JP5075346B2 - Absorption refrigerator - Google Patents

Absorption refrigerator Download PDF

Info

Publication number
JP5075346B2
JP5075346B2 JP2006088934A JP2006088934A JP5075346B2 JP 5075346 B2 JP5075346 B2 JP 5075346B2 JP 2006088934 A JP2006088934 A JP 2006088934A JP 2006088934 A JP2006088934 A JP 2006088934A JP 5075346 B2 JP5075346 B2 JP 5075346B2
Authority
JP
Japan
Prior art keywords
temperature regenerator
liquid
absorption liquid
refrigerant
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006088934A
Other languages
Japanese (ja)
Other versions
JP2007263461A (en
Inventor
正之 大能
裕光 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006088934A priority Critical patent/JP5075346B2/en
Publication of JP2007263461A publication Critical patent/JP2007263461A/en
Application granted granted Critical
Publication of JP5075346B2 publication Critical patent/JP5075346B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は、冷房などの冷却運転に使用する三重効用吸収冷凍機をはじめ、多重効用吸収冷凍機に関するものである。   The present invention relates to a multi-effect absorption refrigerator including a triple-effect absorption refrigerator used for cooling operations such as cooling.

吸収冷凍機において、再生器の再生圧力が大気圧を超える場合は、圧力容器としての規制を受けることとなり、製造上の制約が大きくなると共に、製造コストの大幅上昇が生じるため、これを解決するために、再生器として、高温再生器、中温再生器、低温再生器を設けて、高温再生器以外については、大気圧を超えない状態となる三重効用吸収冷凍機が提供されている。(例えば、特許文献1)。
特開2003−35465号公報
In the absorption refrigerator, when the regeneration pressure of the regenerator exceeds the atmospheric pressure, it is subject to regulation as a pressure vessel, which increases manufacturing restrictions and significantly increases manufacturing costs. Therefore, a triple effect absorption refrigerating machine is provided in which a high temperature regenerator, a medium temperature regenerator, and a low temperature regenerator are provided as regenerators, and other than the high temperature regenerators, the atmospheric pressure is not exceeded. (For example, patent document 1).
JP 2003-35465 A

このように再生器として、高温再生器、中温再生器、低温再生器を設け、各再生器が大気圧を超えない状態とした場合、高温再生器も小型化されるため、高温再生器内に設けられる気液分離器の容積が制限されることとなり、気液分離器での吸収液と冷媒蒸気の分離が十分に行われない状態となる虞があり、冷媒蒸気に吸収液が混入した場合には、蒸発器における吸収液濃度が上昇して能力低下を招くと共に、高温再生器の後段の中温再生器での効率低下となって、吸収冷凍機の効率低下となることが懸念される。   Thus, as a regenerator, when a high temperature regenerator, a medium temperature regenerator, and a low temperature regenerator are provided and each regenerator does not exceed atmospheric pressure, the high temperature regenerator is also downsized. When the volume of the gas-liquid separator provided is limited, there is a risk that the absorption liquid and refrigerant vapor will not be sufficiently separated in the gas-liquid separator. Therefore, there is a concern that the absorption liquid concentration in the evaporator is increased and the capacity is lowered, and the efficiency is lowered in the intermediate temperature regenerator subsequent to the high temperature regenerator, and the efficiency of the absorption refrigerator is decreased.

本発明は、このような点に鑑みて、高温再生器、中温再生器、低温再生器を設けた三重効用吸収冷凍機において、高温再生器内の気液分離器を出た冷媒蒸気に吸収液が混じった状態であっても、後段の中温再生器にそのまま流入することを防止して、吸収冷凍機の効率低下を防止できる技術を提供するものである。   In view of such a point, the present invention provides a triple effect absorption refrigerator provided with a high temperature regenerator, a medium temperature regenerator, and a low temperature regenerator, in which an absorption liquid is absorbed into the refrigerant vapor discharged from the gas-liquid separator in the high temperature regenerator. Even if it is in a state of being mixed, it is possible to prevent the efficiency of the absorption refrigeration machine from being lowered by preventing it from flowing into the intermediate temperature regenerator as it is.

第1発明の吸収冷凍機は、吸収液を加熱して吸収液に含まれる冷媒を蒸発分離し、冷媒が吸収できるように吸収液を再生する再生器として高温再生器、中温再生器、低温再生器を備えた吸収冷凍機において、前記高温再生器は、吸収液から蒸発分離した冷媒蒸気と濃縮された吸収液に分離する気液分離器を内蔵しており、前記高温再生器と前記中温再生器の間のラインに前記高温再生器を出た冷媒蒸気が流入する外部気液分離器を設け、この外部気液分離器によって前記高温再生器を出た冷媒蒸気とその冷媒蒸気に混入した吸収液を分離し、この分離された冷媒蒸気は前記中温再生器の冷媒ライン部に流入し、この分離された吸収液は、前記中温再生器から前記低温再生器への吸収液ライン部へ導入されることを特徴とする。 The absorption refrigerator of the first invention is a high-temperature regenerator, a medium-temperature regenerator, and a low-temperature regenerator as a regenerator that heats the absorption liquid to evaporate and separate the refrigerant contained in the absorption liquid and regenerate the absorption liquid so that the refrigerant can be absorbed. The high-temperature regenerator includes a gas-liquid separator that separates the refrigerant vapor evaporated from the absorption liquid and the concentrated absorption liquid, and the high-temperature regenerator and the medium-temperature regenerator An external gas-liquid separator into which refrigerant vapor exiting the high-temperature regenerator flows is provided in the line between the regenerators, and the refrigerant vapor that has exited the high-temperature regenerator and absorption absorbed in the refrigerant vapor by the external gas-liquid separator. The separated refrigerant vapor flows into the refrigerant line portion of the intermediate temperature regenerator, and the separated absorption liquid is introduced into the absorption liquid line portion from the intermediate temperature regenerator to the low temperature regenerator. It is characterized by that.

第1発明では、再生器の小型化に伴い、高温再生器、中温再生器、低温再生器を設けた三重効用吸収冷凍機において、高温再生器を出た冷媒蒸気に吸収液が混入した状態であっても、外部気液分離器によって、高温再生器を出た冷媒蒸気と吸収液が分離され、その分離された冷媒蒸気は中温再生器の所定部位に流入し、分離された吸収液は、中温再生器から低温再生器への吸収液ライン部へ導入されるものである。分離された吸収液を低温再生器内に溜まった吸収液中に流入させた場合、分離された吸収液と共に冷媒蒸気も流れてしまうため熱ロスが生じ、効率低下となるが、本発明ではこれがなく、中温再生器での効率低下や、吸収冷凍機の効率低下が防止される。 In the first invention , in accordance with the downsizing of the regenerator, in the triple effect absorption refrigerating machine provided with the high temperature regenerator, the intermediate temperature regenerator, and the low temperature regenerator, the absorption liquid is mixed in the refrigerant vapor discharged from the high temperature regenerator. Even if there is an external gas-liquid separator, the refrigerant vapor and the absorption liquid that have exited the high-temperature regenerator are separated, and the separated refrigerant vapor flows into a predetermined part of the intermediate-temperature regenerator, and the separated absorption liquid is It is introduced into the absorption liquid line section from the medium temperature regenerator to the low temperature regenerator. When the separated absorption liquid is allowed to flow into the absorption liquid accumulated in the low temperature regenerator, the refrigerant vapor also flows together with the separated absorption liquid, resulting in a heat loss and a reduction in efficiency. In addition , a decrease in efficiency in the intermediate temperature regenerator and a decrease in efficiency of the absorption refrigerator are prevented.

本発明の吸収冷凍機は、吸収液を加熱して吸収液に含まれる冷媒を蒸発分離し、冷媒が吸収できるように吸収液を再生する再生器として高温再生器、中温再生器、低温再生器を備えた吸収冷凍機において、前記高温再生器は、吸収液から蒸発分離した冷媒蒸気と濃縮された吸収液に分離する気液分離器を内蔵しており、前記高温再生器と前記中温再生器の間のラインに前記高温再生器を出た冷媒蒸気が流入する外部気液分離器を設け、この外部気液分離器によって前記高温再生器を出た冷媒蒸気とその冷媒蒸気に混入した吸収液を分離し、この分離された冷媒蒸気は前記中温再生器の冷媒ライン部に流入し、この分離された吸収液は、中温再生器から低温再生器への吸収液ライン部へ導入されるものであり、本発明の実施例を以下に記載する。 The absorption refrigerator of the present invention is a high-temperature regenerator, a medium-temperature regenerator, and a low-temperature regenerator as regenerators that heat the absorption liquid to evaporate and separate the refrigerant contained in the absorption liquid and regenerate the absorption liquid so that the refrigerant can be absorbed. The high-temperature regenerator includes a gas-liquid separator that separates the refrigerant vapor evaporated and separated from the absorption liquid and the concentrated absorption liquid, and the high-temperature regenerator and the intermediate-temperature regenerator An external gas-liquid separator into which refrigerant vapor exiting the high-temperature regenerator flows is provided in a line between the refrigerant vapor exiting the high-temperature regenerator and the absorbing liquid mixed in the refrigerant vapor by the external gas-liquid separator. The separated refrigerant vapor flows into the refrigerant line portion of the intermediate temperature regenerator, and the separated absorption liquid is introduced into the absorption liquid line portion from the intermediate temperature regenerator to the low temperature regenerator. There is described an embodiment of the present invention are described below

次に、本発明の吸収式冷凍機の実施の形態について説明する。図1は本発明に係る吸収式冷凍機の第1の実施形態の説明図、図2は本発明に係る外部気液分離器の一つの形態を示す説明図、図3は本発明に係る外部気液分離器の他の形態を示す説明図である。   Next, an embodiment of the absorption refrigerator of the present invention will be described. FIG. 1 is an explanatory view of a first embodiment of an absorption refrigerator according to the present invention, FIG. 2 is an explanatory view showing one form of an external gas-liquid separator according to the present invention, and FIG. 3 is an external view according to the present invention. It is explanatory drawing which shows the other form of a gas-liquid separator.

本発明の第1の実施形態を、図1に基づいて詳細に説明する。図中1は高温再生器、2は中温再生器、3は低温再生器、4は凝縮器、5は蒸発器、6は吸収器、7は低温熱交換器、8は中温熱交換器、9は高温熱交換器、10、11は吸収液ポンプ、12は冷媒ポンプであり、それぞれは図1に示したように実線で示した吸収液管と破線で示した冷媒管とで接続され、吸収液と冷媒がそれぞれ循環可能に構成されている。蒸発器5には冷水管13が通され、吸収器6と凝縮器4には冷却水管14が直列に通されている。   A first embodiment of the present invention will be described in detail with reference to FIG. In the figure, 1 is a high temperature regenerator, 2 is a medium temperature regenerator, 3 is a low temperature regenerator, 4 is a condenser, 5 is an evaporator, 6 is an absorber, 7 is a low temperature heat exchanger, 8 is a medium temperature heat exchanger, 9 Is a high-temperature heat exchanger, 10 and 11 are absorption liquid pumps, and 12 is a refrigerant pump. Each is connected by an absorption liquid pipe indicated by a solid line and a refrigerant pipe indicated by a broken line as shown in FIG. Each of the liquid and the refrigerant is configured to be circulated. A cold water pipe 13 is passed through the evaporator 5, and a cooling water pipe 14 is passed through the absorber 6 and the condenser 4 in series.

このような吸収冷凍機においては、吸収液ポンプ10、11および冷媒ポンプ12を運転し、高温再生器1に添設した図示しないバーナで天然ガスなどを燃焼させると、高温再生器1においては燃焼熱により吸収液が加熱され、高温再生器1内の気液分離器1Aによって、吸収液から蒸発分離した冷媒蒸気と、濃縮された吸収液とが得られる。図1において、この冷媒蒸気を含む冷媒の循環するライン部は点線で示しており、吸収液の循環する吸収液ライン部は実線で示している。   In such an absorption refrigerator, when the absorption liquid pumps 10 and 11 and the refrigerant pump 12 are operated and natural gas or the like is burned by a burner (not shown) attached to the high temperature regenerator 1, the high temperature regenerator 1 burns. The absorption liquid is heated by heat, and the refrigerant vapor evaporated and separated from the absorption liquid and the concentrated absorption liquid are obtained by the gas-liquid separator 1A in the high-temperature regenerator 1. In FIG. 1, the line part through which the refrigerant containing the refrigerant vapor circulates is indicated by a dotted line, and the absorption liquid line part through which the absorption liquid circulates is indicated by a solid line.

このような吸収冷凍機においては、吸収液ポンプ10、11および冷媒ポンプ12を運転し、高温再生器1に添設した図示しないバーナで天然ガスなどを燃焼させると、高温再生器1においては燃焼熱により吸収液が加熱され、吸収液から蒸発分離した冷媒蒸気と、濃縮された吸収液とが得られる。   In such an absorption refrigerator, when the absorption liquid pumps 10 and 11 and the refrigerant pump 12 are operated and natural gas or the like is burned by a burner (not shown) attached to the high temperature regenerator 1, the high temperature regenerator 1 burns. The absorption liquid is heated by heat, and the refrigerant vapor evaporated and separated from the absorption liquid and the concentrated absorption liquid are obtained.

高温再生器1で生成された高温の冷媒蒸気は、外部気液分離器20を経て中温再生器2に入り、中温再生器2内にある吸収液2Pを加熱して冷媒を蒸発させる。この中温再生器2内にある吸収液2Pは、高温再生器1における前記加熱により冷媒を蒸発分離して吸収液濃度が高められ高温熱交換器9で熱交換して冷却された状態で吸収液ライン部32を通って中温再生器2の気相部2Qへ供給されて溜まった吸収液2Pである。   The high-temperature refrigerant vapor generated in the high-temperature regenerator 1 enters the intermediate-temperature regenerator 2 through the external gas-liquid separator 20, and heats the absorbing liquid 2P in the intermediate-temperature regenerator 2 to evaporate the refrigerant. The absorbing liquid 2P in the intermediate temperature regenerator 2 is absorbed in the state where the refrigerant is evaporated and separated by the heating in the high temperature regenerator 1 to increase the concentration of the absorbing liquid and is cooled by heat exchange in the high temperature heat exchanger 9. This is the absorbing liquid 2P that has been supplied to and accumulated in the gas phase part 2Q of the intermediate temperature regenerator 2 through the line part 32.

中温再生器2において吸収液から蒸発分離した冷媒蒸気は、低温再生器3に入り、低温再生器3内にある吸収液3Pを加熱して冷媒を蒸発させる。即ち、中温再生器2における前記加熱により冷媒を蒸発分離して吸収液濃度が高められ中温熱交換器8で熱交換して冷却された吸収液ライン部31の吸収液と、吸収器6で冷媒を吸収して吸収液濃度が低下し吸収液ポンプ10により低温熱交換器7で熱交換して加熱された一部の吸収液ライン部33の吸収液とが合流し、低温再生器3の気相部3Qへ供給されて下部に溜まった吸収液3Pを加熱して冷媒を蒸発させる。   The refrigerant vapor evaporated and separated from the absorption liquid in the intermediate temperature regenerator 2 enters the low temperature regenerator 3 and heats the absorption liquid 3P in the low temperature regenerator 3 to evaporate the refrigerant. That is, the refrigerant is evaporated and separated by the heating in the intermediate temperature regenerator 2 to increase the concentration of the absorption liquid, and the absorption liquid in the absorption liquid line section 31 cooled by the heat exchange in the intermediate temperature heat exchanger 8 and the refrigerant in the absorber 6. The absorption liquid concentration decreases, the absorption liquid pump 10 absorbs heat in the low-temperature heat exchanger 7 by the absorption liquid pump 10, and the absorption liquid in a part of the absorption liquid line section 33 joins, and the low-temperature regenerator 3 The absorption liquid 3P supplied to the phase part 3Q and accumulated in the lower part is heated to evaporate the refrigerant.

低温再生器3における加熱により吸収液から蒸発分離した冷媒蒸気は凝縮器4に入り、冷却水管14内を流れる冷却水に放熱して凝縮し、中温再生器2、低温再生器3それぞれで吸収液に放熱して凝縮し、中温再生器2、低温再生器3それぞれから流入する冷媒液と一緒になって蒸発器5に入る。   The refrigerant vapor evaporated and separated from the absorption liquid by heating in the low temperature regenerator 3 enters the condenser 4, dissipates heat to the cooling water flowing in the cooling water pipe 14 and condenses, and the absorption liquid is obtained in each of the intermediate temperature regenerator 2 and the low temperature regenerator 3. The heat is then condensed and enters the evaporator 5 together with the refrigerant liquid flowing in from the medium temperature regenerator 2 and the low temperature regenerator 3.

蒸発器5に入って底部に溜まった冷媒液は、冷媒ポンプ12により上方から散布され、冷水管13の内部を流れる水と熱交換して蒸発し、冷水管13の内部を流れる水を冷却する。   The refrigerant liquid that has entered the evaporator 5 and accumulated at the bottom is sprayed from above by the refrigerant pump 12 and is evaporated by exchanging heat with water flowing inside the cold water pipe 13 to cool the water flowing inside the cold water pipe 13. .

蒸発器5で蒸発した冷媒は吸収器6に入り、低温再生器3における前記加熱で冷媒を蒸発分離し、吸収液の濃度が一層高まった吸収液、すなわち低温再生器3から吸収液ポンプ11により低温熱交換器7を経由して冷却供給され、上方から散布される吸収液に吸収される。   The refrigerant evaporated in the evaporator 5 enters the absorber 6, evaporates and separates the refrigerant by the heating in the low temperature regenerator 3, and the absorption liquid whose concentration of the absorption liquid is further increased, that is, from the low temperature regenerator 3 by the absorption liquid pump 11. It is cooled and supplied via the low-temperature heat exchanger 7 and absorbed by the absorbing liquid sprayed from above.

吸収器6で冷媒を吸収して吸収液濃度が低下した吸収液は、吸収液ポンプ10の運転により低温熱交換器7で熱交換して加熱された後、所定の比率、例えば1:1の比率で分岐し、一方の吸収液は中温熱交換器8、高温熱交換器9を経由して高温再生器1に戻され、他方の吸収液は低温再生器3に供給され加熱される。   The absorption liquid whose absorption liquid concentration has been reduced by absorbing the refrigerant in the absorber 6 is heated by exchanging heat in the low-temperature heat exchanger 7 by the operation of the absorption liquid pump 10, and then a predetermined ratio, for example, 1: 1. Branching at a ratio, one absorption liquid is returned to the high temperature regenerator 1 via the intermediate temperature heat exchanger 8 and the high temperature heat exchanger 9, and the other absorption liquid is supplied to the low temperature regenerator 3 and heated.

上記のように吸収冷凍機が運転されると、冷水管13の内部を流れて蒸発器5に入った冷水は、蒸発器5内において冷媒の気化熱により冷却され、その冷却された冷水が冷水管13を介して図示しない冷却負荷に循環供給できるので、冷房などの冷却運転が熱効率に優れた三重効用により行える。   When the absorption refrigerator is operated as described above, the cold water flowing through the cold water pipe 13 and entering the evaporator 5 is cooled by the heat of vaporization of the refrigerant in the evaporator 5, and the cooled cold water is cooled by the cold water. Since it can be circulated and supplied to a cooling load (not shown) via the pipe 13, a cooling operation such as cooling can be performed by triple effect with excellent thermal efficiency.

高温再生器1においては、冷媒を吸収して吸収器6から吸収液濃度が低下して吐出した吸収液の一部が流入し加熱されるので、高温再生器1で吸収液から蒸発分離する冷媒蒸気の量は吸収器6から吐出した吸収液の全量が流入するときと比較すると減少する。そのため、高温再生器1内の圧力上昇は顕著に抑制され、400kPa程度となる。   In the high-temperature regenerator 1, a part of the absorbed liquid that has been absorbed by the refrigerant and the absorbed liquid concentration is lowered and is discharged from the absorber 6 flows into the high-temperature regenerator 1 and is heated. The amount of steam is reduced as compared with the case where the entire amount of absorbing liquid discharged from the absorber 6 flows. Therefore, the pressure rise in the high temperature regenerator 1 is remarkably suppressed, and becomes about 400 kPa.

図2には、外部気液分離器20の概要構成を示している。外部気液分離器20は、エリミネータとも称し、内部に上下方向に延びたジグザグ通路22Aの複数が横方向に並列するように並列設置のステンレススチールで形成した気液分離要素22を設けている。そして、気液分離要素22の下部空間20Aには、高温再生器1から送られる冷媒蒸気が流入する入口パイプ23が連通し、また気液分離要素22の上部空間20Bには、中温再生器2の冷媒ライン部24A(中温再生器2の吸収液2P中のパイプ)に連通する出口パイプ24が連通している。また、外部気液分離器20の下部空間20Aの底部には、吸収液の貯留部25が形成され、貯留部25の底部には吸収液の出口パイプ26が連通している。   FIG. 2 shows a schematic configuration of the external gas-liquid separator 20. The external gas-liquid separator 20 is also called an eliminator, and is provided with a gas-liquid separation element 22 formed of stainless steel arranged in parallel so that a plurality of zigzag passages 22A extending in the vertical direction are juxtaposed in the horizontal direction. An inlet pipe 23 into which refrigerant vapor sent from the high-temperature regenerator 1 flows is communicated with the lower space 20A of the gas-liquid separation element 22, and an intermediate-temperature regenerator 2 is connected to the upper space 20B of the gas-liquid separation element 22. The outlet pipe 24 communicates with the refrigerant line portion 24A (the pipe in the absorbent 2P of the intermediate temperature regenerator 2). In addition, an absorbing liquid reservoir 25 is formed at the bottom of the lower space 20 </ b> A of the external gas-liquid separator 20, and an absorbing liquid outlet pipe 26 communicates with the bottom of the reservoir 25.

外部気液分離器20は、入口パイプ23から流入した冷媒蒸気が気液分離要素22のジグザグ通路22Aを上へ通過する間に、気液分離要素22の壁面に接触して、冷媒蒸気に含まれた吸収液が凝縮し下部空間20Aへ落下して貯留部25に溜まる。吸収液を分離した冷媒蒸気は、上部空間20Bから出口パイプ24を通って中温再生器2の冷媒ライン部24A(中温再生器2の吸収液2P中のパイプ)に流入する。また、出口パイプ26から流出する吸収液は、後段の吸収液ライン部に導入される。   The external gas-liquid separator 20 contacts the wall surface of the gas-liquid separation element 22 while the refrigerant vapor flowing in from the inlet pipe 23 passes through the zigzag passage 22A of the gas-liquid separation element 22 and is included in the refrigerant vapor. The absorbed liquid is condensed and falls into the lower space 20 </ b> A and accumulates in the storage unit 25. The refrigerant vapor from which the absorption liquid has been separated flows from the upper space 20B through the outlet pipe 24 into the refrigerant line portion 24A of the intermediate temperature regenerator 2 (the pipe in the absorption liquid 2P of the intermediate temperature regenerator 2). Moreover, the absorption liquid flowing out from the outlet pipe 26 is introduced into the subsequent absorption liquid line part.

出口パイプ26から流出する吸収液が、後段の吸収液ライン部に導入される一つの実施形態として、図1に示すように、高温再生器1の入口側の吸収液ライン部30へ導入する方式がある。吸収液ライン部30は、稀容液の帰還ライン部であるため、技術的にも吸収液を戻し易くなり、これによって、外部気液分離器20で分離した吸収液が直ちに高温再生器1へ帰還して、効率的な作用をさせることができるものとなる。また、後述のようなハンマー音の対策も必要なくなる。   As one embodiment in which the absorbing liquid flowing out from the outlet pipe 26 is introduced into the subsequent absorbing liquid line section, as shown in FIG. 1, a method of introducing the absorbing liquid into the absorbing liquid line section 30 on the inlet side of the high temperature regenerator 1. There is. Since the absorption liquid line part 30 is a return line part of a dilute liquid, it is technically easy to return the absorption liquid, whereby the absorption liquid separated by the external gas-liquid separator 20 is immediately sent to the high-temperature regenerator 1. It is possible to return and have an efficient action. Further, it is not necessary to take measures against hammer noise as described later.

外部気液分離器20は、冷媒蒸気と吸収液が分離された状態でそれぞれの通路へ流出することが好ましく、その一つの手段として、外部気液分離器内の分離された吸収液レベルが所定の上限レベル以上で開くバルブ装置21を設けることができる。バルブ装置21として、図3に示すものは、出口パイプ26の入口部に設けたフロート式開閉バルブ21である。   The external gas-liquid separator 20 preferably flows into the respective passages in a state in which the refrigerant vapor and the absorption liquid are separated. As one means, the separated absorption liquid level in the external gas-liquid separator is predetermined. It is possible to provide a valve device 21 that opens above the upper limit level. The valve device 21 shown in FIG. 3 is a float type open / close valve 21 provided at the inlet portion of the outlet pipe 26.

フロート式開閉バルブ21は、出口パイプ26の入口部を開閉するバルブ21Aと、このバルブ21Aと連動するフロート21Bを備えている。入口パイプ23から流入した冷媒蒸気が気液分離要素22のジグザグ通路22Aを上へ通過する間に、気液分離要素22の壁面に接触して、冷媒蒸気に含まれた吸収液が凝縮し下部空間20Aへ落下して貯留部25に溜まる。貯留部25に溜まった吸収液のレベル(水位)が所定レベルよりも低い場合は、バルブ21Aは吸収液圧によって出口パイプ26の入口部を閉じており、貯留部25に溜まった吸収液のレベル(水位)が所定の上限レベル以上になったとき、それに伴って上昇するフロート21Bによって、バルブ21Aは出口パイプ26の入口部を開く。このため、貯留部25に溜まった吸収液は、出口パイプ26から流出するようになる。この流出によって、貯留部25に溜まった吸収液レベルが所定の下限レベルに低下したとき、それに伴ってフロート21Bが下降するため、バルブ21Aは吸収液圧によって出口パイプ26の入口部を閉じる。このようにして、貯留部25に溜まった吸収液は、冷媒蒸気を含まない状態で出口パイプ26から流出することとなる。   The float type open / close valve 21 includes a valve 21A that opens and closes the inlet portion of the outlet pipe 26, and a float 21B that operates in conjunction with the valve 21A. While the refrigerant vapor flowing in from the inlet pipe 23 passes upward through the zigzag passage 22A of the gas-liquid separation element 22, it contacts the wall surface of the gas-liquid separation element 22 and the absorption liquid contained in the refrigerant vapor condenses and lowers. It falls into the space 20 </ b> A and accumulates in the storage unit 25. When the level (water level) of the absorbing liquid stored in the storage unit 25 is lower than a predetermined level, the valve 21A closes the inlet part of the outlet pipe 26 by the absorption liquid pressure, and the level of the absorbing liquid stored in the storage unit 25 When the (water level) exceeds a predetermined upper limit level, the valve 21A opens the inlet portion of the outlet pipe 26 by the float 21B that rises accordingly. For this reason, the absorbing liquid accumulated in the reservoir 25 flows out from the outlet pipe 26. When the absorption liquid level accumulated in the storage unit 25 is lowered to a predetermined lower limit level due to the outflow, the float 21B is lowered accordingly, and the valve 21A closes the inlet part of the outlet pipe 26 by the absorption liquid pressure. In this way, the absorbing liquid collected in the storage unit 25 flows out from the outlet pipe 26 without containing the refrigerant vapor.

また、バルブ装置21としては、フロート式開閉バルブ21に替わって、出口パイプ26の管路を開閉する電磁弁を設け、貯留部25に溜まる吸収液のレベル(水位)検知センサを設け、このレベル(水位)検知センサに基づき、吸収液のレベル(水位)が所定の上限レベル以上になったとき、この電磁弁を開き、吸収液レベルが所定の下限レベルに低下したとき、この電磁弁を閉じる制御構成によっても同様の効果を達成できる。   Further, as the valve device 21, an electromagnetic valve for opening and closing the conduit of the outlet pipe 26 is provided instead of the float type open / close valve 21, and an absorption liquid level (water level) detection sensor that accumulates in the storage unit 25 is provided. Based on the (water level) detection sensor, this solenoid valve is opened when the level of the absorbing liquid (water level) exceeds a predetermined upper limit level, and this solenoid valve is closed when the absorbing liquid level falls to a predetermined lower limit level. Similar effects can be achieved by the control configuration.

出口パイプ26から流出する吸収液が、後段の吸収液ライン部に導入される一つの実施形態として、図4に示すように、分離された吸収液は、低温再生器3の気相部3Q又は中温再生器2から低温再生器3への吸収液ライン部31へ導入する方式がある。分離された吸収液を低温再生器3内に溜まった吸収液3P中に流入させた場合、分離された吸収液と共に冷媒蒸気も流れた場合は、熱ロスが生じ効率低下となるが、本発明ではこれがなく、優れた効果を奏することができる。なお、分離された吸収液と共に冷媒蒸気が、低温再生器3内に溜まった吸収液3P中に流入した場合には、この冷媒蒸気の凝縮に伴うハンマー音(ボコボコ音等の異常音)の発生が懸念されるが、実施例2の方式ではこれがないものとなる。この場合、外部気液分離器20は、図2に示す形態と図3に示す形態のいずれであってもよい。なお、図1と同等部には同一符号を付している。   As one embodiment in which the absorption liquid flowing out from the outlet pipe 26 is introduced into the absorption liquid line section at the subsequent stage, as shown in FIG. 4, the separated absorption liquid is supplied to the gas phase section 3Q or the low temperature regenerator 3. There is a method of introducing the absorption liquid line portion 31 from the intermediate temperature regenerator 2 to the low temperature regenerator 3. When the separated absorption liquid is caused to flow into the absorption liquid 3P accumulated in the low temperature regenerator 3, when the refrigerant vapor also flows together with the separated absorption liquid, a heat loss occurs and the efficiency decreases. However, this is not possible and an excellent effect can be achieved. In addition, when the refrigerant vapor flows into the absorption liquid 3P accumulated in the low temperature regenerator 3 together with the separated absorption liquid, a hammer sound (abnormal sound such as a bumpy sound) is generated due to the condensation of the refrigerant vapor. However, the method of the second embodiment does not have this. In this case, the external gas-liquid separator 20 may have either the form shown in FIG. 2 or the form shown in FIG. In addition, the same code | symbol is attached | subjected to the equivalent part in FIG.

出口パイプ26から流出する吸収液が、後段の吸収液ライン部に導入される一つの実施形態として、図5に示すように、分離された吸収液は、高温再生器1から中温再生器2への吸収液ライン部32へ導入する方式がある。分離された吸収液と共に若干の冷媒蒸気が流れた場合は、熱ロスが生じ効率低下となるが、本発明ではこれがなく、優れた効果を奏することができる。なお、分離された吸収液と共に冷媒蒸気が、中温再生器2内に溜まった吸収液2P中に流入した場合には、この冷媒蒸気の凝縮に伴うハンマー音(ボコボコ音等の異常音)の発生が懸念されるが、実施例3の方式では、分離された吸収液は中温再生器2の気相部2Qへ導入されるため、これがないものとなる。なお、図1と同等部には同一符号を付している。   As one embodiment in which the absorbing liquid flowing out from the outlet pipe 26 is introduced into the subsequent absorbing liquid line section, as shown in FIG. 5, the separated absorbing liquid is transferred from the high temperature regenerator 1 to the intermediate temperature regenerator 2. There is a method of introducing into the absorption liquid line portion 32. When some refrigerant vapor flows together with the separated absorption liquid, heat loss occurs and efficiency is lowered. However, the present invention does not have this, and an excellent effect can be achieved. When the refrigerant vapor together with the separated absorption liquid flows into the absorption liquid 2P accumulated in the intermediate temperature regenerator 2, a hammer sound (abnormal sound such as a bumpy sound) is generated due to the condensation of the refrigerant vapor. However, in the method of the third embodiment, the separated absorption liquid is introduced into the gas phase portion 2Q of the intermediate temperature regenerator 2, and therefore, this is not present. In addition, the same code | symbol is attached | subjected to the equivalent part in FIG.

出口パイプ26から流出する吸収液が、後段の吸収液ライン部に導入される一つの実施形態として、図6に示すように、外部気液分離器20内の分離された吸収液が所定レベル以上で開くバルブ21を通して、中温再生器2内の吸収液2P中へ導入する方式がある。この場合の外部気液分離器20は、図3に示すように、開閉バルブ21を備えたものである。これによって、冷媒蒸気が混入しない吸収液が中温再生器2内に溜まった吸収液2P中に流入されることとなり、上記同様に、分離された吸収液と共に若干の冷媒蒸気が流れた場合の熱ロスによる効率低下の懸念もなく、優れた効果を奏することができる。また、上記のようなハンマー音の懸念もないものとなる。なお、図1と同等部には同一符号を付している。   As one embodiment in which the absorption liquid flowing out from the outlet pipe 26 is introduced into the absorption liquid line section in the subsequent stage, as shown in FIG. 6, the separated absorption liquid in the external gas-liquid separator 20 exceeds a predetermined level. There is a method of introducing into the absorbing liquid 2P in the intermediate temperature regenerator 2 through the valve 21 opened at. The external gas-liquid separator 20 in this case is provided with an open / close valve 21 as shown in FIG. As a result, the absorbing liquid not mixed with the refrigerant vapor flows into the absorbing liquid 2P accumulated in the intermediate temperature regenerator 2, and similarly to the above, the heat generated when some refrigerant vapor flows with the separated absorbing liquid. There is no concern about efficiency reduction due to loss, and an excellent effect can be achieved. Further, there is no concern about the hammer sound as described above. In addition, the same code | symbol is attached | subjected to the equivalent part in FIG.

出口パイプ26から流出する吸収液が、後段の吸収液ライン部に導入される一つの実施形態として、図6に示すように、分離された吸収液は、多段オリフィス又はキャピラリチューブ28を通して、中温再生器2内の吸収液2P中へ導入する方式がある。この場合の外部気液分離器20は、図2に示すように開閉バルブ21を備えないものでも適用できる。これによって、貯留部25に溜まった吸収液に冷媒蒸気が若干混入していても、体積膨張している冷媒蒸気は、この多段オリフィス又はキャピラリチューブ28によって流れが制限されるが、吸収液はスムースに流れるため、冷媒蒸気の混入が少ない吸収液が中温再生器2内に溜まった吸収液2P中に流入されることとなり、分離された吸収液と共に冷媒蒸気が流れた場合の熱ロスによる効率低下も少なくなり、所期の目的を達成することができる。なお、図1と同等部には同一符号を付している。   As one embodiment in which the absorption liquid flowing out from the outlet pipe 26 is introduced into the subsequent absorption liquid line section, as shown in FIG. 6, the separated absorption liquid passes through a multistage orifice or capillary tube 28 and is regenerated at a medium temperature. There is a method of introducing into the absorbing liquid 2P in the vessel 2. The external gas-liquid separator 20 in this case can be applied even if it does not include the on-off valve 21 as shown in FIG. As a result, even if the refrigerant vapor is slightly mixed in the absorption liquid stored in the storage section 25, the flow of the refrigerant vapor that has expanded in volume is restricted by this multistage orifice or capillary tube 28, but the absorption liquid is smooth. Therefore, the absorption liquid with little refrigerant vapor mixing flows into the absorption liquid 2P accumulated in the intermediate temperature regenerator 2, and the efficiency decreases due to heat loss when the refrigerant vapor flows together with the separated absorption liquid. And the intended purpose can be achieved. In addition, the same code | symbol is attached | subjected to the equivalent part in FIG.

本発明は、上記実施形態に限定されず、吸収式冷凍機の配管図は従来技術に記載した特許文献1の各図の形態のいずれにも適用可能であり、本発明の技術的範囲を逸脱しない限り種々の形態に適用できるものである。   The present invention is not limited to the above embodiment, and the piping diagram of the absorption chiller can be applied to any of the forms shown in Patent Document 1 described in the prior art, and deviates from the technical scope of the present invention. Unless otherwise specified, the present invention can be applied to various forms.

本発明に係る吸収式冷凍機の第1の実施形態の説明図である。(実施例1)It is explanatory drawing of 1st Embodiment of the absorption refrigerator which concerns on this invention. Example 1 本発明に係る外部気液分離器の一つの形態を示す説明図である。(実施例1)It is explanatory drawing which shows one form of the external gas-liquid separator which concerns on this invention. Example 1 本発明に係る外部気液分離器の他の形態を示す説明図である。(実施例1)It is explanatory drawing which shows the other form of the external gas-liquid separator which concerns on this invention. Example 1 本発明に係る吸収式冷凍機の他の実施形態の説明図である。(実施例2)It is explanatory drawing of other embodiment of the absorption refrigerator which concerns on this invention. (Example 2) 本発明に係る吸収式冷凍機の他の実施形態の説明図である。(実施例3)It is explanatory drawing of other embodiment of the absorption refrigerator which concerns on this invention. (Example 3) 本発明に係る吸収式冷凍機の他の実施形態の説明図である。(実施例4)と(実施例5)It is explanatory drawing of other embodiment of the absorption refrigerator which concerns on this invention. (Example 4) and (Example 5)

符号の説明Explanation of symbols

1 高温再生器
2 中温再生器
2P 吸収液
2Q 気相部
3 低温再生器
3P 吸収液
3Q 気相部
4 凝縮器
5 蒸発器
6 吸収器
7 低温熱交換器
8 中温熱交換器
9 高温熱交換器
10、11 吸収液ポンプ
12 冷媒ポンプ
13 冷水管
14 冷却水管
20 外部気液分離器
21 開閉バルブ
22 気液分離要素
23 入口パイプ
24 出口パイプ
25 吸収液貯留部
26 出口パイプ
28 多段オリフィス又はキャピラリチューブ
30 吸収液ライン部
31 吸収液ライン部
32 吸収液ライン部
33 吸収液ライン部
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Medium temperature regenerator 2P Absorption liquid 2Q Gas phase part 3 Low temperature regenerator 3P Absorption liquid 3Q Gas phase part 4 Condenser 5 Evaporator 6 Absorber 7 Low temperature heat exchanger 8 Medium temperature heat exchanger 9 High temperature heat exchanger DESCRIPTION OF SYMBOLS 10, 11 Absorption liquid pump 12 Refrigerant pump 13 Cold water pipe 14 Cooling water pipe 20 External gas-liquid separator 21 On-off valve 22 Gas-liquid separation element 23 Inlet pipe 24 Outlet pipe 25 Absorbing liquid storage part 26 Outlet pipe 28 Multistage orifice or capillary tube 30 Absorption liquid line part 31 Absorption liquid line part 32 Absorption liquid line part 33 Absorption liquid line part

Claims (1)

吸収液を加熱して吸収液に含まれる冷媒を蒸発分離し、冷媒が吸収できるように吸収液を再生する再生器として高温再生器、中温再生器、低温再生器を備えた吸収冷凍機において、前記高温再生器は、吸収液から蒸発分離した冷媒蒸気と濃縮された吸収液に分離する気液分離器を内蔵しており、前記高温再生器と前記中温再生器の間のラインに前記高温再生器を出た冷媒蒸気が流入する外部気液分離器を設け、この外部気液分離器によって前記高温再生器を出た冷媒蒸気とその冷媒蒸気に混入した吸収液を分離し、この分離された冷媒蒸気は前記中温再生器の冷媒ライン部に流入し、この分離された吸収液は、前記中温再生器から前記低温再生器への吸収液ライン部へ導入されることを特徴とする吸収冷凍機。   In an absorption refrigerator equipped with a high-temperature regenerator, a medium-temperature regenerator, and a low-temperature regenerator as a regenerator that regenerates the absorbent so that the refrigerant can be absorbed by evaporating and separating the refrigerant contained in the absorbent and absorbing the refrigerant. The high-temperature regenerator has a built-in gas-liquid separator that separates the refrigerant vapor evaporated from the absorption liquid and the concentrated absorption liquid, and the high-temperature regenerator is in a line between the high-temperature regenerator and the intermediate-temperature regenerator. An external gas-liquid separator into which the refrigerant vapor exiting the reactor flows is provided, and the external gas-liquid separator separates the refrigerant vapor exiting the high-temperature regenerator and the absorbing liquid mixed in the refrigerant vapor, and separated. The refrigerant vapor flows into the refrigerant line portion of the intermediate temperature regenerator, and the separated absorption liquid is introduced into the absorption liquid line portion from the intermediate temperature regenerator to the low temperature regenerator. .
JP2006088934A 2006-03-28 2006-03-28 Absorption refrigerator Expired - Fee Related JP5075346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006088934A JP5075346B2 (en) 2006-03-28 2006-03-28 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006088934A JP5075346B2 (en) 2006-03-28 2006-03-28 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2007263461A JP2007263461A (en) 2007-10-11
JP5075346B2 true JP5075346B2 (en) 2012-11-21

Family

ID=38636619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006088934A Expired - Fee Related JP5075346B2 (en) 2006-03-28 2006-03-28 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP5075346B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103471281A (en) * 2013-04-03 2013-12-25 李华玉 Branch-cycle first-class absorption heat pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103940142B (en) * 2013-04-03 2016-08-17 李华玉 Branch-cycle first-class absorption type heat pump

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974471A (en) * 1982-10-19 1984-04-26 大阪瓦斯株式会社 Absorption type heat pump
JPS61262566A (en) * 1985-05-16 1986-11-20 ダイキン工業株式会社 Absorption type refrigerator
JPH0646126B2 (en) * 1985-12-11 1994-06-15 三洋電機株式会社 Double-effect absorption refrigerating machine of cold temperature switching type
JPH05223392A (en) * 1992-02-12 1993-08-31 Osaka Gas Co Ltd Double effect absorption cold/warm water device
JP3056987B2 (en) * 1995-09-05 2000-06-26 リンナイ株式会社 Absorption cooling system
JP3700330B2 (en) * 1997-06-25 2005-09-28 ダイキン工業株式会社 Absorption refrigeration system
JPH11159906A (en) * 1997-11-27 1999-06-15 Matsushita Electric Ind Co Ltd Absorption heat pump system
JP4562325B2 (en) * 2001-07-19 2010-10-13 三洋電機株式会社 Absorption refrigerator
JP2003065626A (en) * 2001-08-22 2003-03-05 Hitachi Ltd Absorption water cooler-heater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103471281A (en) * 2013-04-03 2013-12-25 李华玉 Branch-cycle first-class absorption heat pump
CN103471282A (en) * 2013-04-03 2013-12-25 李华玉 Branch-cycle first-class absorption heat pump
CN103471281B (en) * 2013-04-03 2015-11-25 李华玉 Branch-cycle first-class absorption type heat pump
CN103471282B (en) * 2013-04-03 2015-11-25 李华玉 Branch-cycle first-class absorption type heat pump

Also Published As

Publication number Publication date
JP2007263461A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4885467B2 (en) Absorption heat pump
JP3445941B2 (en) Multi-stage evaporative absorption type absorption chiller / heater and large temperature difference air conditioning system equipped with the same
JP2008116173A (en) Absorption type refrigerating machine
JP2011163601A (en) Absorption type heat pump device
JP5075346B2 (en) Absorption refrigerator
JP2007147148A (en) Absorption heat pump
JP2012202589A (en) Absorption heat pump apparatus
JP2007333342A (en) Multi-effect absorption refrigerating machine
JP5570969B2 (en) Exhaust gas heat recovery device and absorption refrigerator
KR0177718B1 (en) Ammonia absorptive cooler/heater
JP3443100B2 (en) Absorption refrigerator and method of operating the same
JP3813348B2 (en) Absorption refrigerator
JP2011094910A (en) Absorption refrigerating machine
KR100955610B1 (en) Non-condensed gas extracting device of absorption type cooling and heating apparatus
JP2011047522A (en) Absorption refrigerating machine
JP3663008B2 (en) Absorption chiller / heater
JP4330522B2 (en) Absorption refrigerator operation control method
JP3484142B2 (en) 2-stage double-effect absorption refrigerator
JP4201418B2 (en) Control method of absorption chiller / heater
JP4073219B2 (en) Absorption chiller / heater
JP4007541B2 (en) Operation method for preventing flue wall corrosion at partial load in multi-effect absorption refrigerator / cooling / heating machine
KR200142462Y1 (en) Absorption type cooler
KR0184213B1 (en) Absorptive cycle apparatus
JP3161321B2 (en) Absorption heat pump
JP2001317835A (en) Absorption refrigeration machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

R151 Written notification of patent or utility model registration

Ref document number: 5075346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees