JPH11159906A - Absorption heat pump system - Google Patents

Absorption heat pump system

Info

Publication number
JPH11159906A
JPH11159906A JP9325749A JP32574997A JPH11159906A JP H11159906 A JPH11159906 A JP H11159906A JP 9325749 A JP9325749 A JP 9325749A JP 32574997 A JP32574997 A JP 32574997A JP H11159906 A JPH11159906 A JP H11159906A
Authority
JP
Japan
Prior art keywords
gas
liquid
absorber
liquid separator
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9325749A
Other languages
Japanese (ja)
Inventor
Takashi Sawada
敬 澤田
Ryoichi Koga
良一 古閑
Takahito Ishii
隆仁 石井
Satoshi Matsumoto
松本  聡
Koichi Takemura
晃一 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9325749A priority Critical patent/JPH11159906A/en
Publication of JPH11159906A publication Critical patent/JPH11159906A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

PROBLEM TO BE SOLVED: To properly hold distribution of a working medium at the internal part of a device and to reliably recover the working medium to a thick solution tank. SOLUTION: A refrigerant circuit provided with a refrigerant flow passage 7, a thin solution flow passage 9, and a thick solution flow passage 17 to store a working medium, a receiver 16, and a gas liquid separator 2. The thick solution tank 17 is portioned below the liquid receiver 16 and the gas liquid separator 2. The working medium is recovered in the thick solution tank 17 through the action of gravity and by blocking gathering of the working medium at an absorber 6 and a condenser 3, operation performance of a solution pump 10 is improved and a device is reliably started.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空調冷凍装置,給
湯装置等に用いる吸収式ヒートポンプシステムに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption heat pump system used for an air conditioning refrigeration system, a hot water system, and the like.

【0002】[0002]

【従来の技術】従来この種の吸収式ヒートポンプシステ
ムは、図10に示すようなものが一般的であり、以下吸
収式ヒートポンプシステムの構成図を示す図10を参照
して説明する。
2. Description of the Related Art Conventionally, this type of absorption heat pump system is generally shown in FIG. 10, and will be described below with reference to FIG. 10 which shows a configuration diagram of the absorption heat pump system.

【0003】再生器1の出口1aに設けられた気液分離
器2、この気液分離器2のガス側出口2a,凝縮器3,
膨脹弁4,蒸発器5、および吸収器6のガス側入口6a
を順次接続した冷媒流路7と、前記気液分離器2の液側
出口2b,減圧弁8、および前記吸収器6の液側入口6
bを順次接続した希溶液流路9と、前記吸収器6の出口
6c,溶液ポンプ10、および前記再生器1の入口1b
を順次接続した濃溶液流路11とにより吸収式ヒートポ
ンプシステムの冷媒回路を構成し、この冷媒回路の内部
にはアンモニア水溶液等の作動媒体が封入されている。
A gas-liquid separator 2 provided at an outlet 1a of a regenerator 1, a gas-side outlet 2a of the gas-liquid separator 2, a condenser 3,
Expansion valve 4, evaporator 5, and gas-side inlet 6a of absorber 6
, A liquid-side outlet 2 b of the gas-liquid separator 2, a pressure reducing valve 8, and a liquid-side inlet 6 of the absorber 6.
b, a dilute solution flow path 9, an outlet 6 c of the absorber 6, a solution pump 10, and an inlet 1 b of the regenerator 1.
The refrigerant circuit of the absorption type heat pump system is constituted by the concentrated solution flow path 11 which is sequentially connected to the working fluid, and a working medium such as an aqueous ammonia solution is sealed inside the refrigerant circuit.

【0004】再生器1内のアンモニア水溶液の濃溶液
は、バーナ1cでガスまたは灯油等の燃焼熱により加熱
され、気液分離器2で、アンモニアのガス冷媒と希溶液
とに分離される。分離されたガス冷媒は、冷媒流路7に
流れ、凝縮器3で放熱した後、膨脹弁4で減圧膨脹さ
れ、蒸発器5で蒸発熱を吸熱し、再びガス冷媒となって
吸収器6に送られる。一方、分離された希溶液は、希溶
液流路9を流れて吸収器6に流入し、この吸収器6で希
溶液がガス冷媒を吸収して濃溶液になり、吸収器6から
出て溶液ポンプ10によって再び再生器1に戻される。
[0004] The concentrated solution of the aqueous ammonia solution in the regenerator 1 is heated by the combustion heat of gas or kerosene or the like in the burner 1c, and separated in the gas-liquid separator 2 into the ammonia gas refrigerant and the dilute solution. The separated gas refrigerant flows into the refrigerant flow path 7, radiates heat in the condenser 3, is decompressed and expanded by the expansion valve 4, absorbs heat of evaporation in the evaporator 5, becomes gas refrigerant again, and flows into the absorber 6. Sent. On the other hand, the separated dilute solution flows through the dilute solution flow path 9 and flows into the absorber 6, where the dilute solution absorbs the gas refrigerant and becomes a concentrated solution. It is returned to the regenerator 1 again by the pump 10.

【0005】このような吸収式ヒートポンプシステムを
冷房機として用いる場合は、凝縮器3に冷却水入口管1
2aと冷却水出口管13aとを接続して冷却水で冷却
し、吸収器6にも冷却水入口管12bと冷却水出口管1
3bとを接続して冷却水で冷却し、さらに、蒸発器5に
も冷水入口管14と冷水出口管15とを接続して冷水を
取り出し、この冷水を室内に送ることにより冷房を行っ
ていた。また、このような吸収式ヒートポンプシステム
を暖房機として用いる場合は、蒸発器5で外気温より低
い冷水をつくり、外気より吸熱するヒートポンプ運転を
行うことにより、凝縮器3と吸収器6とで発生する熱を
室内に放出して暖房を行っていた。さらに、このような
吸収式ヒートポンプシステムを給湯機として用いる場合
は、暖房機として用いる場合と同様に、蒸発器5で外気
より吸熱してヒートポンプ運転を行い、凝縮器3と吸収
器6とで発生する熱を給湯水の加熱に用いて行ってい
た。
When such an absorption type heat pump system is used as a cooling machine, the condenser 3 has a cooling water inlet pipe 1.
2a and the cooling water outlet pipe 13a are connected and cooled with cooling water. The cooling water inlet pipe 12b and the cooling water outlet pipe 1
3b and cooled by cooling water, and further, the cold water inlet pipe 14 and the cold water outlet pipe 15 are connected to the evaporator 5 to take out cold water, and the cold water is sent indoors to perform cooling. . When such an absorption heat pump system is used as a heater, the evaporator 5 generates cold water lower than the outside air temperature, and performs a heat pump operation of absorbing heat from the outside air to generate heat in the condenser 3 and the absorber 6. Heat was released into the room to heat the room. Further, when such an absorption type heat pump system is used as a water heater, the heat pump operation is performed by absorbing heat from the outside air in the evaporator 5 and generated in the condenser 3 and the absorber 6 as in the case of using as a heater. Heat was used to heat the hot water.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
吸収式ヒートポンプシステムでは、ガス冷媒は凝縮器3
と蒸発器5に溜まり、希溶液は気液分離器2に溜まり、
濃溶液は吸収器6と再生器1に溜まる構成となってい
る。そこで運転状態によっては、ガス冷媒が凝縮器3に
多量に溜まったり、希溶液が気液分離器2に多量に溜ま
ったり、濃溶液が吸収器6に多量に溜まったりして装置
内部に作動媒体の不安定な分布状態が発生し、吸収能力
や凝縮能力が低下して装置の性能が低下するという課題
があった。
However, in the conventional absorption heat pump system, the gas refrigerant is supplied to the condenser 3.
And the dilute solution accumulates in the vapor-liquid separator 2,
The concentrated solution is configured to accumulate in the absorber 6 and the regenerator 1. Therefore, depending on the operation state, a large amount of gas refrigerant accumulates in the condenser 3, a large amount of dilute solution accumulates in the gas-liquid separator 2, or a large amount of concentrated solution accumulates in the absorber 6, and the working medium is stored inside the device. There is a problem in that an unstable distribution state occurs, and the absorption capacity and the condensation capacity are reduced, and the performance of the apparatus is reduced.

【0007】また、溶液ポンプ10の入口において濃溶
液の量が十分に確保されず、溶液ポンプ10の運転がで
きなくなるという課題も有していた。
Further, there is another problem that the amount of the concentrated solution is not sufficiently ensured at the inlet of the solution pump 10, and the solution pump 10 cannot be operated.

【0008】また、冷媒回路の容積が十分に保証されて
いないため、一定の性能を維持するには、装置に充填す
る作動媒体の量、すなわち充填量の許容範囲が狭く、ま
た吸収器6等の要素部品も大きな容積が必要となり、装
置の小型化が困難になるという課題を有していた。
[0008] Further, since the capacity of the refrigerant circuit is not sufficiently ensured, in order to maintain a constant performance, the amount of the working medium to be charged into the apparatus, that is, the allowable range of the charged amount is narrow, and the absorber 6 and the like are required. The component parts require a large volume, and have a problem that it is difficult to reduce the size of the device.

【0009】また、装置の起動時に作動媒体の分布が一
定していないので、運転が安定するまでに長時間必要な
場合があり、運転停止後に再運転する場合、時間がかか
るという課題も有していた。
In addition, since the distribution of the working medium is not constant when the apparatus is started, it may take a long time to stabilize the operation, and it takes time to restart the operation after the operation is stopped. I was

【0010】また、装置の運転を停止している時にも、
ガス冷媒と希溶液とが分離して滞留しているために、運
転開始後に、滞留していたガス冷媒と希溶液とが吸収器
6で混合され、吸収熱として発生することになるので、
余分な放熱が必要になり、特に、オンオフ運転時には性
能を低下させるという課題を有していた。
Also, when the operation of the apparatus is stopped,
Since the gas refrigerant and the dilute solution are separated and retained, after the start of operation, the retained gas refrigerant and the dilute solution are mixed in the absorber 6 and are generated as heat of absorption.
Excessive heat dissipation is required, and there is a problem that the performance is reduced particularly during the on / off operation.

【0011】また、冷却水温度および冷水温度の条件に
より、装置内部に存在するガス冷媒量と希溶液量と濃溶
液量とが異なって一定の濃度条件で吸収器6を運転する
ことができないので、動作が不安定になるという課題を
有していた。
Further, depending on the conditions of the cooling water temperature and the cooling water temperature, the amount of the gas refrigerant, the amount of the dilute solution, and the amount of the concentrated solution existing inside the apparatus are different, so that the absorber 6 cannot be operated under a constant concentration condition. However, there is a problem that the operation becomes unstable.

【0012】また、吸収器6の出口6cの濃溶液は、過
冷却が小さく平衡状態に近いので、溶液ポンプ10の入
口で圧力が低下した場合、気泡が発生して溶液ポンプ1
0がガス噛み運転状態になり、濃溶液流量が著しく変動
し、不安定な運転状態になるばかりでなく溶液ポンプ1
0も損傷するという課題を有していた。
Since the concentrated solution at the outlet 6c of the absorber 6 has a small degree of supercooling and is close to an equilibrium state, when the pressure decreases at the inlet of the solution pump 10, bubbles are generated and the solution pump 1
0 is a gas biting operation state, the flow rate of the concentrated solution fluctuates remarkably, and an unstable operation state is caused.
0 had the problem of being damaged.

【0013】また、吸収器6の出口6cにおける濃溶液
の過冷却度が高過ぎた場合は、再生器1の加熱量を増加
させなければならなくなって、性能が低下してしまう
が、一方、過冷却度が低過ぎた場合は、ガス噛み運転に
なり易く、常に最適な過冷却度で安定した装置の運転を
保つことが困難であるという課題を有していた。
If the degree of supercooling of the concentrated solution at the outlet 6c of the absorber 6 is too high, the amount of heating of the regenerator 1 must be increased, and the performance is reduced. If the degree of supercooling is too low, the operation tends to be a gas biting operation, and there is a problem that it is difficult to always maintain stable operation of the apparatus with an optimum degree of supercooling.

【0014】また、装置の圧力は、凝縮器3での冷却水
の流量と温度とにより設定されるが、空調装置等におい
ては、外気条件により冷却水温度の条件が変化する場合
が多いので、高圧側と低圧側との圧力差も変化して希溶
液の流量を最適な値に設定するのが困難であったため、
種々の環境条件に対して性能を維持することが困難であ
るという課題を有していた。
The pressure of the device is set by the flow rate and temperature of the cooling water in the condenser 3. In an air conditioner or the like, the condition of the cooling water temperature often changes depending on the outside air condition. Since the pressure difference between the high pressure side and the low pressure side also changed, and it was difficult to set the flow rate of the dilute solution to an optimal value,
There was a problem that it was difficult to maintain the performance under various environmental conditions.

【0015】また、起動時には、装置内部の圧力は十分
に上昇しておらなく、高圧側と低圧側との圧力差が小さ
い状態にあるため、気液分離器2の希溶液が吸収器6を
経て濃溶液タンクまで戻り難い状況になり、その結果、
溶液ポンプ10の運転ができなくなり、安定した運転状
態に至るまでの時間が長くかかり、立ち上がり性能が悪
くなるという課題を有していた。
Further, at the time of start-up, the pressure inside the device does not rise sufficiently, and the pressure difference between the high pressure side and the low pressure side is in a small state. It is difficult to return to the concentrated solution tank through
There has been a problem that the operation of the solution pump 10 cannot be performed, it takes a long time to reach a stable operation state, and the startup performance is deteriorated.

【0016】さらに、気液分離器2,凝縮器3および膨
脹弁4に作動媒体が溜まり込んで再生器1に送る濃溶液
が無くなり、高圧側と低圧側との圧力差がなくなった場
合には、再起動ができなくなるという課題を有してい
た。
Further, when the working medium accumulates in the gas-liquid separator 2, the condenser 3 and the expansion valve 4 and the concentrated solution sent to the regenerator 1 disappears, and the pressure difference between the high pressure side and the low pressure side disappears. However, there is a problem that the restart cannot be performed.

【0017】[0017]

【課題を解決するための手段】本発明は、上記課題を解
決するために、希溶液流路には希溶液を溜める気液分離
器を設け、冷媒流路には冷媒を溜める受液器を設け、濃
溶液流路には濃溶液を溜める濃溶液タンクを設け、この
濃溶液タンクは、前記の気液分離器および受液器よりも
下方に位置させることとしている。
According to the present invention, in order to solve the above-mentioned problems, a gas-liquid separator for storing a dilute solution is provided in a dilute solution flow path, and a liquid receiver for storing a refrigerant is provided in a refrigerant flow path. The concentrated solution flow path is provided with a concentrated solution tank for storing the concentrated solution, and the concentrated solution tank is positioned below the gas-liquid separator and the liquid receiver.

【0018】そして、上記発明によれば、希溶液は気液
分離器に溜まり、冷媒は受液器に溜まり、濃溶液は濃溶
液タンクに溜まるので、凝縮器に流入して溜まって凝縮
性能を低下させたり、吸収器に流入して溜まって吸収性
能を低下させたりすることがなく、高性能を得ることが
できる。また、装置の運転停止時においても、受液器の
冷媒の一部、および気液分離器の希溶液の一部は、重力
作用によって濃溶液タンクに回収することができ、常に
溶液ポンプの入口に濃溶液を確保することができるの
で、安定した運転状態を得ることができる。
According to the invention, the dilute solution is stored in the gas-liquid separator, the refrigerant is stored in the receiver, and the concentrated solution is stored in the concentrated solution tank. It is possible to obtain high performance without lowering or reducing the absorption performance by flowing into and accumulating in the absorber. In addition, even when the operation of the apparatus is stopped, a part of the refrigerant in the receiver and a part of the dilute solution in the gas-liquid separator can be recovered in the concentrated solution tank by the action of gravity. Since a concentrated solution can be secured, a stable operating state can be obtained.

【0019】また、希溶液流路に希溶液を溜める気液分
離器を、冷媒流路に冷媒を溜める受液器を、濃溶液流路
に濃溶液を溜める濃溶液タンクをそれぞれ設け、この濃
溶液タンクは、前記の気液分離器および受液器よりも下
方に設けるとともに、濃溶液タンクの内容積は、受液器
および気液分離器の内容積の和よりも大きく、充填する
作動媒体の容積よりも大きくすることとしている。
Further, a gas-liquid separator for storing the dilute solution in the dilute solution flow path, a receiver for storing the refrigerant in the refrigerant flow path, and a concentrated solution tank for storing the concentrated solution in the concentrated solution flow path are provided. The solution tank is provided below the gas-liquid separator and the receiver, and the inner volume of the concentrated solution tank is larger than the sum of the inner volumes of the receiver and the gas-liquid separator. Is larger than the volume.

【0020】そして、上記発明によれば、受液器内の冷
媒および気液分離器内の希溶液が全て濃溶液タンクに流
入した場合でも、濃溶液タンクが満杯になって濃溶液が
吸収器内に流入して溜まることがないので、吸収性能を
低下させたり、著しい性能低下を生じさせたりすること
がなくなる。また、濃溶液タンクと気液分離器と受液器
との容積の範囲で作動媒体の充填量を任意に設定するこ
とができ、要素部品も小型化することができる。
According to the above invention, even when all of the refrigerant in the receiver and the dilute solution in the gas-liquid separator flow into the concentrated solution tank, the concentrated solution tank becomes full and the concentrated solution is absorbed by the absorber. Since it does not flow into and accumulate in the inside, the absorption performance is not reduced or the performance is not significantly reduced. Further, the filling amount of the working medium can be arbitrarily set within the range of the volumes of the concentrated solution tank, the gas-liquid separator, and the liquid receiver, and the component parts can be downsized.

【0021】また、希溶液流路に希溶液を溜める気液分
離器を、冷媒流路に冷媒を溜める受液器を、濃溶液流路
に濃溶液を溜める濃溶液タンクをそれぞれ設け、この濃
溶液タンクの位置は、前記の気液分離器および受液器よ
りも下方とし、前記の濃溶液タンクと受液器とは開閉弁
を有する冷媒バイパスにより接続し、前記の濃溶液タン
クと気液分離器とは開閉弁を有する希溶液バイパスによ
り接続することとしている。
A gas-liquid separator for storing the dilute solution in the dilute solution flow path, a receiver for storing the refrigerant in the refrigerant flow path, and a concentrated solution tank for storing the concentrated solution in the concentrated solution flow path are provided. The position of the solution tank is below the gas-liquid separator and the receiver, and the concentrated solution tank and the receiver are connected by a refrigerant bypass having an open / close valve, and the concentrated solution tank and the gas-liquid are connected. It is to be connected to the separator by a dilute solution bypass having an on-off valve.

【0022】そして、上記発明によれば、装置の起動時
に、それぞれの開閉弁を開放することにより、受液器の
冷媒および気液分離器の希溶液を濃溶液タンクに回収し
て直ちに溶液ポンプを運転することができるので、装置
の運転立ち上げ時間を速くすることができる。
According to the invention, when the apparatus is started, the on-off valves are opened to collect the refrigerant of the receiver and the dilute solution of the gas-liquid separator into the concentrated solution tank and immediately start the solution pump. Can be operated, so that the operation start-up time of the device can be shortened.

【0023】また、気液分離器は、それよりも下方に位
置する減圧手段,吸収器、および濃溶液タンクと順に接
続し、凝縮器は、それよりも下方に位置する受液器,蒸
発器、および吸収器と順に接続することとしている。
Further, the gas-liquid separator is connected to a pressure reducing means, an absorber, and a concentrated solution tank located below, in that order, and the condenser is provided with a liquid receiver, an evaporator located below it. , And an absorber.

【0024】そして、上記発明によれば、装置の停止時
には、全ての作動媒体が濃溶液タンクに回収されるの
で、常に同じ状態で装置を起動させることができ、また
起動時には吸収器内で余分な発熱を生ずることがないの
で、安定して高性能なオンオフ運転を実現させることが
できる。
According to the above invention, when the apparatus is stopped, all the working medium is collected in the concentrated solution tank, so that the apparatus can always be started up in the same state. Since no significant heat generation occurs, stable and high-performance on-off operation can be realized.

【0025】また、濃溶液タンクは、受液器および気液
分離器よりも下方の位置に設け、濃溶液タンクと受液器
と気液分離器とのそれぞれに液面検知手段を設け、これ
ら液面検知手段の信号に応じて、制御手段により、膨脹
弁および減圧手段の開度を制御することとしている。
The concentrated solution tank is provided at a position lower than the liquid receiver and the gas-liquid separator. Liquid level detecting means is provided for each of the concentrated solution tank, the liquid receiver and the gas-liquid separator. The opening of the expansion valve and the pressure reducing means is controlled by the control means in accordance with the signal of the liquid level detecting means.

【0026】そして、上記発明によれば、受液器内の液
量と気液分離器内の液量とは、膨脹弁および減圧手段の
開度を制御することにより任意に設定することができる
ので、希溶液と濃溶液の濃度条件を一定に設定すること
ができ、安定した動作と高性能運転とを実現することが
できる。さらに、濃溶液タンク内の液量が空になった場
合でも、液面検知手段で検知することにより、溶液ポン
プの空運転も防止することができる。
According to the above invention, the amount of liquid in the receiver and the amount of liquid in the gas-liquid separator can be arbitrarily set by controlling the degree of opening of the expansion valve and the pressure reducing means. Therefore, the concentration conditions of the dilute solution and the concentrated solution can be set constant, and stable operation and high-performance operation can be realized. Further, even when the amount of liquid in the concentrated solution tank becomes empty, idle operation of the solution pump can be prevented by detecting with the liquid level detecting means.

【0027】また、濃溶液タンクと溶液ポンプとの間に
過冷却熱交換器を位置させ、この過冷却熱交換器の冷却
水出口と吸収器の冷却水入口とは冷却水接続管で接続す
ることとしている。
A supercooling heat exchanger is located between the concentrated solution tank and the solution pump, and the cooling water outlet of the supercooling heat exchanger and the cooling water inlet of the absorber are connected by a cooling water connection pipe. I have to do that.

【0028】そして、上記発明によれば、冷却水は、過
冷却熱交換器で濃溶液を冷却して自身の温度を上昇させ
た後、吸収器を冷却するので、吸収器の出口よりも溶液
ポンプの入口の方の濃溶液の温度が低くなり、確実に濃
溶液の過冷却状態を得ることができ、ガス噛みによる溶
液ポンプの損傷を確実に防止することができる。
According to the above invention, the cooling water cools the concentrated solution by the supercooling heat exchanger, raises its own temperature, and then cools the absorber. The temperature of the concentrated solution at the inlet of the pump is lowered, so that a supercooled state of the concentrated solution can be reliably obtained, and the solution pump can be reliably prevented from being damaged by gas biting.

【0029】また、濃溶液タンクと溶液ポンプとの間に
過冷却熱交換器を位置させ、この過冷却熱交換器の冷却
水出口と吸収器の冷却水入口とは冷却水接続管により接
続し、この冷却水接続管に設けた逆止弁の下流側と、過
冷却熱交換器の冷却水入口管に設けた3方弁とは、分岐
配管により接続し、前記3方弁は、溶液ポンプの入口側
に設けた過冷却検知手段の信号に応じて制御装置により
切り換えることとしている。
A supercooling heat exchanger is located between the concentrated solution tank and the solution pump, and the cooling water outlet of the supercooling heat exchanger and the cooling water inlet of the absorber are connected by a cooling water connection pipe. The downstream side of the check valve provided in the cooling water connection pipe and the three-way valve provided in the cooling water inlet pipe of the supercooling heat exchanger are connected by a branch pipe, and the three-way valve is connected to a solution pump. The switching is performed by the control device according to the signal of the supercooling detection means provided on the inlet side of the device.

【0030】そして、上記発明によれば、過冷却検知手
段により溶液ポンプの過冷却状態を検知し、過冷却状態
が小さい時は、冷却水を過冷却熱交換器から吸収器へと
流し、過冷却状態が大きい時は、制御装置により3方弁
を切り換えて、過冷却熱交換器を通さずに吸収器へ直接
流すことにより、溶液ポンプのガス噛み運転を防止させ
ながら高性能を維持させることができる。
According to the invention, the supercooling detecting means detects the supercooling state of the solution pump, and when the supercooling state is small, the cooling water flows from the supercooling heat exchanger to the absorber, and When the cooling state is large, the three-way valve is switched by the control device to flow directly to the absorber without passing through the supercooling heat exchanger, thereby maintaining high performance while preventing the gas pumping operation of the solution pump. Can be.

【0031】また、低圧回路部には低圧検知手段を、高
圧回路部には高圧検知手段を設け、これらの低圧検知手
段および高圧検知手段の検知信号に応じて制御装置によ
り、減圧手段の開度を制御することとしている。
The low pressure circuit section is provided with a low pressure detecting means, and the high voltage circuit section is provided with a high pressure detecting means. Is to be controlled.

【0032】そして、上記発明によれば、高圧側と低圧
側との圧力差に応じた減圧開度の設定ができるので、希
溶液の流量を最適に設定することができ、種々の環境条
件に応じて安定した運転を実現することができる。
According to the present invention, the degree of pressure reduction can be set in accordance with the pressure difference between the high-pressure side and the low-pressure side, so that the flow rate of the dilute solution can be set optimally and can be adjusted to various environmental conditions. Accordingly, stable operation can be realized.

【0033】また、溶液ポンプの入口と出口との間を、
開閉弁を設けたバイパス管により接続し、再生器の出口
には再生温度検知手段を設け、この再生温度検知手段の
検知信号に応じて制御装置により開閉弁を開閉すること
としている。
Further, the space between the inlet and the outlet of the solution pump is
It is connected by a bypass pipe provided with an on-off valve, and a regeneration temperature detecting means is provided at the outlet of the regenerator, and the control device opens and closes the on-off valve in response to a detection signal of the regeneration temperature detecting means.

【0034】そして、上記発明によれば、再生温度が十
分に上昇し、高圧が確保されて希溶液が戻ることができ
る状態で溶液ポンプの流量をあげることができるので、
動作の安定状態に速く到達することができ、運転立ち上
がり特性の優れた装置を実現することができる。
According to the invention, the flow rate of the solution pump can be increased in a state where the regeneration temperature is sufficiently increased, the high pressure is secured, and the dilute solution can return.
A stable state of operation can be quickly reached, and a device having excellent startup characteristics can be realized.

【0035】さらに、気液分離器および受液器にそれぞ
れ加熱手段を設け、濃溶液タンクに設けた液面検知手段
の検知信号に応じて制御装置により、前記加熱手段を制
御することとしている。
Further, a heating means is provided in each of the gas-liquid separator and the liquid receiver, and the heating means is controlled by a control device in accordance with a detection signal of a liquid level detecting means provided in the concentrated solution tank.

【0036】そして、上記発明によれば、濃溶液タンク
に液が少なくなって溶液ポンプの運転が困難になった場
合、液面検知手段でこれを検知し、気液分離器と受液器
との加熱手段を制御装置により加熱状態にすることによ
り、気液分離器と受液器とを高圧状態にし、内部の液体
は圧力差により溶液タンクに戻すことができるので、確
実に装置を起動させることができる。
According to the above invention, when the solution in the concentrated solution tank becomes low and the operation of the solution pump becomes difficult, this is detected by the liquid level detecting means, and the gas-liquid separator and the liquid receiver are connected. The heating means is heated by the control device to bring the gas-liquid separator and the liquid receiver into a high pressure state, and the liquid inside can be returned to the solution tank by the pressure difference, so that the apparatus is reliably started. be able to.

【0037】[0037]

【発明の実施の形態】本発明は、再生器、この再生器の
出口に連通する気液分離器、この気液分離器のガス側出
口,凝縮器,受液器,膨脹弁,蒸発器、および吸収器の
ガス側入口を順に接続した冷媒流路と、前記気液分離器
の液側出口,減圧手段、および前記吸収器の液側入口を
順に接続した希溶液流路と、前記吸収器の出口,濃溶液
タンク,溶液ポンプ、および再生器の入口を順に接続し
た濃溶液流路とを少なくとも備えた吸収式ヒートポンプ
システムの冷媒回路であって、前記濃溶液タンクは、前
記の受液器および気液分離器よりも下方に位置するよう
に設けたものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a regenerator, a gas-liquid separator communicating with an outlet of the regenerator, a gas side outlet of the gas-liquid separator, a condenser, a liquid receiver, an expansion valve, an evaporator, A refrigerant flow path in which a gas-side inlet of an absorber and a dilute solution flow path in which a liquid-side outlet of the gas-liquid separator, a pressure reducing means, and a liquid-side inlet of the absorber are sequentially connected; , A concentrated solution tank, a solution pump, and a concentrated solution flow path to which an inlet of a regenerator is sequentially connected. And a gas-liquid separator.

【0038】そして、装置の運転中は、希溶液は気液分
離器に溜まり、冷媒は受液器に溜まり、濃溶液は濃溶液
タンクに溜まるので、凝縮器に流入して溜まって凝縮性
能を低下させたり、吸収器に流入して溜まって吸収性能
を低下させたりすることがなく、高性能を得ることがで
きる。また、装置の運転停止後は、受液器の冷媒の一
部、および気液分離器の希溶液の一部が重力によって濃
溶液タンクに回収されるので、常に溶液ポンプの入口に
濃溶液を確保することができ、安定した運転状態を得る
ことができる。
During operation of the apparatus, the dilute solution accumulates in the gas-liquid separator, the refrigerant accumulates in the receiver, and the concentrated solution accumulates in the concentrated solution tank. It is possible to obtain high performance without lowering or reducing the absorption performance by flowing into and accumulating in the absorber. After the operation of the apparatus is stopped, part of the refrigerant in the receiver and part of the dilute solution in the gas-liquid separator are collected in the concentrated solution tank by gravity. As a result, a stable operating state can be obtained.

【0039】また、再生器、この再生器の出口に連通す
る気液分離器、この気液分離器のガス側出口,凝縮器,
受液器,膨脹弁,蒸発器、および吸収器のガス側入口を
順に接続した冷媒流路と、前記気液分離器の液側出口,
減圧手段、および前記吸収器の液側入口を順に接続した
希溶液流路と、前記吸収器の出口,濃溶液タンク,溶液
ポンプ、および再生器の入口を順に接続した濃溶液流路
とを少なくとも備えた吸収式ヒートポンプシステムの冷
媒回路であって、前記濃溶液タンクは、前記の受液器お
よび気液分離器よりも下方に設け、この濃溶液タンクの
内容積は、受液器の内容積と気液分離器の内容積との和
よりも大きく、かつ装置に充填する作業媒体の容積より
大きくしたものである。
A regenerator, a gas-liquid separator communicating with an outlet of the regenerator, a gas-side outlet of the gas-liquid separator, a condenser,
A refrigerant flow path in which a liquid receiver, an expansion valve, an evaporator, and a gas-side inlet of an absorber are connected in order; a liquid-side outlet of the gas-liquid separator;
At least a dilute solution flow path in which a decompression means and a liquid-side inlet of the absorber are connected in order, and a concentrated solution flow path in which an outlet of the absorber, a concentrated solution tank, a solution pump, and an inlet of a regenerator are sequentially connected. In the refrigerant circuit of the absorption heat pump system provided, the concentrated solution tank is provided below the liquid receiver and the gas-liquid separator, and the internal volume of the concentrated solution tank is the internal volume of the liquid receiver. And the internal volume of the gas-liquid separator, and larger than the volume of the working medium filled in the apparatus.

【0040】そして、装置の運転中に、受液器内の冷媒
および気液分離器内の希溶液の全てが濃溶液タンクに流
入した場合でも、濃溶液タンクの容積が十分に確保され
ているため濃溶液タンクが満杯になって溢れ、吸収器内
に濃溶液が流入して溜まることがないので、吸収性能を
低下させたり、著しい性能低下を生じさせたりすること
がなくなる。また、濃溶液タンクと気液分離器と受液器
との容積の範囲で作動媒体の充填量を任意に設定するこ
とができ、要素部品も小型化することができる。
Even when the refrigerant in the receiver and the dilute solution in the gas-liquid separator all flow into the concentrated solution tank during operation of the apparatus, the volume of the concentrated solution tank is sufficiently ensured. Therefore, the concentrated solution tank does not overflow due to being full, and the concentrated solution does not flow into and accumulate in the absorber, so that the absorption performance is not reduced or the performance is not significantly reduced. Further, the filling amount of the working medium can be arbitrarily set within the range of the volumes of the concentrated solution tank, the gas-liquid separator, and the liquid receiver, and the component parts can be downsized.

【0041】また、再生器、この再生器の出口に連通す
る気液分離器、この気液分離器のガス側出口,凝縮器,
受液器,膨脹弁,蒸発器、および吸収器のガス側入口を
順に接続した冷媒流路と、前記気液分離器の液側出口,
減圧弁、および吸収器の液側入口を順に接続した希溶液
流路と、前記吸収器の出口,濃溶液タンク,溶液ポン
プ、および再生器の入口を順に接続した濃溶液流路とを
少なくとも備えた吸収式ヒートポンプシステムの冷媒回
路であって、前記濃溶液タンクは、前記の受液器および
気液分離器よりも下方に設け、濃溶液タンクと受液器と
は第一の開閉弁を有する冷媒バイパスにより接続し、濃
溶液タンクと気液分離器とは第二の開閉弁を有する希溶
液バイパスにより接続したものである。
A regenerator, a gas-liquid separator communicating with an outlet of the regenerator, a gas-side outlet of the gas-liquid separator, a condenser,
A refrigerant flow path in which a liquid receiver, an expansion valve, an evaporator, and a gas-side inlet of an absorber are connected in order; a liquid-side outlet of the gas-liquid separator;
At least a dilute solution flow path in which a pressure reducing valve and a liquid-side inlet of an absorber are sequentially connected, and a concentrated solution flow path in which an outlet of the absorber, a concentrated solution tank, a solution pump, and an inlet of a regenerator are sequentially connected. A refrigerant circuit of an absorption heat pump system, wherein the concentrated solution tank is provided below the liquid receiver and the gas-liquid separator, and the concentrated solution tank and the liquid receiver have a first open / close valve. The concentrated solution tank and the gas-liquid separator are connected by a refrigerant bypass, and are connected by a dilute solution bypass having a second on-off valve.

【0042】そして、装置の起動時には、第一の開閉弁
と第二の開閉弁とを開放することにより、受液器の冷媒
および気液分離器の希溶液を重力作用で濃溶液タンクに
回収することができるので、常に、溶液ポンプの入口に
は液体成分を確保することができ、溶液ポンプの空運転
による損傷を防止し、装置を確実に速く立ち上げること
ができる。
When the apparatus is started, the first on-off valve and the second on-off valve are opened to collect the refrigerant in the receiver and the dilute solution in the gas-liquid separator into the concentrated solution tank by the action of gravity. Therefore, liquid components can always be secured at the inlet of the solution pump, damage due to idle running of the solution pump can be prevented, and the apparatus can be started up quickly and reliably.

【0043】また、再生器、この再生器の出口に連通す
る気液分離器、この気液分離器のガス側出口,凝縮器,
受液器,膨脹弁,蒸発器、および吸収器のガス側入口を
順に接続した冷媒流路と、前記気液分離器の液側出口,
減圧手段、および吸収器の液側入口を順に接続した希溶
液流路と、前記吸収器の出口,濃溶液タンク,溶液ポン
プ、および再生器の入口を順に接続した濃溶液流路とを
少なくとも備えた吸収式ヒートポンプシステムの冷媒回
路であって、前記気液分離器は、これよりも下方に位置
する前記の減圧手段,吸収器、および濃溶液タンクと順
に接続し、前記凝縮器は、これよりも下方に位置する前
記の受液器,膨脹弁,蒸発器、および吸収器と順に接続
したものである。
Also, a regenerator, a gas-liquid separator communicating with an outlet of the regenerator, a gas-side outlet of the gas-liquid separator, a condenser,
A refrigerant flow path in which a liquid receiver, an expansion valve, an evaporator, and a gas-side inlet of an absorber are connected in order; a liquid-side outlet of the gas-liquid separator;
At least a dilute solution flow path in which a liquid pressure inlet and a liquid-side inlet of an absorber are sequentially connected, and a concentrated solution flow path in which an outlet of the absorber, a concentrated solution tank, a solution pump, and an inlet of a regenerator are sequentially connected. A refrigerant circuit of an absorption heat pump system, wherein the gas-liquid separator is connected to the depressurizing means, the absorber, and the concentrated solution tank located below in this order, and the condenser is Is connected to the above-mentioned liquid receiver, expansion valve, evaporator, and absorber located in the lower part in this order.

【0044】そして、どの様な運転を行った後でも、装
置の停止時には、作動媒体の全てが重力作用により濃溶
液タンクに回収されるので、常に同じ状態で装置を安定
して起動させることができ、また起動時には吸収器内で
余分な発熱をすることがないので、高性能の運転立ち上
げをすることができ、オンオフ運転時にも性能を低下さ
せることがなくなる。
Even after any operation, when the apparatus is stopped, all of the working medium is recovered in the concentrated solution tank by the action of gravity, so that the apparatus can always be started stably in the same state. Also, at the time of start-up, no extra heat is generated in the absorber, so that a high-performance operation can be started, and the performance does not deteriorate even during the on-off operation.

【0045】また、再生器、この再生器の出口に連通す
る気液分離器、この気液分離器のガス側出口,凝縮器,
受液器,膨脹弁,蒸発器、および吸収器のガス側入口を
順に接続した冷媒流路と、前記気液分離器の液側出口,
減圧手段、および吸収器の液側入口を順に接続した希溶
液流路と、前記吸収器の出口,濃溶液タンク,溶液ポン
プ、および再生器の入口を順に接続した濃溶液流路とを
少なくとも備えた吸収式ヒートポンプシステムの冷媒回
路であって、前記濃溶液タンクが、前記の受液器および
気液分離器よりも下方に設けられ、前記の濃溶液タン
ク,受液器、および気液分離器にそれぞれ液面検知手段
を設け、この液面検知手段の信号に応じて、前記の膨脹
弁および減圧手段の開度を制御装置により制御するもの
である。
A regenerator, a gas-liquid separator communicating with the outlet of the regenerator, a gas-side outlet of the gas-liquid separator, a condenser,
A refrigerant flow path in which a liquid receiver, an expansion valve, an evaporator, and a gas-side inlet of an absorber are connected in order; a liquid-side outlet of the gas-liquid separator;
At least a dilute solution flow path in which a liquid pressure inlet and a liquid-side inlet of an absorber are sequentially connected, and a concentrated solution flow path in which an outlet of the absorber, a concentrated solution tank, a solution pump, and an inlet of a regenerator are sequentially connected. A refrigerant circuit of the absorption heat pump system, wherein the concentrated solution tank is provided below the liquid receiver and the gas-liquid separator, and the concentrated solution tank, the liquid receiver, and the gas-liquid separator are provided. Are provided with liquid level detecting means, respectively, and the degree of opening of the expansion valve and the pressure reducing means is controlled by a control device in accordance with a signal from the liquid level detecting means.

【0046】そして、受液器および気液分離器の液面
を、液面検知手段で検知し、制御装置により膨脹弁と減
圧手段の開度を制御することにより、受液器内の液量と
気液分離器内の液量とを任意に設定して希溶液および濃
溶液の濃度条件を一定に設定することができ、安定した
吸収サイクル動作を実現することができる。また、濃溶
液タンク内の液量が空になった場合、液面検知手段で検
知して制御装置で減圧手段および膨脹弁を開放すること
により、受液器および気液分離器内の液体成分を濃溶液
タンクに回収することができ、溶液ポンプの空運転を防
止することもできる。
The liquid level in the liquid receiver is detected by detecting the liquid level of the liquid receiver and the gas-liquid separator by the liquid level detecting means, and controlling the opening of the expansion valve and the pressure reducing means by the control device. And the amount of liquid in the gas-liquid separator can be arbitrarily set to set the concentration conditions of the dilute solution and the concentrated solution to be constant, and a stable absorption cycle operation can be realized. When the liquid amount in the concentrated solution tank becomes empty, the liquid level in the liquid receiver and the gas-liquid separator in the gas-liquid separator is detected by detecting the liquid level and opening the decompression means and the expansion valve by the control device. Can be collected in the concentrated solution tank, and idle running of the solution pump can be prevented.

【0047】また、再生器、この再生器の出口に連通す
る気液分離器、この気液分離器のガス側出口,凝縮器,
受液器,膨脹弁,蒸発器、および吸収器のガス側入口を
順に接続した冷媒流路と、前記気液分離器の液側出口,
減圧手段、および吸収器の液側入口を順に接続した希溶
液流路と、前記吸収器の出口,濃溶液タンク,溶液ポン
プ、および再生器の入口を順に接続した濃溶液流路とを
少なくとも備えた吸収式ヒートポンプシステムの冷媒回
路であって、前記の濃溶液タンクと溶液ポンプとの間に
過冷却熱交換器を設け、この過冷却熱交換器の冷却水出
口は、前記吸収器の冷却水入口と冷却水接続管で接続し
たものである。
Also, a regenerator, a gas-liquid separator communicating with an outlet of the regenerator, a gas-side outlet of the gas-liquid separator, a condenser,
A refrigerant flow path in which a liquid receiver, an expansion valve, an evaporator, and a gas-side inlet of an absorber are connected in order; a liquid-side outlet of the gas-liquid separator;
At least a dilute solution flow path in which a liquid pressure inlet and a liquid-side inlet of an absorber are sequentially connected, and a concentrated solution flow path in which an outlet of the absorber, a concentrated solution tank, a solution pump, and an inlet of a regenerator are sequentially connected. A refrigerant circuit of the absorption heat pump system, wherein a supercooling heat exchanger is provided between the concentrated solution tank and the solution pump, and a cooling water outlet of the supercooling heat exchanger has a cooling water outlet of the absorber. It is connected to the inlet by a cooling water connection pipe.

【0048】そして、冷却水は、過冷却熱交換器で濃溶
液を冷却して自身の温度を上昇させた後、吸収器を冷却
するので、濃溶液の温度は、吸収器の出口よりも溶液ポ
ンプの入口の方が低くなり、確実に過冷却を得ることが
できる。従って、溶液ポンプにガスが噛むことがないの
で、濃溶液の流量が安定し、装置の運転も安定に保つこ
とができ、ガス噛みによる溶液ポンプの損傷も防止する
ことができる。
The cooling water cools the concentrated solution by a supercooling heat exchanger to raise its temperature, and then cools the absorber, so that the temperature of the concentrated solution is higher than that of the outlet of the absorber. The inlet of the pump is lower, so that supercooling can be reliably obtained. Therefore, since the gas does not bite into the solution pump, the flow rate of the concentrated solution is stabilized, the operation of the apparatus can be kept stable, and the solution pump can be prevented from being damaged due to gas biting.

【0049】また、再生器、この再生器の出口に連通す
る気液分離器、この気液分離器のガス側出口,凝縮器,
受液器,膨脹弁,蒸発器、および吸収器のガス側入口を
順に接続した冷媒流路と、前記気液分離器の液側出口,
減圧手段、および吸収器の液側入口を順に接続した希溶
液流路と、前記吸収器の出口,濃溶液タンク,溶液ポン
プ、および再生器の入口を順に接続した濃溶液流路とを
少なくとも備えた吸収式ヒートポンプシステムの冷媒回
路であって、前記濃溶液タンクと溶液ポンプとの間に過
冷却熱交換器を設け、前記過冷却熱交換器の冷却水出口
は、吸収器の冷却水入口と冷却水接続管により接続し、
この冷却水接続管には逆止弁を設け、前記過冷却熱交換
器の冷却水入口管には3方弁を設け、この3方弁と前記
逆止弁の下流側とは分岐配管により接続し、前記3方弁
は、過冷却検知手段の信号に応じて制御装置により切り
換えるものである。
Also, a regenerator, a gas-liquid separator communicating with an outlet of the regenerator, a gas-side outlet of the gas-liquid separator, a condenser,
A refrigerant flow path in which a liquid receiver, an expansion valve, an evaporator, and a gas-side inlet of an absorber are connected in order; a liquid-side outlet of the gas-liquid separator;
At least a dilute solution flow path in which a liquid pressure inlet and a liquid-side inlet of an absorber are sequentially connected, and a concentrated solution flow path in which an outlet of the absorber, a concentrated solution tank, a solution pump, and an inlet of a regenerator are sequentially connected. A refrigerant circuit of an absorption heat pump system, wherein a supercooling heat exchanger is provided between the concentrated solution tank and the solution pump, and a cooling water outlet of the supercooling heat exchanger is connected to a cooling water inlet of the absorber. Connected by cooling water connection pipe,
The cooling water connection pipe is provided with a check valve, the cooling water inlet pipe of the supercooling heat exchanger is provided with a three-way valve, and the three-way valve is connected to the downstream side of the check valve by a branch pipe. The three-way valve is switched by a control device in accordance with a signal from the supercooling detection means.

【0050】そして、過冷却検知手段により溶液ポンプ
の過冷却状態を検知し、過冷却状態が小さい時は、冷却
水を過冷却熱交換器から吸収器へと流し、過冷却状態が
大きい時は、制御装置により3方弁を切り換えて、過冷
却熱交換器を通さずに吸収器へ直接流すことにより、溶
液ポンプの入口における濃溶液の過冷却状態を常に最適
な状態に保つことができるので、溶液ポンプのガス噛み
運転を防止させながら高性能を維持させることができ
る。
Then, the supercooling state of the solution pump is detected by the supercooling detecting means, and when the supercooling state is small, the cooling water flows from the supercooling heat exchanger to the absorber, and when the supercooling state is large, By switching the three-way valve by the control device and flowing directly to the absorber without passing through the supercooling heat exchanger, the supercooled state of the concentrated solution at the inlet of the solution pump can always be maintained in an optimum state. In addition, the high performance can be maintained while preventing the gas pumping operation of the solution pump.

【0051】また、再生器、この再生器の出口に連通す
る気液分離器、この気液分離器のガス側出口,凝縮器,
受液器,膨脹弁,蒸発器、および吸収器のガス側入口を
順に接続した冷媒流路と、前記気液分離器の液側出口、
開度が可変可能な減圧手段、および吸収器の液側入口を
順に接続した希溶液流路と、前記吸収器の出口,濃溶液
タンク,溶液ポンプ、および再生器の入口を順に接続し
た濃溶液流路とを少なくとも備えた吸収式ヒートポンプ
システムの冷媒回路であって、前記濃溶液タンクは、前
記の受液器と気液分離器よりも下方に設け、前記の膨脹
弁と減圧手段と溶液ポンプの入口とにより仕切られる低
圧回路部には低圧検知手段を設け、この低圧回路部以外
の冷媒回路よりなる高圧回路部には高圧検知手段を設
け、これら低圧検知手段および高圧検知手段の信号に応
じて制御手段により、減圧手段の開度を制御するもので
ある。
Also, a regenerator, a gas-liquid separator communicating with an outlet of the regenerator, a gas-side outlet of the gas-liquid separator, a condenser,
A refrigerant flow path in which a liquid receiver, an expansion valve, an evaporator, and a gas-side inlet of an absorber are sequentially connected; a liquid-side outlet of the gas-liquid separator;
A dilute solution flow path in which an opening degree can be varied and a liquid side inlet of an absorber are connected in order, and a concentrated solution in which an outlet of the absorber, a concentrated solution tank, a solution pump, and an inlet of a regenerator are sequentially connected. A refrigerant circuit of an absorption heat pump system having at least a flow path, wherein the concentrated solution tank is provided below the liquid receiver and the gas-liquid separator, and the expansion valve, the pressure reducing means, and the solution pump are provided. The low-pressure circuit section separated by the inlet of the low-pressure circuit section is provided with low-pressure detection means, and the high-pressure circuit section comprising the refrigerant circuit other than the low-pressure circuit section is provided with high-pressure detection means. The opening degree of the pressure reducing means is controlled by the control means.

【0052】そして、低圧検知手段と高圧検知手段によ
って検知した低圧側と高圧側との圧力差に応じて、制御
装置によって減圧手段の開度を設定することにより、最
適な希溶液の流量を設定することができる。従って、種
々の環境条件に応じて安定した運転を実現することがで
きるとともに能力制御も確実に行うことができる。
The optimal dilute solution flow rate is set by setting the opening degree of the pressure reducing means by the control device according to the pressure difference between the low pressure side and the high pressure side detected by the low pressure detecting means and the high pressure detecting means. can do. Therefore, stable operation can be realized according to various environmental conditions, and the capacity control can be reliably performed.

【0053】また、再生器、この再生器の出口に連通す
る気液分離器、この気液分離器のガス側出口,凝縮器,
受液器,膨脹弁,蒸発器、および吸収器のガス側入口を
順に接続した冷媒流路と、前記気液分離器の液側出口,
減圧手段、および吸収器の液側入口を順に接続した希溶
液流路と、前記吸収器の出口,濃溶液タンク,溶液ポン
プ、および再生器の入口を順に接続した濃溶液流路とを
少なくとも備えた吸収式ヒートポンプシステムの冷媒回
路であって、溶液ポンプの入口と出口との間を、開閉弁
を設けたバイパス管により接続し、再生器の出口には、
再生温度検知手段を設け、この再生温度検知手段の信号
に応じて、開閉弁を制御装置により開閉するものであ
る。
Also, a regenerator, a gas-liquid separator communicating with an outlet of the regenerator, a gas-side outlet of the gas-liquid separator, a condenser,
A refrigerant flow path in which a liquid receiver, an expansion valve, an evaporator, and a gas-side inlet of an absorber are connected in order; a liquid-side outlet of the gas-liquid separator;
At least a dilute solution flow path in which a liquid pressure inlet and a liquid-side inlet of an absorber are sequentially connected, and a concentrated solution flow path in which an outlet of the absorber, a concentrated solution tank, a solution pump, and an inlet of a regenerator are sequentially connected. A refrigerant circuit of an absorption heat pump system, wherein the inlet and the outlet of the solution pump are connected by a bypass pipe provided with an on-off valve, and the outlet of the regenerator is
A regeneration temperature detecting means is provided, and the on-off valve is opened and closed by a control device in accordance with a signal from the regeneration temperature detecting means.

【0054】そして、再生温度検知手段により再生温度
を検知し、再生温度が低い場合は、制御装置によりバイ
パス管に設けた開閉弁を開放し、再生器へ流入する濃溶
液の流量を少なくして再生温度の上昇を速めることがで
きる。また、再生温度が高い場合には、制御装置により
バイパス管に設けた開閉弁を閉じることにより、再生器
へ流入する濃溶液の流量を多くして能力を上げることが
できる。従って、再生温度が十分に上昇し、高圧が確保
されて希溶液が戻ることができる状態で溶液ポンプの流
量をあげることができるので、動作の安定状態に速く到
達することができ、運転立ち上がり特性の優れた装置を
実現することができる。
The regeneration temperature is detected by the regeneration temperature detecting means. If the regeneration temperature is low, the control device opens the on-off valve provided in the bypass pipe to reduce the flow rate of the concentrated solution flowing into the regenerator. It is possible to speed up the regeneration temperature. When the regeneration temperature is high, the control device closes the on-off valve provided in the bypass pipe, so that the flow rate of the concentrated solution flowing into the regenerator can be increased to increase the capacity. Therefore, the regeneration temperature can be sufficiently increased, the flow rate of the solution pump can be increased in a state where the high pressure is secured and the dilute solution can return, so that a stable state of operation can be quickly reached, and the operation startup characteristics The device excellent in the above can be realized.

【0055】さらに、再生器、この再生器の出口に連通
する気液分離器、この気液分離器のガス側出口,凝縮
器,受液器,膨脹弁,蒸発器、および吸収器のガス側入
口を順に接続した冷媒流路と、前記気液分離器の液側出
口,減圧手段、および吸収器の液側入口を順に接続した
希溶液流路と、前記吸収器の出口,濃溶液タンク,溶液
ポンプ、および再生器の入口を順に接続した濃溶液流路
とを少なくとも備えた吸収式ヒートポンプシステムの冷
媒回路であって、前記の気液分離器および受液器にそれ
ぞれ加熱手段を設け、濃溶液タンクに設けた液面検知手
段の検知信号に応じて、制御手段により加熱手段を制御
するものである。
Further, a regenerator, a gas-liquid separator communicating with an outlet of the regenerator, a gas-side outlet of the gas-liquid separator, a condenser, a liquid receiver, an expansion valve, an evaporator, and a gas side of an absorber A refrigerant flow path in which inlets are sequentially connected, a dilute solution flow path in which a liquid-side outlet of the gas-liquid separator, a decompression means, and a liquid-side inlet of an absorber are sequentially connected; an outlet of the absorber, a concentrated solution tank; A refrigerant circuit of an absorption heat pump system comprising at least a solution pump, and a concentrated solution flow path in which inlets of a regenerator are sequentially connected, wherein a heating means is provided in each of the gas-liquid separator and the liquid receiver, The heating means is controlled by the control means in accordance with the detection signal of the liquid level detection means provided in the solution tank.

【0056】そして、濃溶液タンクに液が少なくなって
溶液ポンプの運転が困難になった場合でも、液面検知手
段でこれを検知し、気液分離器と受液器との加熱手段を
制御装置により加熱状態にすることにより、気液分離器
と受液器との内部の圧力を上昇させ、圧力差により気液
分離器と受液器の内部の液体を溶液タンクに戻すことが
できるので、どの様な状態においても確実に装置を起動
させることができる。
Even when the solution pump is difficult to operate due to a low amount of liquid in the concentrated solution tank, this is detected by the liquid level detecting means and the heating means for the gas-liquid separator and the liquid receiver is controlled. Since the internal pressure of the gas-liquid separator and the receiver can be increased by heating the device, the liquid inside the gas-liquid separator and the receiver can be returned to the solution tank by the pressure difference. In any state, the apparatus can be reliably started.

【0057】[0057]

【実施例】以下、本発明の実施例について、吸収式ヒー
トポンプシステムの構成図を示す図1ないし図9を参照
して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0058】なお、従来例として図10において説明し
た構成部分と同一の構成部分については、同一の符号を
付して詳細な説明は省略する。
Note that the same reference numerals are given to the same components as those described in FIG. 10 as a conventional example, and detailed description will be omitted.

【0059】(実施例1)図1は、本発明の実施例1に
おける吸収式ヒートポンプシステムの構成図である。
Embodiment 1 FIG. 1 is a configuration diagram of an absorption heat pump system according to Embodiment 1 of the present invention.

【0060】図1において、7は冷媒流路で、再生器1
の出口1aに設けた気液分離器2と、この気液分離器2
のガス側出口2aと、凝縮器3と受液器16と、膨脹弁
4と、蒸発器5と、吸収器6のガス側入口6aとを順次
接続して形成している。9は希溶液流路で、前記気液分
離器2の液側出口2bと、減圧手段としての減圧弁8
と、吸収器6の液側入口6bとを順次接続して形成して
いる。11は濃溶液流路で、吸収器6の出口6cと、濃
溶液タンク17と、溶液ポンプ10と、再生器1の入口
1bとを順次接続して形成している。これらの冷媒流路
7と希溶液流路9と濃溶液流路11とで吸収式ヒートポ
ンプシステムの冷媒回路を構成し、濃溶液タンク17
は、気液分離器2および受液器16の設置位置よりも下
方に設置し、内部には、冷媒例えばアンモニアと吸収剤
例えば水との混合物であるアンモニア水溶液からなる作
動媒体が封入されている。なお、凝縮器3と吸収器6と
には、これらを冷却する冷却水の出入口である冷却水入
口管12a,12bと冷却水出口管13a,13bとが
それぞれ接続されており、蒸発器5には冷水を得るため
の冷水入口管14と冷水出口管15とが接続されてい
る。
In FIG. 1, reference numeral 7 denotes a refrigerant flow path,
Gas-liquid separator 2 provided at the outlet 1a of the
, The condenser 3, the liquid receiver 16, the expansion valve 4, the evaporator 5, and the gas-side inlet 6 a of the absorber 6 are sequentially connected and formed. Reference numeral 9 denotes a dilute solution flow path, and a liquid-side outlet 2b of the gas-liquid separator 2 and a pressure reducing valve 8 as a pressure reducing means.
And the liquid-side inlet 6b of the absorber 6 are sequentially connected and formed. Reference numeral 11 denotes a concentrated solution flow path, which is formed by sequentially connecting the outlet 6c of the absorber 6, the concentrated solution tank 17, the solution pump 10, and the inlet 1b of the regenerator 1. The refrigerant flow path 7, the dilute solution flow path 9 and the concentrated solution flow path 11 constitute a refrigerant circuit of an absorption heat pump system.
Is installed below the installation position of the gas-liquid separator 2 and the liquid receiver 16, and a working medium composed of an aqueous ammonia solution which is a mixture of a refrigerant such as ammonia and an absorbent such as water is sealed therein. . The condenser 3 and the absorber 6 are connected to cooling water inlet pipes 12a and 12b and cooling water outlet pipes 13a and 13b, respectively, which are inlets and outlets of cooling water for cooling them. Is connected to a cold water inlet pipe 14 and a cold water outlet pipe 15 for obtaining cold water.

【0061】次に、この実施例1による吸収式ヒートポ
ンプシステムの動作,作用について説明する。
Next, the operation and operation of the absorption heat pump system according to the first embodiment will be described.

【0062】再生器1内のアンモニア水溶液の濃溶液
は、バーナ1cでガスまたは灯油等の燃焼熱により加熱
され、気液分離器2で、アンモニアのガス冷媒と希溶液
とに分離される。分離されたガス冷媒は、冷媒流路7に
流れ、凝縮器3で冷却水入口管12aから入り、冷却水
出口管13aからでる冷却水に放熱し、液化されて受液
器16に溜まる。この受液器16から出たアンモニア冷
媒は膨脹弁4で減圧膨脹し、蒸発器5において、冷水入
口管14から入って冷水出口管15から出る冷水の蒸発
熱を吸熱し、ガス化した後、再びガス冷媒となって吸収
器6のガス側入口6aに送られる。
The concentrated solution of the aqueous ammonia solution in the regenerator 1 is heated by the combustion heat of gas or kerosene or the like in the burner 1c, and separated in the gas-liquid separator 2 into the ammonia gas refrigerant and the dilute solution. The separated gas refrigerant flows into the refrigerant flow path 7, enters the cooling water inlet pipe 12 a in the condenser 3, radiates heat to the cooling water flowing out of the cooling water outlet pipe 13 a, is liquefied, and accumulates in the liquid receiver 16. The ammonia refrigerant discharged from the receiver 16 is decompressed and expanded by the expansion valve 4, and in the evaporator 5, the heat of vaporization of the cold water that enters through the cold water inlet pipe 14 and exits through the cold water outlet pipe 15 is absorbed and gasified. It becomes gas refrigerant again and is sent to the gas side inlet 6a of the absorber 6.

【0063】この吸収器6内では、ガス冷媒は希溶液流
路9を流れて吸収器6の液側入口6bより流入する希溶
液に吸収されてアンモニア水溶液の濃溶液になり、吸収
器6の出口6cから出て濃溶液タンク17内に溜まる。
そして、この濃溶液タンク17を出た濃溶液は、溶液ポ
ンプ10によって再び再生器1に戻される。
In the absorber 6, the gas refrigerant flows through the dilute solution flow path 9 and is absorbed by the dilute solution flowing from the liquid side inlet 6b of the absorber 6 to become a concentrated solution of the ammonia aqueous solution. It exits from the outlet 6c and accumulates in the concentrated solution tank 17.
Then, the concentrated solution that has left the concentrated solution tank 17 is returned to the regenerator 1 by the solution pump 10 again.

【0064】このような吸収式ヒートポンプシステムを
冷房機として用いる場合は、凝縮器3に冷却水入口管1
2aと冷却水出口管13aとを接続して冷却水により凝
縮器3を冷却し、さらに吸収器6にも冷却水入口管12
bと冷却水出口管13bとを接続して冷却水により吸収
器6を冷却することにより、これらを通るガス冷媒を冷
却する。そして、蒸発器5には冷水入口管14と冷水出
口管15とが接続されているので、蒸発器5ではガス冷
媒により冷却された冷水を取り出すことができる。この
冷水を室内に送って室内端末であるファンコイルユニッ
ト等に流すことにより、冷房を行うことができる。
When such an absorption heat pump system is used as a cooling machine, the condenser 3 has a cooling water inlet pipe 1.
2a and the cooling water outlet pipe 13a are connected to cool the condenser 3 with the cooling water.
By connecting the cooling water outlet pipe 13b to the cooling water outlet pipe 13b and cooling the absorber 6 with the cooling water, the gas refrigerant passing therethrough is cooled. Since the cold water inlet pipe 14 and the cold water outlet pipe 15 are connected to the evaporator 5, the evaporator 5 can take out cold water cooled by the gas refrigerant. Cooling can be performed by sending this cold water into a room and flowing it to a fan coil unit or the like which is an indoor terminal.

【0065】装置の運転中には、余分な作動媒体は、ア
ンモニア冷媒が受液器16に溜まり、希溶液が気液分離
器2に溜まり、濃溶液が濃溶液タンク17に溜まり、凝
縮器3や吸収器6に溜まることがないので、凝縮性能や
吸収性能を低下させて装置の性能を低下させるというこ
とがなく、常に安定して高性能運転を実現することがで
きる。さらに、濃溶液タンク17が、気液分離器2およ
び受液器16よりも下方に位置しているため、装置の運
転が停止している時には、気液分離器2内の希溶液と受
液器16内のアンモニア冷媒の一部は重力作用により、
濃溶液タンク17に戻るので、常に溶液ポンプ10の入
口には液体成分が確保されていることになり、空運転を
防止することができる。
During operation of the apparatus, the excess working medium is such that ammonia refrigerant accumulates in the receiver 16, dilute solution accumulates in the gas-liquid separator 2, concentrated solution accumulates in the concentrated solution tank 17, Since it does not accumulate in the absorber 6 and the condensation performance and the absorption performance, the performance of the apparatus is not reduced, and the high-performance operation can always be stably realized. Further, since the concentrated solution tank 17 is located below the gas-liquid separator 2 and the liquid receiver 16, when the operation of the apparatus is stopped, the diluted solution in the gas-liquid separator 2 and the liquid A part of the ammonia refrigerant in the vessel 16 is caused by the action of gravity.
Since the liquid is returned to the concentrated solution tank 17, the liquid component is always kept at the inlet of the solution pump 10, and idle operation can be prevented.

【0066】また、濃溶液タンク17の容積は、気液分
離器2の容積と受液器16の容積との和よりも大きく、
かつ装置内部に充填される作動媒体の容積よりも大きく
なる様に構成している。
The capacity of the concentrated solution tank 17 is larger than the sum of the capacity of the gas-liquid separator 2 and the capacity of the receiver 16.
In addition, it is configured to be larger than the volume of the working medium filled inside the device.

【0067】そして、例えば冷却水の温度が低い場合、
すなわち外気温度が低い場合の冷房運転等においては、
高圧側の圧力が低くなるため、装置内部の作動媒体は、
気液分離器2と受液器16との高圧回路側に多く溜まり
込み低圧回路側の濃溶液タンク17に溜まる量は少なく
なる。しかし、濃溶液タンク17の容積が気液分離器2
の容積と受液器16の容積との和よりも大きくなってい
るため、気液分離器2内と受液器16内に溜まったすべ
ての作動媒体が、濃溶液タンク17に流入して溜まり込
んでも、濃溶液タンク17から溢れて吸収器6内に溜ま
り、その吸収性能を低下させて装置の性能を低下させる
ということは無く、安定した性能を確保することができ
る。
For example, when the temperature of the cooling water is low,
That is, in the cooling operation or the like when the outside air temperature is low,
Because the pressure on the high pressure side is low, the working medium inside the device is
A large amount of water is accumulated on the high-pressure circuit side of the gas-liquid separator 2 and the liquid receiver 16, and the amount of accumulated in the concentrated solution tank 17 on the low-pressure circuit side is reduced. However, the volume of the concentrated solution tank 17 is
Is larger than the sum of the volume of the liquid receiver and the volume of the liquid receiver 16, all the working medium accumulated in the gas-liquid separator 2 and the liquid receiver 16 flows into the concentrated solution tank 17 and accumulates. Even if it does, it does not overflow from the concentrated solution tank 17 and accumulates in the absorber 6 to reduce its absorption performance, thereby lowering the performance of the apparatus, and it is possible to secure stable performance.

【0068】さらに、濃溶液タンク17の容積の範囲内
で、充填する作動媒体の量を任意に設定することがで
き、また、気液分離器2の容積と受液器16の容積とを
選択することによってアンモニアの濃度も設定すること
ができるなど、作動媒体の充填条件を任意に設定するこ
とができる効果を有する。
Further, the amount of the working medium to be filled can be set arbitrarily within the range of the volume of the concentrated solution tank 17, and the volume of the gas-liquid separator 2 and the volume of the liquid receiver 16 can be selected. By doing so, it is possible to set the condition of filling the working medium arbitrarily, such as setting the concentration of ammonia.

【0069】(実施例2)図2は、本発明の実施例2に
おける吸収式ヒートポンプシステムの構成図である。
(Embodiment 2) FIG. 2 is a configuration diagram of an absorption heat pump system in Embodiment 2 of the present invention.

【0070】なお、実施例1における構成部分と同一の
構成部分については、同一の符号を付して説明は省略す
る。
The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

【0071】図2において、18aは第一の開閉弁で、
受液器16とその下方に位置する濃溶液タンク17とを
接続する冷媒バイパス19に設けられている。18bは
第二の開閉弁で、気液分離器2とその下方に位置する濃
溶液タンク17とを接続する希溶液バイパス20に設け
られている。
In FIG. 2, reference numeral 18a denotes a first on-off valve,
It is provided in a refrigerant bypass 19 that connects the liquid receiver 16 and a concentrated solution tank 17 located below the liquid receiver 16. A second opening / closing valve 18b is provided in the dilute solution bypass 20 that connects the gas-liquid separator 2 and the concentrated solution tank 17 located below the gas-liquid separator 2.

【0072】次に、この実施2による吸収式ヒートポン
プシステムの動作,作用について説明する。
Next, the operation and operation of the absorption heat pump system according to the second embodiment will be described.

【0073】装置の運転中に気液分離器2と受液器16
とに溜まった作動媒体は、運転を停止した時または装置
の起動時には、第一の開閉弁18aと第二の開閉弁18
bとを開放することにより、受液器16に溜まったアン
モニア冷媒と、気液分離器2に溜まった希溶液とは、濃
溶液タンク17に直接回収することができるので、溶液
ポンプ17の入口に何時でも液体成分を確保することが
でき、運転を開始する時間が短く、かつ確実に運転の立
ち上げをすることができる。
During operation of the apparatus, the gas-liquid separator 2 and the receiver 16
When the operation is stopped or the apparatus is started, the working medium accumulated in the first opening / closing valve 18a and the second opening / closing valve 18
By opening b, the ammonia refrigerant accumulated in the receiver 16 and the dilute solution accumulated in the gas-liquid separator 2 can be directly collected in the concentrated solution tank 17. Thus, the liquid component can be secured at any time, and the time to start the operation is short, and the operation can be started up reliably.

【0074】(実施例3)図3は、本発明の実施例3に
おける吸収式ヒートポンプシステムの構成図である。
(Embodiment 3) FIG. 3 is a configuration diagram of an absorption heat pump system in Embodiment 3 of the present invention.

【0075】なお、実施例1〜2における構成部分と同
一の構成部分については、同一の符号を付して説明は省
略する。
The same components as those in the first and second embodiments are denoted by the same reference numerals, and description thereof is omitted.

【0076】図3において、気液分離器2と減圧弁8と
吸収器6と濃溶液タンク17とは、上方から順次下方に
位置し、これらは順に接続されている。凝縮器3と受液
器16と膨脹弁4と蒸発器5と吸収器6とは上方から順
次下方に位置し、これらは順に接続されている。
In FIG. 3, the gas-liquid separator 2, the pressure reducing valve 8, the absorber 6, and the concentrated solution tank 17 are sequentially located downward from above, and these are connected in order. The condenser 3, the liquid receiver 16, the expansion valve 4, the evaporator 5, and the absorber 6 are sequentially located downward from above, and are connected in order.

【0077】次に、この実施例3による吸収式ヒートポ
ンプシステムの動作,作用について説明する。
Next, the operation and operation of the absorption heat pump system according to the third embodiment will be described.

【0078】装置をどの様な条件で運転した後でも、減
圧弁8と膨脹弁4とを開放状態にすることにより、アン
モニア冷媒,希溶液などの作動媒体は、冷媒流路7,希
溶液流路9などの配管に溜まることなく、その重力作用
により濃溶液タンク17に回収される。従って、常に同
じ状態で装置を安定に起動させることができ、また起動
時に吸収器6内で余分な発熱を生ずることもなく、高性
能の運転立ち上げをすることができ、オンオフ運転特性
の優れた装置を実現させることができる。
After operating the apparatus under any conditions, by opening the pressure reducing valve 8 and the expansion valve 4, the working medium such as the ammonia refrigerant and the dilute solution flows through the refrigerant flow path 7, the dilute solution flow The concentrated solution is collected in the concentrated solution tank 17 by its gravitational action without accumulating in a pipe such as the path 9. Therefore, the apparatus can be stably started in the same state at all times, and high-performance operation start-up can be performed without generating extra heat in the absorber 6 at the start-up, and excellent on-off operation characteristics can be obtained. Device can be realized.

【0079】(実施例4)図4は、本発明の実施例4に
おける吸収式ヒートポンプシステムの構成図である。
(Embodiment 4) FIG. 4 is a configuration diagram of an absorption heat pump system in Embodiment 4 of the present invention.

【0080】なお、実施例1〜3における構成部分と同
一の構成部分については、同一の符号を付して説明は省
略する。
The same components as those in the first to third embodiments are denoted by the same reference numerals, and description thereof is omitted.

【0081】図4において、21aは濃溶液タンク17
内に設けて液面検知手段として機能する濃溶液液面セン
サー、21bは受液器16内に設けて液面検知手段とし
て機能する冷媒液面センサー、21cは気液分離器2内
に設けて液面検知手段として機能する希溶液液面センサ
ーである。22は濃溶液液面センサー21aと冷媒液面
センサー21bと希溶液液面センサー21cとの検知信
号に応じて、膨脹弁4と減圧弁8との開度を制御する制
御装置である。
In FIG. 4, reference numeral 21a denotes the concentrated solution tank 17;
A concentrated solution level sensor provided in the inside and functioning as a liquid level detection means, a refrigerant level sensor 21b provided in the receiver 16 and functioning as a liquid level detection means, and 21c provided in the gas-liquid separator 2 This is a dilute solution liquid level sensor that functions as liquid level detecting means. Reference numeral 22 denotes a control device that controls the degree of opening of the expansion valve 4 and the pressure reducing valve 8 according to detection signals from the concentrated solution level sensor 21a, the refrigerant level sensor 21b, and the dilute solution level sensor 21c.

【0082】次に、この実施例4による吸収式ヒートポ
ンプシステムの動作,作用について説明する。
Next, the operation and operation of the absorption heat pump system according to the fourth embodiment will be described.

【0083】受液器16内の液量は、冷媒液面センサー
21bにより液面として検知することができるので、溶
液ポンプ10の流量と高圧側および低圧側の圧力差とに
応じて、制御装置22により、膨脹弁4の開度を調整す
ることにより、液面すなわち液量を一定に保持すること
ができる。また、気液分離器2内の液量は希溶液液面セ
ンサー21cにより液面として検知することができるの
で、上記のアンモニア冷媒の場合と同様に、溶液ポンプ
10の流量と高圧側および低圧側との圧力差に応じて、
制御装置22により、減圧弁8の開度を調整することに
より、液面すなわち液量を一定に保持することができ
る。従って、受液器16内の液量と気液分離器2内の液
量は、任意の値に容易に保持することができるので、溶
液ポンプ10の流量を設定することにより容易に能力を
設定することができ、安定した運転を実現することがで
きる。
Since the liquid level in the liquid receiver 16 can be detected as a liquid level by the refrigerant liquid level sensor 21b, the control device is controlled according to the flow rate of the solution pump 10 and the pressure difference between the high pressure side and the low pressure side. By adjusting the opening degree of the expansion valve 4 by means of 22, the liquid level, that is, the liquid amount can be kept constant. Further, since the liquid amount in the gas-liquid separator 2 can be detected as the liquid level by the dilute solution liquid level sensor 21c, the flow rate of the solution pump 10 and the high-pressure side and the low-pressure side Depending on the pressure difference between
By adjusting the opening of the pressure reducing valve 8 by the control device 22, the liquid level, that is, the liquid amount can be kept constant. Therefore, the liquid amount in the liquid receiver 16 and the liquid amount in the gas-liquid separator 2 can be easily maintained at arbitrary values, so that the capacity can be easily set by setting the flow rate of the solution pump 10. And stable operation can be realized.

【0084】また、濃溶液液面センサー21aにより濃
溶液タンク17の液量が不足していることを検知した場
合には、受液器16内および気液分離器2内の液量に応
じて、制御装置22により、膨脹弁4または減圧弁8の
開度を制御することにより、濃溶液タンク17内の液量
を一定に確保することができるので、溶液ポンプ10の
空運転を確実に防止することができる。
When it is detected by the concentrated solution level sensor 21a that the amount of the solution in the concentrated solution tank 17 is insufficient, the amount of the solution in the receiver 16 and the gas-liquid separator 2 is determined. By controlling the opening degree of the expansion valve 4 or the pressure reducing valve 8 by the control device 22, the liquid amount in the concentrated solution tank 17 can be kept constant, so that the idle operation of the solution pump 10 is reliably prevented. can do.

【0085】(実施例5)図5は、本発明の実施例5に
おける吸収式ヒートポンプシステムの構成図である。
(Embodiment 5) FIG. 5 is a configuration diagram of an absorption heat pump system in Embodiment 5 of the present invention.

【0086】なお、実施例1〜4における構成部分と同
一の構成部分については、同一の符号を付して説明は省
略する。
The same components as those in the first to fourth embodiments are denoted by the same reference numerals, and description thereof is omitted.

【0087】図5において、23は濃溶液タンク17と
溶液ポンプ10との間に設けた過冷却熱交換器で、この
過冷却熱交換器23の入口には冷却水入口管12cが接
続され、出口には冷却水接続管24が接続されている。
この冷却水接続管24は吸収器6の入口の冷却水入口管
12bに接続されている。
In FIG. 5, reference numeral 23 denotes a supercooling heat exchanger provided between the concentrated solution tank 17 and the solution pump 10, and a cooling water inlet pipe 12c is connected to an inlet of the supercooling heat exchanger 23. The cooling water connection pipe 24 is connected to the outlet.
The cooling water connection pipe 24 is connected to the cooling water inlet pipe 12b at the inlet of the absorber 6.

【0088】次に、この実施例5による吸収式ヒートポ
ンプシステムの動作,作用について説明する。
Next, the operation and operation of the absorption heat pump system according to Embodiment 5 will be described.

【0089】冷却水は、過冷却熱交換器23で濃溶液を
冷却して温度が上昇した状態で、吸収器6に流入してこ
れを冷却するので、濃溶液の温度は、吸収器6の出口の
ものよりも過冷却熱交換器23の出口のもの、すなわち
溶液ポンプ10の入口のものの方が低くなって確実に過
冷却の状態を得ることができる。その結果、溶液ポンプ
10にガスが噛むこともなく、濃溶液の流量変動が小さ
い安定した流量条件を得ることができ、装置の運転も安
定に保持することができる。さらに、ガス噛み運転によ
る溶液ポンプ10の損傷も防止することができる。
The cooling water flows into the absorber 6 to cool the concentrated solution in a state where the temperature of the concentrated solution is increased by cooling the concentrated solution in the supercooling heat exchanger 23. The outlet of the supercooling heat exchanger 23, that is, the inlet of the solution pump 10 is lower than the outlet, so that a supercooled state can be reliably obtained. As a result, gas does not bite into the solution pump 10, stable flow conditions with small fluctuations in the flow rate of the concentrated solution can be obtained, and the operation of the apparatus can be stably maintained. Furthermore, the solution pump 10 can be prevented from being damaged by the gas biting operation.

【0090】(実施例6)図6は、本発明の実施例6に
おける吸収式ヒートポンプシステムの構成図である。
(Embodiment 6) FIG. 6 is a configuration diagram of an absorption heat pump system in Embodiment 6 of the present invention.

【0091】なお、実施例1〜5における構成部分と同
一の構成部分については、同一の符号を付して説明は省
略する。
The same components as those in the first to fifth embodiments are denoted by the same reference numerals, and description thereof is omitted.

【0092】図6において、25は冷却水接続管24に
設けた逆止弁で、26は冷却水入口管12cに設けた3
方弁で、この3方弁26の一方には冷却水入口管12b
に接続する分岐配管27が配管され、この分岐配管27
には逆止弁25の下流側の冷却水接続管24が接続され
ている。さらに、溶液ポンプ10の入口側には、過冷却
検知手段として温度と圧力とを検知して過冷却を検知す
る過冷却センサー28が設けられ、この過冷却センサー
28の検知信号に応じて、制御装置22により、3方弁
26の回路を切り換える。
In FIG. 6, reference numeral 25 denotes a check valve provided in the cooling water connection pipe 24, and reference numeral 26 denotes a check valve provided in the cooling water inlet pipe 12c.
One of the three-way valves 26 has a cooling water inlet pipe 12b.
Is connected to the branch pipe 27.
Is connected to a cooling water connection pipe 24 downstream of the check valve 25. Further, on the inlet side of the solution pump 10, there is provided a subcooling sensor 28 which detects temperature and pressure as subcooling detection means and detects subcooling. Control is performed according to a detection signal of the subcooling sensor 28. The circuit of the three-way valve 26 is switched by the device 22.

【0093】次に、この実施例6による吸収式ヒートポ
ンプシステムの動作,作用について説明する。
Next, the operation and operation of the absorption heat pump system according to Embodiment 6 will be described.

【0094】過冷却検知手段として機能する過冷却セン
サ28は、溶液ポンプ10に入る濃溶液の過冷却状態を
検知し、過冷却状態が小さい時は、冷却水が過冷却熱交
換器23から吸収器6へ流れるように、制御装置22に
より3方弁26の回路を設定する。また、過冷却状態が
大きくなった時は、冷却水が過冷却熱交換器23を通ら
ずに、3方弁26から分岐配管27を通って吸収器6に
直接流れるように、制御装置22が3方弁26の流路を
切り換える。従って、溶液ポンプ10の入口の濃溶液
は、常にガスを発生することなく、余分な放熱もない最
適な過冷却状態に保持されるため、溶液ポンプ10のガ
ス噛み運転を防止して高性能を維持することができる。
A supercooling sensor 28 functioning as a subcooling detecting means detects a supercooled state of the concentrated solution entering the solution pump 10, and when the supercooled state is small, the cooling water is absorbed from the supercooled heat exchanger 23. The circuit of the three-way valve 26 is set by the control device 22 so as to flow to the vessel 6. Further, when the supercooling state becomes large, the control device 22 is controlled so that the cooling water flows directly from the three-way valve 26 through the branch pipe 27 to the absorber 6 without passing through the supercooling heat exchanger 23. The flow path of the three-way valve 26 is switched. Therefore, the concentrated solution at the inlet of the solution pump 10 is always kept in an optimal supercooled state without generating gas and without excessive heat radiation. Can be maintained.

【0095】(実施例7)図7は、実施例7による吸収
式ヒートポンプシステムの構成図である。
(Embodiment 7) FIG. 7 is a configuration diagram of an absorption heat pump system according to Embodiment 7.

【0096】なお、実施例1〜6における構成部分と同
一の構成部分については、同一の符号を付して説明は省
略する。
The same components as those in the first to sixth embodiments are denoted by the same reference numerals, and description thereof is omitted.

【0097】図7において、29は、膨脹弁4と減圧弁
8と溶液ポンプ10の入口とで仕切られる低圧回路部に
位置する濃溶液タンク17内に設けて低圧検知手段とし
て機能する低圧圧力センサー、30は低圧回路部以外の
冷媒回路である高圧回路部に位置する受液器16内に設
けて高圧検知手段として機能する高圧圧力センサーであ
る。これらの低圧圧力センサー29と高圧圧力センサー
30との信号に応じて、減圧弁8と膨脹弁4の開度を制
御装置22により制御する。
In FIG. 7, reference numeral 29 denotes a low-pressure pressure sensor which is provided in a concentrated solution tank 17 located in a low-pressure circuit section partitioned by an expansion valve 4, a pressure reducing valve 8, and an inlet of a solution pump 10 and functions as a low pressure detecting means. Reference numeral 30 denotes a high-pressure sensor that is provided in the liquid receiver 16 located in the high-pressure circuit, which is a refrigerant circuit other than the low-pressure circuit, and functions as high-pressure detecting means. The controller 22 controls the opening of the pressure reducing valve 8 and the expansion valve 4 in accordance with the signals from the low pressure sensor 29 and the high pressure sensor 30.

【0098】次に、この実施例7による吸収式ヒートポ
ンプシステムの動作,作用について説明する。
Next, the operation and operation of the absorption heat pump system according to Embodiment 7 will be described.

【0099】装置の起動時は、高圧側と低圧側との圧力
差は小さく、溶液ポンプ10により送られた作動媒体
は、圧力差によって高圧回路部から低圧回路部に戻るこ
とができない。従って、低圧圧力センサー29と高圧圧
力センサー30とにより検知した圧力差が小さい時に
は、制御装置22により溶液ポンプ10の流量を小さく
するとともに、膨脹弁4と減圧弁8との開度が大きくな
るように制御する。
When the apparatus is started, the pressure difference between the high pressure side and the low pressure side is small, and the working medium sent by the solution pump 10 cannot return from the high pressure circuit to the low pressure circuit due to the pressure difference. Accordingly, when the pressure difference detected by the low pressure sensor 29 and the high pressure sensor 30 is small, the flow rate of the solution pump 10 is reduced by the control device 22 and the opening degree of the expansion valve 4 and the pressure reducing valve 8 is increased. To control.

【0100】そして、一定時間運転が継続されて、圧力
差が十分大きくなった時には、制御装置22により、溶
液ポンプ10の流量に応じて膨脹弁4と減圧弁8との開
度を絞るので、蒸発温度を低くして低温が得られ、任意
の能力を得ることができる。また、高圧側と低圧側との
圧力差に応じて減圧手段の開度を設定することができる
ので、希溶液の流量を最適に設定することができる。従
って、種々の環境条件に応じて安定した運転を実現し、
能力制御も確実に行なうことができる。
When the operation has been continued for a certain period of time and the pressure difference has become sufficiently large, the opening of the expansion valve 4 and the pressure reducing valve 8 is reduced by the control device 22 in accordance with the flow rate of the solution pump 10. A low temperature can be obtained by lowering the evaporation temperature, and any capacity can be obtained. Further, since the opening of the pressure reducing means can be set according to the pressure difference between the high pressure side and the low pressure side, the flow rate of the dilute solution can be set optimally. Therefore, stable operation is realized according to various environmental conditions,
Capability control can also be performed reliably.

【0101】(実施例8)図8は、実施例8による吸収
式ヒートポンプシステムの構成図である。
(Embodiment 8) FIG. 8 is a configuration diagram of an absorption heat pump system according to Embodiment 8.

【0102】なお、実施例1〜7における構成部分と同
一の構成部分については、同一の符号を付して説明は省
略する。
The same components as those in the first to seventh embodiments are denoted by the same reference numerals, and description thereof is omitted.

【0103】図8において、31は溶液ポンプ10の入
口に設けた溶液タンク17と溶液ポンプ10の出口とを
接続するバイパス管で、このバイパス管31には開閉弁
32が設けられている。33は再生器1の出口1aと気
液分離器2との間に設けて再生温度検知手段として機能
する温度センサーで、この温度センサー33の検知信号
に応じて、バイパス管31に設けた開閉弁32の開度を
制御装置22により制御する。
In FIG. 8, reference numeral 31 denotes a bypass pipe connecting the solution tank 17 provided at the inlet of the solution pump 10 and the outlet of the solution pump 10. The bypass pipe 31 is provided with an on-off valve 32. Reference numeral 33 denotes a temperature sensor which is provided between the outlet 1a of the regenerator 1 and the gas-liquid separator 2 and functions as a regenerating temperature detecting means. The controller 32 controls the opening of the opening 32.

【0104】次に、この実施例8による吸収式ヒートポ
ンプシステムの動作,作用について説明する。
Next, the operation and operation of the absorption heat pump system according to Embodiment 8 will be described.

【0105】装置の起動時においては、溶液ポンプ10
が運転されることにより、濃溶液タンク17の濃溶液が
再生器1に送られて加熱され、気液2相流となって、気
液分離器2に流入し、アンモニアガスはガス側出口2a
から流出し、アンモニア濃度の低くなった希溶液は、液
側出口2bから圧力差によって吸収器6へ押し出され
る。
When starting the apparatus, the solution pump 10
Is operated, the concentrated solution in the concentrated solution tank 17 is sent to the regenerator 1 where it is heated and turned into a gas-liquid two-phase flow, flows into the gas-liquid separator 2, and the ammonia gas is removed from the gas side outlet 2a.
The dilute solution having a low ammonia concentration flowing out of the outlet is pushed out to the absorber 6 from the liquid side outlet 2b by a pressure difference.

【0106】そして、圧力差が十分大きくない時に溶液
ポンプ10が大量の濃溶液を再生器1へ送り出すと、気
液分離器2に希溶液が溜まって濃溶液タンク17の濃溶
液が不足し、溶液ポンプ10の運転が不能となってしま
う。そこで、温度センサー33が検知する温度が低い
時、すなわち高圧側の圧力が低い時は、制御装置22に
より開閉弁32を開状態にすることにより、溶液ポンプ
10への流量を少なくし、再生器1へ濃溶液が送り過ぎ
るのを防ぐことができる。
When the solution pump 10 sends out a large amount of the concentrated solution to the regenerator 1 when the pressure difference is not sufficiently large, the diluted solution is accumulated in the gas-liquid separator 2 and the concentrated solution in the concentrated solution tank 17 runs short. The operation of the solution pump 10 becomes impossible. Therefore, when the temperature detected by the temperature sensor 33 is low, that is, when the pressure on the high pressure side is low, the flow rate to the solution pump 10 is reduced by opening the on-off valve 32 by the control device 22 to reduce the flow rate to the regenerator. It is possible to prevent the concentrated solution from being sent too much to 1.

【0107】また、一定時間運転を継続して温度センサ
ー33により検知する温度が上昇すると、すなわち高圧
側の圧力が上がった時には、制御装置22により開閉弁
32の開度を絞って溶液ポンプ10への流量を大きくす
ることにより、再生器1に適当な流量の濃溶液を送るこ
とができる。従って、再生温度が十分に上昇し高圧側の
圧力が確保されて希溶液が戻ることができる状態では、
溶液ポンプ11への流量を大きくすることができるの
で、動作の安定状態に速く到達することができ、立ち上
がり特性の優れた装置を実現することができる。
When the temperature detected by the temperature sensor 33 rises after the operation is continued for a certain period of time, that is, when the pressure on the high pressure side rises, the opening degree of the on-off valve 32 is reduced by the control device 22 to the solution pump 10. The concentrated solution at an appropriate flow rate can be sent to the regenerator 1 by increasing the flow rate. Therefore, in a state where the regeneration temperature is sufficiently increased, the pressure on the high pressure side is secured, and the dilute solution can return,
Since the flow rate to the solution pump 11 can be increased, a stable state of operation can be quickly reached, and a device with excellent startup characteristics can be realized.

【0108】(実施例9)図9は、本発明の実施例9に
よる吸収式ヒートポンプシステムの構成図である。
(Embodiment 9) FIG. 9 is a configuration diagram of an absorption heat pump system according to Embodiment 9 of the present invention.

【0109】なお、実施例1〜8における構成部分と同
一の構成部分については、同一の符号を付して説明は省
略する。
The same components as those in the first to eighth embodiments are denoted by the same reference numerals, and description thereof is omitted.

【0110】図9において、34aは気液分離器2に設
けて希溶液の加熱手段として機能する希溶液ヒータ、3
4bは受液器16に設けてアンモニア冷媒の加熱手段と
して機能する冷媒ヒータである。濃溶液タンク17に設
けて濃溶液の液面検知手段として機能する濃溶液液面セ
ンサー21aの検知信号に応じて、制御装置22によ
り、膨脹弁4と減圧弁8と希溶液ヒータ34aと冷媒ヒ
ータ34bとをそれぞれ制御する。
In FIG. 9, reference numeral 34a denotes a dilute solution heater which is provided in the gas-liquid separator 2 and functions as a dilute solution heating means.
Reference numeral 4b denotes a refrigerant heater provided in the liquid receiver 16 and functioning as a heating means for the ammonia refrigerant. In response to a detection signal of a concentrated solution level sensor 21a provided in the concentrated solution tank 17 and functioning as a concentrated solution level detecting means, the control device 22 causes the expansion valve 4, the pressure reducing valve 8, the diluted solution heater 34a, and the refrigerant heater 34b.

【0111】次に、この実施例9による吸収式ヒートポ
ンプシステムの動作,作用について説明する。
Next, the operation and operation of the absorption heat pump system according to Embodiment 9 will be described.

【0112】装置の運転が停止している時、または運転
の開始時に、気液分離器2と受液器16とに作動媒体が
溜まり込んで濃溶液タンク17が空の状態になった場
合、濃溶液液面センサー21aが検知して制御装置22
に信号を送り、膨脹弁4と減圧弁8とを開状態にして希
溶液ヒータ34aと冷媒ヒータ34bとに通電し希溶液
およびアンモニア冷媒を加熱する。加熱されたアンモニ
ア冷媒と希溶液とは、温度が上昇し、圧力が上昇するの
で、その圧力差によって気液分離器2と受液器16とに
溜まった作動媒体を濃溶液タンク17に回収することが
できる。従って、高圧側と低圧側との圧力差が小さく、
装置内部の作動媒体の分布が不均一の状態においても、
作動媒体を濃溶液タンク17に回収することができるの
で、任意の時に確実に装置を起動させることができる。
When the operation of the apparatus is stopped or at the start of the operation, when the working medium is accumulated in the gas-liquid separator 2 and the receiver 16 and the concentrated solution tank 17 becomes empty, The concentrated solution level sensor 21a detects the control device 22
, The expansion valve 4 and the pressure reducing valve 8 are opened, and the diluted solution heater 34a and the refrigerant heater 34b are energized to heat the diluted solution and the ammonia refrigerant. Since the temperature of the heated ammonia refrigerant and the dilute solution increases and the pressure increases, the working medium collected in the gas-liquid separator 2 and the liquid receiver 16 is collected in the concentrated solution tank 17 by the pressure difference. be able to. Therefore, the pressure difference between the high pressure side and the low pressure side is small,
Even when the distribution of the working medium inside the device is uneven,
Since the working medium can be collected in the concentrated solution tank 17, the device can be reliably started at any time.

【0113】[0113]

【発明の効果】本発明は、以上説明した各請求項に記載
されたような形態で実施され、以下に記載されるような
効果を奏する。
The present invention is embodied in the form described in each of the claims described above, and has the following effects.

【0114】請求項1に記載した発明によれば、少なく
とも冷媒流路,希溶液流路,濃溶液流路を備えた冷媒回
路が濃溶液タンクと受液器と気液分離器とを有し、これ
ら受液器および気液分離器よりも下方に濃溶液タンクを
設けているため、装置の運転中においては、余分な冷媒
および希溶液は、それぞれ受液器と気液分離器とに溜ま
り、それ以外の余分な作動媒体は濃溶液として濃溶液タ
ンクに溜めることができるので、適正な冷媒分布で装置
を運転することができ、高性能を維持することができ
る。さらに、運転を停止した時には受液器および気液分
離器にそれぞれ溜まっている冷媒および希溶液は濃溶液
タンクに回収することができるので、確実に溶液ポンプ
を運転させて装置を起動させることができる。
According to the first aspect of the present invention, a refrigerant circuit having at least a refrigerant channel, a dilute solution channel, and a concentrated solution channel has a concentrated solution tank, a liquid receiver, and a gas-liquid separator. Since the concentrated solution tank is provided below the liquid receiver and the gas-liquid separator, during operation of the apparatus, excess refrigerant and dilute solution accumulate in the liquid receiver and the gas-liquid separator, respectively. Since the other excess working medium can be stored as a concentrated solution in the concentrated solution tank, the apparatus can be operated with an appropriate refrigerant distribution, and high performance can be maintained. Further, when the operation is stopped, the refrigerant and the dilute solution stored in the receiver and the gas-liquid separator, respectively, can be collected in the concentrated solution tank, so that the solution pump can be reliably operated to start the apparatus. it can.

【0115】また、請求項2に記載した発明によれば、
濃溶液タンクは、受液器と気液分離器とよりも下方に設
け、その濃溶液タンクの内容積は、受液器の内容積と気
液分離器の内容積との和よりも大きくし、かつ、装置に
充填する作動媒体の容積よりも大きくしているので、装
置の運転中に、受液器内の冷媒および気液分離器内の希
溶液が、全て濃溶液タンクに流入した場合でも、濃溶液
タンクの容積が十分に確保されていることから、濃溶液
タンクが満杯になって溢れ、濃溶液が吸収器内に溜まる
ことがなく、吸収性能を低下させたり、著しい性能低下
を生じさせたりすることがなくなる。さらに、装置に充
填する作動媒体の量と濃度とは、濃溶液タンクと受液器
と気液分離器との容積に応じて設定することができるの
で、充填条件の幅が広く、設計自由度が大きく、かつ小
型の装置を実現することができる。
According to the second aspect of the present invention,
The concentrated solution tank is provided below the liquid receiver and the gas-liquid separator, and the inner volume of the concentrated solution tank is larger than the sum of the inner volume of the liquid receiver and the inner volume of the gas-liquid separator. In addition, since the volume of the working medium to be filled in the device is larger than that of the working medium, the refrigerant in the receiver and the dilute solution in the gas-liquid separator all flow into the concentrated solution tank during the operation of the device. However, since the volume of the concentrated solution tank is sufficiently ensured, the concentrated solution tank becomes full and overflows, and the concentrated solution does not accumulate in the absorber. Or cause it to occur. Furthermore, since the amount and concentration of the working medium to be filled in the apparatus can be set according to the volumes of the concentrated solution tank, the liquid receiver and the gas-liquid separator, the filling conditions are wide, and the degree of freedom in design is wide. , And a small device can be realized.

【0116】また、請求項3に記載した発明によれば、
濃溶液タンクが、受液器と気液分離器とよりも下方に設
けられ、濃溶液タンクと受液器とは第一の開閉弁を有す
る冷媒バイパスにより接続され、濃溶液タンクと気液分
離器とは第二の開閉弁を有する希溶液バイパスにより接
続されているので、装置の起動時には、第一の開閉弁と
第二の開閉弁とを開放することにより、受液器内の冷媒
および、気液分離器内の希溶液を、濃溶液タンクに回収
することができる。その結果、常に溶液ポンプの入口に
液体成分を確保することができるので、溶液ポンプの空
運転による損傷を防止し、装置の運転を確実に速く立ち
上げることができる。
According to the third aspect of the present invention,
A concentrated solution tank is provided below the receiver and the gas-liquid separator, and the concentrated solution tank and the receiver are connected by a refrigerant bypass having a first on-off valve, and the concentrated solution tank and the gas-liquid separator Since the apparatus is connected to the dilute solution bypass having the second on-off valve, when the apparatus is started, by opening the first on-off valve and the second on-off valve, the refrigerant in the liquid receiver and The dilute solution in the gas-liquid separator can be collected in the concentrated solution tank. As a result, the liquid component can always be ensured at the inlet of the solution pump, so that damage due to idle operation of the solution pump can be prevented, and the operation of the apparatus can be started up quickly and reliably.

【0117】また、請求項4に記載した発明によれば、
気液分離器と、これよりも下方に位置する減圧手段と吸
収器と濃溶液タンクとを順に接続し、凝縮器と、これよ
りも下方に位置する受液器と膨脹弁と蒸発器と吸収器と
を順に接続しているため、装置をどの様に運転した場合
でも、装置の運転停止時においては、任意の場所に溜ま
った作動媒体を、重力作用により濃溶液タンクに回収す
ることができる。その結、果常に同じ状態で装置を安定
して起動させることができ、また、運転起動時には吸収
器内に流入する媒体がないので、余分な発熱を生じさせ
ることがなく、高性能の運転立ち上げをすることがで
き、特にオンオフ運転に優れた装置を実現することがで
きる。
According to the fourth aspect of the present invention,
A gas-liquid separator, a pressure reducing means, an absorber, and a concentrated solution tank located below the gas-liquid separator are connected in sequence, and a condenser, a liquid receiver, an expansion valve, an evaporator, and an absorption located below the condenser. Because the devices are connected in order, no matter how the device is operated, when the operation of the device is stopped, the working medium accumulated in any place can be collected in the concentrated solution tank by the action of gravity. . As a result, the apparatus can be started stably in the same state at all times, and since there is no medium flowing into the absorber at the time of start of operation, no extra heat is generated and high-performance start-up is performed. It is possible to realize a device excellent in on-off operation.

【0118】また、請求項5に記載した発明によれば、
濃溶液タンクが受液器と気液分離器とよりも下方に設け
られ、濃溶液タンクと受液器と気液分離器には、それぞ
れ液面検知手段が設けられ、これらの液面検知手段の信
号に応じて、制御装置が膨脹弁と減圧手段との開度を制
御しているので、受液器内の液量と気液分離器内の液量
とは、膨脹弁と減圧手段との開度を制御することにより
任意に設定することができる。そして、希溶液と濃溶液
との濃度条件を一定に設定することができるので、安定
した装置の運転が実現できる。さらに、濃溶液タンク内
の液量が空になった場合、液面検知手段で検知すること
により、制御装置で減圧手段と膨脹弁を開放することが
できるので、受液器と気液分離器とに溜まっている冷
媒,希溶液を濃溶液タンク回収することができ、溶液ポ
ンプの空運転を防止することができる。
According to the fifth aspect of the present invention,
The concentrated solution tank is provided below the liquid receiver and the gas-liquid separator, and the concentrated solution tank, the liquid receiver, and the gas-liquid separator are provided with liquid level detecting means, respectively. The control device controls the degree of opening of the expansion valve and the pressure reducing means in accordance with the signal of, so that the amount of liquid in the receiver and the amount of liquid in the gas-liquid separator are It can be set arbitrarily by controlling the opening degree. Further, since the concentration conditions of the dilute solution and the concentrated solution can be set to be constant, stable operation of the apparatus can be realized. Further, when the liquid amount in the concentrated solution tank becomes empty, by detecting the liquid level with the liquid level detecting means, the pressure reducing means and the expansion valve can be opened by the control device. The concentrated solution tank can collect the refrigerant and the dilute solution stored in the tank, and the idle operation of the solution pump can be prevented.

【0119】また、請求項6に記載した発明によれば、
濃溶液タンクと溶液ポンプとの間に過冷却熱交換器を設
け、この過冷却熱交換器の冷却水出口と吸収器の冷却水
入口とは冷却水接続管により接続しているので、過冷却
熱交換器において濃溶液を冷却して温度が上昇した冷却
水により吸収器を冷却することになり、濃溶液の温度
は、吸収器の出口よりも溶液ポンプの入口の方が低くな
る。そして濃溶液の過冷却状態を確実に得ることがで
き、溶液ポンプにガスが噛むことがなく、濃溶液の流量
の変動が少ない安定した流量条件を得ることができる。
さらに、装置の運転も安定に保持することができ、溶液
ポンプのガス噛み運転による損傷も防止することができ
る。
Further, according to the invention described in claim 6,
A supercooling heat exchanger is provided between the concentrated solution tank and the solution pump, and the cooling water outlet of the supercooling heat exchanger and the cooling water inlet of the absorber are connected by a cooling water connection pipe. In the heat exchanger, the concentrated solution is cooled, and the absorber is cooled by cooling water whose temperature has risen. The temperature of the concentrated solution is lower at the inlet of the solution pump than at the outlet of the absorber. Then, the supercooled state of the concentrated solution can be reliably obtained, and a stable flow rate condition in which the gas does not bite in the solution pump and the flow rate of the concentrated solution is small can be obtained.
Further, the operation of the apparatus can be stably maintained, and the damage caused by the gas biting operation of the solution pump can be prevented.

【0120】また、請求項7に記載した発明によれば、
濃溶液タンクと溶液ポンプとの間に過冷却熱交換器を設
け、この過冷却熱交換器の冷却水出口と吸収器の冷却水
入口とは、逆止弁を有する冷却水接続管により接続し、
前記過冷却熱交換器の冷却水入口管に設けた3方弁と冷
却水接続管に設けた逆止弁の下流側とは分岐配管により
接続し、溶液ポンプの入口側に設けた過冷却検知手段の
信号に応じて、制御装置により3方弁を切り換えること
ができる。そして、過冷却検知手段により溶液ポンプの
過冷却状態を検知し、制御装置で3方弁を切り換えるこ
とにより、過冷却状態の小さい時は、冷却水を過冷却熱
交換器から吸収器へ流し、過冷却状態が大きい時は、過
冷却熱交換器を通さずに吸収器へ直接流すことができ
る。その結果、常に濃溶液を最適な過冷却状態に保ち、
溶液ポンプのガス噛み運転を防止し高性能運転を維持す
ることができる。
According to the invention described in claim 7,
A supercooling heat exchanger is provided between the concentrated solution tank and the solution pump, and the cooling water outlet of the supercooling heat exchanger and the cooling water inlet of the absorber are connected by a cooling water connection pipe having a check valve. ,
The three-way valve provided on the cooling water inlet pipe of the supercooling heat exchanger and the downstream side of the check valve provided on the cooling water connection pipe are connected by a branch pipe, and the supercooling detection provided on the inlet side of the solution pump. The three-way valve can be switched by the control device in response to the signal of the means. Then, by detecting the supercooling state of the solution pump by the supercooling detection means and switching the three-way valve by the control device, when the supercooling state is small, the cooling water flows from the supercooling heat exchanger to the absorber, When the supercooling state is large, it can flow directly to the absorber without passing through the supercooling heat exchanger. As a result, always keep the concentrated solution in the optimal supercooled state,
The gas pumping operation of the solution pump can be prevented and the high performance operation can be maintained.

【0121】また、請求項8に記載した発明によれば、
濃溶液タンクが、受液器と気液分離器の下方に設けら
れ、膨脹弁と減圧手段と溶液ポンプの入口とで仕切られ
る低圧回路部には低圧検知手段が設けられ、低圧回路部
以外の冷媒回路で形成する高圧回路部には高圧検知手段
が設けられ、これらの低圧検知手段と高圧検知手段との
信号に応じて制御装置が減圧手段の開度を制御するの
で、高圧側と低圧側との圧力差に応じた減圧手段の開度
を設定することができ、最適な希溶液の流量を設定する
ことができる。また、種々の環境条件に応じて安定した
運転を実現することができ、能力制御も確実に行うこと
ができる。
Further, according to the invention described in claim 8,
A concentrated solution tank is provided below the liquid receiver and the gas-liquid separator, and a low pressure circuit section partitioned by the expansion valve, the pressure reducing means, and the inlet of the solution pump is provided with low pressure detecting means. The high-pressure circuit section formed by the refrigerant circuit is provided with high-pressure detecting means, and the control device controls the degree of opening of the depressurizing means according to signals from these low-pressure detecting means and high-pressure detecting means. The degree of opening of the decompression means can be set according to the pressure difference between the two, and the optimal dilute solution flow rate can be set. In addition, stable operation can be realized according to various environmental conditions, and capacity control can be reliably performed.

【0122】また、請求項9に記載した発明によれば、
溶液ポンプの入口と出口との間を、開閉弁を設けたバイ
パス管により接続し、再生器の出口に設けた再生温度検
知手段の検知信号に応じて、制御装置が開閉弁を開閉す
るので、再生温度を素早く上昇させることができ、高圧
が確保されて希溶液が戻ることができる状態で溶液ポン
プの流量を増やすことができ、動作の安定状態に速く到
達する立ち上がり特性の優れた装置を実現することがで
きる。
According to the ninth aspect of the present invention,
Since the inlet and the outlet of the solution pump are connected by a bypass pipe provided with an on-off valve, and the control device opens and closes the on-off valve according to the detection signal of the regeneration temperature detecting means provided at the outlet of the regenerator, The regeneration temperature can be raised quickly, the flow rate of the solution pump can be increased in a state where the high pressure is secured and the dilute solution can return, and a device with excellent startup characteristics that quickly reaches a stable operation state is realized. can do.

【0123】さらに、請求項10に記載した発明によれ
ば、気液分離器と受液器とにそれぞれ加熱手段を設け、
濃溶液タンクに設けた液面検知手段の検知信号に応じて
制御装置がこれらの加熱手段を制御するので、濃溶液タ
ンクに液体成分が少なくなって溶液ポンプの運転が困難
な場合には、液面検知手段により検知し、気液分離器お
よび受液器を、制御装置で制御された加熱手段により加
熱状態にすることができるので、気液分離器および受液
器の内部の圧力を高くし、圧力差により作動媒体を溶液
タンクに戻すことができる、どの様な場合にも、確実に
装置を起動させることができる。
Further, according to the tenth aspect of the present invention, the gas-liquid separator and the liquid receiver are provided with heating means, respectively.
The control device controls these heating means in accordance with the detection signal of the liquid level detection means provided in the concentrated solution tank. Since the gas-liquid separator and the liquid receiver can be heated by the heating means controlled by the control device, the pressure inside the gas-liquid separator and the liquid receiver can be increased by detecting by the surface detecting means. In any case, the working medium can be returned to the solution tank by the pressure difference, so that the apparatus can be reliably started in any case.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における吸収式ヒートポンプ
システムの構成図
FIG. 1 is a configuration diagram of an absorption heat pump system according to a first embodiment of the present invention.

【図2】本発明の実施例2における吸収式ヒートポンプ
システムの構成図
FIG. 2 is a configuration diagram of an absorption heat pump system according to a second embodiment of the present invention.

【図3】本発明の実施例3における吸収式ヒートポンプ
システムの構成図
FIG. 3 is a configuration diagram of an absorption heat pump system according to a third embodiment of the present invention.

【図4】本発明の実施例4における吸収式ヒートポンプ
システムの構成図
FIG. 4 is a configuration diagram of an absorption heat pump system according to a fourth embodiment of the present invention.

【図5】本発明の実施例5における吸収式ヒートポンプ
システムの構成図
FIG. 5 is a configuration diagram of an absorption heat pump system according to a fifth embodiment of the present invention.

【図6】本発明の実施例6における吸収式ヒートポンプ
システムの構成図
FIG. 6 is a configuration diagram of an absorption heat pump system according to a sixth embodiment of the present invention.

【図7】本発明の実施例7における吸収式ヒートポンプ
システムの構成図
FIG. 7 is a configuration diagram of an absorption heat pump system according to a seventh embodiment of the present invention.

【図8】本発明の実施例8における吸収式ヒートポンプ
システムの構成図
FIG. 8 is a configuration diagram of an absorption heat pump system according to an eighth embodiment of the present invention.

【図9】本発明の実施例9における吸収式ヒートポンプ
システムの構成図
FIG. 9 is a configuration diagram of an absorption heat pump system according to a ninth embodiment of the present invention.

【図10】従来の吸収式ヒートポンプシステムの構成図FIG. 10 is a configuration diagram of a conventional absorption heat pump system.

【符号の説明】[Explanation of symbols]

1 再生器 1a 出口 1b 入口 2 気液分離器 2a ガス側出口 2b 液側出口 3 凝縮器 4 膨脹弁 5 蒸発器 6 吸収器 6a ガス側入口 6b 液側入口 6c 出口 7 冷媒流路 8 減圧弁(減圧手段) 9 希溶液流路 10 溶液ポンプ 11 濃溶液流路 12b,12c 冷却水入口管 16 受液器 17 濃溶液タンク 18a,18b 開閉弁 19 冷媒バイパス 20 希溶液バイパス 21a 濃溶液液面センサー(液面検知手段) 21b 冷媒液面センサー(液面検知手段) 21c 希溶液液面センサー(液面検知手段) 22 制御装置 23 過冷却熱交換器 24 冷却水接続管 25 逆止弁 26 3方弁 27 分岐配管 28 過冷却センサー(過冷却検知手段) 29 低圧圧力センサー(低圧検知手段) 30 高圧圧力センサー(高圧検知手段) 31 バイパス管 32 開閉弁 33 温度センサー(再生温度検知手段) 34a 希溶液ヒータ(加熱手段) 34b 冷媒ヒータ(加熱手段) Reference Signs List 1 regenerator 1a outlet 1b inlet 2 gas-liquid separator 2a gas side outlet 2b liquid side outlet 3 condenser 4 expansion valve 5 evaporator 6 absorber 6a gas side inlet 6b liquid side inlet 6c outlet 7 refrigerant flow path 8 pressure reducing valve ( 9 Decompression means 9 Dilute solution flow path 10 Solution pump 11 Concentrated solution flow path 12b, 12c Cooling water inlet pipe 16 Receptor 17 Concentrated solution tank 18a, 18b Open / close valve 19 Refrigerant bypass 20 Dilute solution bypass 21a Concentrated solution level sensor ( Liquid level detecting means) 21b Refrigerant liquid level sensor (liquid level detecting means) 21c Dilute solution liquid level sensor (liquid level detecting means) 22 Controller 23 Supercooling heat exchanger 24 Cooling water connection pipe 25 Check valve 26 Three-way valve 27 branch pipe 28 supercooling sensor (supercooling detecting means) 29 low pressure sensor (low pressure detecting means) 30 high pressure sensor (high pressure detecting means) 31 viper Pipe 32 open / close valve 33 temperature sensor (regeneration temperature detecting means) 34a dilute solution heater (heating means) 34b refrigerant heater (heating means)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松本 聡 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 竹村 晃一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Satoshi Matsumoto 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Koichi Takemura 1006 Kazuma Kadoma Kadoma City, Osaka Matsushita Electric Industrial Co.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】再生器、この再生器の出口に連通する気液
分離器、この気液分離器のガス側出口,凝縮器,受液
器,膨脹弁,蒸発器、および吸収器のガス側入口を順次
接続した冷媒流路と、前記気液分離器の液側出口,減圧
手段、および前記吸収器の液側入口を順次接続した希溶
液流路と、前記吸収器の出口,濃溶液タンク,溶液ポン
プ、および前記再生器の入口を順次接続した濃溶液流路
とを少なくとも備え、前記濃溶液タンクは前記受液器お
よび気液分離器より下方に位置させた吸収式ヒートポン
プシステム。
1. A regenerator, a gas-liquid separator communicating with an outlet of the regenerator, a gas side outlet of the gas-liquid separator, a condenser, a liquid receiver, an expansion valve, an evaporator, and a gas side of an absorber. A refrigerant flow path in which inlets are sequentially connected, a dilute solution flow path in which a liquid-side outlet of the gas-liquid separator, a decompression means, and a liquid-side inlet of the absorber are sequentially connected; an outlet of the absorber, a concentrated solution tank , A solution pump, and a concentrated solution flow path to which an inlet of the regenerator is sequentially connected, wherein the concentrated solution tank is located below the liquid receiver and the gas-liquid separator.
【請求項2】再生器、この再生器の出口に連通する気液
分離器、この気液分離器のガス側出口,凝縮器,受液
器,膨脹弁,蒸発器、および吸収器のガス側入口を順次
接続した冷媒流路と、前記気液分離器の液側出口,減圧
手段、および前記吸収器の液側入口を順次接続した希溶
液流路と、前記吸収器の出口,濃溶液タンク,溶液ポン
プ、および前記再生器の入口を順次接続した濃溶液流路
とを少なくとも備え、前記濃溶液タンクは、前記受液器
および気液分離器より下方に設け、その内容積は、前記
受液器の内容積および気液分離器の内容積の和よりも大
きく、かつ充填する作動媒体の容積より大きくした吸収
式ヒートポンプシステム。
2. A regenerator, a gas-liquid separator communicating with an outlet of the regenerator, a gas-side outlet of the gas-liquid separator, a condenser, a liquid receiver, an expansion valve, an evaporator, and a gas side of an absorber. A refrigerant flow path in which inlets are sequentially connected, a dilute solution flow path in which a liquid-side outlet of the gas-liquid separator, a decompression means, and a liquid-side inlet of the absorber are sequentially connected; an outlet of the absorber, a concentrated solution tank , A solution pump, and a concentrated solution flow path to which an inlet of the regenerator is sequentially connected. The concentrated solution tank is provided below the liquid receiver and the gas-liquid separator, and the internal volume thereof is An absorption heat pump system in which the internal volume of the liquid container and the internal volume of the gas-liquid separator are larger than the sum of the working medium to be filled.
【請求項3】再生器、この再生器の出口に連通する気液
分離器、この気液分離器のガス側出口,凝縮器,受液
器,膨脹弁,蒸発器、および吸収器のガス側入口を順次
接続した冷媒流路と、前記気液分離器の液側出口,減圧
手段、および前記吸収器の液側入口を順次接続した希溶
液流路と、前記吸収器の出口,濃溶液タンク,溶液ポン
プ、および前記再生器の入口を順次接続した濃溶液流路
とを少なくとも備え、前記濃溶液タンクは、前記受液器
および気液分離器より下方に設け、開閉弁を有する冷媒
バイパスにより前記受液器と接続し、開閉弁を有する希
溶液バイパスにより前記気液分離器と接続した吸収式ヒ
ートポンプシステム。
3. A regenerator, a gas-liquid separator communicating with an outlet of the regenerator, a gas side outlet of the gas-liquid separator, a condenser, a liquid receiver, an expansion valve, an evaporator, and a gas side of an absorber. A refrigerant flow path in which inlets are sequentially connected, a dilute solution flow path in which a liquid-side outlet of the gas-liquid separator, a decompression means, and a liquid-side inlet of the absorber are sequentially connected; an outlet of the absorber, a concentrated solution tank , A solution pump, and a concentrated solution flow path that sequentially connects the inlets of the regenerator. The concentrated solution tank is provided below the liquid receiver and the gas-liquid separator, and is provided with a refrigerant bypass having an on-off valve. An absorption heat pump system connected to the liquid receiver and connected to the gas-liquid separator by a dilute solution bypass having an on-off valve.
【請求項4】再生器、この再生器の出口に連通する気液
分離器、この気液分離器のガス側出口,凝縮器,受液
器,膨脹弁,蒸発器、および吸収器のガス側入口を順次
接続した冷媒流路と、前記気液分離器の液側出口,減圧
手段、および前記吸収器の液側入口を順次接続した希溶
液流路と、前記吸収器の出口,濃溶液タンク,溶液ポン
プ、および前記再生器の入口を順次接続した濃溶液流路
とを少なくとも備え、前記気液分離器は、これよりも下
方に位置する前記減圧手段,吸収器、および濃溶液タン
クと順に接続し、前記凝縮器は、これよりも下方に位置
する前記受液器,膨脹弁,蒸発器、および吸収器と順に
接続した吸収式ヒートポンプシステム。
4. A regenerator, a gas-liquid separator communicating with an outlet of the regenerator, a gas side outlet of the gas-liquid separator, a condenser, a liquid receiver, an expansion valve, an evaporator, and a gas side of an absorber. A refrigerant flow path in which inlets are sequentially connected, a dilute solution flow path in which a liquid-side outlet of the gas-liquid separator, a decompression means, and a liquid-side inlet of the absorber are sequentially connected; an outlet of the absorber, a concentrated solution tank , A solution pump, and a concentrated solution flow path to which the inlet of the regenerator is sequentially connected, wherein the gas-liquid separator is located below the pressure reducing means, the absorber, and the concentrated solution tank in this order. An absorption heat pump system, wherein the condenser is connected to the receiver, the expansion valve, the evaporator, and the absorber located below the condenser in this order.
【請求項5】再生器、この再生器の出口に連通する気液
分離器、この気液分離器のガス側出口,凝縮器,受液
器,膨脹弁,蒸発器、および吸収器のガス側入口を順次
接続した冷媒流路と、前記気液分離器の液側出口,減圧
手段、および前記吸収器の液側入口を順次接続した希溶
液流路と、前記吸収器の出口,濃溶液タンク,溶液ポン
プ、および前記再生器の入口を順次接続した濃溶液流路
とを少なくとも備え、前記濃溶液タンクが前記受液器お
よび気液分離器よりも下方に設けられ、前記濃溶液タン
ク,受液器、および気液分離器にそれぞれ設けた液面検
知手段の信号に応じて前記膨脹弁および減圧手段の開度
を制御する制御装置を有する吸収式ヒートポンプシステ
ム。
5. A regenerator, a gas-liquid separator communicating with an outlet of the regenerator, a gas side outlet of the gas-liquid separator, a condenser, a liquid receiver, an expansion valve, an evaporator, and a gas side of an absorber. A refrigerant flow path in which inlets are sequentially connected, a dilute solution flow path in which a liquid-side outlet of the gas-liquid separator, a decompression means, and a liquid-side inlet of the absorber are sequentially connected; an outlet of the absorber, a concentrated solution tank , A solution pump, and a concentrated solution flow path to which an inlet of the regenerator is sequentially connected, wherein the concentrated solution tank is provided below the liquid receiver and the gas-liquid separator. An absorption heat pump system having a control device for controlling the degree of opening of the expansion valve and the pressure reducing means in accordance with a signal from a liquid level detecting means provided in each of a liquid device and a gas-liquid separator.
【請求項6】再生器、この再生器の出口に連通する気液
分離器、この気液分離器のガス側出口,凝縮器,受液
器,膨脹弁,蒸発器、および吸収器のガス側入口を順次
接続した冷媒流路と、前記気液分離器の液側出口,減圧
手段、および前記吸収器の液側入口を順次接続した希溶
液流路と、前記吸収器の出口,濃溶液タンク,溶液ポン
プ、および前記再生器の入口を順次接続した濃溶液流路
とを少なくとも備え、前記濃溶液タンクと溶液ポンプと
の間に過冷却熱交換器を位置させ、この過冷却熱交換器
の冷却水出口は、前記吸収器の冷却水入口と冷却水接続
管により接続した吸収式ヒートポンプシステム。
6. A regenerator, a gas-liquid separator communicating with an outlet of the regenerator, a gas side outlet of the gas-liquid separator, a condenser, a liquid receiver, an expansion valve, an evaporator, and a gas side of an absorber. A refrigerant flow path in which inlets are sequentially connected, a dilute solution flow path in which a liquid-side outlet of the gas-liquid separator, a decompression means, and a liquid-side inlet of the absorber are sequentially connected; an outlet of the absorber, a concentrated solution tank , A solution pump, and a concentrated solution flow path to which the inlet of the regenerator is sequentially connected, and a supercooling heat exchanger is located between the concentrated solution tank and the solution pump. An absorption heat pump system in which a cooling water outlet is connected to a cooling water inlet of the absorber by a cooling water connection pipe.
【請求項7】再生器、この再生器の出口に連通する気液
分離器、この気液分離器のガス側出口,凝縮器,受液
器,膨脹弁,蒸発器、および吸収器のガス側入口を順次
接続した冷媒流路と、前記気液分離器の液側出口,減圧
手段、および前記吸収器の液側入口を順次接続した希溶
液流路と、前記吸収器の出口,濃溶液タンク,溶液ポン
プ、および前記再生器の入口を順次接続した濃溶液流路
とを少なくとも備え、前記濃溶液タンクと溶液ポンプと
の間に過冷却熱交換器を位置させ、この過冷却熱交換器
の冷却水出口は前記吸収器の冷却水入口と冷却水接続管
により接続し、この冷却水接続管には逆止弁を設け、前
記過冷却熱交換器の冷却水入口管には3方弁を設け、こ
の3方弁と前記逆止弁の下流側とは分岐配管により接続
し、前記3方弁は、前記溶液ポンプの入口側に設けた過
冷却検知手段の信号に応じて制御装置により切り換える
吸収式ヒートポンプシステム。
7. A regenerator, a gas-liquid separator communicating with an outlet of the regenerator, a gas side outlet of the gas-liquid separator, a condenser, a liquid receiver, an expansion valve, an evaporator, and a gas side of an absorber. A refrigerant flow path in which inlets are sequentially connected, a dilute solution flow path in which a liquid-side outlet of the gas-liquid separator, a decompression means, and a liquid-side inlet of the absorber are sequentially connected; an outlet of the absorber, a concentrated solution tank , A solution pump, and a concentrated solution flow path to which the inlet of the regenerator is sequentially connected, and a supercooling heat exchanger is located between the concentrated solution tank and the solution pump. The cooling water outlet is connected to the cooling water inlet of the absorber by a cooling water connecting pipe, a check valve is provided on the cooling water connecting pipe, and a three-way valve is provided on the cooling water inlet pipe of the supercooling heat exchanger. The three-way valve is connected to a downstream side of the check valve by a branch pipe, and the three-way valve is Absorption heat pump system for switching by the controller in response to the signal of the supercooling sensing means provided on the inlet side of the serial solution pump.
【請求項8】再生器、この再生器の出口に連通する気液
分離器、この気液分離器のガス側出口,凝縮器,受液
器,膨脹弁,蒸発器、および吸収器のガス側入口を順次
接続した冷媒流路と、前記気液分離器の液側出口,減圧
手段、および前記吸収器の液側入口を順次接続した希溶
液流路と、前記吸収器の出口,濃溶液タンク,溶液ポン
プ、および前記再生器の入口を順次接続した濃溶液流路
とを少なくとも備え、前記濃溶液タンクは、前記受液器
と気液分離器よりも下方に設け、前記膨脹弁と減圧手段
と溶液ポンプの入口とにより仕切られる低圧回路部には
低圧検知手段を設け、この低圧回路部以外の冷媒回路で
形成する高圧回路部には高圧検知手段を設け、これら低
圧検知手段および高圧検知手段の信号に応じて制御手段
により、前記減圧手段を制御する吸収式ヒートポンプシ
ステム。
8. A regenerator, a gas-liquid separator communicating with an outlet of the regenerator, a gas side outlet of the gas-liquid separator, a condenser, a liquid receiver, an expansion valve, an evaporator, and a gas side of an absorber. A refrigerant flow path in which inlets are sequentially connected, a dilute solution flow path in which a liquid-side outlet of the gas-liquid separator, a decompression means, and a liquid-side inlet of the absorber are sequentially connected; an outlet of the absorber, a concentrated solution tank , A solution pump, and a concentrated solution flow path to which an inlet of the regenerator is sequentially connected. The concentrated solution tank is provided below the liquid receiver and the gas-liquid separator, and the expansion valve and the pressure reducing means are provided. And a low pressure circuit section partitioned by the inlet of the solution pump and a low pressure detection section. Control means in response to the signal of Absorption heat pump system to control.
【請求項9】再生器、この再生器の出口に連通する気液
分離器、この気液分離器のガス側出口,凝縮器,受液
器,膨脹弁,蒸発器、および吸収器のガス側入口を順次
接続した冷媒流路と、前記気液分離器の液側出口,減圧
手段、および前記吸収器の液側入口を順次接続した希溶
液流路と、前記吸収器の出口,濃溶液タンク,溶液ポン
プ、および前記再生器の入口を順次接続した濃溶液流路
とを少なくとも備え、前記溶液ポンプの入口と出口との
間をバイパス管により接続し、このバイパス管に設けた
開閉弁を、前記再生器の出口に設けた再生温度検知手段
の信号に応じて制御装置により制御する吸収式ヒートポ
ンプシステム。
9. A regenerator, a gas-liquid separator communicating with an outlet of the regenerator, a gas side outlet of the gas-liquid separator, a condenser, a liquid receiver, an expansion valve, an evaporator, and a gas side of an absorber. A refrigerant flow path in which inlets are sequentially connected, a dilute solution flow path in which a liquid-side outlet of the gas-liquid separator, a decompression means, and a liquid-side inlet of the absorber are sequentially connected; an outlet of the absorber, a concentrated solution tank , A solution pump, and at least a concentrated solution flow path to which the inlet of the regenerator is sequentially connected. The inlet and the outlet of the solution pump are connected by a bypass pipe. An absorption heat pump system controlled by a control device in accordance with a signal from a regeneration temperature detecting means provided at an outlet of the regenerator.
【請求項10】再生器、この再生器の出口に連通する気
液分離器、この気液分離器のガス側出口,凝縮器,受液
器,膨脹弁,蒸発器、および吸収器のガス側入口を順次
接続した冷媒流路と、前記気液分離器の液側出口,減圧
手段、および前記吸収器の液側入口を順次接続した希溶
液流路と、前記吸収器の出口,濃溶液タンク,溶液ポン
プ、および前記再生器の入口を順次接続した濃溶液流路
とを少なくとも備え、前記気液分離器および受液器にそ
れぞれ設けた加熱手段を、前記濃溶液タンクに設けた液
面検知手段の検知信号に応じて制御装置により制御する
吸収式ヒートポンプシステム。
10. A regenerator, a gas-liquid separator communicating with an outlet of the regenerator, a gas side outlet of the gas-liquid separator, a condenser, a liquid receiver, an expansion valve, an evaporator, and a gas side of an absorber. A refrigerant flow path in which inlets are sequentially connected, a dilute solution flow path in which a liquid-side outlet of the gas-liquid separator, a decompression means, and a liquid-side inlet of the absorber are sequentially connected; an outlet of the absorber, a concentrated solution tank , A solution pump, and a concentrated solution flow path to which the inlet of the regenerator is sequentially connected, and a heating means provided in each of the gas-liquid separator and the receiver is provided with a liquid level detection device provided in the concentrated solution tank. An absorption heat pump system controlled by a control device according to a detection signal of the means.
JP9325749A 1997-11-27 1997-11-27 Absorption heat pump system Pending JPH11159906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9325749A JPH11159906A (en) 1997-11-27 1997-11-27 Absorption heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9325749A JPH11159906A (en) 1997-11-27 1997-11-27 Absorption heat pump system

Publications (1)

Publication Number Publication Date
JPH11159906A true JPH11159906A (en) 1999-06-15

Family

ID=18180224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9325749A Pending JPH11159906A (en) 1997-11-27 1997-11-27 Absorption heat pump system

Country Status (1)

Country Link
JP (1) JPH11159906A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263461A (en) * 2006-03-28 2007-10-11 Sanyo Electric Co Ltd Absorption refrigerating machine
JP2017075772A (en) * 2015-10-13 2017-04-20 荏原冷熱システム株式会社 Concentrator
CN107797054A (en) * 2017-10-23 2018-03-13 宁德时代新能源科技股份有限公司 High voltage detection circuit and method, detector, battery system, vehicle and computer readable storage medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263461A (en) * 2006-03-28 2007-10-11 Sanyo Electric Co Ltd Absorption refrigerating machine
JP2017075772A (en) * 2015-10-13 2017-04-20 荏原冷熱システム株式会社 Concentrator
CN107797054A (en) * 2017-10-23 2018-03-13 宁德时代新能源科技股份有限公司 High voltage detection circuit and method, detector, battery system, vehicle and computer readable storage medium
CN107797054B (en) * 2017-10-23 2024-01-30 宁德时代新能源科技股份有限公司 High voltage detection circuit and method, detector, battery system, vehicle and computer readable storage medium

Similar Documents

Publication Publication Date Title
US5829262A (en) Capacity control device in refrigerating cycle
JP6828821B2 (en) Phase change cooling device and phase change cooling method
JP2011089737A (en) Refrigerating cycle device and air conditioner with the same
JP2009236403A (en) Geothermal use heat pump device
JP2004309029A (en) Refrigerating cycle device
JP2006329567A (en) Heat pump device
JPH0849930A (en) Heat pump equipment
JP2000179957A (en) Air conditioner
JP4334818B2 (en) Cooling system
JPH11159906A (en) Absorption heat pump system
JP2003194427A (en) Cooling device
JPH08313103A (en) Absorbing type heat pump device
JP3139099B2 (en) Heat transfer device
JP2008116184A (en) Refrigerating cycle device
JPH11117884A (en) Refrigerating device
JP2008281256A (en) Water heater
JPH09264620A (en) Cooling device employing combinedly natural circulation loop and operating method thereof
JPH0539406Y2 (en)
JPH11270915A (en) Air conditioner having ice heat storage unit
JPS5984052A (en) Method of controlling capability of refrigerator
JP2827656B2 (en) Heat transfer device
JPH07120015A (en) Heat storage cooling/heating apparatus utilizing nighttime power
JP2827655B2 (en) Heat transfer device
KR20200070035A (en) A Control method of heat pump
KR20200085623A (en) A Control method of heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040514

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040614

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071127