JP2001317835A - Absorption refrigeration machine - Google Patents

Absorption refrigeration machine

Info

Publication number
JP2001317835A
JP2001317835A JP2000142285A JP2000142285A JP2001317835A JP 2001317835 A JP2001317835 A JP 2001317835A JP 2000142285 A JP2000142285 A JP 2000142285A JP 2000142285 A JP2000142285 A JP 2000142285A JP 2001317835 A JP2001317835 A JP 2001317835A
Authority
JP
Japan
Prior art keywords
temperature
absorber
low
refrigerant
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000142285A
Other languages
Japanese (ja)
Other versions
JP3832191B2 (en
Inventor
Tatsuro Fujii
達郎 藤居
Akira Nishiguchi
章 西口
Tomihisa Ouchi
富久 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000142285A priority Critical patent/JP3832191B2/en
Publication of JP2001317835A publication Critical patent/JP2001317835A/en
Application granted granted Critical
Publication of JP3832191B2 publication Critical patent/JP3832191B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a refrigerant in a high temperature evaporator and cooling water cooled in the high temperature evaporator from being frozen in an absorption refrigerating machine which includes two stages of the evaporators and two stages of the absorbers. SOLUTION: The absorption refrigerating machine 200 includes a low temperature evaporator 1, a low temperature absorber 2, a high temperature evaporator 3, and a high temperature absorber 4. A solution heated and condensed in a high temperature regenerator 7 and a low temperature regenerator 6 is guided to an intermediate temperature solution heat exchanger 9. The solution is heat- exchanged with a solution guided from the low temperature absorber and the high temperature absorber in the intermediate temperature solution heat exchanger, and then part thereof is guided to the side of the low temperature absorber with the remaining part guided to the side of the high temperature absorber. The amount of the solution guided to the side of the low temperature absorber is controlled by a control device 100 using a control valve 45a. When at least any of the refrigerant temperature, heat transfer medium temperature, and cooling water temperature is lowered to a predetermined temperature, the control valve is opened.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、作動温度の異なる
2組の蒸発器と吸収器を有する吸収冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention
The present invention relates to an absorption refrigerator having two sets of evaporators and absorbers.

【0002】[0002]

【従来の技術】従来の吸収冷凍機では、例えば特開平1
1−304277号公報に記載のように、高温再生器と
低温再生器で濃縮された吸収溶液の全てを、高温吸収器
に導いている。そして、高温吸収器から流出した溶液
を、低温溶液熱交換器の加熱側を経由して低温吸収器に
導いている。その結果、低温吸収器における吸収溶液の
入口濃度を、高温吸収器における吸収溶液の出口濃度に
同じにしている。また、高温蒸発器の加熱側と低温吸収
器の被加熱側を配管で接続して、蒸発熱と吸収熱を授受
していた。
2. Description of the Related Art A conventional absorption refrigerator is disclosed in, for example,
As described in JP-A-1-304277, all of the absorption solutions concentrated in the high-temperature regenerator and the low-temperature regenerator are led to the high-temperature absorber. Then, the solution flowing out of the high-temperature absorber is guided to the low-temperature absorber via the heating side of the low-temperature solution heat exchanger. As a result, the inlet concentration of the absorbing solution in the low temperature absorber is made the same as the outlet concentration of the absorbing solution in the high temperature absorber. In addition, the heating side of the high-temperature evaporator and the heated side of the low-temperature absorber are connected by a pipe to transfer the heat of evaporation and the heat of absorption.

【0003】[0003]

【発明が解決しようとする課題】上記公報に記載の吸収
冷凍機では、高温吸収器に供給される冷却水の温度が低
下すると、高温蒸発器内の圧力が低下して冷媒が凍結す
るおそれがある。そのため、冷却水温度の下限値を高く
設定する必要があり、冷却水温度の許容範囲が小さい。
また、冷媒凍結を回避しようとして高温再生器の入熱量
を低下させると、低温蒸発器における伝熱量が低下し、
所望の冷凍能力が得られなくなる。さらに、吸収サイク
ル全体の温度レベルを上げて、冷媒凍結を回避すると低
温蒸発器の蒸発温度も上昇して所望の冷凍温度が得られ
なくなる。
In the absorption refrigerator described in the above publication, when the temperature of the cooling water supplied to the high-temperature absorber decreases, the pressure in the high-temperature evaporator decreases, and the refrigerant may freeze. is there. Therefore, it is necessary to set the lower limit of the cooling water temperature high, and the allowable range of the cooling water temperature is small.
Also, if the amount of heat input to the high-temperature regenerator is reduced to avoid refrigerant freezing, the amount of heat transfer in the low-temperature evaporator decreases,
The desired refrigeration capacity cannot be obtained. Furthermore, if the temperature level of the entire absorption cycle is increased to avoid freezing of the refrigerant, the evaporation temperature of the low-temperature evaporator also increases, and a desired refrigeration temperature cannot be obtained.

【0004】さらに、上記特開平11-304277号公報に記
載の吸収冷凍機では、高温蒸発器の加熱側と低温吸収器
の被加熱側を接続しているので、管内を流れる伝熱媒体
に広く採用されている水(冷却水)を用いると、管内温度
が低下して高温蒸発器の管内を流れる水が凍結する恐れ
がある。高温蒸発器内の伝熱管が破損すると、真空破壊
を生じ、吸収冷凍機の故障の一因となる。この不具合を
回避するために、伝熱媒体にブライン等の不凍液を用い
るとコストが増大する。なお、伝熱媒体を水から他の媒
体に変更すると伝熱性能が低下し、それに伴い伝熱面積
の増大や蒸発器の大型化を引き起こす。
Further, in the absorption refrigerator described in Japanese Patent Application Laid-Open No. H11-304277, the heating side of the high-temperature evaporator and the heated side of the low-temperature absorber are connected, so that the heat transfer medium flowing in the pipe is widely used. If the employed water (cooling water) is used, there is a possibility that the temperature in the pipe is lowered and the water flowing in the pipe of the high-temperature evaporator is frozen. If the heat transfer tube in the high-temperature evaporator is damaged, vacuum breakage occurs, which causes a failure of the absorption refrigerator. If an antifreeze such as brine is used as the heat transfer medium to avoid this problem, the cost increases. In addition, when the heat transfer medium is changed from water to another medium, the heat transfer performance is reduced, which causes an increase in the heat transfer area and an increase in the size of the evaporator.

【0005】本発明は、上記従来技術の不具合に鑑みな
されたものであり、その目的は、吸収冷凍機における冷
媒や伝熱媒体の凍結を防止することにある。本発明の他
の目的は、氷温以下の冷熱を取り出すことができる、信
頼性の高い吸収冷凍機を実現することにある。そして本
発明では、少なくともこれらのいずれかの目的を達成す
ればよい。
The present invention has been made in view of the above-mentioned disadvantages of the related art, and has as its object to prevent freezing of a refrigerant and a heat transfer medium in an absorption refrigerator. Another object of the present invention is to realize a highly reliable absorption refrigerator capable of extracting cold heat equal to or lower than ice temperature. In the present invention, at least one of these objects may be achieved.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明の第1の特徴は、再生器、凝縮器、高温蒸発
器、低温蒸発器、高温吸収器及び低温吸収器を備えた吸
収冷凍機において、再生器で加熱凝縮された濃溶液を、
低温吸収器及び高温吸収器で冷媒を吸収して薄められた
稀溶液と熱交換する熱交換器を設け、この熱交換器で熱
交換して冷却された濃溶液を高温吸収器に導く第1の流
路と前記低温吸収器に導く第2の流路とを設けたもので
ある。
A first feature of the present invention to achieve the above object is to provide a regenerator, a condenser, a high-temperature evaporator, a low-temperature evaporator, a high-temperature absorber, and an absorption device having a low-temperature absorber. In the refrigerator, the concentrated solution heated and condensed in the regenerator
A first heat exchanger that absorbs the refrigerant with the low-temperature absorber and the high-temperature absorber and exchanges heat with the diluted solution that has been diluted, and guides the concentrated solution cooled by exchanging heat with the heat exchanger to the high-temperature absorber; And a second flow path leading to the low-temperature absorber.

【0007】そして好ましくは、第2の流路に流量制御
手段を設ける;高温蒸発器に冷媒温度を検出する冷媒温
度検出手段を設け、この冷媒温度を検出手段が検出した
冷媒温度に基づいて前記流量制御手段を制御するもので
ある。
Preferably, a flow rate control means is provided in the second flow path; a refrigerant temperature detection means for detecting a refrigerant temperature is provided in the high-temperature evaporator, and the refrigerant temperature is determined based on the refrigerant temperature detected by the detection means. It controls the flow control means.

【0008】上記目的を達成する本発明の第2の特徴
は、再生器、凝縮器、高温蒸発器、低温蒸発器、冷却水
が内部を流通する高温吸収器、及び低温吸収器を備えた
吸収冷凍機において、高温蒸発器の冷媒温度を検出する
冷媒温度検出手段と、この冷媒検出手段が検出した冷媒
温度に基づいて高温吸収器内を流通する冷却水の温度と
流量の少なくともいずれかを制御する制御装置とを備え
たものである。
A second feature of the present invention to achieve the above object is that a regenerator, a condenser, a high-temperature evaporator, a low-temperature evaporator, a high-temperature absorber through which cooling water flows, and an absorption device having a low-temperature absorber. In the refrigerator, a refrigerant temperature detecting means for detecting a refrigerant temperature of the high-temperature evaporator, and at least one of a temperature and a flow rate of cooling water flowing through the high-temperature absorber based on the refrigerant temperature detected by the refrigerant detecting means. And a control device.

【0009】上記目的を達成するための本発明の第3の
特徴は、再生器、凝縮器、高温蒸発器、低温蒸発器、冷
却水が流通する高温吸収器、及び低温吸収器を備えた吸
収冷凍機において、高温蒸発器と低温吸収器間を伝熱媒
体が循環する循環路を形成し、この循環路に伝熱媒体の
温度を検出する伝熱媒体温度検出手段を設け、この温度
検出手段が検出した伝熱媒体温度に基づいて高温吸収器
内を流通する冷却水の温度と流量の少なくともいずれか
を制御する制御装置とを備えたものである。
A third feature of the present invention to achieve the above object is that a regenerator, a condenser, a high-temperature evaporator, a low-temperature evaporator, a high-temperature absorber through which cooling water flows, and an absorption device having a low-temperature absorber In the refrigerator, a circulation path for circulating the heat transfer medium between the high-temperature evaporator and the low-temperature absorber is formed, and a heat transfer medium temperature detection means for detecting the temperature of the heat transfer medium is provided in the circulation path. And a control device for controlling at least one of the temperature and the flow rate of the cooling water flowing through the high-temperature absorber based on the detected heat transfer medium temperature.

【0010】上記目的を達成する本発明の第4の特徴
は、高温再生器、低温再生器、凝縮器、高温蒸発器、低
温蒸発器、冷却水が流通する高温吸収器、及び低温吸収
器を備えた吸収冷凍機において、高温蒸発器と低温吸収
器間を伝熱媒体が循環する循環路と、この循環路に設け
た伝熱媒体の温度を検出する伝熱媒体の温度検出手段
と、高温吸収器の冷却水入口と高温吸収器から外部へ冷
却水が流出する流出部より下流位置とを結ぶバイパス配
管と、このバイパス配管中に設けられた流量制御手段
と、温度検出手段が検出した伝熱媒体温度に基づいて高
温吸収器内を流通する冷却水の流量を流量制御手段を用
いて制御する制御装置とを備えたものである。そして、
上記各特徴ににおいて、冷媒は水であり、溶液は臭化リ
チウム水溶液であることが望ましい。
A fourth feature of the present invention to achieve the above object is that a high-temperature regenerator, a low-temperature regenerator, a condenser, a high-temperature evaporator, a low-temperature evaporator, a high-temperature absorber through which cooling water flows, and a low-temperature absorber are provided. In the absorption refrigerator provided with, a circulation path through which the heat transfer medium circulates between the high-temperature evaporator and the low-temperature absorber, a heat transfer medium temperature detecting means for detecting the temperature of the heat transfer medium provided in the circulation path, A bypass pipe connecting the cooling water inlet of the absorber to a position downstream of the outlet from which the cooling water flows out of the high-temperature absorber, a flow control means provided in the bypass pipe, and a transmission line detected by the temperature detecting means. A control device that controls the flow rate of the cooling water flowing through the high-temperature absorber based on the temperature of the heat medium using flow rate control means. And
In each of the above features, it is desirable that the refrigerant is water and the solution is a lithium bromide aqueous solution.

【0011】上記目的を達成する本発明の第5の特徴
は、冷媒に水を、吸収剤に臭化リチウムを用い、高温吸
収器、低温吸収器、高温蒸発器、低温蒸発器を備えた吸
収式冷凍機において、低温吸収器に流入する溶液濃度を
高温吸収器から流出する溶液濃度より高くする制御手段
を設けたものである。
A fifth feature of the present invention that achieves the above object is that water is used as a refrigerant and lithium bromide is used as an absorbent, and is provided with a high-temperature absorber, a low-temperature absorber, a high-temperature evaporator, and a low-temperature evaporator. In the refrigerating machine, control means is provided for making the concentration of the solution flowing into the low-temperature absorber higher than the concentration of the solution flowing out of the high-temperature absorber.

【0012】[0012]

【発明の実施の形態】以下、本発明の吸収冷凍機の一実
施例を、図1を用いて説明する。吸収冷凍機200は、
低温蒸発器1、低温吸収器2、高温蒸発器3、高温吸収
器4、凝縮器5、低温再生器6、高温再生器7、低温溶
液熱交換器8、中温溶液熱交換器9、高温溶液熱交換器
10およびドレンクーラ71とを備えている。吸収冷凍
機200の内部には作動流体として冷媒と吸収溶液が充
填されている。冷媒は水で、吸収溶液は臭化リチウム水
溶液である。吸収冷凍機200を構成する上記各機器は、
配管で接続されている。その配管中には、溶液ポンプ2
1、41、61、希薄溶液ポンプ12、冷媒ポンプ3
1、熱媒体ポンプ33、冷却水ポンプ43が配置されて
いる。また、配管またはその内部を流れる作動流体の温
度を検出する温度センサ14、34、35、44が、配
管中または配管近傍に取付けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of an absorption refrigerator according to the present invention will be described below with reference to FIG. Absorption refrigerator 200
Low temperature evaporator 1, Low temperature absorber 2, High temperature evaporator 3, High temperature absorber 4, Condenser 5, Low temperature regenerator 6, High temperature regenerator 7, Low temperature solution heat exchanger 8, Medium temperature solution heat exchanger 9, High temperature solution The heat exchanger 10 and the drain cooler 71 are provided. The inside of the absorption refrigerator 200 is filled with a refrigerant and an absorption solution as working fluids. The refrigerant is water and the absorbing solution is an aqueous solution of lithium bromide. Each of the above devices constituting the absorption refrigerator 200 is
They are connected by piping. In the piping, there is a solution pump 2
1, 41, 61, dilute solution pump 12, refrigerant pump 3
1. A heat medium pump 33 and a cooling water pump 43 are provided. In addition, temperature sensors 14, 34, 35, and 44 for detecting the temperature of the working fluid flowing through the pipe or the inside thereof are mounted in the pipe or in the vicinity of the pipe.

【0013】このように構成した吸収冷凍機200にお
いては、高温再生器7および低温再生器6において、冷
媒は吸収溶液から加熱分離され冷媒蒸気になる。高温再
生器7で発生した冷媒蒸気は、低温再生器6内に設けた
伝熱管6aに導かれる。その際、低温再生器6内の上部
に配置した散布装置6bから伝熱管6aの周囲に散布さ
れた吸収溶液により冷却される。また、伝熱管6a外で
発生した冷媒蒸気は凝縮器5に導かれ、凝縮器5内に配
置した伝熱管5a内を流れる冷却水により冷却される。
これら、伝熱管5a、6a内を流れる冷媒は、冷却されて
凝縮する。凝縮した冷媒は凝縮器5の底部に導かれた
後、配管51を介して高温蒸発器3に導かれる。
In the absorption refrigerator 200 thus configured, the refrigerant is heated and separated from the absorption solution into the refrigerant vapor in the high-temperature regenerator 7 and the low-temperature regenerator 6. The refrigerant vapor generated in the high-temperature regenerator 7 is guided to a heat transfer tube 6 a provided in the low-temperature regenerator 6. At this time, cooling is performed by the absorbing solution sprayed around the heat transfer tube 6a from the spraying device 6b disposed in the upper part of the low-temperature regenerator 6. Further, the refrigerant vapor generated outside the heat transfer tube 6a is guided to the condenser 5, and is cooled by cooling water flowing in the heat transfer tube 5a arranged in the condenser 5.
These refrigerants flowing through the heat transfer tubes 5a and 6a are cooled and condensed. The condensed refrigerant is guided to the bottom of the condenser 5 and then to the high-temperature evaporator 3 via the pipe 51.

【0014】高温蒸発器3に導かれた冷媒は、高温蒸発
器3の底部の冷媒溜り3cに溜められる。そして、この
冷媒溜り3cに配管を介して接続された冷媒ポンプ31
により、その一部が高温蒸発器3に送られる。そして高
温蒸発器3内の上部に配置された冷媒散布手段3bか
ら、高温蒸発器3内に配置された伝熱管3aの周囲に散
布される。その際、伝熱管3a内を流れる伝熱媒体によ
り加熱されて蒸発し、冷媒蒸気となる。発生した冷媒蒸
気は、高温吸収器4に導かれ、吸収溶液に吸収される。
高温蒸発器3の冷媒溜り3cに溜まった冷媒の残りの一
部は、配管11を介して低温蒸発器1の下部に設けた冷
媒溜り1cに導かれる。
The refrigerant guided to the high-temperature evaporator 3 is stored in a refrigerant reservoir 3c at the bottom of the high-temperature evaporator 3. The refrigerant pump 31 connected to the refrigerant reservoir 3c via a pipe.
Is sent to the high-temperature evaporator 3. Then, the refrigerant is scattered around the heat transfer tube 3a disposed in the high-temperature evaporator 3 from the refrigerant distribution means 3b disposed in the upper part of the high-temperature evaporator 3. At that time, it is heated and evaporated by the heat transfer medium flowing in the heat transfer tube 3a, and becomes a refrigerant vapor. The generated refrigerant vapor is guided to the high-temperature absorber 4 and is absorbed by the absorbing solution.
The remaining part of the refrigerant accumulated in the refrigerant reservoir 3c of the high-temperature evaporator 3 is guided via the pipe 11 to the refrigerant reservoir 1c provided at the lower part of the low-temperature evaporator 1.

【0015】低温蒸発器1内の冷媒には、少量の吸収剤
が混入されている。この吸収剤が混入した希薄溶液であ
る冷媒の濃度は、0℃以下においても凍結しない濃度に
調整されている。この希薄溶液は、希薄溶液ポンプ12
により低温蒸発器1の冷媒溜り1cから低温蒸発器1内
の上部に設けられたに散布装置1bに送られる。そし
て、散布装置1bから低温蒸発器1内に配置した蒸発伝
熱管1aの周囲に散布される。その際、伝熱管1a内を流
れる冷熱媒体により加熱される。
The refrigerant in the low-temperature evaporator 1 contains a small amount of absorbent. The concentration of the refrigerant, which is a dilute solution mixed with the absorbent, is adjusted to a concentration that does not freeze even at 0 ° C. or lower. The diluted solution is supplied to the diluted solution pump 12
Thereby, the refrigerant is sent from the refrigerant reservoir 1c of the low-temperature evaporator 1 to the spraying device 1b provided at the upper part in the low-temperature evaporator 1. Then, it is sprayed from the spraying device 1b around the evaporation heat transfer tube 1a arranged in the low-temperature evaporator 1. At this time, it is heated by the cooling medium flowing in the heat transfer tube 1a.

【0016】希薄溶液が加熱されると、希薄溶液から冷
媒の一部が蒸発して、冷媒蒸気を発生する。発生した冷
媒蒸気は低温吸収器2に導かれ、低温吸収器2内の吸収
溶液に吸収される。蒸発しないで残った冷媒と吸収剤
(臭化リチウム)は、伝熱管1aの回りを伝ってまたは回
りから冷媒溜り1cに流下する。この流下した冷媒は、
高温蒸発器からの冷媒と混合し、再び希薄溶液ポンプ1
2によって散布装置1bに送られる。
When the dilute solution is heated, a part of the refrigerant evaporates from the dilute solution to generate refrigerant vapor. The generated refrigerant vapor is led to the low-temperature absorber 2 and is absorbed by the absorbing solution in the low-temperature absorber 2. Refrigerant and absorbent remaining without evaporation
(Lithium bromide) flows down or around the heat transfer tube 1a to the refrigerant reservoir 1c. This flowing refrigerant is
Mixed with the refrigerant from the high-temperature evaporator,
2 to the spraying device 1b.

【0017】蒸発伝熱管1a内を流通する冷熱媒体は、
冷媒の蒸発熱によって冷却される。その後、冷熱媒体配
管13を介して吸収冷凍機200から冷熱需要先に供給
される。冷熱需要先で冷熱を利用して温度が上昇した冷
熱媒体は、再び低温蒸発器1に導かれて冷却される。冷
熱媒体は、このように吸収冷凍機200と図示しない冷
熱需要先との間を循環する。なお、本実施例において
は、温度が0℃以下となっても凍結しないブライン等の
不凍液を冷熱媒体に用いている。
The cooling medium flowing through the evaporative heat transfer tube 1a is:
Cooled by the heat of evaporation of the refrigerant. Thereafter, the refrigerant is supplied from the absorption refrigerator 200 to the cold heat demand destination via the cold heat medium pipe 13. The cooling medium whose temperature has increased by utilizing the cold heat at the cold heat demand destination is guided again to the low-temperature evaporator 1 and cooled. The cooling medium thus circulates between the absorption refrigerator 200 and a cold heat demand destination (not shown). In the present embodiment, an antifreeze such as brine which does not freeze even when the temperature becomes 0 ° C. or lower is used as the cooling medium.

【0018】低温吸収器2内には、吸収伝熱管2aが配
置されている。吸収伝熱管2aの回りに、吸収溶液が散
布装置2bから散布されている。散布された吸収溶液は
吸収伝熱管2a内を流れる伝熱媒体により冷却され、低
温蒸発器2内に漂う冷媒蒸気を吸収する。吸収熱を奪っ
て温度が上昇した伝熱媒体は、吸収伝熱管2aと蒸発伝
熱管3aとを接続する配管32およびこの配管32に介
在させた熱媒体ポンプ33により、高温蒸発器3の蒸発
伝熱管3aに導かれる。蒸発伝熱管3aの内部を流通する
伝熱媒体は、蒸発伝熱管の周囲で蒸発する冷媒の蒸発熱
により、冷却される。そして、再び低温吸収器2に戻
る。伝熱媒体は、吸収冷凍機200と図示しない冷熱需
要先との間を循環する。なお、本実施例では熱媒体に、
安価で熱伝達特性の良い水を用いている。
In the low temperature absorber 2, an absorption heat transfer tube 2a is arranged. Around the absorption heat transfer tube 2a, the absorption solution is sprayed from the spraying device 2b. The sprayed absorption solution is cooled by the heat transfer medium flowing in the absorption heat transfer tube 2a, and absorbs the refrigerant vapor floating in the low-temperature evaporator 2. The heat transfer medium whose temperature has risen due to deprivation of the absorbed heat is evaporated by the high-temperature evaporator 3 by a pipe 32 connecting the absorption heat transfer pipe 2a and the evaporative heat transfer pipe 3a and a heat medium pump 33 interposed in the pipe 32. It is led to the heat tube 3a. The heat transfer medium flowing inside the evaporative heat transfer tube 3a is cooled by the evaporation heat of the refrigerant evaporating around the evaporative heat transfer tube. Then, the process returns to the low-temperature absorber 2 again. The heat transfer medium circulates between the absorption refrigerator 200 and a cold heat demand destination (not shown). In this embodiment, the heat medium is
Inexpensive water with good heat transfer characteristics is used.

【0019】低温吸収器2で冷媒蒸気を吸収した溶液
は、低温吸収器の下部に設けた溶液溜め2cに溜められ
る。溶液溜め2cに溜められた溶液は、溶液ポンプ21
により、低温溶液熱交換器8、中温溶液熱交換器9およ
びドレンクーラ71に順に送られる。そしてこれら各機
器で順次加熱される。 ところで、高温再生器7には流
量調整用のフロートバルブ74が設けられている。ドレ
ンクーラ71を経た溶液は、このフロートバルブ74に
導かれる。そして、フロートバルブ74を経た後は二分
されて、その一方が溶液配管75を介して高温溶液熱交
換器10に導かれる。高温溶液熱交換器10で加熱され
た溶液は、高温再生器7に導かれる。フロートバルブ7
4を経た溶液の残りは、低温再生器6に導かれ、低温再
生器6内の上部に配置された散布装置6bから、低温再
生器内6内の伝熱管6aの周囲に散布される。
The solution having absorbed the refrigerant vapor in the low-temperature absorber 2 is stored in a solution storage 2c provided below the low-temperature absorber. The solution stored in the solution storage 2c is supplied to the solution pump 21
Thereby, it is sent to the low-temperature solution heat exchanger 8, the medium-temperature solution heat exchanger 9, and the drain cooler 71 in this order. Then, each of these devices is sequentially heated. Incidentally, the high temperature regenerator 7 is provided with a float valve 74 for adjusting the flow rate. The solution that has passed through the drain cooler 71 is guided to the float valve 74. After passing through the float valve 74, it is divided into two parts, one of which is guided to the high-temperature solution heat exchanger 10 via the solution pipe 75. The solution heated by the high-temperature solution heat exchanger 10 is led to the high-temperature regenerator 7. Float valve 7
The rest of the solution that has passed through 4 is led to the low-temperature regenerator 6 and is sprayed around a heat transfer tube 6a in the low-temperature regenerator 6 from a spraying device 6b disposed in the upper part of the low-temperature regenerator 6.

【0020】高温再生器7に導かれた溶液は、熱源蒸気
により加熱濃縮され、冷媒蒸気を発生する。ここで、熱
源蒸気は入熱量調整用の制御弁73を有する配管から、
高温再生器7の加熱側に導かれている。熱源蒸気が吸収
溶液を加熱すると、熱源蒸気は凝縮してドレンを発生す
る。発生したドレンは、ドレンクーラ71に導かれ、中
温溶液熱交換器9を経てドレンクーラ71に導かれた溶
液を加熱する。これにより、ドレンの顕熱が回収され
る。
The solution guided to the high-temperature regenerator 7 is heated and concentrated by the heat source vapor to generate refrigerant vapor. Here, the heat source steam is supplied from a pipe having a control valve 73 for heat input adjustment.
It is led to the heating side of the high temperature regenerator 7. When the heat source vapor heats the absorbing solution, the heat source vapor condenses to generate drain. The generated drain is guided to the drain cooler 71, and heats the solution guided to the drain cooler 71 through the intermediate temperature solution heat exchanger 9. Thereby, the sensible heat of the drain is recovered.

【0021】高温再生器7で加熱濃縮された吸収溶液
は、高温再生器7の流量調整部7aに連通する配管76
を介して高温溶液熱交換器10に導かれる。そして、フ
ロートバルブ74を経た吸収溶液と熱交換するときに、
顕熱が回収される。高温溶液熱交換器10を経た高温再
生器7から導かれた吸収溶液は、低温再生器6からの吸
収溶液と合流した後、溶液ポンプ61により、中温溶液
熱交換器に導かれる。
The absorption solution heated and concentrated in the high-temperature regenerator 7 is supplied to a pipe 76 communicating with the flow rate adjusting section 7a of the high-temperature regenerator 7.
To the high-temperature solution heat exchanger 10. And, when heat exchange with the absorbing solution passed through the float valve 74,
Sensible heat is recovered. The absorption solution led from the high-temperature regenerator 7 via the high-temperature solution heat exchanger 10 joins with the absorption solution from the low-temperature regenerator 6, and is then led to the medium-temperature solution heat exchanger by the solution pump 61.

【0022】一方、低温再生器6に導かれた吸収溶液
は、高温再生器7で発生し伝熱管6a内に導かれた冷媒
蒸気によって加熱濃縮される。その際、冷媒蒸気を発生
する。加熱に用いられた冷媒蒸気は、伝熱管6a内で凝
縮してドレンを発生する。発生したドレンは、低温再生
器6と連通した凝縮器5へ導かれる。ドレンを発生する
際に、凝縮熱で吸収溶液が加熱される。
On the other hand, the absorbing solution guided to the low-temperature regenerator 6 is heated and concentrated by the refrigerant vapor generated in the high-temperature regenerator 7 and guided into the heat transfer tube 6a. At that time, refrigerant vapor is generated. The refrigerant vapor used for heating is condensed in the heat transfer tube 6a to generate drain. The generated drain is led to the condenser 5 communicating with the low-temperature regenerator 6. When draining occurs, the heat of condensation heats the absorbing solution.

【0023】低温再生器6で加熱濃縮された濃溶液とな
った吸収溶液は、高温再生器7から高温溶液熱交換器1
0を経た吸収溶液と合流する。そして、溶液ポンプ61
によって昇圧され、中温溶液熱交換器9で冷却された後
に高温吸収器4に導かれる。
The absorption solution, which has been concentrated by heating and condensing in the low-temperature regenerator 6, is supplied from the high-temperature regenerator 7 to the high-temperature solution heat exchanger 1
Merge with the absorption solution passed through 0. And the solution pump 61
After being pressurized and cooled by the medium temperature solution heat exchanger 9, it is guided to the high temperature absorber 4.

【0024】高温吸収器4内の上部には、散布装置4b
が配置されている。濃縮された吸収溶液は散布装置4b
から、高温吸収器4内に配置した吸収伝熱管4aの周囲
に散布される。そして、伝熱管4a内を流れる冷却水に
よって冷却され、高温蒸発器3内に漂う冷媒蒸気を吸収
する。高温吸収器4の下部には溶液溜め4cが設けられ
ている。冷媒蒸気を吸収した溶液は、この溶液溜め4c
に溜められる。溶液溜め4cの底部に接続された配管中
に設けた溶液ポンプ41が、溶液溜め4cに溜まった溶
液を低温溶液熱交換器8に送る。そして、低温溶液熱交
換器8において、低温吸収器2から送られた吸収溶液と
熱交換して温度が低下した後、低温吸収器2の散布装置
2bに導かれる。
In the upper part of the high-temperature absorber 4, a spraying device 4b
Is arranged. The concentrated absorption solution is applied to the spraying device 4b.
From the absorption heat transfer tube 4a arranged in the high-temperature absorber 4. Then, the refrigerant is cooled by the cooling water flowing in the heat transfer tube 4 a and absorbs the refrigerant vapor floating in the high-temperature evaporator 3. A solution reservoir 4c is provided below the high-temperature absorber 4. The solution that has absorbed the refrigerant vapor is stored in the solution reservoir 4c.
It is stored in. A solution pump 41 provided in a pipe connected to the bottom of the solution reservoir 4c sends the solution accumulated in the solution reservoir 4c to the low-temperature solution heat exchanger 8. Then, in the low-temperature solution heat exchanger 8, the heat is exchanged with the absorption solution sent from the low-temperature absorber 2, and the temperature is reduced.

【0025】高温吸収器4から導かれた溶液は、低温吸
収器2の散布装置2bから、吸収伝熱管2aの周囲に散布
される。吸収伝熱管2aの内部を、高温蒸発器の伝熱管
3a内で冷却された伝熱媒体が流れている。伝熱管2aの
管外の吸収溶液は、この伝熱媒体によって冷却され、低
温蒸発器1内に漂う冷媒蒸気を吸収する。
The solution led from the high-temperature absorber 4 is sprayed from the spraying device 2b of the low-temperature absorber 2 around the absorption heat transfer tube 2a. The heat transfer medium cooled in the heat transfer tube 3a of the high-temperature evaporator flows inside the absorption heat transfer tube 2a. The absorbing solution outside the heat transfer tube 2 a is cooled by the heat transfer medium and absorbs the refrigerant vapor floating in the low-temperature evaporator 1.

【0026】高温再生器7及び低温再生器6で加熱濃縮
された吸収溶液は、中温熱交換器9で低温吸収器2から
導かれた溶液と熱交換して温度低下した後、その一部が
高温吸収器バイパス配管45を介して低温溶液熱交換器
8に導かれ、残りが配管91を経て高温吸収器4の散布
手段4bに導かれる。バイパス配管45には、このバイ
パス配管45内を流れる溶液の流量を調節する制御弁4
5aが設けられている。バイパス配管45を設けたこと
により、低温吸収器2に流入する吸収溶液の濃度が、高
温吸収器4から流出する溶液の濃度よりも高くなる。
The absorption solution heated and concentrated in the high-temperature regenerator 7 and the low-temperature regenerator 6 exchanges heat with the solution introduced from the low-temperature absorber 2 in the medium-temperature heat exchanger 9 to lower the temperature. The liquid is guided to the low-temperature solution heat exchanger 8 via the high-temperature absorber bypass pipe 45, and the remainder is guided to the spraying means 4 b of the high-temperature absorber 4 via the pipe 91. The bypass pipe 45 has a control valve 4 for adjusting the flow rate of the solution flowing in the bypass pipe 45.
5a is provided. By providing the bypass pipe 45, the concentration of the absorbing solution flowing into the low temperature absorber 2 becomes higher than the concentration of the solution flowing out of the high temperature absorber 4.

【0027】このように構成した吸収冷凍機200内を
流れる冷媒や溶液の流量および温度を制御するために、
制御装置100を設けている。制御装置100には、冷
熱媒体出口温度を検出する温度センサ14、伝熱媒体温
度を検出する温度センサ34、高温蒸発器冷媒温度を検
出する温度センサ35および冷却水入口温度を検出する
温度センサ44が検出した各温度信号が入力される。制
御装置はこれらの信号に基づいて、溶液ポンプ21、4
1、61、熱媒体ポンプ33および制御弁45aを制御
する。
In order to control the flow rate and temperature of the refrigerant and the solution flowing in the absorption refrigerator 200 configured as described above,
A control device 100 is provided. The control device 100 includes a temperature sensor 14 for detecting a cooling medium outlet temperature, a temperature sensor 34 for detecting a heat transfer medium temperature, a temperature sensor 35 for detecting a high temperature evaporator refrigerant temperature, and a temperature sensor 44 for detecting a cooling water inlet temperature. Are input. The control device controls the solution pumps 21 and 4 based on these signals.
1, 61, the heat medium pump 33 and the control valve 45a are controlled.

【0028】具体的には、高温蒸発器3の冷媒や伝熱媒
体の温度が低下したとき、すなわち高温蒸発器冷媒温度
と熱媒体温度と冷却水入口温度の少なくともいずれかが
各々の設定値よりも低下したときに、制御装置100は
制御弁45aを開いて高温吸収器のバイパス流量を増加
させる。これとは逆に、上記各温度センサ34、35、
44が検出した温度がすべて各々の設定値以上であれ
ば、制御弁45aを閉じる。
More specifically, when the temperature of the refrigerant or the heat transfer medium in the high-temperature evaporator 3 decreases, that is, at least one of the high-temperature evaporator refrigerant temperature, the heat medium temperature, and the cooling water inlet temperature exceeds the respective set values. When the pressure also decreases, the control device 100 opens the control valve 45a to increase the bypass flow rate of the high temperature absorber. Conversely, each of the temperature sensors 34, 35,
If all the temperatures detected by 44 are equal to or higher than the respective set values, the control valve 45a is closed.

【0029】吸収冷凍機200には、冷却水配管42に
により冷却水が供給される。この冷却水配管42にバイ
パスして、冷却水バイパス配管42aが設けらている。
冷却水バイパス配管42aは、制御弁42bを有してい
る。制御弁42bは制御装置100に接続されている。
Cooling water is supplied to the absorption refrigerator 200 through a cooling water pipe 42. A cooling water bypass pipe 42a is provided to bypass the cooling water pipe 42.
The cooling water bypass pipe 42a has a control valve 42b. The control valve 42b is connected to the control device 100.

【0030】制御装置100は、通常運転時は制御弁4
2bを閉じる。高温蒸発器3の冷媒および伝熱媒体の温
度が低下すると、すなわち高温蒸発器の冷媒温度と伝熱
媒体温度と冷却水入口温度の少なくともいずれかが各々
の設定値より低下すると、制御弁42bを開く。これに
より、冷却水のバイパス流量が増加し、吸収冷凍機に供
給される冷却水の流量が減少する。
The control device 100 controls the control valve 4 during normal operation.
Close 2b. When the temperatures of the refrigerant and the heat transfer medium of the high-temperature evaporator 3 decrease, that is, when at least one of the refrigerant temperature, the heat transfer medium temperature, and the cooling water inlet temperature of the high-temperature evaporator falls below the respective set values, the control valve 42b is turned off. open. Thereby, the bypass flow rate of the cooling water increases, and the flow rate of the cooling water supplied to the absorption refrigerator decreases.

【0031】本実施例においては、高温吸収器をバイパ
スして低温吸収器に溶液を導くバイパス配管45を設け
たので、低温吸収器2に流入する吸収溶液の濃度が上昇
する。吸収溶液濃度が上昇すると吸収温度も上昇し、吸
収伝熱管内を流れる伝熱媒体の温度が上昇する。これに
伴い、伝熱媒体を冷却する高温蒸発器3の蒸発温度が上
昇し、高温蒸発器3の冷媒温度も上昇するから、冷媒の
凍結を防止できる。また、高温蒸発器3と低温吸収器2
とを循環する伝熱媒体に水を用いても、その水の凍結を
防止できる。水が凍結しないので伝熱媒体として水を使
用できるから、ブライン等の不凍液を用いる必要が無く
安価である。水は熱伝達特性が良いので、伝熱面積を小
さくでき、装置の小型化とコストダウンが図れる。
In this embodiment, since the bypass pipe 45 for guiding the solution to the low-temperature absorber by bypassing the high-temperature absorber is provided, the concentration of the absorbing solution flowing into the low-temperature absorber 2 increases. As the absorption solution concentration increases, the absorption temperature also increases, and the temperature of the heat transfer medium flowing in the absorption heat transfer tube increases. Along with this, the evaporation temperature of the high-temperature evaporator 3 for cooling the heat transfer medium rises, and the refrigerant temperature of the high-temperature evaporator 3 also rises, so that freezing of the refrigerant can be prevented. Also, a high-temperature evaporator 3 and a low-temperature absorber 2
Even if water is used as the heat transfer medium that circulates, freezing of the water can be prevented. Since water does not freeze, water can be used as a heat transfer medium, so that there is no need to use an antifreeze such as brine and the cost is low. Since water has good heat transfer characteristics, the heat transfer area can be reduced, and the size and cost of the device can be reduced.

【0032】本実施例においては、冷媒温度センサ35
と熱媒体温度センサ34と冷却水温度センサ44の少な
くともいずれかが検出した温度情報に基づいて、制御装
置が高温吸収器バイパス配管45の流量を制御してい
る。したがって、冷媒や伝熱媒体の凍結の恐れがない通
常運転時には、高温吸収器バイパス配管45の流量をゼ
ロとすることが可能になり、高温吸収器内の吸収伝熱管
に供給する溶液流量を最大にできる。その結果、高温吸
収器の伝熱性能を向上できる。なお、通常運転時にはバ
イパス流量ゼロの高性能運転を行い、冷却水温度が低下
した場合などには冷媒凍結を防止するために制御弁45
aを開いて凍結防止運転を行うことにより、運転可能範
囲を拡大できる。
In this embodiment, the refrigerant temperature sensor 35
The controller controls the flow rate of the high-temperature absorber bypass pipe 45 based on temperature information detected by at least one of the heat medium temperature sensor 34 and the cooling water temperature sensor 44. Therefore, during normal operation in which there is no possibility of freezing of the refrigerant and the heat transfer medium, the flow rate of the high-temperature absorber bypass pipe 45 can be made zero, and the solution flow rate supplied to the absorption heat transfer pipe in the high-temperature absorber can be maximized. Can be. As a result, the heat transfer performance of the high-temperature absorber can be improved. During normal operation, high-performance operation with a bypass flow rate of zero is performed, and when the temperature of the cooling water drops, the control valve 45 is used to prevent the refrigerant from freezing.
By opening a and performing the anti-freezing operation, the operable range can be expanded.

【0033】また、冷媒温度センサ35と伝熱媒体温度
センサ34と冷却水温度センサ44の少なくともいずれ
かが検出した温度に基づいて、バイパス配管42a内を
流れる冷却水の流量を制御している。これにより、通常
運転時は冷却水ポンプ43から吐出される冷却水の全量
を吸収冷凍機に供給し、冷媒凍結のおそれがあるときに
は吸収冷凍機に供給する冷却水の流量を減少させること
が可能になる。その結果、冷却水が低温となっても高温
蒸発器3の冷媒および伝熱媒体が凍結するおそれがな
く、幅広い冷却水温度範囲にわたって吸収冷凍機を運転
できる。
The flow rate of the cooling water flowing through the bypass pipe 42a is controlled based on the temperature detected by at least one of the refrigerant temperature sensor 35, the heat transfer medium temperature sensor 34, and the cooling water temperature sensor 44. This allows the entire amount of cooling water discharged from the cooling water pump 43 to be supplied to the absorption refrigerator during normal operation, and reduces the flow rate of the cooling water supplied to the absorption refrigerator when there is a risk of refrigerant freezing. become. As a result, the refrigerant and the heat transfer medium of the high-temperature evaporator 3 do not freeze even when the temperature of the cooling water becomes low, and the absorption refrigerator can be operated over a wide temperature range of the cooling water.

【0034】本発明の他の実施例を、図2に示す。本実
施例では、低温吸収器に流入する溶液の濃度を、高温吸
収器から流出する溶液の濃度よりも高くしている。その
ため、本実施例では図1に示した実施例と異なり、高温
再生器および低温再生器で加熱濃縮された濃溶液を中温
溶液熱交換器9に導いた後、低温吸収器へ導く配管経路
と高温吸収器に導く配管系路に別れて流れるようにした
ことにある。すなわち、高温吸収器4には流量制御弁45
aを有する配管91が接続されており、低温吸収器2にはこ
の配管91から分岐し、低温溶液熱交換器8を介在させた
配管92が接続されている。その他の吸収冷凍機の構成
は、図1に示した吸収冷凍機と同様である。
FIG. 2 shows another embodiment of the present invention. In this embodiment, the concentration of the solution flowing into the low temperature absorber is higher than the concentration of the solution flowing out of the high temperature absorber. Therefore, in this embodiment, unlike the embodiment shown in FIG. 1, the concentrated solution heated and concentrated by the high-temperature regenerator and the low-temperature regenerator is led to the medium-temperature solution heat exchanger 9 and then to the low-temperature absorber. This is because the water flows separately to the piping system leading to the high-temperature absorber. That is, the high-temperature absorber 4 has a flow control valve 45.
A pipe 91 having a is connected thereto, and a pipe 92 branched from the pipe 91 and having a low-temperature solution heat exchanger 8 interposed is connected to the low-temperature absorber 2. Other configurations of the absorption refrigerator are the same as those of the absorption refrigerator shown in FIG.

【0035】本実施例では、図1に示した実施例に比べ
て、低温吸収器2に流入する溶液濃度がさらに高くな
り、冷媒凍結に対して余裕度がさらに大きくなる。ま
た、バイパス配管42bの流量を制御して吸収冷凍機に
供給する冷却水の流量を制御しているが、冷却水ポンプ
43をインバータ制御するようにしてもよい。その場
合、冷却水ポンプ43の消費電力も低減できる。
In this embodiment, as compared with the embodiment shown in FIG. 1, the concentration of the solution flowing into the low temperature absorber 2 is further increased, and the margin for freezing the refrigerant is further increased. Further, although the flow rate of the cooling water supplied to the absorption refrigerator is controlled by controlling the flow rate of the bypass pipe 42b, the cooling water pump 43 may be inverter-controlled. In that case, the power consumption of the cooling water pump 43 can also be reduced.

【0036】さらに、上記各実施例においては、冷媒お
よび伝熱媒体の凍結を防止するために、冷却水の流量を
制御して高温吸収器4の冷却能力を低下させている。こ
の代わりに、冷却水を温度制御してもよい。すなわち、
高温蒸発器3内の冷媒の温度または伝熱媒体の温度が各
々の予め定められた値より低下したら、冷却水温度を上
昇させる。これにより、高温吸収器4内の溶液が冷媒を
吸収する吸収能力を低減させ、蒸発温度の低下を防止す
る。その結果、冷媒および伝熱媒体の凍結を防止するこ
とができる。
Further, in each of the above embodiments, the cooling capacity of the high-temperature absorber 4 is reduced by controlling the flow rate of the cooling water in order to prevent the refrigerant and the heat transfer medium from freezing. Instead, the temperature of the cooling water may be controlled. That is,
When the temperature of the refrigerant in the high-temperature evaporator 3 or the temperature of the heat transfer medium drops below a predetermined value, the temperature of the cooling water is raised. Thus, the absorption capacity of the solution in the high-temperature absorber 4 for absorbing the refrigerant is reduced, and a decrease in the evaporation temperature is prevented. As a result, freezing of the refrigerant and the heat transfer medium can be prevented.

【0037】なお、溶液ポンプ61をインバータ制御し
て、高温吸収器4に供給される吸収溶液の流量を減少さ
せてもよい。この溶液ポンプのインバータ制御を冷却水
の流量制御や温度制御と組み合せれば、さらに凍結防止
の上では大きな効果が得られる。
The flow rate of the absorbing solution supplied to the high-temperature absorber 4 may be reduced by inverter-controlling the solution pump 61. If this inverter control of the solution pump is combined with cooling water flow rate control and temperature control, a great effect can be obtained in preventing freezing.

【0038】また、上記各実施例においては、高温吸収
器バイパス配管45に制御弁45aを設けたが、この制
御弁の代わりに固定絞り手段を設けてもよい。このよう
にすれば、制御系が簡素になるとともに、この絞り手段
を設けることによって凍結防止が可能になる。固定絞り
手段は、内径が十分に小さい配管であってもよい。さら
に、手動式の流量調整弁を固定絞り手段として用いても
よい。
Further, in each of the above embodiments, the control valve 45a is provided in the high-temperature absorber bypass pipe 45, but a fixed throttle means may be provided instead of this control valve. With this configuration, the control system is simplified, and freezing can be prevented by providing the throttle means. The fixed throttle means may be a pipe having a sufficiently small inner diameter. Further, a manual flow control valve may be used as the fixed throttle means.

【0039】この場合は、経年劣化等による機器の特性
の変化に応じてバイパス流量を変更できるという利点が
ある。
In this case, there is an advantage that the bypass flow rate can be changed according to a change in the characteristics of the device due to aging or the like.

【0040】さらに、上記各実施例では再生器を2個有
する2重効用吸収冷凍機について説明したが、再生器が
1個の単効用吸収冷凍機や再生器を3個有する3重効用
吸収冷凍機についても本発明を適用できることは言うま
でもない。
Further, in each of the above embodiments, a double effect absorption refrigerator having two regenerators has been described. However, a single effect absorption refrigerator having one regenerator or a triple effect absorption refrigerator having three regenerators is described. Needless to say, the present invention can be applied to a machine.

【0041】[0041]

【発明の効果】以上説明したように本発明によれば、吸
収冷凍機において、中温溶液熱交換器から流出する溶液
を低温吸収器と高温吸収器に分配可能にしたので、高温
蒸発器の冷媒と高温蒸発器および低温吸収器の間を循環
する伝熱媒体の凍結を防止できる。その結果、年間を通
じて安定した冷凍能力と冷熱媒体温度が得られる。さら
に、冷熱媒体に水を利用することが可能となる。
As described above, according to the present invention, in the absorption refrigerator, the solution flowing out of the medium-temperature solution heat exchanger can be distributed to the low-temperature absorber and the high-temperature absorber. Of the heat transfer medium circulating between the high temperature evaporator and the low temperature absorber can be prevented. As a result, stable refrigeration capacity and cooling medium temperature can be obtained throughout the year. Further, water can be used as a cooling medium.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る吸収冷凍機の一実施例の系統図で
ある。
FIG. 1 is a system diagram of an embodiment of an absorption refrigerator according to the present invention.

【図2】本発明に係る吸収冷凍機の他の実施例の系統図
である。
FIG. 2 is a system diagram of another embodiment of the absorption refrigerator according to the present invention.

【符号の説明】[Explanation of symbols]

1…低温蒸発器、2…低温吸収器、3…高温蒸発器、4
…高温吸収器、5…凝縮器、6…低温再生器、7…高温
再生器、8…低温溶液熱交換器、9…中温溶液熱交換
器、10…高温溶液熱交換器、11…冷媒配管、11a
…冷媒流量調整弁、12…希薄溶液ポンプ、13…冷熱
媒体配管、14…冷熱媒体温度センサ、21…溶液ポン
プ、31…冷媒ポンプ、32…伝熱媒体配管、33…伝
熱媒体ポンプ、34…伝熱媒体温度センサ、35…冷媒
温度センサ、41…溶液ポンプ、42…冷却水配管、4
2a…冷却水バイパス配管、42b…制御弁、43…冷
却水ポンプ、44…冷却水温度センサ、45…高温吸収
器バイパス配管、45a…制御弁、51…冷媒配管、6
1…溶液ポンプ、71…ドレンクーラ、72…熱源蒸気
配管、73…蒸気制御弁、74…フロートバルブ、7
5、76、91…溶液配管。
1: Low temperature evaporator, 2: Low temperature absorber, 3: High temperature evaporator, 4
... High temperature absorber, 5 ... Condenser, 6 ... Low temperature regenerator, 7 ... High temperature regenerator, 8 ... Low temperature solution heat exchanger, 9 ... Medium temperature solution heat exchanger, 10 ... High temperature solution heat exchanger, 11 ... Refrigerant piping , 11a
... refrigerant flow control valve, 12 ... dilute solution pump, 13 ... cold heating medium pipe, 14 ... cold heating medium temperature sensor, 21 ... solution pump, 31 ... refrigerant pump, 32 ... heat transfer medium pipe, 33 ... heat transfer medium pump, 34 ... heat transfer medium temperature sensor, 35 ... refrigerant temperature sensor, 41 ... solution pump, 42 ... cooling water piping, 4
2a cooling water bypass pipe, 42b control valve, 43 cooling water pump, 44 cooling water temperature sensor, 45 high temperature absorber bypass pipe, 45a control valve, 51 refrigerant pipe, 6
DESCRIPTION OF SYMBOLS 1 ... Solution pump, 71 ... Drain cooler, 72 ... Heat source steam piping, 73 ... Steam control valve, 74 ... Float valve, 7
5, 76, 91 ... solution piping.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大内 富久 茨城県土浦市神立町603番地 株式会社日 立製作所産業機械システム事業部内 Fターム(参考) 3L093 BB12 BB13 BB37 CC03 DD08 EE09 GG02 HH15 JJ02 KK03 LL03 MM07  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tomohisa Ouchi 603, Kandamachi, Tsuchiura-shi, Ibaraki F-term in Industrial Machinery Systems Division, Hitachi Ltd. 3L093 BB12 BB13 BB37 CC03 DD08 EE09 GG02 HH15 JJ02 KK03 LL03 MM07

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】再生器、凝縮器、高温蒸発器、低温蒸発
器、高温吸収器及び低温吸収器を備えた吸収冷凍機にお
いて、 前記再生器で加熱凝縮された濃溶液を、前記低温吸収器
及び高温吸収器で冷媒を吸収して薄められた稀溶液と熱
交換する熱交換器を設け、この熱交換器で熱交換して冷
却された濃溶液を前記高温吸収器に導く第1の流路と前
記低温吸収器に導く第2の流路とを設けたことを特徴と
する吸収冷凍機。
1. An absorption refrigerator comprising a regenerator, a condenser, a high-temperature evaporator, a low-temperature evaporator, a high-temperature absorber and a low-temperature absorber, wherein the concentrated solution heated and condensed by the regenerator is cooled by the low-temperature absorber. And a heat exchanger that absorbs the refrigerant with the high-temperature absorber and exchanges heat with the diluted solution that has been diluted. The first stream that guides the concentrated solution cooled by exchanging heat with the heat exchanger to the high-temperature absorber. An absorption refrigerator comprising a passage and a second passage leading to the low-temperature absorber.
【請求項2】前記第2の流路に流量制御手段を設けたこ
とを特徴とする請求項1に記載の吸収冷凍機。
2. The absorption refrigerator according to claim 1, wherein a flow control means is provided in said second flow path.
【請求項3】前記高温蒸発器に冷媒温度を検出する冷媒
温度検出手段を設け、この冷媒温度を検出手段が検出し
た冷媒温度に基づいて前記流量制御手段を制御する制御
装置を設けたことを特徴とする請求項2に記載の吸収冷
凍機。
3. A high-temperature evaporator having a refrigerant temperature detecting means for detecting a refrigerant temperature, and a control device for controlling the flow rate control means based on the refrigerant temperature detected by the refrigerant temperature detecting means. The absorption refrigerator according to claim 2, characterized in that:
【請求項4】再生器、凝縮器、高温蒸発器、低温蒸発
器、冷却水が内部を流通する高温吸収器、及び低温吸収
器を備えた吸収冷凍機において、 前記高温蒸発器の冷媒温度を検出する冷媒温度検出手段
と、この冷媒検出手段が検出した冷媒温度に基づいて前
記高温吸収器内を流通する冷却水の温度と流量の少なく
ともいずれかを制御する制御装置とを備えたことを特徴
とする吸収冷凍機。
4. An absorption refrigerator comprising a regenerator, a condenser, a high-temperature evaporator, a low-temperature evaporator, a high-temperature absorber through which cooling water flows, and a low-temperature absorber. It is characterized by comprising a refrigerant temperature detecting means for detecting, and a control device for controlling at least one of the temperature and the flow rate of the cooling water flowing through the high-temperature absorber based on the refrigerant temperature detected by the refrigerant detecting means. And absorption refrigerator.
【請求項5】再生器、凝縮器、高温蒸発器、低温蒸発
器、冷却水が流通する高温吸収器、及び低温吸収器を備
えた吸収冷凍機において、 前記高温蒸発器と前記低温吸収器間を伝熱媒体が循環す
る循環路を形成し、この循環路に伝熱媒体の温度を検出
する伝熱媒体温度検出手段を設け、この温度検出手段が
検出した伝熱媒体温度に基づいて前記高温吸収器内を流
通する冷却水の温度と流量の少なくともいずれかを制御
する制御装置とを備えたことを特徴とする吸収冷凍機。
5. An absorption refrigerator comprising a regenerator, a condenser, a high-temperature evaporator, a low-temperature evaporator, a high-temperature absorber through which cooling water flows, and a low-temperature absorber. The heat transfer medium is circulated, and a heat transfer medium temperature detecting means for detecting the temperature of the heat transfer medium is provided in the circulation path. A control device for controlling at least one of the temperature and the flow rate of the cooling water flowing through the absorber.
【請求項6】高温再生器、低温再生器、凝縮器、高温蒸
発器、低温蒸発器、冷却水が流通する高温吸収器、及び
低温吸収器を備えた吸収冷凍機において、 前記高温蒸発器と前記低温吸収器間を伝熱媒体が循環す
る循環路と、この循環路に設けた伝熱媒体の温度を検出
する伝熱媒体の温度検出手段と、前記高温吸収器の冷却
水入口と前記高温吸収器から外部へ冷却水が流出する流
出部より下流位置とを結ぶバイパス配管と、このバイパ
ス配管中に設けられた流量制御手段と、前記温度検出手
段が検出した伝熱媒体温度に基づいて前記高温吸収器内
を流通する冷却水の流量を前記流量制御手段を用いて制
御する制御装置とを備えたことを特徴とする吸収冷凍
機。
6. An absorption refrigerator comprising a high-temperature regenerator, a low-temperature regenerator, a condenser, a high-temperature evaporator, a low-temperature evaporator, a high-temperature absorber through which cooling water flows, and a low-temperature absorber. A circulation path through which the heat transfer medium circulates between the low-temperature absorbers; a heat transfer medium temperature detection means for detecting the temperature of the heat transfer medium provided in the circulation path; a cooling water inlet of the high-temperature absorber and the high-temperature absorber; A bypass pipe connecting a position downstream of the outflow portion where the cooling water flows out from the absorber to the outside, a flow control means provided in the bypass pipe, and a heat transfer medium temperature detected by the temperature detection means. A control device for controlling the flow rate of the cooling water flowing through the high-temperature absorber by using the flow rate control means.
【請求項7】冷媒に水を、吸収剤に臭化リチウムを用
い、高温吸収器、低温吸収器、高温蒸発器、低温蒸発器
を備えた吸収式冷凍機において、前記低温吸収器に流入
する溶液濃度を前記高温吸収器から流出する溶液濃度よ
り高くする制御手段を設けたことを特徴とする吸収冷凍
機。
7. An absorption refrigerator comprising a high-temperature absorber, a low-temperature absorber, a high-temperature evaporator, and a low-temperature evaporator using water as a refrigerant and lithium bromide as an absorbent, and flows into the low-temperature absorber. An absorption refrigerator comprising a control means for increasing the concentration of the solution higher than the concentration of the solution flowing out of the high-temperature absorber.
【請求項8】前記冷媒は水であり、前記溶液は臭化リチ
ウム水溶液であることを特徴とする請求項1ないし6の
いずれか1項に記載の吸収冷凍機。
8. The absorption refrigerator according to claim 1, wherein said refrigerant is water and said solution is an aqueous solution of lithium bromide.
JP2000142285A 2000-05-10 2000-05-10 Absorption refrigerator Expired - Lifetime JP3832191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000142285A JP3832191B2 (en) 2000-05-10 2000-05-10 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000142285A JP3832191B2 (en) 2000-05-10 2000-05-10 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2001317835A true JP2001317835A (en) 2001-11-16
JP3832191B2 JP3832191B2 (en) 2006-10-11

Family

ID=18649281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000142285A Expired - Lifetime JP3832191B2 (en) 2000-05-10 2000-05-10 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP3832191B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101046059B1 (en) * 2003-06-18 2011-07-01 산요덴키가부시키가이샤 Dual-effect Absorption Chiller in Japan and Its Operation Control Method
JP2019152390A (en) * 2018-03-05 2019-09-12 日立ジョンソンコントロールズ空調株式会社 Absorption-type refrigerator
JP2021085328A (en) * 2019-11-25 2021-06-03 いすゞ自動車株式会社 Vehicle reducing agent defrosting device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101046059B1 (en) * 2003-06-18 2011-07-01 산요덴키가부시키가이샤 Dual-effect Absorption Chiller in Japan and Its Operation Control Method
JP2019152390A (en) * 2018-03-05 2019-09-12 日立ジョンソンコントロールズ空調株式会社 Absorption-type refrigerator
JP7080001B2 (en) 2018-03-05 2022-06-03 日立ジョンソンコントロールズ空調株式会社 Absorption chiller
JP2021085328A (en) * 2019-11-25 2021-06-03 いすゞ自動車株式会社 Vehicle reducing agent defrosting device
WO2021106528A1 (en) * 2019-11-25 2021-06-03 いすゞ自動車株式会社 Reducing agent defrosting device of vehicle
CN115038856A (en) * 2019-11-25 2022-09-09 五十铃自动车株式会社 Reducing agent thawing device for vehicle
JP7320194B2 (en) 2019-11-25 2023-08-03 いすゞ自動車株式会社 vehicle reductant thawing device
CN115038856B (en) * 2019-11-25 2024-02-23 五十铃自动车株式会社 Reducing agent thawing device for vehicle

Also Published As

Publication number Publication date
JP3832191B2 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
JPH11264623A (en) Absorptive refrigerator
JP5390426B2 (en) Absorption heat pump device
JP2008116173A (en) Absorption type refrigerating machine
JP2000018762A (en) Absorption refrigerating machine
JP2007333342A (en) Multi-effect absorption refrigerating machine
JP2001317835A (en) Absorption refrigeration machine
US20120085111A1 (en) Adsorption refrigerator with thermostatic control
JP2012202589A (en) Absorption heat pump apparatus
JP3434281B2 (en) Absorption refrigerator
JP2001355924A (en) Air conditioner
JP3397164B2 (en) Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method
JP3943672B2 (en) Absorption refrigerator
JP3443100B2 (en) Absorption refrigerator and method of operating the same
JP3813348B2 (en) Absorption refrigerator
JP3484142B2 (en) 2-stage double-effect absorption refrigerator
JP4330522B2 (en) Absorption refrigerator operation control method
JP2883372B2 (en) Absorption chiller / heater
JP3434284B2 (en) Absorption refrigerator
JP3811632B2 (en) Waste heat input type absorption refrigerator
JP3241573B2 (en) Absorption type cold / hot water unit
JP3434282B2 (en) Absorption refrigerator
JPH0419406Y2 (en)
JP2517425B2 (en) Absorption refrigerator
JPH01310272A (en) Absorption type air conditioner
JP2011220675A (en) Absorption refrigerating machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051125

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060710

R151 Written notification of patent or utility model registration

Ref document number: 3832191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term