JPH01244257A - Double-effect absorption water cooler/heater - Google Patents

Double-effect absorption water cooler/heater

Info

Publication number
JPH01244257A
JPH01244257A JP7160688A JP7160688A JPH01244257A JP H01244257 A JPH01244257 A JP H01244257A JP 7160688 A JP7160688 A JP 7160688A JP 7160688 A JP7160688 A JP 7160688A JP H01244257 A JPH01244257 A JP H01244257A
Authority
JP
Japan
Prior art keywords
heat exchanger
low
solution
temperature
temperature heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7160688A
Other languages
Japanese (ja)
Other versions
JPH0663672B2 (en
Inventor
Mokichi Kurosawa
黒沢 茂吉
Shinichi Kannou
閑納 眞一
Sadatoshi Takemoto
竹本 貞寿
Masahiko Oshima
大島 正彦
Tomoharu Hisatsuchi
智春 久土
Takahiro Sei
静 隆広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Yazaki Corp
Toho Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Yazaki Corp
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Yazaki Corp, Toho Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP7160688A priority Critical patent/JPH0663672B2/en
Publication of JPH01244257A publication Critical patent/JPH01244257A/en
Publication of JPH0663672B2 publication Critical patent/JPH0663672B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To improve the heat exchanging efficiency so as to reduce the size of a waste gas heat exchanger by serially installing the waste gas heat exchanger between the low temperature side heat exchanger and the high temperature side heat exchanger, and causing a larger amount of solution to flow through the waste gas heat exchanger during the cooling operation. CONSTITUTION:During the cooling operation, the diluted solution in the high temperature regenerator 10 is heated to a high temperature by a heat source 12 and enters into a separator 16. The high temperature diluted solution is separated to the refrigerant vapor and the intermediate concentration solution, and the refrigerant vapor is supplied to the low temperature generator 22 and the intermediate concentration solution to the high temperature heat exchanger 36. The high concentration solution sprayed in the absorbing unit 44 is cooled in the coolant heat exchanger and absorbs the refrigerant vapor coming from the evaporator 34 to become the diluted solution. The diluted solution is recirculated to the high temperature regenerator 10 through the low temperature heat exchanger 42, waste gas heat exchanger 70 and high temperature heat exchanger 36 by a circulation pump 54. Part of the diluted solution is supplied to the low temperature regenerator 22 through a pipe 68 which is diverted from the outlet side of the low temperature heat exchanger 42 to the low temperature regenerator 22 so as to reduce the amount of the influx of the diluted solution to the high temperature regenerator 10 in order to reduce the amount of sensible heat in the high temperature regenerator 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、二重効用吸収冷温水機に係り、特に。[Detailed description of the invention] [Industrial application field] The present invention relates to a dual-effect absorption chiller/heater, and more particularly.

冷房および暖房運転時共に、排ガス熱量を効率的に回収
し、冷房および暖房効率を向上させる系統構成に関する
ものである。
The present invention relates to a system configuration that efficiently recovers exhaust gas heat during both cooling and heating operations to improve cooling and heating efficiency.

〔従来の技術〕[Conventional technology]

従来の二重効用吸収冷温水機の一例を第2図に示す。こ
の従来例は、加熱源12から排気回路60を通して放出
される排ガス熱量を溶液との熱交換により回収するもの
である。すなわち、吸収器44を出た稀溶液は、低温熱
交換器42を通過後に分流され、一部は高温再生器10
に向かい、残りは低温再生器22に向かう。高温再生器
10に向かう稀溶液は、高温熱交換器36の前で再度分
流し、高温熱交換器36と排ガス熱交換器66に入る。
An example of a conventional dual-effect absorption chiller/heater is shown in FIG. In this conventional example, the exhaust gas heat released from the heating source 12 through the exhaust circuit 60 is recovered by heat exchange with a solution. That is, the dilute solution leaving the absorber 44 is divided after passing through the low-temperature heat exchanger 42, and a part of it is sent to the high-temperature regenerator 10.
The rest goes to the low temperature regenerator 22. The dilute solution headed for the high temperature regenerator 10 is split again before the high temperature heat exchanger 36 and enters the high temperature heat exchanger 36 and the exhaust gas heat exchanger 66 .

排ガス熱交換器66で排ガス熱量を回収した稀溶液は、
高温熱交換器36からの稀溶液と合流し、高温再生器1
0に流入する。
The dilute solution whose exhaust gas heat is recovered in the exhaust gas heat exchanger 66 is
The dilute solution from the high temperature heat exchanger 36 is combined with the high temperature regenerator 1.
Flows into 0.

この従来例では、稀溶液を高温熱交換器36と排ガス熱
交換器66とに並列に流し、排ガス熱量を回収していた
In this conventional example, the dilute solution was passed through the high temperature heat exchanger 36 and the exhaust gas heat exchanger 66 in parallel, and the exhaust gas heat amount was recovered.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記従来技術にあっては、冷房運転時に、排ガ
ス熱交換器66に稀溶液を多く流すと、排ガス熱交換器
66からの稀溶液温度が低下し、さらには、高温熱交換
器36の熱交換器も減少するため、排ガスからの回収熱
量を性能向上に効率的に使用できない。したがって、排
ガス熱交換器66への稀溶液量を少なくし、しかも、排
ガスからの回収熱量を多くするために排ガス温度を下げ
なければならない。このような事情から、排ガス熱交換
器66が大きくなり、排ガス熱交換器66内で溶液の偏
流が起こりやすくなるので、局部加熱による溶液の晶析
の可能性が高くなる。
However, in the above-mentioned conventional technology, when a large amount of the dilute solution flows into the exhaust gas heat exchanger 66 during cooling operation, the temperature of the dilute solution from the exhaust gas heat exchanger 66 decreases, and furthermore, the temperature of the dilute solution from the exhaust gas heat exchanger 66 decreases. Since the number of heat exchangers is also reduced, the amount of heat recovered from exhaust gas cannot be used efficiently to improve performance. Therefore, the exhaust gas temperature must be lowered in order to reduce the amount of dilute solution to the exhaust gas heat exchanger 66 and increase the amount of heat recovered from the exhaust gas. Due to these circumstances, the exhaust gas heat exchanger 66 becomes larger and the solution tends to drift in the exhaust gas heat exchanger 66, which increases the possibility of crystallization of the solution due to local heating.

一方、暖房運転時には、高温熱交換器36が熱回収器と
しての作用をしないため、稀溶液を並列に分流する必要
はなく、排ガス熱交換器66内の流速を増し、熱交換効
率を向上させた方が、暖房効率を上げることになる。と
ころが、そのためには、排ガス熱交換器66内の溶液流
量を冷房運転と暖房運転とで変えるための電磁弁等が必
要となる。また、弁を設けない場合は、冷房運転時と同
様に、排ガス熱交換器66内の溶液が偏流し晶析する可
能性がある。
On the other hand, during heating operation, the high-temperature heat exchanger 36 does not function as a heat recovery device, so there is no need to divide the dilute solution in parallel, increasing the flow velocity in the exhaust gas heat exchanger 66 and improving heat exchange efficiency. This will increase heating efficiency. However, for this purpose, a solenoid valve or the like is required to change the flow rate of the solution in the exhaust gas heat exchanger 66 between cooling operation and heating operation. Furthermore, if a valve is not provided, the solution in the exhaust gas heat exchanger 66 may drift and crystallize as in the case of cooling operation.

本発明の目的は、冷房運転と暖房運転との間で排ガス熱
交換器への溶液流入を変える弁等を用いることなく、排
ガス熱量を効率的に回収し、冷房および暖房効率を向上
させた二重効用吸収冷温水機を提供することである。
An object of the present invention is to efficiently recover exhaust gas heat and improve cooling and heating efficiency without using a valve or the like to change the flow of solution into an exhaust gas heat exchanger between cooling and heating operations. The purpose of the present invention is to provide a heavy-duty absorption chiller/heater.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記目的を達成するために、稀溶液を加熱す
る加熱源を有する高温再生器と、高温再生器で加熱され
た稀溶液を冷媒蒸気と中間濃度溶液とに分離する分離器
と、分離器からの中間濃度溶液と高温再生器に流入する
稀溶液とを熱交換させる高温熱交換器と、分離器から導
かれた冷媒蒸気により高温熱交換器から流入する中間濃
度溶液を加熱し冷媒蒸気と濃溶液とに分離する低温再生
器と、低温再生器からの冷媒蒸気を凝縮させる凝縮器と
、凝縮器により凝縮した液体冷媒を散布して蒸発させ冷
却水を冷却する低圧の蒸発器と、低温再生器から流入し
た濃溶液を高温熱交換器に流入する稀溶液と熱交換させ
冷却する低温熱交換器と、低温熱交換器からの1溶液を
散布し蒸発器から流入した冷媒蒸気を吸収させて稀溶液
とする吸収器と、吸収器で生じた稀溶液を低温熱交換器
および高温熱交換器を介して高温再生器に圧送するとと
もに低温熱交換器の出口側で分流させ一部を低温再生器
に送る循環ポンプとからなる二重効用吸収冷温水機にお
いて、前記低温熱交換器を出た稀溶液と前記加熱源の排
気ガスとを熱交換させる排ガス熱交換器を前記低温熱交
換器と高温熱交換器との間に直列に設けた二重効用吸収
冷温水機を提案するものである。
In order to achieve the above object, the present invention includes a high-temperature regenerator having a heating source that heats a dilute solution, a separator that separates the dilute solution heated by the high-temperature regenerator into refrigerant vapor and an intermediate concentration solution. A high-temperature heat exchanger exchanges heat between the intermediate concentration solution from the separator and the dilute solution flowing into the high-temperature regenerator, and a refrigerant vapor that heats the intermediate concentration solution flowing from the high-temperature heat exchanger using refrigerant vapor led from the separator. A low-temperature regenerator that separates vapor and concentrated solution, a condenser that condenses refrigerant vapor from the low-temperature regenerator, and a low-pressure evaporator that sprays and evaporates the liquid refrigerant condensed by the condenser to cool cooling water. , a low-temperature heat exchanger that cools the concentrated solution flowing from the low-temperature regenerator by exchanging heat with a dilute solution flowing into the high-temperature heat exchanger, and a low-temperature heat exchanger that cools the concentrated solution flowing from the low-temperature heat exchanger, and a refrigerant vapor flowing from the evaporator that sprays one solution from the low-temperature heat exchanger. An absorber absorbs the solution into a dilute solution, and the dilute solution generated in the absorber is pumped to a high-temperature regenerator via a low-temperature heat exchanger and a high-temperature heat exchanger. In a dual-effect absorption chiller/heater, the exhaust gas heat exchanger is configured to exchange heat between the dilute solution exiting the low-temperature heat exchanger and the exhaust gas of the heating source. This paper proposes a dual-effect absorption chiller-heater installed in series between an exchanger and a high-temperature heat exchanger.

〔作用〕[Effect]

本発明においては、排ガス熱交換器を低温熱交換器と高
温熱交換器との間に直列に設けであるので、冷房運転時
は、排ガス熱交換器を流れる溶液流量が、従来の並列方
式と比べて、多くなり、熱交換効率が良く、排ガス熱交
換器を小さくでき、さらに、溶液の偏流による晶析が生
じにくい。
In the present invention, since the exhaust gas heat exchanger is installed in series between the low-temperature heat exchanger and the high-temperature heat exchanger, during cooling operation, the flow rate of the solution flowing through the exhaust gas heat exchanger is lower than that of the conventional parallel system. Compared to this, the amount is increased, the heat exchange efficiency is good, the exhaust gas heat exchanger can be made smaller, and crystallization due to uneven flow of the solution is less likely to occur.

暖房運転時も、冷房運転時と同様、排ガス熱交換器の溶
液流量が多いので、熱交換効率が良い。
During heating operation as well as during cooling operation, the flow rate of the solution in the exhaust gas heat exchanger is large, so heat exchange efficiency is good.

しかも、電磁弁等を設ける必要がなく、冷房運転時と同
一回路で排ガス熱回収が可能となる。
Moreover, there is no need to provide a solenoid valve or the like, and exhaust gas heat can be recovered using the same circuit as during cooling operation.

〔実施例〕〔Example〕

次に、第1図を参照して、本発明の一実施例を説明する
。図において、10は加熱源12からの熱により稀溶液
を加熱し冷媒蒸気を発生させる高温111生器、16は
高温再生器10からの中間濃度溶液と冷媒蒸気とを分離
する分離器、22は高温再生器10からの冷媒蒸気を加
熱源に中間濃度溶液を加熱し冷媒蒸気を発生させる低温
再生器、26は低温再生器22で加熱源として使用した
冷媒蒸気の凝縮水を冷却するとともに低温再生器22で
発生した冷媒蒸気を凝縮させる凝縮器、34は凝縮器2
6で凝縮した液体冷媒を散布して冷温水熱交換器32か
らの熱により蒸発させる低温の蒸発器、36は分離器1
6からの中間濃度溶液と高温再生器10に流入する稀溶
液とを熱交換させる高温熱交換器、42は低温再生器2
2から流入した濃溶液を高温熱交換器36に流入する稀
溶液と熱交換させ冷却する低温熱交換器、44は低温熱
交換器42からの濃溶液を散布し蒸発器34から流入し
た冷媒蒸気を吸収させて稀溶液とする吸収器、46は吸
収器44での吸収熱を取り去る冷却水熱交換器、50は
凝縮器26での凝縮熱を取り去る冷却水熱交換器、54
は吸収器44で生じた稀溶液を低温熱交換器42および
高温熱交換器36を介して高温再生器10に圧送する循
環ポンプ、56は冷暖房切換え弁、60は加熱源12の
排気回路である。
Next, an embodiment of the present invention will be described with reference to FIG. In the figure, 10 is a high-temperature generator 111 that heats the dilute solution with heat from the heat source 12 and generates refrigerant vapor, 16 is a separator that separates the intermediate concentration solution from the high-temperature regenerator 10 and the refrigerant vapor, and 22 is a separator. A low-temperature regenerator 26 uses refrigerant vapor from the high-temperature regenerator 10 as a heat source to heat an intermediate concentration solution to generate refrigerant vapor, and a low-temperature regenerator 22 cools condensed water of the refrigerant vapor used as a heating source and performs low-temperature regeneration. A condenser 34 condenses the refrigerant vapor generated in the condenser 22;
6 is a low-temperature evaporator that sprays the condensed liquid refrigerant and evaporates it using the heat from the cold/hot water heat exchanger 32; 36 is the separator 1;
A high temperature heat exchanger that exchanges heat between the intermediate concentration solution from 6 and the dilute solution flowing into the high temperature regenerator 10; 42 is a low temperature regenerator 2;
A low-temperature heat exchanger 44 cools the concentrated solution flowing from the low-temperature heat exchanger 42 by exchanging heat with a dilute solution flowing into the high-temperature heat exchanger 36; 46 is a cooling water heat exchanger that removes the heat of absorption in the absorber 44; 50 is a cooling water heat exchanger that removes the heat of condensation in the condenser 26; 54;
5 is a circulation pump that pumps the dilute solution generated in the absorber 44 to the high temperature regenerator 10 via the low temperature heat exchanger 42 and the high temperature heat exchanger 36; 56 is an air conditioning/heating switching valve; .

本実施例が第2図の従来例と異なるところは、高温熱交
換器36と並行に配置してあった排ガス熱交換器66に
代えて、低温熱交換器42と高温熱交換器36との間に
、排ガス熱交換器70を直列に設けた点である。
This embodiment is different from the conventional example shown in FIG. The point is that an exhaust gas heat exchanger 70 is provided in series between them.

なお、14.18等はそれぞれの機器を接続する配管で
ある。
Note that 14, 18, etc. are pipes connecting each device.

上記構成の本実施例は次のように\動作する。This embodiment with the above configuration operates as follows.

〈冷房時〉 冷房時、高温再生器10内の稀溶液は、加熱源12によ
り加熱され、高温となり分離器16に入る。
<During cooling> During cooling, the dilute solution in the high-temperature regenerator 10 is heated by the heating source 12 to reach a high temperature and enters the separator 16.

分離器16は、高温の稀溶液を冷媒蒸気と中間濃度溶液
とに分離し、冷媒蒸気を蒸気管18により低温再生器2
2に送るとともに、中間濃度溶液を送液管20により高
温熱交換器3Gに送る。高温熱交換器36に入った中間
濃度溶液は、高温再生器10に送られる稀溶液と熱交換
して稀溶液を暖めた後、出側配管38により低温再生器
22に入る。
The separator 16 separates the high temperature dilute solution into refrigerant vapor and intermediate concentration solution, and the refrigerant vapor is transferred to the low temperature regenerator 2 through a steam pipe 18.
At the same time, the intermediate concentration solution is sent to the high temperature heat exchanger 3G via the liquid sending pipe 20. The intermediate concentration solution entering the high temperature heat exchanger 36 exchanges heat with the dilute solution sent to the high temperature regenerator 10 to warm the dilute solution, and then enters the low temperature regenerator 22 via the outlet pipe 38.

蒸気管18により低温再生器22に入った冷媒蒸気は、
高温熱交換器36からの中間濃度溶液を加熱し、出側配
管24により凝縮器26に導かれる。また、低温再生器
22内の中間濃度溶液は、加熱されて濃溶液と冷媒蒸気
とになる。冷媒蒸気は蒸気管28により凝縮器26に導
かれ、濃溶液は濃溶液配管40により低温熱交換器42
に導かれる。
The refrigerant vapor that entered the low temperature regenerator 22 through the steam pipe 18 is
The intermediate concentration solution from the high temperature heat exchanger 36 is heated and led to the condenser 26 via the outlet pipe 24 . Further, the intermediate concentration solution in the low temperature regenerator 22 is heated to become a concentrated solution and refrigerant vapor. The refrigerant vapor is led to a condenser 26 by a steam pipe 28, and the concentrated solution is led to a low temperature heat exchanger 42 by a concentrated solution pipe 40.
guided by.

凝縮器26に入った冷媒蒸気は、冷却水熱交換器50に
より冷却され、液体冷媒となり、散布管30から低圧の
蒸発器34内に散布される。蒸発器34内に散布された
液体冷媒は冷温水熱交換器32内を流れる冷却用の水を
冷却しつつ蒸発し、吸収器44内に流入する。
The refrigerant vapor that has entered the condenser 26 is cooled by the cooling water heat exchanger 50 and becomes a liquid refrigerant, which is sprayed from the spray pipe 30 into the low-pressure evaporator 34 . The liquid refrigerant spread in the evaporator 34 evaporates while cooling the cooling water flowing in the cold/hot water heat exchanger 32 and flows into the absorber 44 .

他方、低温再生器22から低温熱交換器42に導かれた
濃溶液は、循環ポンプ54により低温熱交換器42に圧
送されてくる稀溶液と熱交換し冷却された後、吸収器4
4内に散布される。吸収器44内に散布された濃溶液は
、冷却水熱交換器46で冷却されるとともに、蒸発器3
4から流入してくる冷媒蒸気を吸収し、稀溶液となる。
On the other hand, the concentrated solution led from the low-temperature regenerator 22 to the low-temperature heat exchanger 42 is cooled by exchanging heat with the dilute solution pumped to the low-temperature heat exchanger 42 by the circulation pump 54, and then transferred to the absorber 4.
Scattered within 4 days. The concentrated solution sprayed into the absorber 44 is cooled by the cooling water heat exchanger 46 and is then transferred to the evaporator 3.
It absorbs the refrigerant vapor flowing in from 4 and becomes a dilute solution.

この稀溶液は、@環ポンプ54により、低温熱交換器4
2と排ガス熱交換器70と高温熱交換器36とを介して
、高温再生器10に再び送られる。低温熱交換器42の
出側で分岐し低温再生器22に通ずる配管68により、
稀溶液の一部を低温再生器22に導いて、高温再生器1
0に流入する稀溶液量を減少させ、高温再生器10での
顕熱斌を減少させている。
This dilute solution is transferred to the low temperature heat exchanger 4 by @ring pump 54.
2, the exhaust gas heat exchanger 70, and the high temperature heat exchanger 36, it is sent again to the high temperature regenerator 10. A pipe 68 that branches off at the outlet side of the low-temperature heat exchanger 42 and leads to the low-temperature regenerator 22 allows
A part of the diluted solution is led to the low temperature regenerator 22, and then the high temperature regenerator 1
By reducing the amount of dilute solution flowing into the high temperature regenerator 10, the amount of sensible heat generated in the high temperature regenerator 10 is reduced.

さて、低温熱交換器42を出て分流し高温再生器10に
向かう稀溶液を注目すると、低温熱交換器42と直列接
続した本発明排ガス熱交換器70により、排気回路60
からの排ガスと熱交換し。
Now, if we pay attention to the dilute solution that exits the low-temperature heat exchanger 42 and heads to the high-temperature regenerator 10, the exhaust circuit 60
exchange heat with the exhaust gas from the

排熱を回収する。その後、稀溶液は、高温熱交換器36
で分離器16からの中間濃度溶液と熱交換し、高温再生
器10に流入する。
Recover waste heat. The dilute solution is then transferred to a high temperature heat exchanger 36
It exchanges heat with the intermediate concentration solution from the separator 16 and flows into the high temperature regenerator 10.

く暖房時〉 暖房時には、冷暖房切換え弁56を開放する。During heating During heating, the heating/cooling switching valve 56 is opened.

したがって、分離器16からの高温溶液は、配管58に
より吸収器44および蒸発器34に入る。
Thus, hot solution from separator 16 enters absorber 44 and evaporator 34 via line 58.

そして、冷温水熱交換器32から温水が得られる。Then, hot water is obtained from the cold/hot water heat exchanger 32.

熱交換した稀溶液は、循環ポンプ54により高温再生器
10に圧送される際に、すべて排ガス熱交換器70を通
り、排熱を回収する。
When the heat-exchanged dilute solution is pumped to the high-temperature regenerator 10 by the circulation pump 54, it all passes through the exhaust gas heat exchanger 70 and recovers exhaust heat.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、排ガス熱交換器を低温熱交換器と高温
熱交換器との間に直列に設けであるので、以下の効果が
得られる。
According to the present invention, since the exhaust gas heat exchanger is provided in series between the low temperature heat exchanger and the high temperature heat exchanger, the following effects can be obtained.

(1)冷房運転時には、排ガス熱交換器を流れる溶液流
量が、従来の並列方式に比べて、多くなり、熱交換効率
が良く、排ガス熱交換器の伝熱面積が少なりて済む。さ
らに、溶液流量が多いから、溶液の偏流による晶析現象
が生じにくい。
(1) During cooling operation, the flow rate of the solution flowing through the exhaust gas heat exchanger is increased compared to the conventional parallel system, the heat exchange efficiency is good, and the heat transfer area of the exhaust gas heat exchanger is reduced. Furthermore, since the solution flow rate is large, crystallization phenomena due to uneven flow of the solution are less likely to occur.

(2)暖房運転中も、冷房運転中と同様、排ガス熱交換
器の流器が多いため、熱交換効率が良い。
(2) During heating operation as well as during cooling operation, the exhaust gas heat exchanger has many flow vessels, so heat exchange efficiency is good.

その際、電磁弁等を設ける必要がなく、冷房運転と同一
の回路で排ガスの熱回収が可能となる6
In this case, there is no need to install a solenoid valve, etc., and it is possible to recover heat from exhaust gas in the same circuit used for cooling operation6.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による二重効用吸収冷温水機の一実施例
の構成を示す系統図、第2図は従来の二重効用吸収冷温
水機の一例を示す系統図である。 10・・・高温再生器、  12・・・加熱源、16・
・・分離器、 22・・・低温再生器、26・・・凝縮
器、 32・・・冷温水熱交換器、34・・・蒸発器、
 36・・・高温熱交換器、42・・・低温熱交換器、
 44・・・吸収器。 46.50・・・冷却水熱交換器、 54・・・循環ポンプ、 56・・・冷暖房切換え弁。 60・・・排気回路、 66・・・従来の排ガス熱交換器、 70・・・本発明排ガス熱交換器。
FIG. 1 is a system diagram showing the configuration of an embodiment of a dual-effect absorption chiller/heater according to the present invention, and FIG. 2 is a system diagram showing an example of a conventional dual-effect absorption chiller/heater. 10... High temperature regenerator, 12... Heating source, 16.
...Separator, 22...Low temperature regenerator, 26...Condenser, 32...Cold/hot water heat exchanger, 34...Evaporator,
36... High temperature heat exchanger, 42... Low temperature heat exchanger,
44...Absorber. 46.50... Cooling water heat exchanger, 54... Circulation pump, 56... Air conditioning/heating switching valve. 60... Exhaust circuit, 66... Conventional exhaust gas heat exchanger, 70... Exhaust gas heat exchanger of the present invention.

Claims (1)

【特許請求の範囲】  稀溶液を加熱する加熱源を有する高温再生器と、高温
再生器で加熱された稀溶液を冷媒蒸気と中間濃度溶液と
に分離する分離器と、分離器からの中間濃度溶液と高温
再生器に流入する稀溶液とを熱交換させる高温熱交換器
と、分離器から導かれた冷媒蒸気により高温熱交換器か
ら流入する中間濃度溶液を加熱し冷媒蒸気と濃溶液とに
分離する低温再生器と、低温再生器からの冷媒蒸気を凝
縮させる凝縮器と、凝縮器により凝縮した液体冷媒を散
布して蒸発させ冷却水を冷却する低圧の蒸発器と、低温
再生器から流入した濃溶液を高温熱交換器に流入する稀
溶液と熱交換させ冷却する低温熱交換器と、低温熱交換
器からの濃溶液を散布し蒸発器から流入した冷媒蒸気を
吸収させて稀溶液とする吸収器と、吸収器で生じた稀溶
液を低温熱交換器および高温熱交換器を介して高温再生
器に圧送するとともに低温熱交換器の出口側で分流させ
一部を低温再生器に送る循環ポンプとからなる二重効用
吸収冷温水機において、 前記低温熱交換器を出た稀溶液と前記加熱源の排気ガス
とを熱交換させる排ガス熱交換器を前記低温熱交換器と
高温熱交換器との間に直列に設けたことを特徴とする二
重効用吸収冷温水機。
[Claims] A high-temperature regenerator having a heating source for heating a dilute solution, a separator for separating the dilute solution heated by the high-temperature regenerator into refrigerant vapor and an intermediate concentration solution, and an intermediate concentration solution from the separator. A high-temperature heat exchanger exchanges heat between the solution and the dilute solution flowing into the high-temperature regenerator, and a refrigerant vapor led from the separator heats the intermediate concentration solution flowing from the high-temperature heat exchanger into refrigerant vapor and a concentrated solution. A low-pressure regenerator that separates the refrigerant, a condenser that condenses the refrigerant vapor from the low-temperature regenerator, a low-pressure evaporator that sprays and evaporates the liquid refrigerant condensed by the condenser to cool the cooling water, and a low-pressure evaporator that cools the cooling water that flows in from the low-temperature regenerator. A low-temperature heat exchanger cools the concentrated solution by exchanging heat with a dilute solution flowing into a high-temperature heat exchanger, and a low-temperature heat exchanger cools the concentrated solution by distributing it from the low-temperature heat exchanger and absorbing refrigerant vapor flowing from an evaporator. The dilute solution generated in the absorber is pumped to the high-temperature regenerator via a low-temperature heat exchanger and a high-temperature heat exchanger, and the flow is divided at the outlet side of the low-temperature heat exchanger and a portion is sent to the low-temperature regenerator. In a dual-effect absorption chiller-heater comprising a circulation pump, an exhaust gas heat exchanger for exchanging heat between the dilute solution exiting the low-temperature heat exchanger and the exhaust gas of the heating source is connected to the low-temperature heat exchanger for high-temperature heat exchange. A dual-effect absorption chiller/heater characterized by being installed in series between the water heater and the water heater.
JP7160688A 1988-03-25 1988-03-25 Double-effect absorption chiller / heater Expired - Fee Related JPH0663672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7160688A JPH0663672B2 (en) 1988-03-25 1988-03-25 Double-effect absorption chiller / heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7160688A JPH0663672B2 (en) 1988-03-25 1988-03-25 Double-effect absorption chiller / heater

Publications (2)

Publication Number Publication Date
JPH01244257A true JPH01244257A (en) 1989-09-28
JPH0663672B2 JPH0663672B2 (en) 1994-08-22

Family

ID=13465479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7160688A Expired - Fee Related JPH0663672B2 (en) 1988-03-25 1988-03-25 Double-effect absorption chiller / heater

Country Status (1)

Country Link
JP (1) JPH0663672B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185825A (en) * 1992-12-14 1994-07-08 Daikin Ind Ltd Absorption type refrigerator
JP2003035465A (en) * 2001-07-19 2003-02-07 Sanyo Electric Co Ltd Absorption refrigerating machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185825A (en) * 1992-12-14 1994-07-08 Daikin Ind Ltd Absorption type refrigerator
JP2003035465A (en) * 2001-07-19 2003-02-07 Sanyo Electric Co Ltd Absorption refrigerating machine
JP4562325B2 (en) * 2001-07-19 2010-10-13 三洋電機株式会社 Absorption refrigerator

Also Published As

Publication number Publication date
JPH0663672B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
JPH11304274A (en) Waste heat utilized absorption type water cooling/ heating machine refrigerating machine
JP3283621B2 (en) Absorption refrigerators and chiller / heaters using both low-temperature regenerators and low-temperature regenerators for waste heat recovery
JPH01244257A (en) Double-effect absorption water cooler/heater
JP3481530B2 (en) Absorption chiller / heater
JP2858908B2 (en) Absorption air conditioner
JP3297720B2 (en) Absorption refrigerator
JP3401546B2 (en) Absorption refrigerator
JP4288799B2 (en) Waste heat input type absorption refrigeration system
JP3723372B2 (en) Waste heat input type absorption chiller / heater
JP3723373B2 (en) Waste heat input type absorption chiller / heater
JP2000088391A (en) Absorption refrigerating machine
JPS6122225B2 (en)
JPH0658186B2 (en) Double-effect absorption chiller / heater
JPH1114185A (en) Air conditioner
KR101076923B1 (en) An absorption type chiller-heater respondable to the heating load conditions
JPH1038402A (en) Steam-heating absorption type water cooler/heater
JP3111205B2 (en) Exhaust heat recovery type absorption chiller / heater and its control method
JPS58203368A (en) Absorption type cold and hot water machine
JPH08159591A (en) Absorption type refrigerator
JP3811632B2 (en) Waste heat input type absorption refrigerator
JP2004011928A (en) Absorption refrigerator
JP3401545B2 (en) Absorption refrigerator
JP3285306B2 (en) Waste heat input absorption refrigerator
JPH10205907A (en) Waste heat inputted type absorption cooling and heating machine and operating method thereof
JP2003065624A (en) Steam driven type double effect absorption water cooler- heater

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees