JP4553522B2 - Absorption refrigerator - Google Patents

Absorption refrigerator Download PDF

Info

Publication number
JP4553522B2
JP4553522B2 JP2001220057A JP2001220057A JP4553522B2 JP 4553522 B2 JP4553522 B2 JP 4553522B2 JP 2001220057 A JP2001220057 A JP 2001220057A JP 2001220057 A JP2001220057 A JP 2001220057A JP 4553522 B2 JP4553522 B2 JP 4553522B2
Authority
JP
Japan
Prior art keywords
regenerator
temperature regenerator
heat
temperature
absorption liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001220057A
Other languages
Japanese (ja)
Other versions
JP2003035466A (en
Inventor
雅裕 古川
春樹 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001220057A priority Critical patent/JP4553522B2/en
Publication of JP2003035466A publication Critical patent/JP2003035466A/en
Application granted granted Critical
Publication of JP4553522B2 publication Critical patent/JP4553522B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Description

【0001】
【発明の属する技術分野】
本発明は、冷房などの冷却運転に使用する吸収冷凍機に係わるものである。
【0002】
【従来の技術】
冷房などの冷却運転を効率良く行うために、例えば吸収器で冷媒を吸収した吸収液が低温熱交換器、中温熱交換器、高温熱交換器、高温再生器、高温熱交換器、中温再生器、中温熱交換器、低温再生器、低温熱交換器を順次経由して吸収器に還流するように配管した、例えば特開2000−257976公報の図1、図2に提案された三重効用吸収冷凍機などが周知である。
【0003】
しかし、前記特開2000−257976公報に提案された三重効用吸収冷凍機においては、再生圧力は大気圧を大きく超え、材料が腐食し易い高温状態になるので、耐久性が低下すると云った問題点があった。
【0004】
また、そのCOPは1.5程度に過ぎず、耐久性を犠牲にして三重効用にした割には熱効率の改善効果が乏しいと云った問題点があった。
【0005】
【発明が解決しようとする課題】
したがって、熱効率に優れた吸収冷凍機を提供する際に、耐久性が可能な限り低下しないようにする必要があり、それが解決すべき課題となっていた。
【0006】
【課題を解決するための手段】
本発明は上記従来技術の課題を解決するための具体的手段として、吸収液を加熱して吸収液に含まれる冷媒を蒸発分離し、冷媒が吸収できるように吸収液を再生する再生器として高温再生器、中温再生器、低温再生器、および排熱再生器を備えると共に、中温再生器は高温再生器から供給される冷媒蒸気を熱源として動作し、低温再生器は中温再生器から供給される冷媒蒸気を熱源として動作し、排熱再生器は他から供給される排熱を熱源として動作するように構成し、異なる温度の吸収液同士が熱交換する熱交換器として高温熱交換器、中温熱交換器、低温熱交換器を備えた吸収冷凍機において、排熱再生器で蒸発分離した冷媒蒸気を低温再生器にもう一つの熱源として供給する冷媒管と、排熱再生器で再生した吸収液と中温再生器で再生した吸収液とが合流して流れる吸収液管と、吸収液が分岐して排熱再生器と高温再生器とに流れる吸収液管とを設けると共に、吸収器で冷媒を吸収した吸収液を低負荷時には排熱再生器と低温再生器とで再生して吸収器に還流し、高負荷時には高温再生器、中温再生器、低温再生器、排熱再生器で再生して吸収器に還流させる制御手段を備えた弁機構を吸収液管に設けるようにした第1の構成の吸収冷凍機と、
【0007】
前記第1の構成の吸収冷凍機において、高温再生器から供給される冷媒蒸気を動作熱源とする中温再生器と排熱を動作熱源とする排熱再生器とを一体化(以下、2熱源再生器)すると共に、吸収液が分岐して2熱源再生器と高温再生器とに流入可能に吸収液管を設け、且つ、吸収器で冷媒を吸収した吸収液を低負荷時には2熱源再生器と低温再生器とで再生して吸収器に還流し、高負荷時には高温再生器、低温再生器、2熱源再生器で再生して吸収器に還流させる制御手段を備えた弁機構を吸収液管に設けるようにした第2の構成の吸収冷凍機と、
を提供することにより、前記した従来技術の課題を解決するものである。
【0008】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて詳細に説明する。
〔第1の実施形態〕
本発明の第1の実施形態を、図1と図2に基づいて詳細に説明する。
図中1は高温再生器、2Aは中温再生器、2Bは排熱再生器、3は低温再生器、4は凝縮器、5は蒸発器、6は吸収器、7は低温熱交換器、8は中温熱交換器、9は高温熱交換器、10と11は吸収液ポンプ、12は冷媒ポンプ、V1〜V4は開閉弁であり、それぞれは図1に示したように実線で示した吸収液管と破線で示した冷媒管とで接続され、吸収液と冷媒がそれぞれ循環可能に構成されている。
【0009】
また、蒸発器5には冷水管13が通され、吸収器6と凝縮器4には冷却水管14が直列に通され、排熱再生器2Bには排熱供給管15が通されている。
【0010】
そして、冷水管13の蒸発器5出口側には冷水管13内を流れる冷水の温度を計測するための温度検出手段S1が設けられ、且つ、その温度検出手段S1が検出した冷水の温度に基づいて、開閉弁V1〜V4の開閉を制御すると共に、高温再生器1に添設したガスバーナ1Aの火力と、排熱供給管15を介して排熱再生器2Bに供給する熱量とを制御する制御器Cが設けられている。
【0011】
すなわち、制御器Cは制御プログラムを格納した記憶手段やMPUなどを備えて構成されるマイコンなどからなるものであり、温度検出手段S1が検出した冷水の温度が所定の温度、例えば7℃より高いときには開閉弁V1〜V4を開弁すると共に、排熱供給管15を介して排熱再生器2Bに供給する熱量を最大にし、且つ、前記冷水の温度に基づいてガスバーナ1Aの火力を制御し、前記冷水の温度が前記所定の温度より低いときには開閉弁V1〜V4を閉弁すると共に、ガスバーナ1Aの火力を零にし、且つ、排熱供給管15を介して排熱再生器2Bに供給する熱量を前記冷水の温度に基づいて制御するように構成されている。
【0012】
したがって、上記第1の実施形態の吸収冷凍機においては、冷房などの冷却負荷が大きく、温度検出手段S1が検出した冷水の温度が所定の7℃より高いときには、図1に示したように制御器Cにより開閉弁V1〜V4が開弁され、排熱供給管15を介して排熱再生器2Bに供給する熱量は最大に制御され、ガスバーナ1Aの火力が前記冷水の温度に基づいて制御される。
【0013】
そのため、吸収器6で冷媒を吸収し、吸収液濃度を低下させて吐出した吸収液は、吸収液ポンプ10の運転により低温熱交換器7と中温熱交換器8とで熱交換して温度を低下させた後、所定の比率、例えば1:1の比率で分岐され、一方の吸収液は開閉弁V1、高温熱交換器9を経由して高温再生器1に供給され、他方の吸収液は排熱再生器2Bに直接供給される。
【0014】
そして、高温再生器1に供給された吸収液は、天然ガスなどの燃焼熱により加熱され、吸収液から蒸発分離した冷媒蒸気と、濃縮された吸収液とが得られる。
【0015】
高温再生器1で生成された高温の冷媒蒸気は、中温再生器2Aに入り、中温再生器2A内にある吸収液、すなわち高温再生器1における前記加熱により既に吸収液濃度が1度高められ、高温熱交換器9を介して高温再生器1から供給された吸収液を加熱して冷媒を蒸発させる。
【0016】
一方、吸収液ポンプ10により吸収器6から排熱再生器2Bに供給された吸収液は、排熱供給管15を介してコージェネレーションシステムなどから供給される排熱により加熱され、吸収液から蒸発分離した冷媒蒸気と、濃縮された吸収液とが得られる。
【0017】
中温再生器2Aで吸収液から蒸発分離した冷媒蒸気と、排熱再生器2Bで吸収液から蒸発分離した冷媒蒸気は合流して低温再生器3に入り、低温再生器3内にある吸収液、すなわち中温再生器2A、排熱再生器2Bにおける前記加熱により吸収液濃度が高められ、中温熱交換器8を経由し温度を下げて中温再生器2Aと排熱再生器2Bから供給された吸収液を加熱して冷媒を蒸発させる。
【0018】
低温再生器3で吸収液から蒸発分離した冷媒蒸気は、凝縮器4に入り、冷却水管14内を流れる冷却水に放熱して凝縮し、中温再生器2A、低温再生器3で吸収液に放熱して凝縮し、中温再生器2A・低温再生器3から流入する冷媒液と一緒になって蒸発器5に入る。
【0019】
蒸発器5に入って底部に溜まった冷媒液は、冷媒ポンプ12により上方から散布され、冷水管13の内部を流れる水と熱交換して蒸発し、冷水管13の内部を流れる水を冷却する。
【0020】
蒸発器5で蒸発した冷媒は吸収器6に入り、低温再生器3で加熱されて冷媒を蒸発分離し、吸収液の濃度が一層高まった吸収液、すなわち低温熱交換器7を経由して低温再生器3から供給され、上方から散布される吸収液に吸収される。
【0021】
上記のように吸収冷凍機が運転されると、冷水管13の内部を流れて蒸発器5に入った冷水は、蒸発器5内において冷媒の気化熱により冷却され、その冷却された冷水が冷水管13を介して図示しない冷却負荷に循環供給できるので、冷房などの冷却運転が熱効率に優れた3重効用により行える。
【0022】
しかも、排熱再生器2Bの熱源にはコージェネレーションシステムなどから供給される排熱を利用しているので、熱効率は一層向上する。そのため、大気の温暖化に大きな影響があるCO2の削減にも大きな効果がある。
【0023】
また、吸収器6で冷媒を吸収した吸収液は、所定の比率で分岐し、その一方の吸収液が高温再生器1に流入し加熱されるので、高温再生器1で吸収液から蒸発分離する冷媒蒸気の量は、吸収器6から全量流入するときと比較すると大幅に減少する。そのため、高温再生器1内の圧力上昇は顕著に抑制され、装置の耐久性は大幅に改善される。
【0024】
一方、冷房などの冷却負荷が減少し、温度検出手段S1が検出した冷水の温度が所定の7℃以下に低下したときには、図2に示したように制御器Cにより開閉弁V1〜V4を閉弁すると共に、ガスバーナ1Aによる天然ガスなどの燃焼を停止し、且つ、排熱供給管15を介して排熱再生器2Bに供給する熱量を前記冷水の温度に基づいて制御する。
【0025】
この場合、吸収器6で冷媒を吸収し、吸収液濃度を低下させて吐出した吸収液は、吸収液ポンプ10の運転により低温熱交換器7と中温熱交換器8とで熱交換して温度を低下させた後、その全量が排熱再生器2Bに供給される。
【0026】
そして、排熱再生器2Bに供給された吸収液は、排熱供給管15を介してコージェネレーションシステムなどから供給される排熱により加熱され、吸収液から蒸発分離した冷媒蒸気と、濃縮された吸収液とが得られる。
【0027】
排熱再生器2Bで吸収液から蒸発分離した冷媒蒸気は低温再生器3に入り、低温再生器3内にある吸収液、すなわち排熱再生器2Bにおける前記加熱により吸収液濃度が高められ、中温熱交換器8を経由し温度を下げて排熱再生器2Bから供給された吸収液を加熱して冷媒を蒸発させる。
【0028】
低温再生器3で吸収液から蒸発分離した冷媒蒸気は、凝縮器4に入り、冷却水管14内を流れる冷却水に放熱して凝縮し、低温再生器3で吸収液に放熱して凝縮し、低温再生器3から流入する冷媒液と一緒になって蒸発器5に入る。
【0029】
蒸発器5に入って底部に溜まった冷媒液は、冷媒ポンプ12により上方から散布され、冷水管13の内部を流れる水と熱交換して蒸発し、冷水管13の内部を流れる水を冷却する。
【0030】
蒸発器5で蒸発した冷媒は吸収器6に入り、低温再生器3で加熱されて冷媒を蒸発分離し、吸収液の濃度が一層高まった吸収液、すなわち低温熱交換器7を経由して低温再生器3から供給され、上方から散布される吸収液に吸収される。
【0031】
すなわち、温度検出手段S1が検出した冷水の温度が所定の7℃以下に低下したときには、高温再生器1と中温再生器2Aにおける吸収液の加熱・再生は停止し、排熱再生器2Bと低温再生器3だけで吸収液の加熱・再生を行う2重効用により冷房などの冷却運転が行われる。
【0032】
しかも、排熱再生器2Bの熱源にはコージェネレーションシステムなどから供給される排熱を利用し、天然ガスなどを燃焼させないので熱効率は一層向上する。そのため、大気の温暖化に大きな影響があるCO2の削減にも大きな効果がある。
【0033】
また、従来の二重効用運転となり、したがって再生温度はたかだか150℃程度であるので、材料腐食の度合いも一層顕著に改善され、さらに大気圧を超えることもないので耐久性の改善も同時に期待できる。
【0034】
〔第2の実施形態〕
本発明の第2の実施形態を、図3と図4に基づいて説明する。この第2の実施形態の吸収冷凍機は、前記図1、図2に示した第1の実施形態の吸収冷凍機が備えていた中温再生器2Aと排熱再生器2B、すなわち高温再生器1で生成した冷媒蒸気を熱源として動作する再生器と、他から供給される排熱を熱源として動作する再生器とを一体化した構成の2熱源再生器2を備えている。
【0035】
したがって、この第2の実施形態の吸収冷凍機においては、装置のコンパクト化と製造コストの低減に大きな作用効果がある。なお、理解を容易にするため、この第2の実施形態の吸収冷凍機においても、前記図1、図2に示した第1の実施形態の吸収冷凍機と同様の機能を有する部分には同一の符号を付した。
【0036】
この第2の実施形態の吸収冷凍機における制御器Cは、温度検出手段S1が検出した冷水の温度が所定の温度、例えば7℃より高いときには開閉弁V1を開弁して開閉弁V5を閉弁し、排熱供給管15を介して2熱源再生器2に供給する熱量を最大にし、且つ、前記冷水の温度に基づいてガスバーナ1Aの火力を制御し、前記冷水の温度が前記所定の温度より低いときには開閉弁V1を閉弁して開閉弁V5を開弁し、ガスバーナ1Aの火力を零にし、且つ、排熱供給管15を介して2熱源再生器2に供給する熱量を前記冷水の温度に基づいて制御するように構成されている。
【0037】
したがって、上記第2の実施形態の吸収冷凍機においては、冷房などの冷却負荷が大きく、温度検出手段S1が検出した冷水の温度が所定の7℃より高いときには、図3に示したように制御器Cにより開閉弁V1が開弁され、開閉弁V5が閉弁され、排熱供給管15を介して排熱再生器2Bに供給する熱量は最大に制御され、ガスバーナ1Aの火力が前記冷水の温度に基づいて制御される。
【0038】
そのため、吸収器6で冷媒を吸収し、吸収液濃度が低下した吸収液は、吸収液ポンプ10の運転により低温熱交換器7、中温熱交換器8、開閉弁V1、高温熱交換器9を経由して高温再生器1に供給され、天然ガスなどの燃焼熱により加熱され、吸収液から蒸発分離した冷媒蒸気と、濃縮された吸収液とが得られる。
【0039】
高温再生器1で生成された高温の冷媒蒸気は、2熱源再生器2に入り、2熱源再生器2内にある吸収液、すなわち高温再生器1における前記加熱により既に吸収液濃度が1度高められ、高温熱交換器9、逆止弁V11を経由して高温再生器1から供給された吸収液を、排熱供給管15を介してコージェネレーションシステムなどから供給される排熱と協同して加熱し、冷媒を蒸発させる。
【0040】
2熱源再生器2で吸収液から蒸発分離した冷媒蒸気は低温再生器3に入り、低温再生器3内にある吸収液、すなわち2熱源再生器2における前記加熱により吸収液濃度が高められ、中温熱交換器8を経由し温度を下げて2熱源再生器2から供給された吸収液を加熱して冷媒を蒸発させる。
【0041】
低温再生器3で吸収液から蒸発分離した冷媒蒸気は、凝縮器4に入り、冷却水管14内を流れる冷却水に放熱して凝縮し、2熱源再生器2、低温再生器3で吸収液に放熱して凝縮し、2熱源再生器2・低温再生器3から流入する冷媒液と一緒になって蒸発器5に入る。
【0042】
蒸発器5に入って底部に溜まった冷媒液は、冷媒ポンプ12により上方から散布され、冷水管13の内部を流れる水と熱交換して蒸発し、冷水管13の内部を流れる水を冷却する。
【0043】
蒸発器5で蒸発した冷媒は吸収器6に入り、低温再生器3で加熱されて冷媒を蒸発分離し、吸収液の濃度が一層高まった吸収液、すなわち低温熱交換器7を経由して低温再生器3から供給され、上方から散布される吸収液に吸収される。
【0044】
上記のように吸収冷凍機が運転されると、冷水管13の内部を流れて蒸発器5に入った冷水は、蒸発器5内において冷媒の気化熱により冷却され、その冷却された冷水が冷水管13を介して図示しない冷却負荷に循環供給できるので、冷房などの冷却運転が熱効率に優れた3重効用により行える。
【0045】
しかも、2熱源再生器2の熱源には、コージェネレーションシステムなどから供給される排熱が、高温再生器1で生成した冷媒蒸気と共に使用されているので、熱効率は一層向上する。そのため、大気の温暖化に大きな影響があるCO2の削減にも大きな効果がある。
【0046】
一方、冷房などの冷却負荷が減少し、温度検出手段S1が検出した冷水の温度が所定の7℃以下に低下したときには、図4に示したように制御器Cにより開閉弁V1を閉弁し、開閉弁V5を開弁すると共に、ガスバーナ1Aによる天然ガスなどの燃焼を停止し、且つ、排熱供給管15を介して2熱源再生器2に供給する熱量を前記冷水の温度に基づいて制御する。
【0047】
この場合、吸収器6で冷媒を吸収し、吸収液濃度を低下させて吐出した吸収液は、吸収液ポンプ10の運転により低温熱交換器7と中温熱交換器8とで熱交換して温度を低下させた後、開閉弁V5を経由して2熱源再生器2に供給される。
【0048】
そして、2熱源再生器2に供給された吸収液は、排熱供給管15を介してコージェネレーションシステムなどから供給される排熱により加熱され、吸収液から蒸発分離した冷媒蒸気と、濃縮された吸収液とが得られる。
【0049】
2熱源再生器2で吸収液から蒸発分離した冷媒蒸気は低温再生器3に入り、低温再生器3内にある吸収液、すなわち2熱源再生器2における前記加熱により吸収液濃度が高められ、中温熱交換器8を経由し温度を下げて2熱源再生器2から供給された吸収液を加熱して冷媒を蒸発させる。
【0050】
低温再生器3で吸収液から蒸発分離した冷媒蒸気は、凝縮器4に入り、冷却水管14内を流れる冷却水に放熱して凝縮し、低温再生器3で吸収液に放熱して凝縮し、低温再生器3から流入する冷媒液と一緒になって蒸発器5に入る。
【0051】
蒸発器5に入って底部に溜まった冷媒液は、冷媒ポンプ12により上方から散布され、冷水管13の内部を流れる水と熱交換して蒸発し、冷水管13の内部を流れる水を冷却する。
【0052】
蒸発器5で蒸発した冷媒は吸収器6に入り、低温再生器3で加熱されて冷媒を蒸発分離し、吸収液の濃度が一層高まった吸収液、すなわち低温熱交換器7を経由して低温再生器3から供給され、上方から散布される吸収液に吸収される。
【0053】
すなわち、温度検出手段S1が検出した冷水の温度が所定の7℃以下に低下したときには、高温再生器1における吸収液の加熱・再生は停止し、2熱源再生器2と低温再生器3だけで吸収液の加熱・再生を行う2重効用により冷房などの冷却運転が行われる。
【0054】
しかも、2熱源再生器2の熱源にはコージェネレーションシステムなどから供給される排熱を利用し、天然ガスなどを燃焼させないので熱効率は一層向上する。そのため、大気の温暖化に大きな影響があるCO2の削減にも大きな効果がある。
【0055】
また、二重効用運転となり、再生温度と再生圧力の上昇が抑制されるので、材料腐食の度合いは一層顕著に改善され、耐久性も改善される。すなわち、図3と図4に示した第2の実施形態の吸収冷凍機においては、負荷が大きいときは三重効用で運転されて再生温度は大きく上昇し、再生圧力は大気圧を超えるが、その他のときは再生温度・再生圧力共にその上昇は抑制されるので、材料腐食の度合い、耐久性共に従来の三重効用吸収冷凍機に比較して顕著に改善される。
【0056】
なお、本発明は上記実施形態に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。
【0057】
例えば、冷水管13を介して蒸発器5に流入する冷水の温度と、吸収器5で冷却して流出した冷水の温度との差、あるいはその温度差に基づいて算出する負荷率などに基づいて、開閉弁V1〜V4の開閉制御、ガスバーナ1Aの火力などを制御するように制御器Cを構成することができる。
【0058】
また、吸収器で冷媒を吸収した吸収液が、低温再生器3または中温再生器2で加熱・再生された後、高温再生器1に流入してさらに加熱・再生されるように、吸収液管路を構成することも可能である。また、逆止弁V11、V12は開閉弁であっても良い。
【0059】
【発明の効果】
以上説明したように、第1の発明の吸収冷凍機は、吸収器で冷媒を吸収した吸収液を、負荷が大きいときの三重効用運転では排熱再生器と高温再生器とに分岐して供給し、高温再生器で加熱・再生する吸収液の量を削減することで再生圧力を抑制し、負荷が小さいときには高温再生器と中温再生器には供給せず、排熱再生器と低温再生器だけで吸収液の加熱・再生を行う二重効用運転とすることで再生温度と再生圧力の上昇を抑制しているので、材料の腐食が軽減され、耐久性が改善される。
【0060】
一方、第2の発明の吸収冷凍機は、負荷が大きいときだけ三重効用で運転し、負荷が小さいときには二重効用で運転するので、再生温度・再生圧力が高くなっている期間が減少し、これにより材料の腐食が軽減され、耐久性が改善される。
また、、この第2の発明の吸収冷凍機においては、装置のコンパクト化と製造コストの低減にも大きな作用効果がある。
【0061】
また、第1および第2の発明の吸収冷凍機においては、コージェネレーションシステムなどから供給される排熱を吸収液の加熱・再生に利用しているので、熱効率が改善され、大気の温暖化に大きな影響があるCO2の削減にも大きな効果がある。
【図面の簡単な説明】
【図1】負荷が大きいときの第1の実施形態を示す説明図である。
【図2】負荷が小さいときの第1の実施形態を示す説明図である。
【図3】負荷が大きいときの第2の実施形態を示す説明図である。
【図4】負荷が小さいときの第2の実施形態を示す説明図である。
【符号の説明】
1 高温再生器
2 2熱源再生器
2A 中温再生器
2B 排熱再生器
3 低温再生器
4 凝縮器
5 蒸発器
6 吸収器
7 低温熱交換器
8 中温熱交換器
9 高温熱交換器
10、11 吸収液ポンプ
12 冷媒ポンプ
13 冷水管
14 冷却水管
15 排熱供給管
C 制御器
S1 温度検出手段
V1〜V5 開閉弁
V11、V12 逆止弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an absorption refrigerator used for a cooling operation such as cooling.
[0002]
[Prior art]
In order to efficiently perform cooling operations such as cooling, for example, the absorption liquid that has absorbed the refrigerant in the absorber is a low temperature heat exchanger, a medium temperature heat exchanger, a high temperature heat exchanger, a high temperature regenerator, a high temperature heat exchanger, a medium temperature regenerator. For example, the triple effect absorption refrigeration proposed in FIGS. 1 and 2 of Japanese Patent Laid-Open No. 2000-257976 was piped so as to return to the absorber via a medium temperature heat exchanger, a low temperature regenerator, and a low temperature heat exchanger in order. The machine is well known.
[0003]
However, in the triple effect absorption refrigerator proposed in the Japanese Patent Laid-Open No. 2000-257976, the regeneration pressure greatly exceeds the atmospheric pressure, and the material is easily corroded, so that the durability is lowered. was there.
[0004]
In addition, the COP is only about 1.5, and there is a problem that the effect of improving the thermal efficiency is poor for the triple effect at the expense of durability.
[0005]
[Problems to be solved by the invention]
Therefore, when providing an absorption refrigerator excellent in thermal efficiency, it is necessary to prevent the durability from being lowered as much as possible, which has been a problem to be solved.
[0006]
[Means for Solving the Problems]
As a specific means for solving the above-described problems of the prior art, the present invention provides a high-temperature regenerator that heats the absorption liquid to evaporate and separate the refrigerant contained in the absorption liquid and regenerate the absorption liquid so that the refrigerant can be absorbed. A regenerator, an intermediate temperature regenerator, a low temperature regenerator, and an exhaust heat regenerator are provided. The intermediate temperature regenerator operates using refrigerant vapor supplied from the high temperature regenerator as a heat source, and the low temperature regenerator is supplied from the intermediate temperature regenerator. The refrigerant vapor operates as a heat source, and the exhaust heat regenerator is configured to operate using exhaust heat supplied from others as a heat source, and a high-temperature heat exchanger as a heat exchanger that exchanges heat between absorbing liquids of different temperatures. In an absorption refrigerator equipped with a heat exchanger and a low-temperature heat exchanger, a refrigerant pipe that supplies the refrigerant vapor evaporated and separated by the exhaust heat regenerator as another heat source to the low temperature regenerator, and an absorption regenerated by the exhaust heat regenerator Regeneration with liquid and medium temperature regenerator An absorption liquid pipe that flows together with the absorbed liquid and an absorption liquid pipe that flows into the exhaust heat regenerator and the high-temperature regenerator when the absorption liquid branches are provided, and the absorption liquid that has absorbed the refrigerant in the absorber is reduced. Control with exhaust heat regenerator and low-temperature regenerator when loaded and recirculate to absorber, regenerate with high-temperature regenerator, medium-temperature regenerator, low-temperature regenerator and exhaust heat regenerator when high load and recirculate to absorber An absorption refrigerator having a first configuration in which a valve mechanism including means is provided in the absorption liquid pipe;
[0007]
In the absorption refrigerator having the first configuration, an intermediate temperature regenerator that uses refrigerant vapor supplied from a high temperature regenerator as an operating heat source and an exhaust heat regenerator that uses exhaust heat as an operating heat source are integrated (hereinafter referred to as two heat source regeneration). In addition, an absorption liquid pipe is provided so that the absorption liquid branches and can flow into the two heat source regenerator and the high temperature regenerator, and the absorption liquid that has absorbed the refrigerant by the absorber is low when the load is low. A valve mechanism equipped with a control means that regenerates with a low-temperature regenerator and recirculates to the absorber, regenerates with a high-temperature regenerator, low-temperature regenerator, and 2 heat source regenerator at high load and recirculates to the absorber. An absorption refrigerator having a second configuration configured to be provided;
By providing the above, the above-described problems of the prior art are solved.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[First Embodiment]
A first embodiment of the present invention will be described in detail based on FIG. 1 and FIG.
In the figure, 1 is a high temperature regenerator, 2A is a medium temperature regenerator, 2B is an exhaust heat regenerator, 3 is a low temperature regenerator, 4 is a condenser, 5 is an evaporator, 6 is an absorber, 7 is a low temperature heat exchanger, 8 Is an intermediate temperature heat exchanger, 9 is a high temperature heat exchanger, 10 and 11 are absorption liquid pumps, 12 is a refrigerant pump, and V1 to V4 are on-off valves, each of which is indicated by a solid line as shown in FIG. It connects with the pipe | tube and the refrigerant | coolant pipe | tube shown with the broken line, and it is comprised so that an absorption liquid and a refrigerant | coolant can each circulate.
[0009]
Further, a cold water pipe 13 is passed through the evaporator 5, a cooling water pipe 14 is passed through the absorber 6 and the condenser 4 in series, and an exhaust heat supply pipe 15 is passed through the exhaust heat regenerator 2 </ b> B.
[0010]
And the temperature detection means S1 for measuring the temperature of the cold water which flows in the inside of the cold water pipe 13 is provided in the evaporator 5 exit side of the cold water pipe 13, and based on the temperature of the cold water which the temperature detection means S1 detected. In addition to controlling the opening and closing of the on-off valves V1 to V4, the control for controlling the heating power of the gas burner 1A attached to the high temperature regenerator 1 and the amount of heat supplied to the exhaust heat regenerator 2B via the exhaust heat supply pipe 15 A container C is provided.
[0011]
That is, the controller C includes a storage unit storing a control program, a microcomputer configured with an MPU, and the like, and the temperature of the cold water detected by the temperature detection unit S1 is higher than a predetermined temperature, for example, 7 ° C. Sometimes the on-off valves V1 to V4 are opened, the amount of heat supplied to the exhaust heat regenerator 2B via the exhaust heat supply pipe 15 is maximized, and the heating power of the gas burner 1A is controlled based on the temperature of the cold water, When the temperature of the cold water is lower than the predetermined temperature, the on-off valves V1 to V4 are closed, the heating power of the gas burner 1A is made zero, and the amount of heat supplied to the exhaust heat regenerator 2B through the exhaust heat supply pipe 15 Is controlled based on the temperature of the cold water.
[0012]
Therefore, in the absorption refrigerator of the first embodiment, when the cooling load such as cooling is large and the temperature of the cold water detected by the temperature detecting means S1 is higher than the predetermined 7 ° C., the control is performed as shown in FIG. The open / close valves V1 to V4 are opened by the vessel C, the amount of heat supplied to the exhaust heat regenerator 2B via the exhaust heat supply pipe 15 is controlled to the maximum, and the heating power of the gas burner 1A is controlled based on the temperature of the cold water. The
[0013]
Therefore, the absorption liquid which absorbs the refrigerant by the absorber 6 and lowers the concentration of the absorption liquid is heat-exchanged between the low-temperature heat exchanger 7 and the intermediate-temperature heat exchanger 8 by the operation of the absorption liquid pump 10 to change the temperature. After being lowered, it is branched at a predetermined ratio, for example, a ratio of 1: 1. One absorption liquid is supplied to the high temperature regenerator 1 via the on-off valve V1 and the high temperature heat exchanger 9, and the other absorption liquid is Directly supplied to the exhaust heat regenerator 2B.
[0014]
And the absorption liquid supplied to the high temperature regenerator 1 is heated by combustion heat such as natural gas, and refrigerant vapor evaporated and separated from the absorption liquid and concentrated absorption liquid are obtained.
[0015]
The high-temperature refrigerant vapor generated in the high-temperature regenerator 1 enters the intermediate-temperature regenerator 2A, and the absorption liquid concentration in the intermediate-temperature regenerator 2A, that is, the absorption liquid concentration is already increased once by the heating in the high-temperature regenerator 1, The absorption liquid supplied from the high temperature regenerator 1 is heated through the high temperature heat exchanger 9 to evaporate the refrigerant.
[0016]
On the other hand, the absorption liquid supplied from the absorber 6 to the exhaust heat regenerator 2B by the absorption liquid pump 10 is heated by exhaust heat supplied from a cogeneration system or the like via the exhaust heat supply pipe 15, and evaporated from the absorption liquid. A separated refrigerant vapor and a concentrated absorbent are obtained.
[0017]
The refrigerant vapor evaporated and separated from the absorbing liquid in the intermediate temperature regenerator 2A and the refrigerant vapor evaporated and separated from the absorbing liquid in the exhaust heat regenerator 2B merge into the low temperature regenerator 3, and the absorbing liquid in the low temperature regenerator 3; That is, the absorption liquid concentration is increased by the heating in the intermediate temperature regenerator 2A and the exhaust heat regenerator 2B, and the absorption liquid supplied from the intermediate temperature regenerator 2A and the exhaust heat regenerator 2B through the intermediate temperature heat exchanger 8 is lowered. To evaporate the refrigerant.
[0018]
The refrigerant vapor evaporated and separated from the absorption liquid in the low-temperature regenerator 3 enters the condenser 4 and dissipates heat to the cooling water flowing in the cooling water pipe 14 to condense, and the intermediate-temperature regenerator 2A and the low-temperature regenerator 3 dissipate heat to the absorption liquid. Then, it condenses and enters the evaporator 5 together with the refrigerant liquid flowing in from the intermediate temperature regenerator 2 </ b> A and the low temperature regenerator 3.
[0019]
The refrigerant liquid that has entered the evaporator 5 and accumulated at the bottom is sprayed from above by the refrigerant pump 12 and is evaporated by exchanging heat with water flowing inside the cold water pipe 13 to cool the water flowing inside the cold water pipe 13. .
[0020]
The refrigerant evaporated in the evaporator 5 enters the absorber 6 and is heated in the low-temperature regenerator 3 to evaporate and separate the refrigerant. The refrigerant is further cooled by the absorption liquid whose concentration is further increased, that is, through the low-temperature heat exchanger 7. It is supplied from the regenerator 3 and absorbed by the absorbing liquid sprayed from above.
[0021]
When the absorption refrigerator is operated as described above, the cold water flowing through the cold water pipe 13 and entering the evaporator 5 is cooled by the heat of vaporization of the refrigerant in the evaporator 5, and the cooled cold water is cooled by the cold water. Since it can be circulated and supplied to a cooling load (not shown) via the pipe 13, a cooling operation such as cooling can be performed by triple effect with excellent thermal efficiency.
[0022]
Moreover, since the exhaust heat supplied from the cogeneration system or the like is used as the heat source of the exhaust heat regenerator 2B, the thermal efficiency is further improved. Therefore, it has a great effect on CO2 reduction, which has a great influence on the warming of the atmosphere.
[0023]
Further, the absorbing liquid that has absorbed the refrigerant by the absorber 6 branches at a predetermined ratio, and one of the absorbing liquid flows into the high-temperature regenerator 1 and is heated, so that the high-temperature regenerator 1 evaporates and separates from the absorbing liquid. The amount of refrigerant vapor is greatly reduced as compared to when the entire amount flows from the absorber 6. Therefore, the pressure rise in the high temperature regenerator 1 is remarkably suppressed, and the durability of the apparatus is greatly improved.
[0024]
On the other hand, when the cooling load such as cooling decreases and the temperature of the cold water detected by the temperature detecting means S1 falls below a predetermined 7 ° C., the controller C closes the on-off valves V1 to V4 as shown in FIG. In addition, the combustion of natural gas or the like by the gas burner 1A is stopped, and the amount of heat supplied to the exhaust heat regenerator 2B via the exhaust heat supply pipe 15 is controlled based on the temperature of the cold water.
[0025]
In this case, the absorption liquid absorbed by the absorber 6 and reduced in the concentration of the absorption liquid is subjected to heat exchange between the low-temperature heat exchanger 7 and the intermediate temperature heat exchanger 8 by the operation of the absorption liquid pump 10, and the temperature is increased. The total amount is supplied to the exhaust heat regenerator 2B.
[0026]
Then, the absorption liquid supplied to the exhaust heat regenerator 2B is heated by exhaust heat supplied from a cogeneration system or the like via the exhaust heat supply pipe 15, and concentrated with the refrigerant vapor evaporated and separated from the absorption liquid. An absorbing solution is obtained.
[0027]
The refrigerant vapor evaporated and separated from the absorption liquid in the exhaust heat regenerator 2B enters the low temperature regenerator 3, and the absorption liquid concentration in the low temperature regenerator 3 is increased by the heating in the low temperature regenerator 3, that is, in the exhaust heat regenerator 2B. The temperature is lowered via the heat exchanger 8 to heat the absorption liquid supplied from the exhaust heat regenerator 2B to evaporate the refrigerant.
[0028]
The refrigerant vapor evaporated and separated from the absorption liquid in the low temperature regenerator 3 enters the condenser 4 and dissipates heat to the cooling water flowing in the cooling water pipe 14 and condenses, and the low temperature regenerator 3 dissipates heat to the absorption liquid and condenses. Together with the refrigerant liquid flowing in from the low-temperature regenerator 3, it enters the evaporator 5.
[0029]
The refrigerant liquid that has entered the evaporator 5 and accumulated at the bottom is sprayed from above by the refrigerant pump 12 and is evaporated by exchanging heat with water flowing inside the cold water pipe 13 to cool the water flowing inside the cold water pipe 13. .
[0030]
The refrigerant evaporated in the evaporator 5 enters the absorber 6 and is heated in the low-temperature regenerator 3 to evaporate and separate the refrigerant. The refrigerant is further cooled by the absorption liquid whose concentration is further increased, that is, through the low-temperature heat exchanger 7. It is supplied from the regenerator 3 and absorbed by the absorbing liquid sprayed from above.
[0031]
That is, when the temperature of the cold water detected by the temperature detecting means S1 falls below a predetermined 7 ° C., the heating / regeneration of the absorbing liquid in the high temperature regenerator 1 and the medium temperature regenerator 2A is stopped, and the exhaust heat regenerator 2B and the low temperature A cooling operation such as cooling is performed by a double effect in which the absorbing liquid is heated and regenerated only by the regenerator 3.
[0032]
In addition, exhaust heat supplied from a cogeneration system or the like is used as the heat source of the exhaust heat regenerator 2B, and natural gas or the like is not combusted, so that the thermal efficiency is further improved. Therefore, it has a great effect on CO2 reduction, which has a great influence on the warming of the atmosphere.
[0033]
Moreover, since it becomes a conventional double-effect operation, the regeneration temperature is at most about 150 ° C., the degree of material corrosion is further improved remarkably, and since it does not exceed atmospheric pressure, durability can be improved at the same time. .
[0034]
[Second Embodiment]
A second embodiment of the present invention will be described with reference to FIGS. The absorption refrigerator of the second embodiment includes an intermediate temperature regenerator 2A and an exhaust heat regenerator 2B that are included in the absorption refrigerator of the first embodiment shown in FIGS. 1 and 2, that is, a high temperature regenerator 1. The two heat source regenerator 2 having a configuration in which the regenerator that operates using the refrigerant vapor generated in step 1 as a heat source and the regenerator that operates using exhaust heat supplied from the other as the heat source is provided.
[0035]
Therefore, in the absorption refrigerator according to the second embodiment, there are significant effects in downsizing the apparatus and reducing the manufacturing cost. In addition, in order to facilitate understanding, in the absorption refrigerator of the second embodiment, the same functions as those of the absorption refrigerator of the first embodiment shown in FIGS. 1 and 2 are the same. The code | symbol was attached | subjected.
[0036]
The controller C in the absorption refrigerator of the second embodiment opens the on-off valve V1 and closes the on-off valve V5 when the temperature of the cold water detected by the temperature detecting means S1 is higher than a predetermined temperature, for example, 7 ° C. The amount of heat supplied to the two heat source regenerator 2 via the exhaust heat supply pipe 15 is maximized, and the heating power of the gas burner 1A is controlled based on the temperature of the cold water, and the temperature of the cold water is the predetermined temperature. When the temperature is lower, the on-off valve V1 is closed and the on-off valve V5 is opened, the heating power of the gas burner 1A is made zero, and the amount of heat supplied to the two heat source regenerator 2 through the exhaust heat supply pipe 15 is reduced. It is configured to control based on temperature.
[0037]
Therefore, in the absorption refrigerator of the second embodiment, when the cooling load such as cooling is large and the temperature of the cold water detected by the temperature detecting means S1 is higher than a predetermined 7 ° C., the control is performed as shown in FIG. The on-off valve V1 is opened by the vessel C, the on-off valve V5 is closed, the amount of heat supplied to the exhaust heat regenerator 2B through the exhaust heat supply pipe 15 is controlled to the maximum, and the heating power of the gas burner 1A is controlled by the cold water Control is based on temperature.
[0038]
For this reason, the absorption liquid that has absorbed the refrigerant by the absorber 6 and the concentration of the absorption liquid has decreased is changed to the low temperature heat exchanger 7, the intermediate temperature heat exchanger 8, the on-off valve V1, and the high temperature heat exchanger 9 by the operation of the absorption liquid pump 10. Then, the refrigerant vapor is supplied to the high-temperature regenerator 1 and heated by combustion heat such as natural gas to evaporate and separate the refrigerant vapor from the absorption liquid, and the concentrated absorption liquid is obtained.
[0039]
The high-temperature refrigerant vapor generated in the high-temperature regenerator 1 enters the two-heat source regenerator 2, and the absorption liquid in the two-heat source regenerator 2, that is, the absorption liquid concentration is already increased once by the heating in the high-temperature regenerator 1. The absorption liquid supplied from the high temperature regenerator 1 through the high temperature heat exchanger 9 and the check valve V11 is cooperated with the exhaust heat supplied from the cogeneration system or the like through the exhaust heat supply pipe 15. Heat and evaporate the refrigerant.
[0040]
The refrigerant vapor evaporated and separated from the absorption liquid in the two heat source regenerator 2 enters the low temperature regenerator 3, and the absorption liquid concentration in the low temperature regenerator 3, that is, the absorption liquid concentration is increased by the heating in the two heat source regenerator 2, The temperature is lowered via the heat exchanger 8 and the absorption liquid supplied from the two heat source regenerator 2 is heated to evaporate the refrigerant.
[0041]
The refrigerant vapor evaporated and separated from the absorption liquid in the low-temperature regenerator 3 enters the condenser 4, dissipates heat to the cooling water flowing in the cooling water pipe 14, and is condensed into the absorption liquid in the two heat source regenerator 2 and the low-temperature regenerator 3. The heat dissipates and condenses, and enters the evaporator 5 together with the refrigerant liquid flowing in from the two heat source regenerator 2 and the low temperature regenerator 3.
[0042]
The refrigerant liquid that has entered the evaporator 5 and accumulated at the bottom is sprayed from above by the refrigerant pump 12 and is evaporated by exchanging heat with water flowing inside the cold water pipe 13 to cool the water flowing inside the cold water pipe 13. .
[0043]
The refrigerant evaporated in the evaporator 5 enters the absorber 6 and is heated in the low-temperature regenerator 3 to evaporate and separate the refrigerant. The refrigerant is further cooled by the absorption liquid whose concentration is further increased, that is, through the low-temperature heat exchanger 7. It is supplied from the regenerator 3 and absorbed by the absorbing liquid sprayed from above.
[0044]
When the absorption refrigerator is operated as described above, the cold water flowing through the cold water pipe 13 and entering the evaporator 5 is cooled by the heat of vaporization of the refrigerant in the evaporator 5, and the cooled cold water is cooled by the cold water. Since it can be circulated and supplied to a cooling load (not shown) via the pipe 13, a cooling operation such as cooling can be performed by triple effect with excellent thermal efficiency.
[0045]
And since the exhaust heat supplied from a cogeneration system etc. is used for the heat source of 2 heat source regenerators 2 with the refrigerant | coolant vapor | steam produced | generated by the high temperature regenerator 1, thermal efficiency improves further. Therefore, it has a great effect on CO2 reduction, which has a great influence on the warming of the atmosphere.
[0046]
On the other hand, when the cooling load such as cooling decreases and the temperature of the cold water detected by the temperature detecting means S1 falls below a predetermined 7 ° C., the controller C closes the on-off valve V1 as shown in FIG. The on-off valve V5 is opened, the combustion of natural gas or the like by the gas burner 1A is stopped, and the amount of heat supplied to the two heat source regenerator 2 through the exhaust heat supply pipe 15 is controlled based on the temperature of the cold water. To do.
[0047]
In this case, the absorption liquid absorbed by the absorber 6 and reduced in the concentration of the absorption liquid is subjected to heat exchange between the low-temperature heat exchanger 7 and the intermediate temperature heat exchanger 8 by the operation of the absorption liquid pump 10, and the temperature is increased. Is then supplied to the two heat source regenerator 2 via the on-off valve V5.
[0048]
Then, the absorption liquid supplied to the two heat source regenerator 2 is heated by exhaust heat supplied from a cogeneration system or the like via the exhaust heat supply pipe 15, and concentrated with the refrigerant vapor evaporated and separated from the absorption liquid. An absorbing solution is obtained.
[0049]
The refrigerant vapor evaporated and separated from the absorption liquid in the two heat source regenerator 2 enters the low temperature regenerator 3, and the absorption liquid concentration in the low temperature regenerator 3, that is, the absorption liquid concentration is increased by the heating in the two heat source regenerator 2, The temperature is lowered via the heat exchanger 8 and the absorption liquid supplied from the two heat source regenerator 2 is heated to evaporate the refrigerant.
[0050]
The refrigerant vapor evaporated and separated from the absorption liquid in the low temperature regenerator 3 enters the condenser 4 and dissipates heat to the cooling water flowing in the cooling water pipe 14 and condenses, and the low temperature regenerator 3 dissipates heat to the absorption liquid and condenses. Together with the refrigerant liquid flowing in from the low-temperature regenerator 3, it enters the evaporator 5.
[0051]
The refrigerant liquid that has entered the evaporator 5 and accumulated at the bottom is sprayed from above by the refrigerant pump 12 and is evaporated by exchanging heat with water flowing inside the cold water pipe 13 to cool the water flowing inside the cold water pipe 13. .
[0052]
The refrigerant evaporated in the evaporator 5 enters the absorber 6 and is heated in the low-temperature regenerator 3 to evaporate and separate the refrigerant. The refrigerant is further cooled by the absorption liquid whose concentration is further increased, that is, through the low-temperature heat exchanger 7. It is supplied from the regenerator 3 and absorbed by the absorbing liquid sprayed from above.
[0053]
That is, when the temperature of the cold water detected by the temperature detecting means S1 falls below a predetermined 7 ° C., heating and regeneration of the absorbing liquid in the high temperature regenerator 1 is stopped, and only the two heat source regenerator 2 and the low temperature regenerator 3 are used. A cooling operation such as cooling is performed by a double effect of heating and regenerating the absorbing liquid.
[0054]
Moreover, the exhaust heat supplied from the cogeneration system or the like is used for the heat source of the two heat source regenerator 2, and natural gas or the like is not combusted, so that the thermal efficiency is further improved. Therefore, it has a great effect on CO2 reduction, which has a great influence on the warming of the atmosphere.
[0055]
Moreover, since it becomes a double effect operation and the raise of regeneration temperature and regeneration pressure is suppressed, the degree of material corrosion is improved more notably and durability is also improved. That is, in the absorption refrigerator of the second embodiment shown in FIG. 3 and FIG. 4, when the load is large, it is operated with triple effect, the regeneration temperature rises greatly, and the regeneration pressure exceeds the atmospheric pressure. In this case, since the increase in the regeneration temperature and regeneration pressure is suppressed, both the degree of material corrosion and durability are remarkably improved as compared with the conventional triple effect absorption refrigerator.
[0056]
In addition, since this invention is not limited to the said embodiment, various deformation | transformation implementation is possible in the range which does not deviate from the meaning as described in a claim.
[0057]
For example, based on the difference between the temperature of the cold water flowing into the evaporator 5 via the cold water pipe 13 and the temperature of the cold water flowing out after being cooled by the absorber 5, or a load factor calculated based on the temperature difference. The controller C can be configured to control the on / off control of the on-off valves V1 to V4, the heating power of the gas burner 1A, and the like.
[0058]
In addition, the absorbing liquid pipe so that the absorbing liquid having absorbed the refrigerant by the absorber is heated and regenerated by the low temperature regenerator 3 or the intermediate temperature regenerator 2 and then flows into the high temperature regenerator 1 and further heated and regenerated. It is also possible to construct a path. The check valves V11 and V12 may be on-off valves.
[0059]
【The invention's effect】
As described above, the absorption refrigerator according to the first aspect of the present invention supplies the absorption liquid that has absorbed the refrigerant by the absorber to the exhaust heat regenerator and the high temperature regenerator in the triple effect operation when the load is large. However, by reducing the amount of absorbing liquid heated and regenerated by the high-temperature regenerator, the regeneration pressure is suppressed, and when the load is small, it is not supplied to the high-temperature regenerator and intermediate-temperature regenerator, but the exhaust heat regenerator and low-temperature regenerator Since the increase in the regeneration temperature and the regeneration pressure is suppressed by the dual effect operation in which the absorption liquid is heated and regenerated by itself, the corrosion of the material is reduced and the durability is improved.
[0060]
On the other hand, the absorption refrigerator of the second invention operates with a triple effect only when the load is large, and operates with a double effect when the load is small, so the period during which the regeneration temperature and regeneration pressure are high is reduced, This reduces material corrosion and improves durability.
In addition, the absorption refrigerator of the second aspect of the present invention has a great effect in making the device compact and reducing the manufacturing cost.
[0061]
In the absorption refrigerators of the first and second inventions, the exhaust heat supplied from the cogeneration system or the like is used for heating and regeneration of the absorption liquid, so that the thermal efficiency is improved and the warming of the atmosphere is caused. There is also a great effect in reducing CO2, which has a big impact.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a first embodiment when a load is large.
FIG. 2 is an explanatory diagram showing the first embodiment when the load is small.
FIG. 3 is an explanatory diagram showing a second embodiment when the load is large.
FIG. 4 is an explanatory diagram showing a second embodiment when the load is small.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 2 Heat source regenerator 2A Medium temperature regenerator 2B Waste heat regenerator 3 Low temperature regenerator 4 Condenser 5 Evaporator 6 Absorber 7 Low temperature heat exchanger 8 Medium temperature heat exchanger 9 High temperature heat exchangers 10 and 11 Absorption Liquid pump 12 Refrigerant pump 13 Cooling water pipe 14 Cooling water pipe 15 Waste heat supply pipe C Controller S1 Temperature detection means V1 to V5 On-off valves V11 and V12 Check valves

Claims (2)

吸収液を加熱して吸収液に含まれる冷媒を蒸発分離し、冷媒が吸収できるように吸収液を再生する再生器として高温再生器、中温再生器、低温再生器、および排熱再生器を備えると共に、中温再生器は高温再生器から供給される冷媒蒸気を熱源として動作し、低温再生器は中温再生器から供給される冷媒蒸気を熱源として動作し、排熱再生器は他から供給される排熱を熱源として動作するように構成し、異なる温度の吸収液同士が熱交換する熱交換器として高温熱交換器、中温熱交換器、低温熱交換器を備えた吸収冷凍機において、排熱再生器で蒸発分離した冷媒蒸気を低温再生器にもう一つの熱源として供給する冷媒管と、排熱再生器で再生した吸収液と中温再生器で再生した吸収液とが合流して流れる吸収液管と、吸収液が分岐して排熱再生器と高温再生器とに流れる吸収液管とを設けると共に、吸収器で冷媒を吸収した吸収液を低負荷時には排熱再生器と低温再生器とで再生して吸収器に還流し、高負荷時には高温再生器、中温再生器、低温再生器、排熱再生器で再生して吸収器に還流させる制御手段を備えた弁機構を吸収液管に設けたことを特徴とする吸収冷凍機。A high temperature regenerator, a medium temperature regenerator, a low temperature regenerator, and an exhaust heat regenerator are provided as regenerators for heating the absorption liquid to evaporate and separate the refrigerant contained in the absorption liquid and regenerate the absorption liquid so that the refrigerant can be absorbed. At the same time, the medium temperature regenerator operates using the refrigerant vapor supplied from the high temperature regenerator as a heat source, the low temperature regenerator operates using the refrigerant vapor supplied from the medium temperature regenerator as the heat source, and the exhaust heat regenerator is supplied from others. In an absorption refrigerator equipped with a high-temperature heat exchanger, a medium-temperature heat exchanger, and a low-temperature heat exchanger as a heat exchanger configured to operate as waste heat as a heat source and heat exchange between absorption liquids of different temperatures, waste heat Absorbed liquid that flows by combining the refrigerant pipe that supplies the refrigerant vapor evaporated and separated in the regenerator as another heat source to the low-temperature regenerator, the absorbent regenerated in the exhaust heat regenerator, and the absorbent regenerated in the intermediate temperature regenerator The pipe and the absorption liquid branch off and exhaust heat In addition to providing an absorption liquid pipe that flows between the living unit and the high temperature regenerator, the absorption liquid that has absorbed the refrigerant by the absorber is regenerated by the exhaust heat regenerator and the low temperature regenerator at low load, and returned to the absorber. An absorption refrigerating machine comprising a valve mechanism provided with a control means for regenerating to a absorber through a high-temperature regenerator, a medium-temperature regenerator, a low-temperature regenerator, and an exhaust heat regenerator when loaded. 高温再生器から供給される冷媒蒸気を動作熱源とする中温再生器と排熱を動作熱源とする排熱再生器とが一体化(以下、2熱源再生器)されると共に、吸収液が分岐して2熱源再生器と高温再生器とに流入可能に吸収液管が設けられ、且つ、吸収器で冷媒を吸収した吸収液を低負荷時には2熱源再生器と低温再生器とで再生して吸収器に還流し、高負荷時には高温再生器、低温再生器、2熱源再生器で再生して吸収器に還流させる制御手段を備えた弁機構が吸収液管に設けられたことを特徴とする請求項1記載の吸収冷凍機。An intermediate temperature regenerator that uses refrigerant vapor supplied from a high temperature regenerator as an operating heat source and an exhaust heat regenerator that uses exhaust heat as an operating heat source are integrated (hereinafter referred to as two heat source regenerators), and the absorbing liquid branches off. An absorption liquid pipe is provided so that it can flow into the two heat source regenerator and the high temperature regenerator, and the absorption liquid that has absorbed the refrigerant by the absorber is regenerated and absorbed by the two heat source regenerator and the low temperature regenerator when the load is low. The absorption liquid pipe is provided with a valve mechanism provided with a control means for recirculating to the vessel, regenerating with a high temperature regenerator, a low temperature regenerator, and a two heat source regenerator at high load and returning to the absorber. Item 2. The absorption refrigerator according to Item 1.
JP2001220057A 2001-07-19 2001-07-19 Absorption refrigerator Expired - Fee Related JP4553522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001220057A JP4553522B2 (en) 2001-07-19 2001-07-19 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001220057A JP4553522B2 (en) 2001-07-19 2001-07-19 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2003035466A JP2003035466A (en) 2003-02-07
JP4553522B2 true JP4553522B2 (en) 2010-09-29

Family

ID=19053941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001220057A Expired - Fee Related JP4553522B2 (en) 2001-07-19 2001-07-19 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP4553522B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150007131A (en) * 2013-07-10 2015-01-20 엘지전자 주식회사 Absoption chiller

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4315855B2 (en) * 2004-04-14 2009-08-19 三洋電機株式会社 Absorption refrigerator
JP2011220613A (en) * 2010-04-09 2011-11-04 Kawasaki Thermal Engineering Co Ltd Absorption type refrigeration method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000257976A (en) * 1999-01-07 2000-09-22 Kawasaki Thermal Engineering Co Ltd Absorption refrigerating machine
JP2001194021A (en) * 2000-01-07 2001-07-17 Tokyo Gas Co Ltd Absorption hot and chilled water generator and its controlling method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2696575B2 (en) * 1989-11-10 1998-01-14 株式会社荏原製作所 Absorption refrigerator
JP2654833B2 (en) * 1989-12-27 1997-09-17 株式会社荏原製作所 Absorption refrigeration equipment
JP3278342B2 (en) * 1996-02-20 2002-04-30 東京瓦斯株式会社 Low temperature regenerator of absorption chiller / heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000257976A (en) * 1999-01-07 2000-09-22 Kawasaki Thermal Engineering Co Ltd Absorption refrigerating machine
JP2001194021A (en) * 2000-01-07 2001-07-17 Tokyo Gas Co Ltd Absorption hot and chilled water generator and its controlling method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150007131A (en) * 2013-07-10 2015-01-20 엘지전자 주식회사 Absoption chiller
KR102165443B1 (en) * 2013-07-10 2020-10-14 엘지전자 주식회사 Absoption chiller

Also Published As

Publication number Publication date
JP2003035466A (en) 2003-02-07

Similar Documents

Publication Publication Date Title
JP5757796B2 (en) Solar thermal air conditioning system
JP2011089722A (en) Method and device for refrigeration/air conditioning
JP2002147885A (en) Absorption refrigerating machine
JP4553522B2 (en) Absorption refrigerator
JP5384072B2 (en) Absorption type water heater
JP4179799B2 (en) Absorption refrigerator
JP4562323B2 (en) Absorption refrigerator
JP4596683B2 (en) Absorption refrigerator
JP4553523B2 (en) Absorption refrigerator
JP2007333342A (en) Multi-effect absorption refrigerating machine
KR101045440B1 (en) Absorption type refrigerator having the solution recirculrating device
JP2000274860A (en) Heat pump cycle type absorption refrigerating and heating simultaneously taking-out machine and method
JP4557468B2 (en) Absorption refrigerator
JP3851136B2 (en) Absorption refrigerator
KR100827569B1 (en) Absorption refrigerating apparatus with heat pump
JP4212083B2 (en) Exhaust heat input type single-effect absorption chiller / heater
JP2865305B2 (en) Absorption refrigerator
JP4282225B2 (en) Absorption refrigerator
JP4562325B2 (en) Absorption refrigerator
JP3663008B2 (en) Absorption chiller / heater
JP3429904B2 (en) Absorption refrigerator
JP2005106408A (en) Absorption type freezer
JP2003121021A (en) Double effect absorption refrigerating machine
JP2001208443A (en) Absorption freezer
JPS62218771A (en) Air cooling type absorption cold and hot water unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees