JP4562321B2 - Absorption refrigerator - Google Patents

Absorption refrigerator Download PDF

Info

Publication number
JP4562321B2
JP4562321B2 JP2001199227A JP2001199227A JP4562321B2 JP 4562321 B2 JP4562321 B2 JP 4562321B2 JP 2001199227 A JP2001199227 A JP 2001199227A JP 2001199227 A JP2001199227 A JP 2001199227A JP 4562321 B2 JP4562321 B2 JP 4562321B2
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature regenerator
temperature heat
absorption
regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001199227A
Other languages
Japanese (ja)
Other versions
JP2003014325A (en
Inventor
雅裕 古川
春樹 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001199227A priority Critical patent/JP4562321B2/en
Publication of JP2003014325A publication Critical patent/JP2003014325A/en
Application granted granted Critical
Publication of JP4562321B2 publication Critical patent/JP4562321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

【0001】
【発明の属する技術分野】
本発明は、冷房などの冷却運転に使用する三重効用吸収冷凍機に係わるものである。
【0002】
【従来の技術】
この種の吸収冷凍機としては、例えば吸収器で冷媒を吸収した吸収液が低温熱交換器、中温熱交換器、高温熱交換器、高温再生器、高温熱交換器、中温再生器、中温熱交換器、低温再生器、低温熱交換器を順次経由して吸収器に還流するように配管した、例えば特開2000−257976公報の図1、図2に提案された三重効用吸収冷凍機などが周知である。
【0003】
前記特開2000−257976公報に提案された、いわゆるシリーズフローの三重効用吸収冷凍機においては、再生圧力が大気圧を大きく超えて500kPa程度にもなるために圧力容器となり、製造上の制約が大きくなる。また、主要部品の肉厚増加に伴うイニシャルコストの増加も避けられない。
【0004】
一方、そのCOPは1.5程度に過ぎず、製造コストの増加の割には熱効率の改善効果が乏しいと云った問題点があった。
【0005】
【発明が解決しようとする課題】
したがって、製造コストが大幅に上昇することがないように、再生圧力の大幅な上昇を抑えることができ、且つ、COPの改善が図れる三重効用吸収冷凍機を提供する必要があり、それが解決すべき課題となっていた。
【0006】
【課題を解決するための手段】
本発明は上記従来技術の課題を解決するための具体的手段として、吸収液を加熱して吸収液に含まれる冷媒を蒸発分離し、冷媒が吸収できるように吸収液を再生する再生器として高温再生器、中温再生器、低温再生器を備えると共に、異なる温度の吸収液同士が熱交換する熱交換器として高温熱交換器、中温熱交換器、低温熱交換器を備えた吸収冷凍機において、前記吸収器で冷媒を吸収した吸収液が低温熱交換器、中温熱交換器、中温再生器、高温熱交換器、高温再生器、高温熱交換器、中温熱交換器、低温再生器、低温熱交換器を順次経由して吸収器に還流するように吸収液管を接続すると共に、前記中温再生器から高温再生器に至る吸収液管にポンプを設け、かつ、前記中温再生器から吐出した吸収液の一部を、前記ポンプの設置位置より下流側でそのポンプ設置箇所の直後から分岐し、高温熱交換器を経由して中温熱交換器に向かって流れる吸収液と合流させるための吸収液管をさらに設けた、吸収冷凍機を提供することにより、前記した従来技術の課題を解決するものである。
【0007
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて詳細に説明する。
【0008
〔第1の実施形態〕
本発明の第1の実施形態を、図1に基づいて詳細に説明する。図中1は高温再生器、2は中温再生器、3は低温再生器、4は凝縮器、5は蒸発器、6は吸収器、7は低温熱交換器、8は中温熱交換器、9は高温熱交換器、10〜12は吸収液ポンプ、13は冷媒ポンプであり、それぞれは図1に示したように実線で示した吸収液管と破線で示した冷媒管とで接続され、吸収液と冷媒がそれぞれ循環可能に構成されている。
【0009
なお、蒸発器5には冷水管14が通され、吸収器6と凝縮器4には冷却水管15が直列に通されている。
【0010
したがって、上記構成になる吸収冷凍機においては、吸収液ポンプ10、11および冷媒ポンプ12を運転し、高温再生器1に添設した図示しないバーナで天然ガスなどを燃焼させると、高温再生器1においては燃焼熱により吸収液が加熱され、吸収液から蒸発分離した冷媒蒸気と、濃縮された吸収液とが得られる。
【0011
高温再生器1で生成された高温の冷媒蒸気は、中温再生器2に入り、中温再生器2内にある吸収液、すなわち吸収器6内で冷媒を吸収して吸収液濃度を下げ、低温熱交換器7と中温熱交換器8とで熱交換して加熱され、吸収液ポンプ10により吸収器6から供給された吸収液を加熱して冷媒を蒸発させる。
【0012
中温再生器2で吸収液から蒸発分離した冷媒蒸気は、低温再生器3に入り、低温再生器3内にある吸収液、すなわち高温再生器1の図示しないバーナによる加熱により冷媒を蒸発分離して吸収液濃度が高められ、高温熱交換器9と中温熱交換器8とで熱交換して冷却され供給された吸収液を加熱して冷媒を蒸発させる。
【0013
低温再生器3で加熱され、吸収液から蒸発分離した冷媒蒸気は凝縮器4に入り、冷却水管15内を流れる冷却水に放熱して凝縮し、中温再生器2、低温再生器3それぞれで吸収液に放熱して凝縮し、中温再生器2、低温再生器3それぞれから流入する冷媒液と一緒になって蒸発器5に入る。
【0014
蒸発器5に入って底部に溜まった冷媒液は、冷媒ポンプ12により上方から散布され、冷水管14の内部を流れる水と熱交換して蒸発し、冷水管14の内部を流れる水を冷却する。
【0015
蒸発器5で蒸発した冷媒は吸収器6に入り、低温再生器3における加熱で冷媒を蒸発分離し、吸収液の濃度が一層高まった吸収液、すなわち吸収液ポンプ12により低温再生器3から低温熱交換器7を経由して冷却供給され、上方から散布される吸収液に吸収される。
【0016
吸収器6で冷媒を吸収して吸収液濃度が低下した吸収液は、吸収液ポンプ10の運転により低温熱交換器7と中温熱交換器8とで熱交換して加熱された後、中温再生器2に供給され、高温再生器1の図示しないバーナによる加熱で吸収液から分離して供給される冷媒蒸気により加熱され、冷媒蒸気を分離する。
【0017
中温再生器2で冷媒を蒸発分離した吸収液は、吸収液ポンプ11により高温熱交換器9を経由し、その高温熱交換器9で加熱されて高温再生器1に戻される。
【0018
上記のように吸収冷凍機が運転されると、冷水管14の内部を流れて蒸発器5に入った冷水は、蒸発器5内において冷媒の気化熱により冷却され、その冷却された冷水が冷水管14を介して図示しない冷却負荷に循環供給できるので、冷房などの冷却運転が熱効率に優れた三重効用により行える。
【0019
そして、高温再生器1においては、中温再生器2で既に冷媒を1回蒸発分離した吸収液が流入し加熱されるので、高温再生器1で吸収液から蒸発分離する冷媒蒸気の量は吸収液が吸収器6から直接流入するときと比較すると減少する。そのため、高温再生器1内の圧力は顕著に抑制され、400kPa程度となる。
【0020
しかも、蒸発器5、吸収器6を2段化するなどの熱効率の改善を図ることで、COPは1.7程度に改善される。
【0021
〔第2の実施形態〕
本発明の第2の実施形態を、図2に基づいて説明する。この第2の実施形態の吸収冷凍機が、前記図1に示した第1の実施形態の吸収冷凍機と相違する点は、吸収液ポンプ11の下流側の吸収液管にある。
【0022
なお、理解を容易にするため、この第2の実施形態の吸収冷凍機においても、前記図1に示した第1の実施形態の吸収冷凍機と同様の機能を有する部分には同一の符号を付した。
【0023
すなわち、図2に示した第2の実施形態の吸収冷凍機においては、吸収液ポンプ11の下流側の吸収液管が2路に分岐し、一方の管路は前記図1に示した第1の実施形態の吸収冷凍機と同様に、中温再生器2から吐出した吸収液の大半、例えば70〜90%程度が高温熱交換器9を経由して高温再生器1に至り、他方の管路は中温再生器2から吐出した吸収液の一部、例えば10〜30%程度が高温再生器1で加熱濃縮されて吐出し、高温熱交換器9を出て中温熱交換器8に向かって流れている吸収液と合流するように設けられている。
【0024
したがって、この第2の実施形態の吸収冷凍機においては、中温再生器2から高温再生器1に供給される吸収液の量は、前記第1の実施形態の吸収冷凍機よりさらに減少し、高温再生器1において吸収液から蒸発分離する冷媒蒸気の量も減少するので、再生圧力をさらに抑えることが可能になる。
【0025
この場合も、蒸発器5、吸収器6を2段化するなどの熱効率の改善を図ることで、COPは1.7程度に改善される。
【0026
したがって、前記図1に示した第1の実施形態の吸収冷凍機においても、また、図2に示した第2の実施形態の吸収冷凍機においても、従来のものより設計圧力が低下しているため、製造上の制約が緩和される。また、主要部品を圧肉部材で製作する必要もなくなるので、イニシャルコストの増加も回避できる。
【0027
なお、本発明は上記実施形態に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。
【0028
【発明の効果】
以上説明したように、本発明の吸収冷凍機によれば、高温再生器に流入する吸収液の量が減少し、それにより高温再生器で発生する冷媒蒸気の量が減少するので、高温再生器内の圧力上昇が抑制される。
【0029
そのため、製造上の制約が緩和されるので、主要部品を圧肉部材で製作する必要もなくなり、イニシャルコストの増加も回避できる。
【図面の簡単な説明】
【図1】第1の実施形態の説明図である。
【図2】第2の実施形態の説明図である。
【符号の説明】
1 高温再生器
2 中温再生器
3 低温再生器
4 凝縮器
5 蒸発器
6 吸収器
7 低温熱交換器
8 中温熱交換器
9 高温熱交換器
10、11、12 吸収液ポンプ
13 冷媒ポンプ
14 冷水管
15 冷却水管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a triple effect absorption refrigerator used for cooling operation such as cooling.
[0002]
[Prior art]
As this type of absorption refrigerator, for example, the absorption liquid that has absorbed the refrigerant in the absorber is a low temperature heat exchanger, a medium temperature heat exchanger, a high temperature heat exchanger, a high temperature regenerator, a high temperature heat exchanger, a medium temperature regenerator, a medium temperature heat For example, a triple effect absorption refrigerator proposed in FIG. 1 and FIG. 2 of JP 2000-257976 A, which is connected to an absorber through a exchanger, a low-temperature regenerator, and a low-temperature heat exchanger in order. It is well known.
[0003]
In the so-called series flow triple effect absorption refrigerator proposed in Japanese Patent Laid-Open No. 2000-257976, since the regeneration pressure greatly exceeds atmospheric pressure and reaches about 500 kPa, it becomes a pressure vessel, and manufacturing restrictions are large. Become. In addition, an increase in initial cost due to an increase in the thickness of main parts is inevitable.
[0004]
On the other hand, the COP is only about 1.5, and there is a problem that the effect of improving the thermal efficiency is scarce for an increase in manufacturing cost.
[0005]
[Problems to be solved by the invention]
Therefore, there is a need to provide a triple effect absorption refrigerator that can suppress a significant increase in regeneration pressure and that can improve COP so as not to significantly increase the manufacturing cost. It was a problem to be solved.
[0006]
[Means for Solving the Problems]
As a specific means for solving the above-described problems of the prior art, the present invention provides a high-temperature regenerator that heats the absorption liquid to evaporate and separate the refrigerant contained in the absorption liquid and regenerate the absorption liquid so that the refrigerant can be absorbed. In an absorption refrigerator equipped with a regenerator, a medium temperature regenerator, a low temperature regenerator, and a high temperature heat exchanger, a medium temperature heat exchanger, a low temperature heat exchanger as a heat exchanger for heat exchange between absorption liquids of different temperatures, The absorption liquid that has absorbed the refrigerant in the absorber is a low temperature heat exchanger, a medium temperature heat exchanger, a medium temperature regenerator, a high temperature heat exchanger, a high temperature regenerator, a high temperature heat exchanger, a medium temperature heat exchanger, a low temperature regenerator, a low temperature heat. together via exchanger sequentially connecting the absorption liquid pipe to reflux to the absorber, the pump provided in the absorption liquid pipe leading to the high-temperature regenerator from said intermediate temperature regenerator, and was discharged from the intermediate temperature regenerator absorption Place a part of the liquid at the position of the pump Ri is branched from immediately after the pump mount location downstream, provided further absorption liquid pipe for merging with the absorption liquid flowing toward the middle-temperature heat exchanger via high temperature heat exchanger, providing an absorption chiller By doing so, the above-mentioned problems of the prior art are solved.
[00 07 ]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[00 08 ]
[First Embodiment]
A first embodiment of the present invention will be described in detail with reference to FIG. In the figure, 1 is a high temperature regenerator, 2 is a medium temperature regenerator, 3 is a low temperature regenerator, 4 is a condenser, 5 is an evaporator, 6 is an absorber, 7 is a low temperature heat exchanger, 8 is a medium temperature heat exchanger, 9 Is a high-temperature heat exchanger, 10 to 12 are absorption liquid pumps, and 13 is a refrigerant pump. Each is connected by an absorption liquid pipe indicated by a solid line and a refrigerant pipe indicated by a broken line as shown in FIG. Each of the liquid and the refrigerant is configured to be circulated.
[00 09 ]
A chilled water pipe 14 is passed through the evaporator 5, and a chilled water pipe 15 is passed through the absorber 6 and the condenser 4 in series.
[00 10 ]
Therefore, in the absorption refrigerator having the above-described configuration, when the absorption liquid pumps 10 and 11 and the refrigerant pump 12 are operated and natural gas or the like is burned by a burner (not shown) attached to the high-temperature regenerator 1, the high-temperature regenerator 1 In the method, the absorption liquid is heated by the combustion heat, and the refrigerant vapor evaporated and separated from the absorption liquid and the concentrated absorption liquid are obtained.
[00 11 ]
The high-temperature refrigerant vapor generated in the high-temperature regenerator 1 enters the intermediate-temperature regenerator 2, absorbs the refrigerant in the intermediate-temperature regenerator 2, that is, absorbs the refrigerant in the absorber 6, and reduces the concentration of the absorbed liquid. Heat is exchanged between the exchanger 7 and the intermediate temperature heat exchanger 8 and heated, and the absorption liquid supplied from the absorber 6 is heated by the absorption liquid pump 10 to evaporate the refrigerant.
[00 12 ]
The refrigerant vapor evaporated and separated from the absorbing liquid in the intermediate temperature regenerator 2 enters the low temperature regenerator 3 and evaporates and separates the refrigerant by heating with the absorbing liquid in the low temperature regenerator 3, that is, the burner (not shown) of the high temperature regenerator 1. The absorption liquid concentration is increased, and heat is exchanged between the high-temperature heat exchanger 9 and the intermediate temperature heat exchanger 8 to cool the supplied absorption liquid and evaporate the refrigerant.
[00 13 ]
The refrigerant vapor heated by the low temperature regenerator 3 and evaporated and separated from the absorption liquid enters the condenser 4, dissipates heat to the cooling water flowing in the cooling water pipe 15, and is condensed by the medium temperature regenerator 2 and the low temperature regenerator 3. The liquid is dissipated and condensed, and enters the evaporator 5 together with the refrigerant liquid flowing from the intermediate temperature regenerator 2 and the low temperature regenerator 3.
[00 14 ]
The refrigerant liquid that has entered the evaporator 5 and accumulated at the bottom is sprayed from above by the refrigerant pump 12, evaporates by exchanging heat with the water flowing inside the cold water pipe 14, and cools the water flowing inside the cold water pipe 14. .
[00 15 ]
The refrigerant evaporated in the evaporator 5 enters the absorber 6, evaporates and separates the refrigerant by heating in the low temperature regenerator 3, and the absorption liquid whose concentration of the absorption liquid is further increased, that is, the absorption liquid pump 12 cools the refrigerant from the low temperature regenerator 3. It is cooled and supplied via the heat exchanger 7 and absorbed by the absorbing liquid sprayed from above.
[00 16 ]
The absorption liquid whose absorption liquid concentration has been reduced by absorbing the refrigerant in the absorber 6 is heated by exchanging heat between the low-temperature heat exchanger 7 and the intermediate temperature heat exchanger 8 by the operation of the absorption liquid pump 10, and is then regenerated at an intermediate temperature. The refrigerant vapor is heated by the refrigerant vapor supplied to the vessel 2 and separated and supplied from the absorbent by heating with a burner (not shown) of the high-temperature regenerator 1 to separate the refrigerant vapor.
[00 17 ]
The absorption liquid obtained by evaporating and separating the refrigerant in the medium temperature regenerator 2 is heated by the high temperature heat exchanger 9 via the high temperature heat exchanger 9 by the absorption liquid pump 11 and returned to the high temperature regenerator 1.
[00 18 ]
When the absorption refrigerator is operated as described above, the cold water flowing through the cold water pipe 14 and entering the evaporator 5 is cooled by the heat of vaporization of the refrigerant in the evaporator 5, and the cooled cold water is cooled by the cold water. Since it can be circulated and supplied to a cooling load (not shown) via the pipe 14, a cooling operation such as cooling can be performed by triple effect with excellent thermal efficiency.
[00 19 ]
In the high-temperature regenerator 1, since the absorption liquid that has already evaporated and separated the refrigerant once in the medium-temperature regenerator 2 flows and is heated, the amount of refrigerant vapor evaporated and separated from the absorption liquid in the high-temperature regenerator 1 is the absorption liquid. Is reduced as compared to when the gas flows directly from the absorber 6. Therefore, the pressure in the high temperature regenerator 1 is remarkably suppressed and becomes about 400 kPa.
[00 20 ]
In addition, the COP is improved to about 1.7 by improving the thermal efficiency such as the two stages of the evaporator 5 and the absorber 6.
[00 21 ]
[Second Embodiment]
A second embodiment of the present invention will be described with reference to FIG. The absorption refrigerator of the second embodiment is different from the absorption refrigerator of the first embodiment shown in FIG. 1 in the absorption liquid pipe on the downstream side of the absorption liquid pump 11.
[00 22 ]
For ease of understanding, in the absorption refrigerator of the second embodiment, the same reference numerals are used for the parts having the same functions as those of the absorption refrigerator of the first embodiment shown in FIG. It was attached.
[00 23 ]
That is, in the absorption refrigerator of the second embodiment shown in FIG. 2, the absorption liquid pipe on the downstream side of the absorption liquid pump 11 is branched into two paths, one of which is the first one shown in FIG. As in the absorption refrigerator of the embodiment, most of the absorption liquid discharged from the intermediate temperature regenerator 2, for example, about 70 to 90%, reaches the high temperature regenerator 1 via the high temperature heat exchanger 9, and the other pipe line. Is a part of the absorbing liquid discharged from the intermediate temperature regenerator 2, for example, about 10 to 30% is heated and concentrated in the high temperature regenerator 1 and discharged, and flows out from the high temperature heat exchanger 9 toward the intermediate temperature heat exchanger 8. It is provided to merge with the absorbing liquid.
[00 24 ]
Therefore, in the absorption refrigerator of the second embodiment, the amount of the absorption liquid supplied from the intermediate temperature regenerator 2 to the high temperature regenerator 1 is further reduced as compared with the absorption refrigerator of the first embodiment. Since the amount of refrigerant vapor that evaporates and separates from the absorbing liquid in the regenerator 1 also decreases, the regeneration pressure can be further suppressed.
[00 25 ]
Also in this case, the COP is improved to about 1.7 by improving the thermal efficiency such as the two stages of the evaporator 5 and the absorber 6.
[00 26 ]
Therefore, also in the absorption refrigerator of the first embodiment shown in FIG. 1 and in the absorption refrigerator of the second embodiment shown in FIG. 2, the design pressure is lower than the conventional one. Therefore, manufacturing restrictions are eased. In addition, since it is not necessary to manufacture the main parts with a compact member, an increase in initial cost can be avoided.
[00 27 ]
In addition, since this invention is not limited to the said embodiment, various deformation | transformation implementation is possible in the range which does not deviate from the meaning as described in a claim.
[00 28 ]
【The invention's effect】
As described above, according to the absorption refrigerator of the present invention, the amount of the absorption liquid flowing into the high temperature regenerator is reduced, thereby reducing the amount of refrigerant vapor generated in the high temperature regenerator. The pressure rise inside is suppressed.
[00 29 ]
As a result, manufacturing restrictions are alleviated, so that it is not necessary to manufacture the main parts with a compact member, and an increase in initial cost can be avoided.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a first embodiment.
FIG. 2 is an explanatory diagram of a second embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Medium temperature regenerator 3 Low temperature regenerator 4 Condenser 5 Evaporator 6 Absorber 7 Low temperature heat exchanger 8 Medium temperature heat exchanger 9 High temperature heat exchanger 10, 11, 12 Absorption liquid pump 13 Refrigerant pump 14 Cold water pipe 15 Cooling water pipe

Claims (1)

吸収液を加熱して吸収液に含まれる冷媒を蒸発分離し、冷媒が吸収できるように吸収液を再生する再生器として高温再生器、中温再生器、低温再生器を備えると共に、異なる温度の吸収液同士が熱交換する熱交換器として高温熱交換器)、中温熱交換器、低温熱交換器を備えた吸収冷凍機において、
前記吸収器で冷媒を吸収した吸収液が低温熱交換器、中温熱交換器、中温再生器、高温熱交換器、高温再生器、高温熱交換器、中温熱交換器、低温再生器、低温熱交換器を順次経由して吸収器に還流するように吸収液管を接続すると共に、
前記中温再生器から高温再生器に至る吸収液管にポンプを設け、かつ、
前記中温再生器から吐出した吸収液の一部を、前記ポンプの設置位置より下流側でそのポンプ設置箇所の直後から分岐し、高温熱交換器を経由して中温熱交換器に向かって流れる吸収液と合流させるための吸収液管をさらに設けた
ことを特徴とする吸収冷凍機。
The refrigerating machine is equipped with a high-temperature regenerator, a medium-temperature regenerator, and a low-temperature regenerator as a regenerator that heats the absorbing liquid to evaporate and separate the refrigerant contained in the absorbing liquid and regenerate the absorbing liquid so that the refrigerant can be absorbed. In an absorption refrigerator equipped with a high-temperature heat exchanger as a heat exchanger for heat exchange between liquids, a medium-temperature heat exchanger, and a low-temperature heat exchanger,
The absorption liquid that has absorbed the refrigerant in the absorber is a low temperature heat exchanger, a medium temperature heat exchanger, a medium temperature regenerator, a high temperature heat exchanger, a high temperature regenerator, a high temperature heat exchanger, a medium temperature heat exchanger, a low temperature regenerator, a low temperature heat. Connect the absorption liquid pipe so as to return to the absorber via the exchanger sequentially,
A pump is provided in the absorption liquid pipe from the intermediate temperature regenerator to the high temperature regenerator, and
Absorption that part of the absorbent discharged from the intermediate temperature regenerator branches downstream from the pump installation position immediately after the pump installation location and flows toward the intermediate temperature heat exchanger via the high temperature heat exchanger absorption refrigerating machine characterized by the absorption liquid pipe is further provided with <br/> that for merging with the liquid.
JP2001199227A 2001-06-29 2001-06-29 Absorption refrigerator Expired - Fee Related JP4562321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001199227A JP4562321B2 (en) 2001-06-29 2001-06-29 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001199227A JP4562321B2 (en) 2001-06-29 2001-06-29 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2003014325A JP2003014325A (en) 2003-01-15
JP4562321B2 true JP4562321B2 (en) 2010-10-13

Family

ID=19036546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001199227A Expired - Fee Related JP4562321B2 (en) 2001-06-29 2001-06-29 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP4562321B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171119A (en) * 1998-12-08 2000-06-23 Ebara Corp Triple-effect absorption refrigerating machine
JP2000205690A (en) * 1999-01-11 2000-07-28 Tokyo Gas Co Ltd Absorption water cooler/warmer
JP2000257976A (en) * 1999-01-07 2000-09-22 Kawasaki Thermal Engineering Co Ltd Absorption refrigerating machine
JP2001012831A (en) * 1999-06-28 2001-01-19 Kawasaki Thermal Engineering Co Ltd Absorption refrigerating machine/hot and chilled water generator with safety device
JP2001066010A (en) * 1999-08-24 2001-03-16 Tokyo Gas Co Ltd Absorption chller and heater
JP2001116389A (en) * 1999-10-21 2001-04-27 Tokyo Gas Co Ltd Absorption hot and chilled water generator
JP2001165523A (en) * 1999-12-03 2001-06-22 Kawasaki Thermal Engineering Co Ltd Absorption water cooler/heater

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3133154B2 (en) * 1992-05-29 2001-02-05 川重冷熱工業株式会社 Hot water multi-circuit extraction absorption chiller / heater and hot water extraction automatic switching method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171119A (en) * 1998-12-08 2000-06-23 Ebara Corp Triple-effect absorption refrigerating machine
JP2000257976A (en) * 1999-01-07 2000-09-22 Kawasaki Thermal Engineering Co Ltd Absorption refrigerating machine
JP2000205690A (en) * 1999-01-11 2000-07-28 Tokyo Gas Co Ltd Absorption water cooler/warmer
JP2001012831A (en) * 1999-06-28 2001-01-19 Kawasaki Thermal Engineering Co Ltd Absorption refrigerating machine/hot and chilled water generator with safety device
JP2001066010A (en) * 1999-08-24 2001-03-16 Tokyo Gas Co Ltd Absorption chller and heater
JP2001116389A (en) * 1999-10-21 2001-04-27 Tokyo Gas Co Ltd Absorption hot and chilled water generator
JP2001165523A (en) * 1999-12-03 2001-06-22 Kawasaki Thermal Engineering Co Ltd Absorption water cooler/heater

Also Published As

Publication number Publication date
JP2003014325A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
JP3287131B2 (en) Absorption chiller / heater
KR100445616B1 (en) Absorbed refrigerator
JP2004324977A (en) Absorption type refrigerating machine
JP4562321B2 (en) Absorption refrigerator
JP3283621B2 (en) Absorption refrigerators and chiller / heaters using both low-temperature regenerators and low-temperature regenerators for waste heat recovery
JP4562325B2 (en) Absorption refrigerator
JP4557468B2 (en) Absorption refrigerator
JP4079576B2 (en) Absorption refrigerator
JP2004190886A (en) Absorption refrigerating machine and absorption refrigerating system
JP4282225B2 (en) Absorption refrigerator
JP3851136B2 (en) Absorption refrigerator
JP4562323B2 (en) Absorption refrigerator
JP3948814B2 (en) Multi-effect absorption refrigerator
JP2003014324A (en) Absorption refrigeration machine
JP2003014326A (en) Absorption refrigeration machine
JP4596683B2 (en) Absorption refrigerator
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
JP2003014323A (en) Absorption refrigeration machine
JP3948815B2 (en) Multi-effect absorption refrigerator
JP4201403B2 (en) Absorption refrigerator
JP4278609B2 (en) Absorption refrigerator
JP5233716B2 (en) Absorption refrigeration system
JP2003121021A (en) Double effect absorption refrigerating machine
JP4330522B2 (en) Absorption refrigerator operation control method
JP3486382B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees