger, high temperature regenerator, high temperature heat exchanger, medium temperature regenerator, medium temperature heat exchanger, low temperature regenerator, low temperature In an absorption refrigerator having an absorption liquid pipe through which a main-stream side absorption liquid flowing back to the absorber via a heat exchanger flows, a part of the absorption liquid discharged from the absorber is transferred to a high-temperature heat exchanger. Heat exchange in a low-temperature heat exchanger in the absorption liquid tube heading And after the heat exchange in the intermediate temperature heat exchanger, and is configured to branch at each of the two locations, the first branching absorption liquid is directed from the intermediate temperature heat exchanger to the low temperature regenerator The absorbent on the main stream side merges with the flowing absorbent, and then directly flows into the low-temperature regenerator, and the branched liquid that is branched later is on the main stream side from the high-temperature heat exchanger to the intermediate-temperature regenerator. One-quarter of the total absorption liquid which is branched to flow directly into the intermediate temperature regenerator after being merged with the absorption liquid and going from the absorber to the low-temperature heat exchanger, An absorption refrigerator configured to go to the regenerator and the intermediate temperature regenerator, and after the final branch, the remaining one half of the total absorbing liquid is directed to the high temperature regenerator , To solve the above-mentioned problems of the prior art Is shall.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0008]
[First Embodiment]
A first embodiment of the present invention will be described in detail with reference to FIG. In the figure, 1 is a high temperature regenerator, 2 is a medium temperature regenerator, 3 is a low temperature regenerator, 4 is a condenser, 5 is an evaporator, 6 is an absorber, 7 is a low temperature heat exchanger, 8 is a medium temperature heat exchanger, 9 Is a high-temperature heat exchanger, 10 and 11 are absorption liquid pumps, and 12 is a refrigerant pump. Each is connected by an absorption liquid pipe indicated by a solid line and a refrigerant pipe indicated by a broken line as shown in FIG. Each of the liquid and the refrigerant is configured to be circulated.
[0009]
A chilled water pipe 13 is passed through the evaporator 5, and a chilled water pipe 14 is passed through the absorber 6 and the condenser 4 in series.
[0010]
Therefore, in the absorption refrigerator having the above-described configuration, when the absorption liquid pumps 10 and 11 and the refrigerant pump 12 are operated and natural gas or the like is burned by a burner (not shown) attached to the high-temperature regenerator 1, the high-temperature regenerator 1 In the method, the absorption liquid is heated by the combustion heat, and the refrigerant vapor evaporated and separated from the absorption liquid and the concentrated absorption liquid are obtained.
[0011]
The high-temperature refrigerant vapor generated in the high-temperature regenerator 1 enters the intermediate-temperature regenerator 2 and absorbs the refrigerant in the intermediate-temperature regenerator 2, that is, the refrigerant is evaporated and separated by the heating in the high-temperature regenerator 1, so that the concentration of the absorbed liquid is increased. The absorption liquid that has been increased and heat-exchanged by the high-temperature heat exchanger 9 and cooled and supplied is heated to evaporate the refrigerant.
[0012]
The refrigerant vapor evaporated and separated from the absorbing liquid in the intermediate temperature regenerator 2 enters the low temperature regenerator 3, and the absorbing liquid in the low temperature regenerator 3, that is, the refrigerant is evaporated and separated by the heating in the intermediate temperature regenerator 2. The absorption liquid is cooled by exchanging heat with the intermediate temperature heat exchanger 8 and the refrigerant is absorbed by the absorber 6 to reduce the concentration of the absorption liquid, and the absorption liquid pump 10 performs heat exchange with the low-temperature heat exchanger 7. Then, a part of the heated absorption liquid joins and the absorption liquid flowing into the low temperature regenerator 3 is heated to evaporate the refrigerant.
[0013]
The refrigerant vapor evaporated and separated from the absorption liquid by heating in the low temperature regenerator 3 enters the condenser 4, dissipates heat to the cooling water flowing in the cooling water pipe 14 and condenses, and the absorption liquid is obtained in each of the intermediate temperature regenerator 2 and the low temperature regenerator 3. The heat is then condensed and enters the evaporator 5 together with the refrigerant liquid flowing in from the medium temperature regenerator 2 and the low temperature regenerator 3.
[0014]
The refrigerant liquid that has entered the evaporator 5 and accumulated at the bottom is sprayed from above by the refrigerant pump 12 and is evaporated by exchanging heat with water flowing inside the cold water pipe 13 to cool the water flowing inside the cold water pipe 13. .
[0015]
The refrigerant evaporated in the evaporator 5 enters the absorber 6, evaporates and separates the refrigerant by the heating in the low temperature regenerator 3, and the absorption liquid whose concentration of the absorption liquid is further increased, that is, from the low temperature regenerator 3 by the absorption liquid pump 11. It is cooled and supplied via the low-temperature heat exchanger 7 and absorbed by the absorbing liquid sprayed from above.
[0016]
The absorption liquid whose absorption liquid concentration has been reduced by absorbing the refrigerant in the absorber 6 is heated by exchanging heat in the low-temperature heat exchanger 7 by the operation of the absorption liquid pump 10, and then a predetermined ratio, for example, 1: 1. Branching at a ratio, one absorption liquid is returned to the high temperature regenerator 1 via the intermediate temperature heat exchanger 8 and the high temperature heat exchanger 9, and the other absorption liquid is supplied to the low temperature regenerator 3 and heated.
[0017]
When the absorption refrigerator is operated as described above, the cold water flowing through the cold water pipe 13 and entering the evaporator 5 is cooled by the heat of vaporization of the refrigerant in the evaporator 5, and the cooled cold water is cooled by the cold water. Since it can be circulated and supplied to a cooling load (not shown) via the pipe 13, a cooling operation such as cooling can be performed by triple effect with excellent thermal efficiency.
[0018]
In the high temperature regenerator 1, the refrigerant absorbs the refrigerant and the absorption liquid concentration decreases from the absorber 6, and a part of the discharged absorption liquid flows in and is heated, so that the high temperature regenerator 1 evaporates and separates from the absorption liquid. The amount of refrigerant vapor to be reduced is smaller than when the entire amount of the absorbent discharged from the absorber 6 flows in. Therefore, the pressure rise in the high temperature regenerator 1 is remarkably suppressed, and becomes about 400 kPa.
[0019]
In addition, the COP is improved to about 1.7 by improving the thermal efficiency such as the two stages of the evaporator 5 and the absorber 6.
[0020]
[Second Embodiment]
A second embodiment of the present invention will be described with reference to FIG. The absorption refrigerator of the second embodiment is different from the absorption refrigerator of the first embodiment shown in FIG. 1 in that the absorption refrigerant discharged from the absorber 6 and conveyed by the absorption liquid pump 10 is used. The part where the liquid branches and the whereabouts of the branched absorption liquid.
[0021]
For ease of understanding, in the absorption refrigerator of the second embodiment, the same reference numerals are used for the parts having the same functions as those of the absorption refrigerator of the first embodiment shown in FIG. (The same applies to the third embodiment).
[0022]
That is, in the absorption refrigerator of the second embodiment shown in FIG. 2, the absorption liquid heated by heat exchange in the intermediate temperature heat exchanger 8 branches at a predetermined ratio, for example, 1: 1, and one absorption The liquid is returned to the high temperature regenerator 1 via the high temperature heat exchanger 9, and the other absorption liquid is supplied to the intermediate temperature regenerator 2 and heated.
[0023]
Therefore, in the absorption refrigerator of the second embodiment, the refrigerant is absorbed and the concentration of the absorption liquid is reduced from the absorber 6 so that a part of the discharged absorption liquid flows into the high-temperature regenerator 1 and is heated. As in the absorption refrigerator of the first embodiment shown in FIG. 1, the pressure increase in the high temperature regenerator 1 is remarkably suppressed.
[0024]
[Third Embodiment]
A third embodiment of the present invention will be described with reference to FIG. The absorption refrigerator according to the third embodiment includes both the absorption refrigerator according to the first embodiment shown in FIG. 1 and the absorption refrigerator according to the second embodiment shown in FIG. ing.
[0025]
That is, in the absorption refrigerator of the third embodiment shown in FIG. 3, the absorption liquid (that is, the total absorption liquid) discharged from the absorber 6 and conveyed by the absorption liquid pump 10 is the low-temperature heat exchanger 7. After the heat is exchanged and heated, and after the heat is exchanged and heated in the intermediate temperature heat exchanger 8, the branched solution (branch side absorbed solution) is branched at two places. The absorption liquid that has flowed into the water and branched later (the absorption liquid on the branch side) flows into the intermediate temperature regenerator 2.
[0026]
The branching ratio of the absorbing liquid at each branching point is not particularly limited, but usually 1/4 of the absorbing liquid conveyed by the absorbing liquid pump 10 flows into the low temperature regenerator 3 and the medium temperature regenerator 2. , ½ are branched so as to flow into the high-temperature regenerator 1.
[0027]
Therefore, also in the absorption refrigerator of this third embodiment, a part of the absorbed liquid that has absorbed the refrigerant and reduced the concentration of the absorbed liquid from the absorber 6 and has been discharged flows into the high-temperature regenerator 1 and is heated. Like the absorption refrigerators of the first and second embodiments, the pressure increase in the high-temperature regenerator 1 is remarkably suppressed.
As shown in FIG. 3, the first branched absorption liquid (branch side) merges with the main stream absorption liquid from the intermediate temperature heat exchanger 8 toward the low temperature regenerator 3, and then the low temperature It is configured to flow directly into the regenerator 3. On the other hand, the absorption liquid that is branched later (branch side) is also merged with the absorption liquid on the main stream side from the high-temperature heat exchanger 9 toward the intermediate-temperature regenerator 2, as shown in FIG. The branching is made so as to directly flow into the intermediate temperature regenerator 2.
[0028]
In addition, since this invention is not limited to the said embodiment, various deformation | transformation implementation is possible in the range which does not deviate from the meaning as described in a claim.
[0029]
For example, the absorption liquid etc. heated by exchanging heat in the high-temperature heat exchanger 9 and flowing into the high-temperature regenerator 1 are heated by high-temperature combustion exhaust gas discharged from a burner attached to the high-temperature regenerator 1. A heat recovery device can be provided.
[0030]
【The invention's effect】
As described above, according to the absorption refrigerator of the present invention, the amount of the absorption liquid flowing into the high temperature regenerator is reduced, thereby reducing the amount of refrigerant vapor generated in the high temperature regenerator. The pressure rise inside is suppressed.
[0031]
For this reason, there are no restrictions on manufacturing, and it is not necessary to manufacture main parts with a compact member, so that an increase in initial cost can be avoided.
[0032]
Further, since it is possible to improve COP, there is a great effect in reducing CO2 which has a great influence on the warming of the atmosphere.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a first embodiment.
FIG. 2 is an explanatory diagram of a second embodiment.
FIG. 3 is an explanatory diagram of a third embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Medium temperature regenerator 3 Low temperature regenerator 4 Condenser 5 Evaporator 6 Absorber 7 Low temperature heat exchanger 8 Medium temperature heat exchanger 9 High temperature heat exchangers 10 and 11 Absorption liquid pump 12 Refrigerant pump 13 Cold water pipe 14 Cooling Water pipe

Claims (1)

吸収液を加熱して吸収液に含まれる冷媒を蒸発分離し、冷媒が吸収できるように吸収液を再生する再生器として高温再生器、中温再生器、低温再生器を備えると共に、異なる温度の吸収液同士が熱交換する熱交換器として高温熱交換器、中温熱交換器、低温熱交換器を備え、かつ、冷媒を吸収して吸収器から吐出される吸収液が、低温熱交換器、中温熱交換器、高温熱交換器、高温再生器、高温熱交換器、中温再生器、中温熱交換器、低温再生器、低温熱交換器を経由して前記吸収器に還流する本流側の吸収液が流れる吸収液管を備えた吸収冷凍機において、
前記吸収器から吐出される吸収液の一部が、高温熱交換器に向かう前記吸収液管において、低温熱交換器での熱交換後と、中温熱交換器での熱交換後と、の二箇所でそれぞれ分岐するように構成されているとともに、
最初に分岐した方の吸収液は、前記中温熱交換器から低温再生器へ向かう前記本流側の吸収液が流れる吸収液と途中で合流してから、低温再生器に直接流入し、後で分岐した方の吸収液は、前記高温熱交換器から中温再生器へ向かう前記本流側の吸収液と途中で合流してから、中温再生器に直接流入するように分岐され、かつ、
前記吸収器から低温熱交換器へ向かう全吸収液のうちの、1/4づつが、それぞれ前記低温再生器と中温再生器とに向かい、前記最終分岐後に、残りである、前記全吸収液のうちの1/2の吸収液が前記高温再生機に向かうように構成されている
ことを特徴とする吸収冷凍機。
As the regenerator that heats the absorption liquid to evaporate and separate the refrigerant contained in the absorption liquid and regenerate the absorption liquid so that the refrigerant can be absorbed, it is equipped with a high-temperature regenerator, medium-temperature regenerator, and low-temperature regenerator, and absorbs different temperatures As a heat exchanger for exchanging heat between liquids, a high-temperature heat exchanger, a medium-temperature heat exchanger, a low-temperature heat exchanger are provided , and an absorption liquid that absorbs refrigerant and is discharged from the absorber is a low-temperature heat exchanger, Absorption liquid on the main stream side that flows back to the absorber via a heat exchanger, a high temperature heat exchanger, a high temperature regenerator, a high temperature heat exchanger, a medium temperature regenerator, a medium temperature heat exchanger, a low temperature regenerator, and a low temperature heat exchanger In an absorption refrigerator equipped with an absorption liquid pipe through which
Part of the absorbing liquid discharged from the absorber is subjected to heat absorption at the low-temperature heat exchanger and after heat exchange at the medium-temperature heat exchanger in the absorption liquid tube toward the high-temperature heat exchanger. It is configured to branch at each point,
The absorption liquid that has been branched first merges with the absorption liquid in which the main-stream-side absorption liquid flows from the intermediate temperature heat exchanger to the low temperature regenerator, and then flows directly into the low temperature regenerator. The one of the absorbed liquid is branched so as to directly flow into the intermediate temperature regenerator after joining with the main stream side absorbing liquid from the high temperature heat exchanger to the intermediate temperature regenerator, and
Of the total absorption liquid going from the absorber to the low temperature heat exchanger, 1/4 each goes to the low temperature regenerator and the medium temperature regenerator, and after the final branch, An absorption refrigerator, wherein half of the absorption liquid is directed to the high temperature regenerator .
JP2001220052A 2001-07-19 2001-07-19 Absorption refrigerator Expired - Fee Related JP4562325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001220052A JP4562325B2 (en) 2001-07-19 2001-07-19 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001220052A JP4562325B2 (en) 2001-07-19 2001-07-19 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2003035465A JP2003035465A (en) 2003-02-07
JP4562325B2 true JP4562325B2 (en) 2010-10-13

Family

ID=19053937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001220052A Expired - Fee Related JP4562325B2 (en) 2001-07-19 2001-07-19 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP4562325B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5075346B2 (en) * 2006-03-28 2012-11-21 三洋電機株式会社 Absorption refrigerator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116066A (en) * 1986-10-31 1988-05-20 矢崎総業株式会社 Double effect absorption water chiller and heater
JPH01244257A (en) * 1988-03-25 1989-09-28 Yazaki Corp Double-effect absorption water cooler/heater
JPH03152362A (en) * 1989-11-10 1991-06-28 Ebara Corp Absorption refrigerator
JPH0868570A (en) * 1994-08-30 1996-03-12 Ebara Corp Absorption refrigerator
JP2000171119A (en) * 1998-12-08 2000-06-23 Ebara Corp Triple-effect absorption refrigerating machine
JP2000257976A (en) * 1999-01-07 2000-09-22 Kawasaki Thermal Engineering Co Ltd Absorption refrigerating machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116066A (en) * 1986-10-31 1988-05-20 矢崎総業株式会社 Double effect absorption water chiller and heater
JPH01244257A (en) * 1988-03-25 1989-09-28 Yazaki Corp Double-effect absorption water cooler/heater
JPH03152362A (en) * 1989-11-10 1991-06-28 Ebara Corp Absorption refrigerator
JPH0868570A (en) * 1994-08-30 1996-03-12 Ebara Corp Absorption refrigerator
JP2000171119A (en) * 1998-12-08 2000-06-23 Ebara Corp Triple-effect absorption refrigerating machine
JP2000257976A (en) * 1999-01-07 2000-09-22 Kawasaki Thermal Engineering Co Ltd Absorption refrigerating machine

Also Published As

Publication number Publication date
JP2003035465A (en) 2003-02-07

Similar Documents

Publication Publication Date Title
JP5210896B2 (en) Single double-effect absorption chiller / heater
JP3883838B2 (en) Absorption refrigerator
KR100445616B1 (en) Absorbed refrigerator
JP3824436B2 (en) Triple effect absorption refrigerator
JP4562325B2 (en) Absorption refrigerator
JP3283621B2 (en) Absorption refrigerators and chiller / heaters using both low-temperature regenerators and low-temperature regenerators for waste heat recovery
JP4148830B2 (en) Single double effect absorption refrigerator
JP4553523B2 (en) Absorption refrigerator
JP4315854B2 (en) Absorption refrigerator
JP4562321B2 (en) Absorption refrigerator
WO2002018850A1 (en) Absorption refrigerating machine
JP4562323B2 (en) Absorption refrigerator
JP4557468B2 (en) Absorption refrigerator
JP4596683B2 (en) Absorption refrigerator
JP3851136B2 (en) Absorption refrigerator
JP3812934B2 (en) Double-effect absorption refrigerator
JP4553522B2 (en) Absorption refrigerator
CN107504710A (en) Fume hot-water single-double effect compound type lithium bromide absorption type handpiece Water Chilling Units
JP2003014324A (en) Absorption refrigeration machine
JP2003014326A (en) Absorption refrigeration machine
JP2003014323A (en) Absorption refrigeration machine
JP4201403B2 (en) Absorption refrigerator
JP4540086B2 (en) Exhaust gas driven absorption chiller / heater
JP4282225B2 (en) Absorption refrigerator
JPS63116066A (en) Double effect absorption water chiller and heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees