JP2017075772A - Concentrator - Google Patents

Concentrator Download PDF

Info

Publication number
JP2017075772A
JP2017075772A JP2016160913A JP2016160913A JP2017075772A JP 2017075772 A JP2017075772 A JP 2017075772A JP 2016160913 A JP2016160913 A JP 2016160913A JP 2016160913 A JP2016160913 A JP 2016160913A JP 2017075772 A JP2017075772 A JP 2017075772A
Authority
JP
Japan
Prior art keywords
steam
temperature
concentration
refrigerant
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016160913A
Other languages
Japanese (ja)
Other versions
JP6280170B2 (en
Inventor
宏幸 山田
Hiroyuki Yamada
宏幸 山田
與四郎 竹村
Yoshiro Takemura
與四郎 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Refrigeration Equipment and Systems Co Ltd
Original Assignee
Ebara Refrigeration Equipment and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Refrigeration Equipment and Systems Co Ltd filed Critical Ebara Refrigeration Equipment and Systems Co Ltd
Priority to CN201610890239.XA priority Critical patent/CN107024036B/en
Publication of JP2017075772A publication Critical patent/JP2017075772A/en
Application granted granted Critical
Publication of JP6280170B2 publication Critical patent/JP6280170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B37/00Absorbers; Adsorbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0041Use of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/30Accessories for evaporators ; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a concentrator improved in heat utilization efficiency for concertation.SOLUTION: A concentrator 1 comprises: an absorber 10 for heating concentration object fluid W flowing through a concentration object fluid channel 11 with the heat of absorption generated when an absorbent Sa absorbs coolant steam Ve; an evaporator 60 for creating the coolant steam Ve by heating coolant liquid Vf with the heat held by coolant heating fluid he flowing through a coolant heating fluid channel 61; a regenerator 70 for increasing the concentration of absorbent Sw by withdrawing coolant steam Vg after heating the absorbent Sw introduced from the absorber 10; a condenser 80 for creating the coolant liquid Vf by cooling and condensing the coolant steam Vg introduced from the regenerator 70; a gas-liquid separator 91 for separating the concentration object fluid Wm heated by the absorber 10 into departure vapor Wv and concentrated liquid Wc; and heating parts 69 and 79 for heating heated fluids Vf and Sw with the heat of the introduced departure vapor Wv, in which the internal pressure of the absorber 10 is higher than that of the regenerator 70.SELECTED DRAWING: Figure 1

Description

本発明は濃縮装置に関し、特に吸収ヒートポンプを利用して濃縮対象流体を濃縮する濃縮装置に関する。   The present invention relates to a concentrating device, and more particularly to a concentrating device that concentrates a fluid to be concentrated using an absorption heat pump.

低温熱源から高温熱源へ熱を移動させる吸収ヒートポンプを利用して、果汁、食塩水、ミルクなどの被濃縮液を濃縮する装置として、増熱型の第一種吸収ヒートポンプの吸収器、リソーバ、凝縮器を通過した冷却水を、吸収ヒートポンプ外の濃縮器に導いて被濃縮液を濃縮し、被濃縮液の濃縮に伴って生じた蒸気を吸収ヒートポンプの蒸発器及びデソーバに投入するものがある(例えば、特許文献1参照。)。   As a device for concentrating concentrated liquids such as fruit juice, saline and milk using an absorption heat pump that transfers heat from a low-temperature heat source to a high-temperature heat source, an absorber, a resolver, and a condenser of a heat-increased type 1 absorption heat pump The cooling water that has passed through the condenser is led to a concentrator outside the absorption heat pump to concentrate the liquid to be concentrated, and the vapor generated by the concentration of the liquid to be concentrated is introduced into the evaporator and the desorber of the absorption heat pump ( For example, see Patent Document 1.)

特開2004−257705号公報JP 2004-257705 A

しかしながら、特許文献1に記載された吸収ヒートポンプ利用濃縮装置では、被濃縮液が蒸発する温度よりも高い温度の駆動熱源を再生器に投入しなければならず、蒸発器に投入される蒸気の温度を高くするのが難しい。   However, in the absorption heat pump concentration apparatus described in Patent Document 1, a driving heat source having a temperature higher than the temperature at which the liquid to be concentrated evaporates must be input to the regenerator, and the temperature of the steam input to the evaporator Is difficult to raise.

本発明は上述の課題に鑑み、濃縮対象流体の濃縮に伴って生じる蒸気の温度を高くして濃縮のための熱利用効率を向上させた濃縮装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a concentrating device in which the temperature of steam generated with the concentration of a fluid to be concentrated is increased to improve the heat utilization efficiency for concentration.

上記目的を達成するために、本発明の第1の態様に係る濃縮装置は、例えば図1に示すように、濃縮対象流体Wを流す濃縮対象流体流路11を有し、吸収液Saが冷媒の蒸気Veを吸収したときに生じた吸収熱で濃縮対象流体流路11を流れる濃縮対象流体Wを加熱する吸収器10と;冷媒加熱流体流路61を有し、冷媒加熱流体流路61を流れる冷媒加熱流体heが保有する熱で冷媒の液Vfを加熱して、吸収器10に直接又は間接的に供給する冷媒の蒸気Veを生成する蒸発器60と;吸収液加熱流体流路71を有し、吸収器10において冷媒の蒸気Veを吸収した吸収液Swを直接又は間接的に導入して、導入した吸収液Swを、吸収液加熱流体流路71を流れる吸収液加熱流体hgが保有する熱で加熱して、吸収液Swから冷媒Vgを離脱させて吸収液Swの濃度を上昇させる再生器70と;再生器70において吸収液Swから離脱した冷媒の蒸気Vgを導入し、導入した冷媒の蒸気Vgを冷却し凝縮させて、蒸発器60に供給する冷媒の液Vfを生成する凝縮器80と;吸収器10で加熱された濃縮対象流体Wmを導入し、濃縮対象流体Wmから離脱した離脱蒸気Wvと、濃縮対象流体Wmから離脱蒸気Wvが離脱した後の濃縮液Wcとに分離する気液分離器91と;離脱蒸気Wvを導入し、導入した離脱蒸気Wvの熱で被加熱流体Vf、Swを加熱する加熱部69、79とを備え;吸収器10の内部圧力が再生器70の内部圧力よりも高く構成されている。   In order to achieve the above object, the concentration apparatus according to the first aspect of the present invention has a concentration target fluid flow path 11 for flowing the concentration target fluid W, for example, as shown in FIG. The absorber 10 that heats the concentration target fluid W that flows through the concentration target fluid flow path 11 with the absorption heat generated when the vapor Ve is absorbed; the refrigerant heating fluid flow path 61; An evaporator 60 that heats the refrigerant liquid Vf with the heat of the flowing refrigerant heating fluid he and generates refrigerant vapor Ve that is supplied directly or indirectly to the absorber 10; The absorption liquid Sw that has absorbed and absorbed the vapor Ve of the refrigerant in the absorber 10 directly or indirectly, and the absorption liquid Sw that flows through the absorption liquid heating fluid flow path 71 is held by the absorption liquid Sw. The refrigerant Vg is heated from the absorbing liquid Sw A regenerator 70 for separating and increasing the concentration of the absorbing liquid Sw; introducing the refrigerant vapor Vg desorbed from the absorbing liquid Sw in the regenerator 70; cooling and condensing the introduced refrigerant vapor Vg; A condenser 80 that generates a refrigerant liquid Vf to be supplied to the refrigerant; a concentration target fluid Wm heated by the absorber 10 is introduced, and a separation steam Wv separated from the concentration target fluid Wm, and a separation steam Wv from the concentration target fluid Wm A gas-liquid separator 91 that separates into the concentrated liquid Wc after being separated; a heating unit 69 and 79 that introduces the separation steam Wv and heats the fluids Vf and Sw to be heated by the heat of the introduced separation steam Wv; Provided: The internal pressure of the absorber 10 is configured to be higher than the internal pressure of the regenerator 70.

このように構成すると、濃縮対象流体の濃縮によって副次的に生成された離脱蒸気の温度を冷媒加熱流体及び吸収液加熱流体の温度よりも高くすることができると共に、離脱蒸気で被加熱流体を加熱することができ、濃縮対象流体を濃縮する際の濃縮装置の熱利用効率を向上させることができる。   If comprised in this way, while the temperature of the separation | steaming vapor | steam produced | generated by concentration of the concentration object fluid can be made higher than the temperature of a refrigerant | coolant heating fluid and an absorption liquid heating fluid, a to-be-heated fluid is made into a separation | steam vapor | steam. It can heat and can improve the heat utilization efficiency of the concentrating device when concentrating the fluid to be concentrated.

また、本発明の第2の態様に係る濃縮装置は、例えば図1に示すように、上記本発明の第1の態様に係る濃縮装置1において、加熱部69、79に離脱蒸気Wvを供給する加熱部離脱蒸気流路99A、99Bと;加熱部離脱蒸気流路99A、99Bを流れる離脱蒸気Wvの流量を調節する加熱部離脱蒸気流量調節装置99Va、99Vbと;濃縮装置1の外部に離脱蒸気Wvを供給する外部離脱蒸気流路99Cと;外部離脱蒸気流路99Cを流れる離脱蒸気Wvの流量を調節する外部離脱蒸気流量調節装置99Vcとを備える。   Further, the concentrating device according to the second aspect of the present invention supplies the separated steam Wv to the heating parts 69 and 79 in the concentrating device 1 according to the first aspect of the present invention as shown in FIG. Heating unit separation steam flow paths 99A and 99B; heating unit separation steam flow rate adjusting devices 99Va and 99Vb for adjusting the flow rate of separation steam Wv flowing through the heating unit separation steam flow paths 99A and 99B; An external detachment steam flow path 99C for supplying Wv; and an external detachment steam flow rate adjusting device 99Vc for adjusting the flow rate of the detachment steam Wv flowing through the external detachment steam flow path 99C.

このように構成すると、離脱蒸気を、外部の蒸気利用機器で利用することができ、濃縮装置を含むシステムの熱利用効率を向上させることができる。   If comprised in this way, separation | steaming vapor | steam can be utilized with external vapor | steam utilization equipment, and the heat utilization efficiency of the system containing a concentrating apparatus can be improved.

また、本発明の第3の態様に係る濃縮装置は、例えば図1に示すように、上記本発明の第1の態様に係る濃縮装置1において、加熱部離脱蒸気流路99A、99Bを流れる離脱蒸気Wvの流量と外部離脱蒸気流路99Cを流れる離脱蒸気Wvの流量とが所定の比率になるように、加熱部離脱蒸気流量調節装置99Va、99Vb及び外部離脱蒸気流量調節装置99Vcを設定する。   Further, the concentrating device according to the third aspect of the present invention is, for example, as shown in FIG. 1, in the concentrating device 1 according to the first aspect of the present invention described above, the detachment flowing through the heating unit separation steam flow paths 99A and 99B. The heating unit detachment steam flow rate adjustment devices 99Va and 99Vb and the external detachment steam flow rate adjustment device 99Vc are set so that the flow rate of the steam Wv and the flow rate of the detachment steam Wv flowing through the external detachment steam flow path 99C become a predetermined ratio.

このように構成すると、濃縮装置における熱利用効率の向上と外部における蒸気利用の拡大とを適切に配分することができる。   If comprised in this way, the improvement of the heat utilization efficiency in a concentrating device and the expansion of steam utilization outside can be distributed appropriately.

また、本発明の第4の態様に係る濃縮装置は、例えば図1に示すように、上記本発明の第1の態様乃至第3の態様のいずれか1つの態様に係る濃縮装置1において、加熱部69、79が、蒸発器60及び再生器70の少なくとも一方に設けられている。   In addition, the concentrating device according to the fourth aspect of the present invention is the same as the concentrating device 1 according to any one of the first to third aspects of the present invention, as shown in FIG. Portions 69 and 79 are provided in at least one of the evaporator 60 and the regenerator 70.

このように構成すると、離脱蒸気を、蒸発器及び再生器の少なくとも一方の加熱源として利用することができる。   If comprised in this way, separation | steam vapor | steam can be utilized as a heating source of at least one of an evaporator and a regenerator.

また、本発明の第5の態様に係る濃縮装置は、例えば図1に示すように、上記本発明の第4の態様に係る濃縮装置1において、加熱部69、79は、蒸発器60に設けられたときは冷媒加熱流体流路61の下方に配置され、再生器70に設けられたときは吸収液加熱流体流路71の下方に配置されている。   Further, the concentrating apparatus according to the fifth aspect of the present invention is, for example, as shown in FIG. 1, in the concentrating apparatus 1 according to the fourth aspect of the present invention, the heating units 69 and 79 are provided in the evaporator 60. When arranged in the regenerator 70, it is arranged below the absorbent heating fluid channel 71.

このように構成すると、加熱部における熱交換効率を高くすることができる。   If comprised in this way, the heat exchange efficiency in a heating part can be made high.

また、本発明の第6の態様に係る濃縮装置は、例えば図2に示すように、上記本発明の第1の態様に係る濃縮装置1Aにおいて、吸収器10よりも作動圧力が低い低温吸収器50であって、加熱対象流体を流す加熱対象流体流路51を有し、吸収器10において冷媒の蒸気Vaを吸収した吸収液Sbを直接又は間接的に導入し、導入した吸収液Scが冷媒の蒸気Vcを吸収したときに生じた吸収熱で加熱対象流体流路51を流れる加熱対象流体を加熱する低温吸収器50を備える。   Further, the concentrating device according to the sixth aspect of the present invention is, for example, as shown in FIG. 2, the concentrating device 1 </ b> A according to the first aspect of the present invention has a low-temperature absorber whose operating pressure is lower than that of the absorber 10. 50, which has a heating target fluid flow channel 51 through which the heating target fluid flows, and directly or indirectly introduces the absorbing liquid Sb that has absorbed the refrigerant vapor Va in the absorber 10, and the introduced absorbing liquid Sc is the refrigerant. The low temperature absorber 50 which heats the heating object fluid which flows through the heating object fluid flow path 51 with the absorption heat generated when the vapor | steam Vc of this was absorbed is provided.

このように構成すると、離脱蒸気と吸収液加熱流体との温度差を大きくすることができる。   If comprised in this way, the temperature difference of detachment | desorption vapor | steam and an absorption liquid heating fluid can be enlarged.

また、本発明の第7の態様に係る濃縮装置は、例えば図3に示すように、上記本発明の第1の態様乃至第6の態様のいずれか1つの態様に係る濃縮装置2において、加熱部193を内部に有する低温濃縮槽191であって、加熱部193における被加熱流体として濃縮対象流体Wdxを導入し、導入した濃縮対象流体Wdxを離脱蒸気Wvの熱で加熱して濃縮液Wcxを生成する低温濃縮槽191を備える。   In addition, the concentrating device according to the seventh aspect of the present invention is the same as the concentrating device 2 according to any one of the first to sixth aspects of the present invention, as shown in FIG. A low-temperature concentration tank 191 having a portion 193 therein, the concentration target fluid Wdx being introduced as the fluid to be heated in the heating portion 193, and the concentration target fluid Wdx being heated by the heat of the separated steam Wv A low-temperature concentration tank 191 is provided.

このように構成すると、濃縮対象流体の処理量の増加又は濃縮液の濃縮率の上昇を図ることができる。   If comprised in this way, the increase of the processing amount of the concentration object fluid or the raise of the concentration rate of a concentrate can be aimed at.

また、本発明の第8の態様に係る濃縮装置は、例えば図4に示すように、上記本発明の第7の態様に係る濃縮装置2Aにおいて、低温濃縮槽191において濃縮対象流体Wdxから離脱した蒸気である低温離脱蒸気Wvxを、蒸発器60に設けられた蒸発器追加加熱部69、再生器70に設けられた再生器追加加熱部79、冷媒加熱流体流路61、及び吸収液加熱流体流路71の少なくとも1つに導く導入部69p、79pを備える。   Further, the concentrating device according to the eighth aspect of the present invention is separated from the concentration target fluid Wdx in the low-temperature concentrating tank 191 in the concentrating device 2A according to the seventh aspect of the present invention, for example, as shown in FIG. The low-temperature desorption steam Wvx, which is steam, is converted into an evaporator additional heating unit 69 provided in the evaporator 60, a regenerator additional heating unit 79 provided in the regenerator 70, a refrigerant heating fluid channel 61, and an absorption liquid heating fluid flow Introducing portions 69p and 79p leading to at least one of the paths 71 are provided.

このように構成すると、低温濃縮槽で発生した蒸気のドレンを蒸発器及び再生器の少なくとも一方の加熱源として利用することができ、濃縮対象流体を濃縮する際の濃縮装置の熱利用効率をさらに向上させることができる。   If comprised in this way, the drain of the vapor | steam generate | occur | produced in the low temperature concentration tank can be utilized as a heating source of at least one of an evaporator and a regenerator, and the heat utilization efficiency of the concentrating device when concentrating the concentration target fluid is further increased. Can be improved.

また、本発明の第9の態様に係る濃縮装置は、例えば図4に示すように、上記本発明の第8の態様に係る濃縮装置2Aにおいて、低温離脱蒸気Wvxを導入部69p、79pに供給する導入部低温離脱蒸気流路199A、199Bと;導入部低温離脱蒸気流路119A、119Bを流れる低温離脱蒸気Wvxの流量を調節する導入部低温離脱蒸気流量調節装置199Va、199Vbと;濃縮装置2Aの外部に低温離脱蒸気Wvxを供給する外部低温離脱蒸気流路199Cと;外部低温離脱蒸気流路199Cを流れる低温離脱蒸気Wvxの流量を調節する外部低温離脱蒸気流量調節装置199Vcとを備える。   Further, the concentrating device according to the ninth aspect of the present invention supplies the low-temperature desorption steam Wvx to the introducing portions 69p and 79p in the concentrating device 2A according to the eighth aspect of the present invention, for example, as shown in FIG. Introducing section low temperature desorption steam flow paths 199A, 199B; introducing section low temperature desorption steam flow rate adjusting devices 199Va, 199Vb for adjusting the flow rate of the low temperature desorption steam Wvx flowing through the introduction section low temperature desorption steam flow paths 119A, 119B; An external low-temperature desorption steam flow path 199C for supplying the low-temperature desorption steam flow Wvx to the outside; and an external low-temperature desorption steam flow rate adjustment device 199Vc for adjusting the flow rate of the low-temperature desorption steam Wvx flowing through the external low-temperature desorption steam flow path 199C.

このように構成すると、低温離脱蒸気を、外部の蒸気利用機器で利用することができ、濃縮装置を含むシステムの熱利用効率を向上させることができる。   If comprised in this way, low-temperature separation | steam vapor | steam can be utilized with external vapor | steam utilization equipment, and the heat utilization efficiency of the system containing a concentrator can be improved.

また、本発明の第10の態様に係る濃縮装置は、例えば図4に示すように、上記本発明の第9の態様に係る濃縮装置2Aにおいて、導入部低温離脱蒸気流路199A、199Bを流れる低温離脱蒸気Wvxの流量と外部低温離脱蒸気流路199Cを流れる低温離脱蒸気Wvxの流量とが所定の比率になるように、導入部低温離脱蒸気流量調節装置199Va、199Vb及び外部低温離脱蒸気流量調節装置199Vcを設定する。   Further, the concentrating device according to the tenth aspect of the present invention flows through the introduction part low temperature desorption steam flow paths 199A and 199B in the concentrating device 2A according to the ninth aspect of the present invention as shown in FIG. 4, for example. The introduction low-temperature desorption steam flow control devices 199Va and 199Vb and the external low-temperature desorption steam flow rate adjustment so that the flow rate of the low-temperature desorption steam Wvx and the flow rate of the low-temperature desorption steam Wvx flowing through the external low-temperature desorption steam flow path 199C become a predetermined ratio. Set the device 199Vc.

このように構成すると、濃縮装置における熱利用効率の向上と外部における蒸気利用の拡大とを適切に配分することができる。   If comprised in this way, the improvement of the heat utilization efficiency in a concentrating device and the expansion of steam utilization outside can be distributed appropriately.

また、本発明の第11の態様に係る濃縮装置は、例えば図1に示すように、上記本発明の第1の態様乃至第10の態様のいずれか1つの態様に係る濃縮装置1において、加熱部69、79で被加熱流体Vf、Swを加熱した後の離脱蒸気WvのドレンWqと、凝縮器80から蒸発器60へ供給される冷媒の液Vfとの間で熱交換を行わせる熱交換器98Dを備える。   Moreover, the concentrating apparatus according to the eleventh aspect of the present invention is the same as the concentrating apparatus 1 according to any one of the first to tenth aspects of the present invention, as shown in FIG. Heat exchange for exchanging heat between the drain Wq of the separated steam Wv after the heated fluids Vf and Sw are heated by the sections 69 and 79 and the refrigerant liquid Vf supplied from the condenser 80 to the evaporator 60. A container 98D is provided.

このように構成すると、排出される熱を回収することができる。   If comprised in this way, the heat | fever discharged | emitted can be collect | recovered.

本発明によれば、濃縮対象流体の濃縮によって副次的に生成された離脱蒸気の温度を冷媒加熱流体及び吸収液加熱流体の温度よりも高くすることができると共に、離脱蒸気で被加熱流体を加熱することができ、濃縮対象流体を濃縮する際の濃縮装置の熱利用効率を向上させることができる。   According to the present invention, it is possible to make the temperature of the separated steam generated by concentration of the fluid to be concentrated higher than the temperatures of the refrigerant heating fluid and the absorption liquid heating fluid, and the heated fluid with the separated steam. It can heat and can improve the heat utilization efficiency of the concentrating device when concentrating the fluid to be concentrated.

本発明の第1の実施の形態に係る濃縮装置の模式的系統図である。It is a typical systematic diagram of the concentration apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態の変形例に係る濃縮装置の模式的系統図である。It is a typical systematic diagram of the concentration apparatus which concerns on the modification of the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る濃縮装置の模式的系統図である。It is a typical systematic diagram of the concentration apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態の変形例に係る濃縮装置の模式的系統図である。It is a typical systematic diagram of the concentration apparatus which concerns on the modification of the 2nd Embodiment of this invention.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or similar members are denoted by the same or similar reference numerals, and redundant description is omitted.

まず図1を参照して、本発明の第1の実施の形態に係る濃縮装置1を説明する。図1は、濃縮装置1の模式的系統図である。濃縮装置1は、吸収ヒートポンプ部で濃縮対象流体としての未濃縮液Wdを加熱して濃縮する装置であり、吸収ヒートポンプ部と、濃縮槽91とを備えている。濃縮装置1を構成する吸収ヒートポンプ部は、昇温型の第二種吸収ヒートポンプとなっており、主要構成機器として、吸収器10と、蒸発器60と、再生器70と、凝縮器80とを備えている。   First, with reference to FIG. 1, the concentration apparatus 1 which concerns on the 1st Embodiment of this invention is demonstrated. FIG. 1 is a schematic system diagram of the concentrating device 1. The concentration device 1 is a device that heats and concentrates the non-concentrated liquid Wd as a concentration target fluid in the absorption heat pump unit, and includes an absorption heat pump unit and a concentration tank 91. The absorption heat pump unit constituting the concentrating device 1 is a temperature rising type second-type absorption heat pump. As main components, the absorber 10, the evaporator 60, the regenerator 70, and the condenser 80 are provided. I have.

なお、以下の説明においては、吸収ヒートポンプ部で循環する吸収液(「溶液」という場合もある)に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「高濃度溶液Sa」、「希溶液Sw」等と呼称するが、性状等を不問にするときは総称して「吸収液S」ということとする。同様に、冷媒に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「蒸発器冷媒蒸気Ve」、「再生器冷媒蒸気Vg」、「冷媒液Vf」等と呼称するが、性状等を不問にするときは総称して「冷媒V」ということとする。本実施の形態では、吸収ヒートポンプ部で循環する吸収液S(吸収剤と冷媒Vとの混合物)としてLiBr水溶液が用いられており、冷媒Vとして水(HO)が用いられている。また、未濃縮液Wdの濃縮に伴って、濃度が上昇したものを濃縮液Wc、未濃縮液Wdから離脱したものを離脱蒸気Wv、濃縮液Wcと離脱蒸気Wvとが混合したものを混合液Wmといい、これらを総称して濃縮関連物質Wということとする。 In the following description, regarding the absorption liquid (also referred to as “solution”) circulated in the absorption heat pump unit, in order to facilitate the distinction on the heat pump cycle, “ Although referred to as “high-concentration solution Sa”, “dilute solution Sw”, etc., when the properties are not questioned, they are collectively referred to as “absorbing liquid S”. Similarly, regarding the refrigerant, in order to easily distinguish on the heat pump cycle, “evaporator refrigerant vapor Ve”, “regenerator refrigerant vapor Vg”, “refrigerant liquid Vf”, etc., depending on the properties and the position on the heat pump cycle. However, when the properties and the like are not asked, they are collectively referred to as “refrigerant V”. In the present embodiment, an LiBr aqueous solution is used as the absorbing liquid S (a mixture of the absorbent and the refrigerant V) circulated in the absorption heat pump unit, and water (H 2 O) is used as the refrigerant V. Further, as the concentration of the non-concentrated liquid Wd is increased, the concentrated liquid Wc is concentrated, the liquid separated from the non-concentrated liquid Wd is separated steam Wv, and the mixture of the concentrated liquid Wc and the separated steam Wv is mixed liquid. It is called Wm, and these are collectively referred to as the concentration-related substance W.

吸収器10は、濃縮関連物質Wの流路を構成する伝熱管11と、高濃度溶液Saを散布する高濃度溶液散布ノズル12とを内部に有している。伝熱管11は、濃縮対象流体流路に相当する。高濃度溶液散布ノズル12は、散布した高濃度溶液Saが伝熱管11に降りかかるように、伝熱管11の上方に配設されている。高温吸収器10は、高濃度溶液散布ノズル12から高濃度溶液Saが散布され、高濃度溶液Saが蒸発器冷媒蒸気Veを吸収する際に吸収熱を発生させる。この吸収熱を、伝熱管11を流れる濃縮関連物質Wが受熱して、濃縮関連物質Wが加熱されるように構成されている。吸収器10の下部には、希溶液Swが貯留される貯留部13が形成されている。希溶液Swは、高濃度溶液散布ノズル12から散布された高濃度溶液Saが蒸発器冷媒蒸気Veを吸収して、高濃度溶液Saから濃度が低下した吸収液Sである。伝熱管11は、希溶液Swに没入しないように、貯留部13よりも上方に配設されている。このようにすると、発生した吸収熱が伝熱管11内を流れる濃縮関連物質Wに速やかに伝わり、吸収能力の回復を早めることができる。   The absorber 10 includes therein a heat transfer tube 11 that forms a flow path of the concentration-related substance W and a high concentration solution spray nozzle 12 that sprays the high concentration solution Sa. The heat transfer tube 11 corresponds to a concentration target fluid flow path. The high-concentration solution spray nozzle 12 is disposed above the heat transfer tube 11 so that the sprayed high-concentration solution Sa falls on the heat transfer tube 11. The high temperature absorber 10 sprays the high concentration solution Sa from the high concentration solution spray nozzle 12 and generates heat of absorption when the high concentration solution Sa absorbs the evaporator refrigerant vapor Ve. The concentrated related substance W flowing through the heat transfer tube 11 receives this absorbed heat, and the concentrated related substance W is heated. In the lower part of the absorber 10, a storage part 13 for storing the dilute solution Sw is formed. The dilute solution Sw is an absorbing solution S whose concentration is reduced from the high concentration solution Sa as the high concentration solution Sa sprayed from the high concentration solution spray nozzle 12 absorbs the evaporator refrigerant vapor Ve. The heat transfer tube 11 is disposed above the storage unit 13 so as not to be immersed in the dilute solution Sw. If it does in this way, the absorbed heat which generate | occur | produced will be rapidly transmitted to the concentration related substance W which flows through the inside of the heat exchanger tube 11, and recovery | restoration of absorption capability can be accelerated.

蒸発器60は、冷媒加熱流体としての蒸発器熱源温水heの流路を構成する冷媒加熱流体流路としての蒸発器熱源管61と、冷媒液Vfを散布する冷媒液散布ノズル62と、離脱蒸気Wvの流路を構成する蒸発器加熱管69とを内部に有している。蒸発器加熱管69は、蒸発器熱源管61の下方に配設されている。冷媒液散布ノズル62は、散布した冷媒液Vfが蒸発器熱源管61及び蒸発器加熱管69に降りかかるように、蒸発器熱源管61の上方に配設されている。蒸発器60には、冷媒液Vfを内部に流す冷媒液管88の一端が接続されている。蒸発器60の下部(典型的には底部)には、蒸発器60の下部に貯留された冷媒液Vfを冷媒液散布ノズル62へ導く低温冷媒液管65の一端が接続されている。低温冷媒液管65の他端は、冷媒液散布ノズル62に接続されている。低温冷媒液管65には、内部を流れる冷媒液Vfを圧送する低温冷媒液ポンプ66が配設されている。蒸発器60は、冷媒液散布ノズル62から冷媒液Vfが散布され、散布された冷媒液Vfが蒸発器熱源管61内を流れる蒸発器熱源温水heの熱及び蒸発器加熱管69内を流れる離脱蒸気Wvの熱で蒸発して蒸発器冷媒蒸気Veが発生するように構成されている。つまり、本実施の形態では、蒸発器加熱管69は導入した離脱蒸気Wvの熱で冷媒液Vfを加熱する加熱部に相当し、冷媒液散布ノズル62から散布された冷媒液Vfは蒸発器加熱管69が加熱する被加熱流体に相当する。   The evaporator 60 includes an evaporator heat source pipe 61 as a refrigerant heating fluid flow path that constitutes a flow path of the evaporator heat source hot water he as a refrigerant heating fluid, a refrigerant liquid spray nozzle 62 that sprays the refrigerant liquid Vf, and separation steam. It has an evaporator heating tube 69 constituting the Wv flow path. The evaporator heating pipe 69 is disposed below the evaporator heat source pipe 61. The refrigerant liquid spray nozzle 62 is disposed above the evaporator heat source pipe 61 so that the sprayed refrigerant liquid Vf falls on the evaporator heat source pipe 61 and the evaporator heating pipe 69. One end of a refrigerant liquid pipe 88 that allows the refrigerant liquid Vf to flow therein is connected to the evaporator 60. One end of a low-temperature refrigerant liquid pipe 65 that guides the refrigerant liquid Vf stored in the lower part of the evaporator 60 to the refrigerant liquid spray nozzle 62 is connected to the lower part (typically the bottom part) of the evaporator 60. The other end of the low-temperature refrigerant liquid pipe 65 is connected to the refrigerant liquid spray nozzle 62. The low-temperature refrigerant liquid pipe 65 is provided with a low-temperature refrigerant liquid pump 66 that pumps the refrigerant liquid Vf flowing inside. In the evaporator 60, the refrigerant liquid Vf is sprayed from the refrigerant liquid spraying nozzle 62, and the sprayed refrigerant liquid Vf flows in the evaporator heat source pipe 61 and flows in the evaporator heating pipe 69. The evaporator refrigerant vapor Ve is generated by evaporating with the heat of the vapor Wv. That is, in the present embodiment, the evaporator heating pipe 69 corresponds to a heating unit that heats the refrigerant liquid Vf with the heat of the introduced separation steam Wv, and the refrigerant liquid Vf sprayed from the refrigerant liquid spray nozzle 62 is heated by the evaporator. This corresponds to the heated fluid heated by the tube 69.

吸収器10と蒸発器60とは、相互に連通している。吸収器10と蒸発器60とが連通することにより、蒸発器60で発生した蒸発器冷媒蒸気Veを吸収器10に供給することができるように構成されている。吸収器10と蒸発器60とは、典型的には、高濃度溶液散布ノズル12より上方及び冷媒液散布ノズル62より上方で連通している。   The absorber 10 and the evaporator 60 are in communication with each other. The absorber 10 and the evaporator 60 communicate with each other so that the evaporator refrigerant vapor Ve generated in the evaporator 60 can be supplied to the absorber 10. The absorber 10 and the evaporator 60 typically communicate with each other above the high concentration solution spray nozzle 12 and above the refrigerant liquid spray nozzle 62.

再生器70は、吸収液加熱流体としての再生器熱源温水hgの流路を構成する吸収液加熱流体流路としての再生器熱源管71と、希溶液Swを散布する希溶液散布ノズル72と、離脱蒸気Wvの流路を構成する再生器加熱管79とを有している。再生器加熱管79は、再生器熱源管71の下方に配設されている。再生器熱源管71を流れる再生器熱源温水hgは、蒸発器熱源管61を流れる蒸発器熱源温水heと同じ温水であってもよく、その場合は、蒸発器熱源管61を流れた後に再生器熱源管71を流れるように配管(不図示)で接続されているとよい。蒸発器熱源管61及び再生器熱源管71に異なる熱源媒体が流れることとしてもよい。希溶液散布ノズル72は、散布した希溶液Swが再生器熱源管71及び再生器加熱管79に降りかかるように、再生器熱源管71の上方に配設されている。再生器70は、散布された希溶液Swが再生器熱源温水hg及び離脱蒸気Wvで加熱されることにより、希溶液Swから冷媒Vが蒸発して濃度が上昇した高濃度溶液Saが生成される。つまり、本実施の形態では、再生器加熱管79は導入した離脱蒸気Wvの熱で希溶液Swを加熱する加熱部に相当し、希溶液散布ノズル72から散布された希溶液Swは再生器加熱管79が加熱する被加熱流体に相当する。再生器70は、生成された高濃度溶液Saが下部に貯留されるように構成されている。   The regenerator 70 includes a regenerator heat source pipe 71 as an absorption liquid heating fluid flow path that constitutes a flow path of the regenerator heat source hot water hg as an absorption liquid heating fluid, a dilute solution spray nozzle 72 that sprays the dilute solution Sw, And a regenerator heating pipe 79 constituting the flow path of the separation steam Wv. The regenerator heating tube 79 is disposed below the regenerator heat source tube 71. The regenerator heat source hot water hg flowing through the regenerator heat source pipe 71 may be the same hot water as the evaporator heat source hot water he flowing through the evaporator heat source pipe 61. In this case, after flowing through the evaporator heat source pipe 61, the regenerator It is good to be connected by piping (not shown) so that it may flow through the heat source pipe 71. Different heat source media may flow through the evaporator heat source pipe 61 and the regenerator heat source pipe 71. The dilute solution spray nozzle 72 is disposed above the regenerator heat source tube 71 so that the sprayed dilute solution Sw falls on the regenerator heat source tube 71 and the regenerator heat tube 79. In the regenerator 70, the sprayed dilute solution Sw is heated by the regenerator heat source hot water hg and the separated steam Wv, whereby the refrigerant V evaporates from the dilute solution Sw to generate a high concentration solution Sa having an increased concentration. . That is, in this embodiment, the regenerator heating tube 79 corresponds to a heating unit that heats the dilute solution Sw with the heat of the introduced separation steam Wv, and the dilute solution Sw sprayed from the dilute solution spray nozzle 72 is heated by the regenerator. This corresponds to the heated fluid heated by the pipe 79. The regenerator 70 is configured such that the generated high concentration solution Sa is stored in the lower part.

凝縮器80は、冷却媒体流路を形成する冷却水管81を有している。冷却水管81には、冷却媒体としての冷却水cが流れる。凝縮器80は、再生器70で発生した冷媒Vの蒸気である再生器冷媒蒸気Vgを導入し、これを冷却水cで冷却して凝縮させるように構成されている。冷却水管81は、再生器冷媒蒸気Vgを直接冷却することができるように、再生器冷媒蒸気Vgが凝縮した冷媒液Vfに浸らないように配設されている。凝縮器80には、凝縮した冷媒液Vfを蒸発器60に向けて送る冷媒液管88の一端が接続されている。冷媒液管88の他端は、蒸発器60に接続されている。冷媒液管88には、冷媒液Vfを圧送するための凝縮冷媒ポンプ89が配設されている。   The condenser 80 has a cooling water pipe 81 that forms a cooling medium flow path. The cooling water c as a cooling medium flows through the cooling water pipe 81. The condenser 80 is configured to introduce the regenerator refrigerant vapor Vg, which is the vapor of the refrigerant V generated in the regenerator 70, and to cool and condense it with the cooling water c. The cooling water pipe 81 is disposed so that the regenerator refrigerant vapor Vg is not immersed in the condensed refrigerant liquid Vf so that the regenerator refrigerant vapor Vg can be directly cooled. One end of a refrigerant liquid pipe 88 that sends the condensed refrigerant liquid Vf toward the evaporator 60 is connected to the condenser 80. The other end of the refrigerant liquid pipe 88 is connected to the evaporator 60. The refrigerant liquid pipe 88 is provided with a condensing refrigerant pump 89 for pumping the refrigerant liquid Vf.

再生器70と凝縮器80とは、相互に連通している。再生器70と凝縮器80とが連通することにより、再生器70で発生した再生器冷媒蒸気Vgを凝縮器80に供給することができるように構成されている。再生器70と凝縮器80とは、上部の気相部で連通している。また、本実施の形態では、再生器70及び凝縮器80が、吸収器10及び蒸発器60の下方に設けられている。   The regenerator 70 and the condenser 80 are in communication with each other. By connecting the regenerator 70 and the condenser 80, the regenerator refrigerant vapor Vg generated in the regenerator 70 can be supplied to the condenser 80. The regenerator 70 and the condenser 80 communicate with each other in the upper gas phase portion. In the present embodiment, the regenerator 70 and the condenser 80 are provided below the absorber 10 and the evaporator 60.

再生器70の高濃度溶液Saが貯留される部分と、吸収器10の高濃度溶液散布ノズル12とは、高濃度溶液管75で接続されている。高濃度溶液管75には、再生器70内の高濃度溶液Saを高濃度溶液散布ノズル12に圧送する高濃度溶液ポンプ76が配設されている。高温吸収器10の貯留部13と、再生器70の希溶液散布ノズル72とは、吸収器流出溶液管15で接続されている。吸収器流出溶液管15及び高濃度溶液管75には、高温熱交換器18が配設されている。高温熱交換器18は、吸収器流出溶液管15を流れる希溶液Swと、高濃度溶液管75を流れる高濃度溶液Saとの間で熱交換を行わせる機器である。   The portion of the regenerator 70 where the high concentration solution Sa is stored and the high concentration solution spray nozzle 12 of the absorber 10 are connected by a high concentration solution tube 75. The high concentration solution pipe 75 is provided with a high concentration solution pump 76 that pumps the high concentration solution Sa in the regenerator 70 to the high concentration solution spray nozzle 12. The storage unit 13 of the high-temperature absorber 10 and the dilute solution spray nozzle 72 of the regenerator 70 are connected by the absorber outflow solution pipe 15. A high temperature heat exchanger 18 is disposed in the absorber outflow solution tube 15 and the high concentration solution tube 75. The high temperature heat exchanger 18 is a device that exchanges heat between the dilute solution Sw flowing through the absorber outflow solution tube 15 and the high concentration solution Sa flowing through the high concentration solution tube 75.

濃縮槽91は、未濃縮液Wdが吸収器10の伝熱管11内で加熱されて生じた混合液Wmを導入し、濃縮液Wcと離脱蒸気Wvとに分離する機器であり、気液分離器に相当する。濃縮槽91の側面下部と吸収器10の伝熱管11の一端とは、未濃縮液Wdを伝熱管11に導く未濃縮液管92で接続されている。内部が気相部となる濃縮槽91の側面と伝熱管11の他端とは、混合液Wmを濃縮槽91に導く混合液管94で接続されている。未濃縮液管92には、未濃縮液Wdを系外から導入する未濃縮液供給管95が接続されている。未濃縮液供給管95には、濃縮槽91に向けて未濃縮液Wdを圧送する供給ポンプ96が配設されている。また、濃縮槽91には、離脱蒸気Wvを流出する離脱蒸気管99が上部(典型的には頂部)に接続されており、濃縮液Wcを流出する濃縮液管97が下部(典型的には最下部)に接続されている。なお、濃縮槽91に対する未濃縮液管92の接続部を、濃縮液管97と同様に、濃縮槽91の下部(典型的には最下部)としてもよい。未濃縮液供給管95及び濃縮液管97には、未濃縮液供給管95を流れる未濃縮液Wdと濃縮液管97を流れる濃縮液Wcとの間で熱交換を行わせる濃縮液熱交換器98Sが配設されている。   The concentration tank 91 is a device that introduces the mixed liquid Wm generated by heating the unconcentrated liquid Wd in the heat transfer tube 11 of the absorber 10 and separates it into the concentrated liquid Wc and the separated vapor Wv. It corresponds to. The lower part of the side surface of the concentration tank 91 and one end of the heat transfer tube 11 of the absorber 10 are connected by an unconcentrated liquid tube 92 that guides the unconcentrated liquid Wd to the heat transfer tube 11. The side surface of the concentrating tank 91 whose inside is a gas phase portion and the other end of the heat transfer tube 11 are connected by a mixed liquid pipe 94 that guides the mixed liquid Wm to the concentrating tank 91. The non-concentrated liquid pipe 92 is connected to a non-concentrated liquid supply pipe 95 for introducing the non-concentrated liquid Wd from outside the system. A supply pump 96 that pumps the non-concentrated liquid Wd toward the concentration tank 91 is disposed in the non-concentrated liquid supply pipe 95. The concentration tank 91 is connected to an upper part (typically the top) of a separation steam pipe 99 that flows out the separation steam Wv, and a concentration liquid pipe 97 that flows out the concentrate Wc is below (typically). Connected to the bottom). In addition, the connection part of the non-concentrated liquid pipe 92 with respect to the concentration tank 91 may be the lower part (typically the lowermost part) of the concentration tank 91, similarly to the concentrated liquid pipe 97. The non-concentrated liquid supply pipe 95 and the concentrated liquid pipe 97 have a concentrated liquid heat exchanger that exchanges heat between the non-concentrated liquid Wd flowing through the non-concentrated liquid supply pipe 95 and the concentrated liquid Wc flowing through the concentrated liquid pipe 97. 98S is disposed.

一端が濃縮槽91に接続された離脱蒸気管99の他端は、蒸発器離脱蒸気管99Aと再生器離脱蒸気管99Bと外部離脱蒸気管99Cとに分岐している。蒸発器離脱蒸気管99Aは、その一部が蒸発器加熱管69として蒸発器60の内部を通過している。再生器離脱蒸気管99Bは、その一部が再生器加熱管79として再生器70の内部を通過している。蒸発器加熱管69よりも上流側の蒸発器離脱蒸気管99Aは、系内(濃縮装置1内)の蒸発器加熱管69に離脱蒸気Wvを供給する流路であり、加熱部離脱蒸気流路に相当する。蒸発器加熱管69よりも上流側の蒸発器離脱蒸気管99Aには、内部を流れる離脱蒸気Wvの流量を調節する蒸発器離脱蒸気弁99Vaが設けられている。再生器加熱管79よりも上流側の再生器離脱蒸気管99Bは、系内(濃縮装置1内)の再生器加熱管79に離脱蒸気Wvを供給する流路であり、加熱部離脱蒸気流路に相当する。再生器加熱管79よりも上流側の再生器離脱蒸気管99Bには、内部を流れる離脱蒸気Wvの流量を調節する再生器離脱蒸気弁99Vbが設けられている。蒸発器離脱蒸気弁99Va及び再生器離脱蒸気弁99Vbは、加熱部離脱蒸気流量調節装置に相当する。蒸発器離脱蒸気管99A及び再生器離脱蒸気管99Bは、それぞれ、蒸発器加熱管69の下流側及び再生器加熱管79の下流側の合流点99jで接続され、再び1本の離脱蒸気管99となる。合流点99jよりも下流側の離脱蒸気管99及び冷媒液管88には、その離脱蒸気管99を流れる離脱ドレンWqと冷媒液管88を流れる冷媒液Vfとの間で熱交換を行わせる離脱ドレン熱交換器98Dが配設されている。離脱ドレンWqは、離脱蒸気Wvのドレンである。外部離脱蒸気管99Cは、系外(濃縮装置1外)に離脱蒸気Wvを供給する流路であり、外部離脱蒸気流路に相当する。外部離脱蒸気管99Cは、離脱蒸気Wvを系外で利用する装置(不図示)に接続される。外部離脱蒸気管99Cには、内部を流れる離脱蒸気Wvの流量を調節する外部離脱蒸気弁99Vcが設けられている。外部離脱蒸気弁99Vcは、外部離脱蒸気流量調節装置に相当する。蒸発器離脱蒸気弁99Va、再生器離脱蒸気弁99Vb、外部離脱蒸気弁99Vcは、典型的には、離脱蒸気Wvの系内で利用される流量と系外で利用される流量との比率が目標利用流量比率となるように、それぞれ開度が調節されている。   The other end of the separation steam pipe 99 having one end connected to the concentrating tank 91 is branched into an evaporator separation steam pipe 99A, a regenerator separation steam pipe 99B, and an external separation steam pipe 99C. A part of the evaporator separation steam pipe 99 </ b> A passes through the inside of the evaporator 60 as an evaporator heating pipe 69. A part of the regenerator leaving steam pipe 99 </ b> B passes through the inside of the regenerator 70 as a regenerator heating pipe 79. The evaporator detachment steam pipe 99A on the upstream side of the evaporator heating pipe 69 is a flow path for supplying the detachment steam Wv to the evaporator heating pipe 69 in the system (in the concentrator 1). It corresponds to. An evaporator detachment steam valve 99Va for adjusting the flow rate of the detachment steam Wv flowing inside is provided in the evaporator detachment steam pipe 99A on the upstream side of the evaporator heating pipe 69. The regenerator separation steam pipe 99B on the upstream side of the regenerator heating pipe 79 is a flow path for supplying the separation steam Wv to the regenerator heating pipe 79 in the system (in the concentrator 1). It corresponds to. A regenerator detachment steam valve 99Vb for adjusting the flow rate of the detachment steam Wv flowing inside is provided in the regenerator detachment steam pipe 99B on the upstream side of the regenerator heating pipe 79. The evaporator detachment steam valve 99Va and the regenerator detachment steam valve 99Vb correspond to a heating unit detachment steam flow rate control device. The evaporator detachment steam pipe 99A and the regenerator detachment steam pipe 99B are connected at a junction 99j on the downstream side of the evaporator heating pipe 69 and on the downstream side of the regenerator heating pipe 79, respectively. It becomes. The separation steam pipe 99 and the refrigerant liquid pipe 88 on the downstream side of the junction 99j are separated so that heat is exchanged between the separation drain Wq flowing through the separation steam pipe 99 and the refrigerant liquid Vf flowing through the refrigerant liquid pipe 88. A drain heat exchanger 98D is provided. The leaving drain Wq is a drain of the leaving steam Wv. The external detachment steam pipe 99C is a flow path for supplying the detachment steam Wv outside the system (outside the concentrator 1), and corresponds to an external detachment steam flow path. The external separation steam pipe 99C is connected to a device (not shown) that uses the separation steam Wv outside the system. The external detachment steam pipe 99C is provided with an external detachment steam valve 99Vc for adjusting the flow rate of the detachment steam Wv flowing inside. The external detachment steam valve 99Vc corresponds to an external detachment steam flow control device. The evaporator detachment steam valve 99Va, the regenerator detachment steam valve 99Vb, and the external detachment steam valve 99Vc typically have a target ratio between the flow rate of the evacuation steam Wv used in the system and the flow rate used outside the system. The opening degree is adjusted so as to obtain the usage flow rate ratio.

引き続き図1を参照して、濃縮装置1の作用を説明する。まず、吸収ヒートポンプ部の冷媒側のサイクルを説明する。凝縮器80では、再生器70で発生した再生器冷媒蒸気Vgを受け入れて、冷却水管81を流れる冷却水cで再生器冷媒蒸気Vgを冷却して凝縮し、冷媒液Vfとする。凝縮した冷媒液Vfは、凝縮冷媒ポンプ89で蒸発器60に向けて圧送される。凝縮冷媒ポンプ89で圧送された冷媒液Vfは、冷媒液管88を流れ、途中の離脱ドレン熱交換器98Dで温度が上昇した後、蒸発器60に導入される。蒸発器60に導入された冷媒液Vfは、低温冷媒液ポンプ66によって冷媒液散布ノズル62に圧送され、冷媒液散布ノズル62から蒸発器熱源管61に向けて散布される。冷媒液散布ノズル62から散布された冷媒液Vfは、蒸発器熱源管61内を流れる蒸発器熱源温水he及び蒸発器加熱管69を流れる離脱蒸気Wvによって加熱され蒸発して蒸発器冷媒蒸気Veとなる。蒸発器60で発生した蒸発器冷媒蒸気Veは、蒸発器60と連通する吸収器10へと移動する。このように、本実施の形態では、蒸発器60内の冷媒の蒸気を直接(他の機器を経由せずに)吸収器10に導入している。   With continued reference to FIG. 1, the operation of the concentration apparatus 1 will be described. First, the cycle on the refrigerant side of the absorption heat pump unit will be described. The condenser 80 receives the regenerator refrigerant vapor Vg generated in the regenerator 70, cools the regenerator refrigerant vapor Vg with the cooling water c flowing through the cooling water pipe 81, and condenses it into a refrigerant liquid Vf. The condensed refrigerant liquid Vf is pumped toward the evaporator 60 by the condensed refrigerant pump 89. The refrigerant liquid Vf pressure-fed by the condensing refrigerant pump 89 flows through the refrigerant liquid pipe 88 and is introduced into the evaporator 60 after the temperature rises in the separation drain heat exchanger 98D. The refrigerant liquid Vf introduced into the evaporator 60 is pumped by the low-temperature refrigerant liquid pump 66 to the refrigerant liquid spray nozzle 62 and sprayed from the refrigerant liquid spray nozzle 62 toward the evaporator heat source pipe 61. The refrigerant liquid Vf sprayed from the refrigerant liquid spray nozzle 62 is heated and evaporated by the evaporator heat source hot water he that flows in the evaporator heat source pipe 61 and the separated steam Wv that flows in the evaporator heating pipe 69, and becomes the evaporator refrigerant vapor Ve. Become. The evaporator refrigerant vapor Ve generated in the evaporator 60 moves to the absorber 10 communicating with the evaporator 60. Thus, in this Embodiment, the vapor | steam of the refrigerant | coolant in the evaporator 60 is directly introduce | transduced into the absorber 10 (without passing through another apparatus).

次に吸収ヒートポンプ部の吸収液側のサイクルを説明する。吸収器10では、高濃度溶液Saが高濃度溶液散布ノズル12から散布され、この散布された高濃度溶液Saが蒸発器60から移動してきた蒸発器冷媒蒸気Veを吸収する。蒸発器冷媒蒸気Veを吸収した高濃度溶液Saは、濃度が低下して希溶液Swとなる。吸収器10では、高濃度溶液Saが蒸発器冷媒蒸気Veを吸収する際に吸収熱が発生する。この吸収熱により、伝熱管11を流れる濃縮関連物質Wが加熱される。ここで、濃縮液Wcを取り出すための濃縮槽91まわりの作用について説明する。   Next, the cycle on the absorption liquid side of the absorption heat pump unit will be described. In the absorber 10, the high concentration solution Sa is sprayed from the high concentration solution spray nozzle 12, and the sprayed high concentration solution Sa absorbs the evaporator refrigerant vapor Ve that has moved from the evaporator 60. The high-concentration solution Sa that has absorbed the evaporator refrigerant vapor Ve is reduced in concentration to become a dilute solution Sw. In the absorber 10, heat of absorption is generated when the high-concentration solution Sa absorbs the evaporator refrigerant vapor Ve. Due to this absorbed heat, the concentration-related substance W flowing through the heat transfer tube 11 is heated. Here, the operation around the concentration tank 91 for taking out the concentrate Wc will be described.

濃縮槽91の系統には、系外から未濃縮液Wdが未濃縮液供給管95を介して導入される。未濃縮液Wdは、供給ポンプ96により未濃縮液供給管95を圧送され、途中の濃縮液熱交換器98Sで濃縮液Wcと熱交換して温度が上昇した後、未濃縮液管92に導入される。未濃縮液管92に導入された未濃縮液Wdは、濃縮槽91の側面下部から流れてきた濃縮関連物質Wと合流し、気泡ポンプの作用により、吸収器10の伝熱管11に流入する。ここで、粘度が高い等により未濃縮液Wdが伝熱管11に流入することが困難な場合は、未濃縮液Wdを伝熱管11に押し込むためのポンプを設けてもよい。伝熱管11に流入した未濃縮液Wdは、吸収器10における上述の吸収熱により加熱される。伝熱管11で加熱された未濃縮液Wdは、一部が蒸発して離脱蒸気Wvと濃縮液Wcとが混合した状態の混合液Wmとして、濃縮槽91に向けて混合液管94を流れる。濃縮槽91に導入された混合液Wmは、濃縮液Wcと離脱蒸気Wvとが分離される。分離された濃縮液Wcは、濃縮槽91の下部に貯留され、未濃縮液管92の接続部よりも上方に存在するものは再び吸収器10の伝熱管11に送られ、未濃縮液管92の接続部よりも下方に存在するものは濃縮液管97に流入する。他方、分離された離脱蒸気Wvは、離脱蒸気管99に流出し、途中、蒸発器離脱蒸気管99Aと再生器離脱蒸気管99Bと外部離脱蒸気管99Cとに分かれる。外部離脱蒸気管99Cに流入した以外の、蒸発器離脱蒸気管99Aと再生器離脱蒸気管99Bとに分かれた離脱蒸気Wvは、それぞれ蒸発器60内と再生器70内を通過した後に再び合流し、離脱ドレンWqとして離脱ドレン熱交換器98Dに流入し冷媒液Vfと熱交換して温度が低下した後に系外に流出する。他方、外部離脱蒸気管99Cに流入した離脱蒸気Wvは、系外に設けられた蒸気利用装置(不図示)に向かって流れる。   The non-concentrated liquid Wd is introduced into the system of the concentration tank 91 from the outside through the non-concentrated liquid supply pipe 95. The non-concentrated liquid Wd is pumped through the non-concentrated liquid supply pipe 95 by the supply pump 96 and is introduced into the non-concentrated liquid pipe 92 after heat is exchanged with the concentrated liquid Wc by the concentrated liquid heat exchanger 98S and is heated. Is done. The non-concentrated liquid Wd introduced into the non-concentrated liquid pipe 92 merges with the concentration-related substance W flowing from the lower side of the concentration tank 91 and flows into the heat transfer pipe 11 of the absorber 10 by the action of the bubble pump. Here, when it is difficult for the non-concentrated liquid Wd to flow into the heat transfer tube 11 due to high viscosity or the like, a pump for pushing the non-concentrated liquid Wd into the heat transfer tube 11 may be provided. The unconcentrated liquid Wd that has flowed into the heat transfer tube 11 is heated by the above-described absorption heat in the absorber 10. The unconcentrated liquid Wd heated by the heat transfer tube 11 flows through the mixed liquid tube 94 toward the concentration tank 91 as a mixed liquid Wm in which a part of the unconcentrated liquid Wd is evaporated and the separated vapor Wv and the concentrated liquid Wc are mixed. In the mixed liquid Wm introduced into the concentration tank 91, the concentrated liquid Wc and the separated vapor Wv are separated. The separated concentrated liquid Wc is stored in the lower part of the concentration tank 91, and what exists above the connection portion of the non-concentrated liquid pipe 92 is sent again to the heat transfer pipe 11 of the absorber 10, and the non-concentrated liquid pipe 92 Those existing below the connecting portion flow into the concentrated liquid tube 97. On the other hand, the separated detachment steam Wv flows into the detachment steam pipe 99, and is divided into an evaporator detachment steam pipe 99A, a regenerator detachment steam pipe 99B, and an external detachment steam pipe 99C. The separated steam Wv separated into the evaporator leaving steam pipe 99A and the regenerator leaving steam pipe 99B other than flowing into the external leaving steam pipe 99C passes through the evaporator 60 and the regenerator 70, and then merges again. Then, it flows into the detachment drain heat exchanger 98D as the detachment drain Wq, exchanges heat with the refrigerant liquid Vf, and flows out of the system after the temperature is lowered. On the other hand, the separation steam Wv flowing into the external separation steam pipe 99C flows toward a steam utilization device (not shown) provided outside the system.

蒸発器60及び再生器70に流入する離脱蒸気Wvの各流量と、系外の蒸気利用装置(不図示)に向けて流出する離脱蒸気Wvの流量とは、本実施の形態では、蒸発器離脱蒸気弁99Va、再生器離脱蒸気弁99Vb、外部離脱蒸気弁99Vcの開度によって各々調整される。これらの各弁99Va、99Vb、99Vcの開度は、未濃縮液Wdを濃縮する際の熱利用効率、系外で離脱蒸気Wvを利用する場合の蒸気利用方法等を考慮し、系外と系内との離脱蒸気Wvの目標利用流量比率を設定し、設定された目標利用流量比率となるように所定の固定開度とするか、あるいは、所定の目標利用流量比率となるように開度を制御すればよい。系外及び系内の離脱蒸気Wvの目標利用流量比率の設定は、各弁99Va、99Vb、99Vcの開度の調節のほか、タッチパネルやスイッチ等を用いた自動弁の開度調節、開度が調節可能な手動バルブ、オリフィス等、系内及び系外の双方の流量比率が設定できる手段であればよい。系外で離脱蒸気Wvを利用しない場合、系外に供給する分の離脱蒸気Wvを蒸発器60や再生器70に導入すれば、未濃縮液Wdを濃縮する際の熱利用効率を向上できる。また、系外に離脱蒸気Wvを利用できる装置がある場合に系外に離脱蒸気Wvを供給すれば、蒸気利用を拡大することができる。このように、系内での離脱蒸気Wvの蒸気利用比率は、濃縮槽91で分離された離脱蒸気Wvの全量に対して、全量利用する100%から、まったく利用しない0%まで、濃縮装置1の運転状況に応じて任意の比率に設定することができる。各弁99Va、99Vb、99Vcの開度が、濃縮装置1が置かれた設備によって一定の場合には、各弁99Va、99Vb、99Vcの代わりにオリフィスであってもよい。このように、濃縮装置1としての総合的な熱効率の向上と蒸気利用とを勘案して各弁99Va、99Vb、99Vcを所定の開度(系外と系内の流量利用比率)に設定する。   In the present embodiment, each flow rate of the separation steam Wv flowing into the evaporator 60 and the regenerator 70 and the flow rate of the separation steam Wv flowing out toward the steam utilization device (not shown) outside the system are separated from the evaporator. It is adjusted by the opening degree of the steam valve 99Va, the regenerator detachment steam valve 99Vb, and the external detachment steam valve 99Vc. The opening degree of each of these valves 99Va, 99Vb, 99Vc takes into consideration the heat utilization efficiency when concentrating the unconcentrated liquid Wd, the steam utilization method when utilizing the separated steam Wv outside the system, and the like. The target usage flow rate ratio of the separated steam Wv to the inside is set, and a predetermined fixed opening degree is set so as to become the set target usage flow rate ratio, or the opening degree is set so as to become a predetermined target usage flow rate ratio. Control is sufficient. Setting of the target utilization flow rate ratio of the separated steam Wv outside and inside the system is not only the adjustment of the opening degree of each valve 99Va, 99Vb, 99Vc, but also the opening degree adjustment of the automatic valve using a touch panel, a switch, etc. Any means capable of setting the flow rate ratio both inside and outside the system, such as an adjustable manual valve or orifice, may be used. When the separated steam Wv is not used outside the system, if the separated steam Wv supplied to the outside of the system is introduced into the evaporator 60 or the regenerator 70, the heat utilization efficiency when the unconcentrated liquid Wd is concentrated can be improved. In addition, when there is a device that can use the separation steam Wv outside the system, the use of the steam can be expanded by supplying the separation steam Wv outside the system. Thus, the steam utilization ratio of the separated steam Wv in the system ranges from 100% in which the total amount of the separated steam Wv separated in the concentration tank 91 is used to 0% in which it is not used at all. It can be set to any ratio according to the driving situation. When the opening degree of each valve 99Va, 99Vb, 99Vc is constant depending on the equipment in which the concentrating device 1 is placed, an orifice may be used instead of each valve 99Va, 99Vb, 99Vc. In this manner, the valves 99Va, 99Vb, and 99Vc are set to predetermined opening degrees (flow rate utilization ratio between outside and inside the system) in consideration of the improvement of the overall thermal efficiency and the steam utilization as the concentrator 1.

再び吸収ヒートポンプ部の吸収液側のサイクルの説明に戻る。吸収器10で蒸発器冷媒蒸気Veを吸収した高濃度溶液Saは、濃度が低下して希溶液Swとなり、貯留部13に貯留される。貯留部13内の希溶液Swは、重力及び内圧の差により再生器70に向かって吸収器流出溶液管15を流れ、高温熱交換器18で高濃度溶液Saと熱交換して温度が低下した後に、希溶液散布ノズル72に至る。このように、本実施の形態では、吸収器10内の吸収液Sを直接(他の吸収器を経由せずに)再生器70に導入している。   Returning to the description of the cycle on the absorption liquid side of the absorption heat pump unit again. The high-concentration solution Sa that has absorbed the evaporator refrigerant vapor Ve by the absorber 10 is reduced in concentration to become a dilute solution Sw, and is stored in the storage unit 13. The dilute solution Sw in the reservoir 13 flows through the absorber effluent solution tube 15 toward the regenerator 70 due to the difference between gravity and internal pressure, and heat exchange with the high-concentration solution Sa in the high-temperature heat exchanger 18 causes the temperature to decrease. Later, it reaches the dilute solution spray nozzle 72. As described above, in the present embodiment, the absorbing liquid S in the absorber 10 is directly introduced into the regenerator 70 (without passing through another absorber).

再生器70に送られた希溶液Swは、希溶液散布ノズル72から散布される。希溶液散布ノズル72から散布された希溶液Swは、再生器熱源管71を流れる再生器熱源温水hg(例えば約80℃前後)及び再生器加熱管79を流れる離脱蒸気Wvによって加熱され、散布された希溶液Sw中の冷媒が蒸発して高濃度溶液Saとなり、再生器70の下部に貯留される。他方、希溶液Swから蒸発した冷媒Vは、再生器冷媒蒸気Vgとして凝縮器80へと移動する。再生器70の下部に貯留された高濃度溶液Saは、高濃度溶液ポンプ76により、高濃度溶液管75を介して吸収器10の高濃度溶液散布ノズル12に圧送される。高濃度溶液管75を流れる高濃度溶液Saは、高温熱交換器18で希溶液Swと熱交換して温度が上昇してから吸収器10に流入し、高濃度溶液散布ノズル12から散布される。以降、同様のサイクルを繰り返す。   The dilute solution Sw sent to the regenerator 70 is sprayed from the dilute solution spray nozzle 72. The dilute solution Sw sprayed from the dilute solution spray nozzle 72 is heated and sprayed by the regenerator heat source hot water hg (for example, around 80 ° C.) flowing through the regenerator heat source pipe 71 and the separated steam Wv flowing through the regenerator heating pipe 79. The refrigerant in the diluted solution Sw evaporates to become a high concentration solution Sa and is stored in the lower part of the regenerator 70. On the other hand, the refrigerant V evaporated from the dilute solution Sw moves to the condenser 80 as the regenerator refrigerant vapor Vg. The high concentration solution Sa stored in the lower part of the regenerator 70 is pumped by the high concentration solution pump 76 to the high concentration solution spray nozzle 12 of the absorber 10 through the high concentration solution tube 75. The high-concentration solution Sa flowing through the high-concentration solution pipe 75 exchanges heat with the dilute solution Sw in the high-temperature heat exchanger 18 and rises in temperature, and then flows into the absorber 10 and sprayed from the high-concentration solution spray nozzle 12. . Thereafter, the same cycle is repeated.

以上で説明したように、本実施の形態に係る濃縮装置1は、吸収ヒートポンプ部が昇温型の第二種吸収ヒートポンプとなっているので、未濃縮液Wdを濃縮液Wcに濃縮した際に副次的に生成される離脱蒸気Wvの温度を、熱源として投入する蒸発器熱源温水he及び再生器熱源温水hgの温度よりも高くすることができ、濃縮液Wcの生成に伴って生じる離脱蒸気Wvの一部の熱で蒸発器60内の冷媒液Vf及び再生器70内の希溶液Swを加熱することが可能となって、未濃縮液Wdを濃縮する際の濃縮装置1の熱利用効率を向上させることができる。また、蒸発器熱源温水he及び再生器熱源温水hgの温度よりも高い温度で未濃縮液Wdを加熱濃縮することができるので、濃縮槽91内の運転圧力を大気圧又は大気圧を超えた圧力にすることができ、低い温度で液体を蒸発させて未濃縮液Wdを濃縮する場合に行われるような濃縮槽91内の圧力を大気圧よりも低い圧力に減圧すること、を行わなくて済む。濃縮槽91内が大気圧を超えた圧力となるように運転した場合は、離脱蒸気Wvの用途が拡大し、系外での離脱蒸気Wvの利用を促進させることができる。また、濃縮槽91内の圧力を大気圧よりも低い圧力に減圧しなくて済むので、濃縮槽91の内容積を小型化できる。濃縮槽91内の運転圧力及び濃縮槽91に導入する未濃縮液Wdの流量は、取り出す濃縮液Wcの目標とする濃度及び流量を実現するために、蒸発器熱源管61に流入する蒸発器熱源温水heの温度及び流量、再生器熱源管71に流入する再生器熱源温水hgの温度及び流量、冷却水管81に流入する冷却水cの温度及び流量、濃縮装置1の熱利用効率、系外での離脱蒸気Wvの利用方法を総合的に勘案して各々調整するとよい。   As described above, in the concentrating device 1 according to the present embodiment, since the absorption heat pump unit is a temperature rising type second-type absorption heat pump, when the unconcentrated liquid Wd is concentrated to the concentrated liquid Wc. The temperature of the separation steam Wv generated as a secondary can be higher than the temperatures of the evaporator heat source hot water he and the regenerator heat source hot water hg that are input as heat sources, and the separation steam generated as the concentrate Wc is generated. It is possible to heat the refrigerant liquid Vf in the evaporator 60 and the dilute solution Sw in the regenerator 70 with a part of the heat of Wv, and the heat utilization efficiency of the concentrating device 1 when concentrating the unconcentrated liquid Wd Can be improved. Further, since the unconcentrated liquid Wd can be heated and concentrated at a temperature higher than the temperatures of the evaporator heat source hot water he and the regenerator heat source hot water hg, the operating pressure in the concentration tank 91 is atmospheric pressure or a pressure exceeding atmospheric pressure. It is not necessary to reduce the pressure in the concentration tank 91 to a pressure lower than the atmospheric pressure, which is performed when the unconcentrated liquid Wd is concentrated by evaporating the liquid at a low temperature. . When the operation is performed so that the concentration tank 91 has a pressure exceeding the atmospheric pressure, the use of the separation steam Wv can be expanded and the utilization of the separation steam Wv outside the system can be promoted. Moreover, since it is not necessary to reduce the pressure in the concentration tank 91 to a pressure lower than the atmospheric pressure, the internal volume of the concentration tank 91 can be reduced in size. The operating pressure in the concentration tank 91 and the flow rate of the unconcentrated liquid Wd introduced into the concentration tank 91 are the evaporator heat source that flows into the evaporator heat source pipe 61 in order to achieve the target concentration and flow rate of the concentrated liquid Wc to be extracted. The temperature and flow rate of the hot water he, the temperature and flow rate of the regenerator heat source hot water hg flowing into the regenerator heat source tube 71, the temperature and flow rate of the cooling water c flowing into the cooling water tube 81, the heat utilization efficiency of the concentrator 1, and outside the system It is preferable to make adjustments by comprehensively considering how to use the separated steam Wv.

次に図2を参照して、本発明の第1の実施の形態の変形例に係る濃縮装置1Aを説明する。図2は、濃縮装置1Aの模式的系統図である。濃縮装置1Aは、吸収ヒートポンプ部が三段昇温型の第二種吸収ヒートポンプとなっている点で、単段昇温型の第二種吸収ヒートポンプのヒートポンプ部を備える濃縮装置1(図1参照)と異なっている。濃縮装置1Aは、濃縮装置1(図1参照)の構成に加えて、高温蒸発器20と、中温吸収器30と、中温蒸発器40と、低温吸収器50とを備えている。なお、濃縮装置1Aにおいては、濃縮装置1(図1参照)における吸収器10に相当する構成を、中温吸収器30及び低温吸収器50と区別するために「高温吸収器10」といい、濃縮装置1(図1参照)における蒸発器60に相当する構成を、高温蒸発器20及び中温蒸発器40と区別するために「低温蒸発器60」ということとする。   Next, referring to FIG. 2, a concentrating device 1A according to a modification of the first embodiment of the present invention will be described. FIG. 2 is a schematic system diagram of the concentration apparatus 1A. The concentrating device 1A is a concentrating device 1 provided with a heat pump part of a second-stage absorption heat pump of a single-stage temperature rising type in that the absorption heat pump part is a three-stage temperature rising type second-type absorption heat pump (see FIG. 1). ) Is different. The concentrating device 1A includes a high temperature evaporator 20, an intermediate temperature absorber 30, an intermediate temperature evaporator 40, and a low temperature absorber 50 in addition to the configuration of the concentrating device 1 (see FIG. 1). In the concentration device 1A, the configuration corresponding to the absorber 10 in the concentration device 1 (see FIG. 1) is referred to as a “high temperature absorber 10” in order to distinguish it from the intermediate temperature absorber 30 and the low temperature absorber 50. In order to distinguish the configuration corresponding to the evaporator 60 in the apparatus 1 (see FIG. 1) from the high temperature evaporator 20 and the intermediate temperature evaporator 40, it is referred to as a “low temperature evaporator 60”.

高温蒸発器20は、高温吸収器10に高温冷媒蒸気Vaを供給する構成部材である。高温蒸発器20は、冷媒液Vf及び高温冷媒蒸気Vaを収容する冷媒気液分離胴21と、高温冷媒液供給管22と、高温冷媒蒸気受入管24とを有している。高温冷媒液供給管22は、冷媒液Vfを中温吸収器30の加熱管31に導く流路を構成する管である。高温冷媒蒸気受入管24は、中温吸収器30の加熱管31で冷媒液Vfが加熱されて生成された高温冷媒蒸気Vaあるいは高温冷媒蒸気Vaと冷媒液Vfとの冷媒気液混相を冷媒気液分離胴21まで案内する流路を構成する管である。冷媒気液分離胴21内には、高温冷媒蒸気Va中に含まれる冷媒Vの液滴を衝突分離させるバッフル板(不図示)が設けられている。本実施の形態では、中温吸収器30の加熱管31の内面を高温蒸発器20の伝熱面としている。また、高温蒸発器20には冷媒液Vfを導入する冷媒液管82が接続されている。高温蒸発器20に接続された冷媒液管82には、流量調節弁83が配設されている。高温冷媒液供給管22は、冷媒気液分離胴21の冷媒液Vfが貯留されている部分に一端が接続され、他端が加熱管31の一端に接続されている。高温冷媒蒸気受入管24は、冷媒気液分離胴21に一端が接続され、他端が加熱管31の他端に接続されている。高温蒸発器20は、加熱管31の内部で冷媒液Vfが蒸気に変化して密度が大幅に減少するので、加熱管31を気泡ポンプとして機能させることとして、冷媒気液分離胴21内の冷媒液Vfを加熱管31に送るポンプを省略している。なお、冷媒気液分離胴21内の冷媒液Vfを加熱管31に送るポンプ(不図示)を高温冷媒液供給管22に配設してもよい。   The high-temperature evaporator 20 is a component that supplies the high-temperature refrigerant vapor Va to the high-temperature absorber 10. The high-temperature evaporator 20 includes a refrigerant gas-liquid separation cylinder 21 that stores the refrigerant liquid Vf and the high-temperature refrigerant vapor Va, a high-temperature refrigerant liquid supply pipe 22, and a high-temperature refrigerant vapor receiving pipe 24. The high-temperature refrigerant liquid supply pipe 22 is a pipe constituting a flow path that guides the refrigerant liquid Vf to the heating pipe 31 of the intermediate temperature absorber 30. The high-temperature refrigerant vapor receiving pipe 24 represents the refrigerant gas-liquid mixed phase of the high-temperature refrigerant vapor Va generated by the refrigerant liquid Vf being heated by the heating pipe 31 of the intermediate temperature absorber 30 or the high-temperature refrigerant vapor Va and the refrigerant liquid Vf. It is a tube constituting a flow path for guiding to the separation cylinder 21. A baffle plate (not shown) that collides and separates the droplets of the refrigerant V contained in the high-temperature refrigerant vapor Va is provided in the refrigerant gas-liquid separation cylinder 21. In the present embodiment, the inner surface of the heating tube 31 of the intermediate temperature absorber 30 is used as the heat transfer surface of the high temperature evaporator 20. The high temperature evaporator 20 is connected to a refrigerant liquid pipe 82 for introducing the refrigerant liquid Vf. A flow rate adjustment valve 83 is disposed in the refrigerant liquid pipe 82 connected to the high temperature evaporator 20. One end of the high-temperature refrigerant liquid supply pipe 22 is connected to the portion of the refrigerant gas-liquid separation cylinder 21 where the refrigerant liquid Vf is stored, and the other end is connected to one end of the heating pipe 31. The high temperature refrigerant vapor receiving pipe 24 has one end connected to the refrigerant gas-liquid separation cylinder 21 and the other end connected to the other end of the heating pipe 31. In the high-temperature evaporator 20, the refrigerant liquid Vf changes to steam inside the heating pipe 31 and the density is greatly reduced. Therefore, the refrigerant in the refrigerant gas-liquid separation cylinder 21 is assumed to function as the bubble pump. A pump for sending the liquid Vf to the heating pipe 31 is omitted. A pump (not shown) that sends the refrigerant liquid Vf in the refrigerant gas-liquid separation cylinder 21 to the heating pipe 31 may be disposed in the high-temperature refrigerant liquid supply pipe 22.

高温吸収器10は、濃縮装置1(図1参照)では蒸発器冷媒蒸気Veの流路を介して蒸発器60と接続されていたが、本変形例に係る濃縮装置1Aでは高温冷媒蒸気流路としての高温冷媒蒸気管29を介して高温蒸発器20と接続されている。高温冷媒蒸気管29は、一方の端部が冷媒気液分離胴21の上部(典型的には頂部)に接続されており、他方の端部が高濃度溶液散布ノズル12よりも上方で高温吸収器10に接続されている。このような構成により、高温蒸発器20で生成された高温冷媒蒸気Vaを、高温冷媒蒸気管29を介して、高温吸収器10に供給することができるようになっている。   The high-temperature absorber 10 is connected to the evaporator 60 via the flow path of the evaporator refrigerant vapor Ve in the concentrator 1 (see FIG. 1), but in the concentrator 1A according to this modification, the high-temperature refrigerant vapor flow path. Is connected to the high-temperature evaporator 20 through a high-temperature refrigerant vapor pipe 29. One end of the high-temperature refrigerant vapor pipe 29 is connected to the upper part (typically the top) of the refrigerant gas-liquid separation cylinder 21, and the other end is absorbed at a high temperature above the high-concentration solution spray nozzle 12. Connected to the vessel 10. With such a configuration, the high-temperature refrigerant vapor Va generated by the high-temperature evaporator 20 can be supplied to the high-temperature absorber 10 through the high-temperature refrigerant vapor pipe 29.

中温吸収器30は、冷媒液Vf及び高温冷媒蒸気Vaの流路を構成する冷媒加熱管としての加熱管31と、中濃度溶液散布ノズル32とを内部に有している。加熱管31は、上述のように、一端に高温冷媒液供給管22が、他端に高温冷媒蒸気受入管24が、それぞれ接続されている。中濃度溶液散布ノズル32は、本実施の形態では、中濃度溶液Sbを散布する。中濃度溶液散布ノズル32は、散布した中濃度溶液Sbが加熱管31に降りかかるように、加熱管31の上方に配設されている。中濃度溶液散布ノズル32には、中濃度溶液Sbを内部に流す吸収器流出溶液管15の一端が接続されている。吸収器流出溶液管15は、濃縮装置1(図1参照)では再生器70内の希溶液散布ノズル72に接続されて希溶液Swを流すように構成されていたが、本変形例に係る濃縮装置1Aでは中濃度溶液散布ノズル32に接続されて中濃度溶液Sbを流すように構成されている。中温吸収器30は、中濃度溶液散布ノズル32から中濃度溶液Sbが散布され、中濃度溶液Sbが中温冷媒蒸気Vbを吸収する際に生じる吸収熱により、加熱管31を流れる冷媒液Vfを加熱して高温冷媒蒸気Vaを生成することができるように構成されている。中温吸収器30は、高温吸収器10よりも低い圧力(露点温度)で作動するように構成されており、高温吸収器10よりも作動温度が低くなっている。中温吸収器30の下部には、低濃度溶液Scが貯留される貯留部33が形成されている。低濃度溶液Scは、中濃度溶液散布ノズル32から散布された中濃度溶液Sbが中温冷媒蒸気Vbを吸収して濃度が低下した吸収液Sである。加熱管31は、貯留部33よりも上方に配設されている。   The intermediate temperature absorber 30 has a heating pipe 31 as a refrigerant heating pipe constituting a flow path for the refrigerant liquid Vf and the high temperature refrigerant vapor Va, and an intermediate concentration solution spray nozzle 32 inside. As described above, the heating pipe 31 has one end connected to the high-temperature refrigerant liquid supply pipe 22 and the other end connected to the high-temperature refrigerant vapor receiving pipe 24. The medium concentration solution spray nozzle 32 sprays the medium concentration solution Sb in the present embodiment. The medium concentration solution spray nozzle 32 is disposed above the heating tube 31 so that the sprayed medium concentration solution Sb falls on the heating tube 31. One end of an absorber outflow solution tube 15 for flowing the intermediate concentration solution Sb is connected to the intermediate concentration solution spray nozzle 32. In the concentrator 1 (see FIG. 1), the absorber outflow solution pipe 15 is connected to the dilute solution spray nozzle 72 in the regenerator 70 and is configured to flow the dilute solution Sw. The apparatus 1A is connected to the medium concentration solution spray nozzle 32 and is configured to flow the medium concentration solution Sb. The intermediate temperature absorber 30 heats the refrigerant liquid Vf flowing through the heating pipe 31 by absorption heat generated when the intermediate concentration solution Sb is applied from the intermediate concentration solution spray nozzle 32 and the intermediate concentration solution Sb absorbs the intermediate temperature refrigerant vapor Vb. Thus, the high-temperature refrigerant vapor Va can be generated. The intermediate temperature absorber 30 is configured to operate at a pressure (dew point temperature) lower than that of the high temperature absorber 10, and the operating temperature is lower than that of the high temperature absorber 10. A storage part 33 for storing the low-concentration solution Sc is formed in the lower part of the intermediate temperature absorber 30. The low-concentration solution Sc is an absorbing solution S whose concentration is lowered by the medium-concentration solution Sb sprayed from the medium-concentration solution spray nozzle 32 absorbing the intermediate temperature refrigerant vapor Vb. The heating tube 31 is disposed above the storage unit 33.

中温蒸発器40は、中温吸収器30に中温冷媒蒸気Vbを供給する構成部材である。中温蒸発器40は、冷媒液Vf及び中温冷媒蒸気Vbを収容する冷媒気液分離胴41と、中温冷媒液供給管42と、中温冷媒蒸気受入管44とを有している。中温冷媒液供給管42は、冷媒液Vfを低温吸収器50の加熱管51に導く流路を構成する管である。中温冷媒蒸気受入管44は、低温吸収器50の加熱管51で冷媒液Vfが加熱されて生成された中温冷媒蒸気Vbあるいは中温冷媒蒸気Vbと冷媒液Vfとの冷媒気液混相を冷媒気液分離胴41まで案内する流路を構成する管である。冷媒気液分離胴41は、高温蒸発器20の冷媒気液分離胴21と同様に構成されている。本実施の形態では、低温吸収器50の加熱管51の内面を中温蒸発器40の伝熱面としている。また、中温蒸発器40には冷媒液Vfを導入する冷媒液管84が接続されている。冷媒液管84は、冷媒液管82から分岐している。中温蒸発器40に接続された冷媒液管84には、流量調節弁85が配設されている。中温冷媒液供給管42は、冷媒気液分離胴41の冷媒液Vfが貯留されている部分に一端が接続され、他端が加熱管51の一端に接続されている。中温冷媒蒸気受入管44は、冷媒気液分離胴41に一端が接続され、他端が加熱管51の他端に接続されている。中温蒸発器40は、加熱管51の内部で冷媒液Vfが蒸気に変化して密度が大幅に減少するので、加熱管51を気泡ポンプとして機能させることとして、冷媒気液分離胴41内の冷媒液Vfを加熱管51に送るポンプを省略している。なお、冷媒気液分離胴41内の冷媒液Vfを加熱管51に送るポンプ(不図示)を中温冷媒液供給管42に配設してもよい。   The intermediate temperature evaporator 40 is a component that supplies the intermediate temperature refrigerant vapor Vb to the intermediate temperature absorber 30. The intermediate temperature evaporator 40 includes a refrigerant gas-liquid separation cylinder 41 that stores the refrigerant liquid Vf and the intermediate temperature refrigerant vapor Vb, an intermediate temperature refrigerant liquid supply pipe 42, and an intermediate temperature refrigerant vapor receiving pipe 44. The intermediate temperature refrigerant liquid supply pipe 42 is a pipe that constitutes a flow path that guides the refrigerant liquid Vf to the heating pipe 51 of the low temperature absorber 50. The intermediate-temperature refrigerant vapor receiving pipe 44 is a refrigerant gas-liquid that represents an intermediate-temperature refrigerant vapor Vb generated by heating the refrigerant liquid Vf in the heating pipe 51 of the low-temperature absorber 50 or a refrigerant gas-liquid mixed phase of the intermediate-temperature refrigerant vapor Vb and the refrigerant liquid Vf. It is a tube constituting a flow path for guiding to the separation cylinder 41. The refrigerant gas-liquid separation cylinder 41 is configured in the same manner as the refrigerant gas-liquid separation cylinder 21 of the high-temperature evaporator 20. In the present embodiment, the inner surface of the heating tube 51 of the low temperature absorber 50 is used as the heat transfer surface of the intermediate temperature evaporator 40. In addition, a refrigerant liquid pipe 84 for introducing the refrigerant liquid Vf is connected to the intermediate temperature evaporator 40. The refrigerant liquid pipe 84 branches from the refrigerant liquid pipe 82. A flow rate adjustment valve 85 is disposed in the refrigerant liquid pipe 84 connected to the intermediate temperature evaporator 40. The intermediate temperature refrigerant liquid supply pipe 42 has one end connected to the portion of the refrigerant gas-liquid separation cylinder 41 where the refrigerant liquid Vf is stored, and the other end connected to one end of the heating pipe 51. The intermediate temperature refrigerant vapor receiving pipe 44 has one end connected to the refrigerant gas-liquid separation cylinder 41 and the other end connected to the other end of the heating pipe 51. In the intermediate temperature evaporator 40, since the refrigerant liquid Vf changes to steam inside the heating pipe 51 and the density is greatly reduced, the refrigerant in the refrigerant gas-liquid separation cylinder 41 is assumed to function as the bubble pump. A pump for sending the liquid Vf to the heating pipe 51 is omitted. A pump (not shown) that sends the refrigerant liquid Vf in the refrigerant gas-liquid separation cylinder 41 to the heating pipe 51 may be disposed in the intermediate temperature refrigerant liquid supply pipe 42.

中温蒸発器40と中温吸収器30とは、中温冷媒蒸気流路としての中温冷媒蒸気管49で接続されている。中温冷媒蒸気管49は、一方の端部が冷媒気液分離胴41の上部(典型的には頂部)に接続されており、他方の端部が中濃度溶液散布ノズル32よりも上方で中温吸収器30に接続されている。このような構成により、中温蒸発器40で生成された中温冷媒蒸気Vbを、中温冷媒蒸気管49を介して、中温吸収器30に供給することができるようになっている。   The intermediate temperature evaporator 40 and the intermediate temperature absorber 30 are connected by an intermediate temperature refrigerant vapor pipe 49 as an intermediate temperature refrigerant vapor channel. One end of the intermediate temperature refrigerant vapor pipe 49 is connected to the upper part (typically the top) of the refrigerant gas-liquid separation cylinder 41, and the other end is above the intermediate concentration solution spray nozzle 32 and absorbs the intermediate temperature. Connected to the container 30. With such a configuration, the intermediate temperature refrigerant vapor Vb generated by the intermediate temperature evaporator 40 can be supplied to the intermediate temperature absorber 30 via the intermediate temperature refrigerant vapor pipe 49.

低温吸収器50は、冷媒液Vf及び中温冷媒蒸気Vbの流路を構成する冷媒加熱管としての加熱管51と、低濃度溶液散布ノズル52とを内部に有している。加熱管51は、上述のように、一端に中温冷媒液供給管42が、他端に中温冷媒蒸気受入管44が、それぞれ接続されている。低濃度溶液散布ノズル52は、本実施の形態では低濃度溶液Scを散布する。低濃度溶液散布ノズル52は、散布した低濃度溶液Scが加熱管51に降りかかるように、加熱管51の上方に配設されている。低濃度溶液散布ノズル52には、低濃度溶液Scを内部に流す低濃度溶液管35の一端が接続されている。低温吸収器50は、低濃度溶液散布ノズル52から低濃度溶液Scが散布され、低濃度溶液Scが低温冷媒蒸気Vcを吸収する際に生じる吸収熱により、加熱管51を流れる冷媒液Vfを加熱して中温冷媒蒸気Vbを生成することができるように構成されている。したがって、加熱管51は加熱対象流体流路に相当し、加熱管51を流れる冷媒Vは加熱対象流体に相当する。低温吸収器50は、中温吸収器30よりも低い圧力(露点温度)で作動するように構成されており、中温吸収器30よりも作動温度が低くなっている。低温吸収器50の下部には、希溶液Swが貯留される貯留部53が形成されている。希溶液Swは、低濃度溶液散布ノズル52から散布された吸収液S(本実施の形態では低濃度溶液Sc)が低温冷媒蒸気Vcを吸収して濃度が低下した吸収液Sである。希溶液Swは、高濃度溶液Sa及び中濃度溶液Sbと比較して、冷媒Vを多く含んでいる。加熱管51は、貯留部53よりも上方に配設されている。   The low-temperature absorber 50 has a heating pipe 51 as a refrigerant heating pipe constituting a flow path for the refrigerant liquid Vf and the medium-temperature refrigerant vapor Vb, and a low-concentration solution spray nozzle 52 inside. As described above, the heating pipe 51 is connected to the intermediate temperature refrigerant liquid supply pipe 42 at one end and the intermediate temperature refrigerant vapor receiving pipe 44 at the other end. The low concentration solution spray nozzle 52 sprays the low concentration solution Sc in the present embodiment. The low concentration solution spray nozzle 52 is disposed above the heating tube 51 so that the sprayed low concentration solution Sc falls on the heating tube 51. The low concentration solution spray nozzle 52 is connected to one end of a low concentration solution pipe 35 that allows the low concentration solution Sc to flow inside. The low-temperature absorber 50 sprays the low-concentration solution Sc from the low-concentration solution spray nozzle 52, and heats the refrigerant liquid Vf flowing through the heating pipe 51 by heat absorbed when the low-concentration solution Sc absorbs the low-temperature refrigerant vapor Vc. Thus, the intermediate temperature refrigerant vapor Vb can be generated. Therefore, the heating pipe 51 corresponds to a heating target fluid flow path, and the refrigerant V flowing through the heating pipe 51 corresponds to a heating target fluid. The low temperature absorber 50 is configured to operate at a pressure (dew point temperature) lower than that of the intermediate temperature absorber 30, and the operating temperature is lower than that of the intermediate temperature absorber 30. A storage part 53 for storing the dilute solution Sw is formed below the low-temperature absorber 50. The dilute solution Sw is an absorbing solution S whose concentration is lowered by absorbing the low-temperature refrigerant vapor Vc by the absorbing solution S (low concentration solution Sc in the present embodiment) sprayed from the low concentration solution spray nozzle 52. The dilute solution Sw contains more refrigerant V than the high concentration solution Sa and the medium concentration solution Sb. The heating tube 51 is disposed above the storage unit 53.

濃縮装置1(図1参照)では吸収器10と蒸発器60とが相互に連通していたが、本変形例に係る濃縮装置1Aでは低温吸収器50と低温蒸発器60とが相互に連通している。低温吸収器50と低温蒸発器60とが連通することにより、低温蒸発器60で発生した低温冷媒蒸気Vcを低温吸収器50に供給することができるように構成されている。なお、本変形例に係る濃縮装置1Aでは、低温蒸発器60で発生した冷媒の蒸気を、便宜上、濃縮装置1(図1参照)における蒸発器60で呼称していた蒸発器冷媒蒸気Veではなく、低温冷媒蒸気Vcと呼称することとしている。低温吸収器50と低温蒸発器60とは、典型的には、低濃度溶液散布ノズル52より上方及び冷媒液散布ノズル62より上方で連通している。また、再生器70の希溶液散布ノズル72に接続された配管が、濃縮装置1(図1参照)では吸収器10の貯留部13に貯留された希溶液Swを流す吸収器流出溶液管15であったが、本変形例に係る濃縮装置1Aでは低温吸収器50の貯留部53に貯留された希溶液Swを流す希溶液管55となっている。また、高温熱交換器18が、濃縮装置1(図1参照)では希溶液Swと高濃度溶液Saとで熱交換を行わせる機器であったが、本変形例に係る濃縮装置1Aでは中濃度溶液Sbと高濃度溶液Saとで熱交換を行わせる機器となっている。   In the concentrator 1 (see FIG. 1), the absorber 10 and the evaporator 60 are in communication with each other. However, in the concentrator 1A according to this modification, the low-temperature absorber 50 and the low-temperature evaporator 60 are in communication with each other. ing. The low temperature absorber 50 and the low temperature evaporator 60 communicate with each other so that the low temperature refrigerant vapor Vc generated in the low temperature evaporator 60 can be supplied to the low temperature absorber 50. In the concentrator 1A according to the present modification, the refrigerant vapor generated in the low-temperature evaporator 60 is not the evaporator refrigerant vapor Ve called by the evaporator 60 in the concentrator 1 (see FIG. 1) for convenience. The low-temperature refrigerant vapor Vc is called. The low-temperature absorber 50 and the low-temperature evaporator 60 typically communicate with each other above the low-concentration solution spray nozzle 52 and above the refrigerant liquid spray nozzle 62. In addition, the pipe connected to the dilute solution spray nozzle 72 of the regenerator 70 is an absorber effluent solution pipe 15 for flowing the dilute solution Sw stored in the storage unit 13 of the absorber 10 in the concentration device 1 (see FIG. 1). However, in the concentrating device 1A according to the present modification, the dilute solution tube 55 is used to flow the dilute solution Sw stored in the storage unit 53 of the low-temperature absorber 50. Further, the high-temperature heat exchanger 18 is a device that performs heat exchange between the dilute solution Sw and the high-concentration solution Sa in the concentration device 1 (see FIG. 1), but in the concentration device 1A according to the present modification, the medium concentration This is a device that exchanges heat between the solution Sb and the high-concentration solution Sa.

また、本変形例に係る濃縮装置1Aでは、以下の点においても濃縮装置1(図1参照)と異なっている。吸収器流出溶液管15には、高温吸収器10内の中濃度溶液Sbを中温吸収器30に圧送する中濃度溶液ポンプ16が配設されている。中温吸収器30の貯留部33と、低温吸収器50の低濃度溶液散布ノズル52とは、低濃度溶液管35で接続されている。低濃度溶液管35には、中温吸収器30内の低濃度溶液Scを低温吸収器50に圧送する低濃度溶液ポンプ36が配設されている。低温吸収器50の貯留部53と、再生器70の希溶液散布ノズル72とは、希溶液管55で接続されている。低濃度溶液管35及び高濃度溶液管75には、中温熱交換器38が配設されている。中温熱交換器38は、低濃度溶液管35を流れる低濃度溶液Scと、高濃度溶液管75を流れる高濃度溶液Saとの間で熱交換を行わせる機器である。希溶液管55及び高濃度溶液管75には、低温熱交換器58が配設されている。低温熱交換器58は、希溶液管55を流れる希溶液Swと、高濃度溶液管75を流れる高濃度溶液Saとの間で熱交換を行わせる機器である。また、凝縮器80に一端が接続されている冷媒液管88の他端が、濃縮装置1(図1参照)では蒸発器60に接続されていたが、本変形例に係る濃縮装置1Aでは高温蒸発器20に接続された冷媒液管82及び低温蒸発器60に接続された冷媒液管86に接続されており、凝縮器80内の冷媒液Vfを高温蒸発器20と中温蒸発器40と低温蒸発器60とに分配することができるように構成されている。冷媒液管86には、低温蒸発器60に導入する冷媒液Vfの流量を調節する流量調節弁87が配設されている。濃縮装置1Aのこれまでに説明した以外の構成は、濃縮装置1(図1参照)と同じである。   Further, the concentration device 1A according to the present modification is different from the concentration device 1 (see FIG. 1) in the following points. The absorber outflow solution pipe 15 is provided with a medium concentration solution pump 16 that pumps the medium concentration solution Sb in the high temperature absorber 10 to the medium temperature absorber 30. The storage unit 33 of the intermediate temperature absorber 30 and the low concentration solution spray nozzle 52 of the low temperature absorber 50 are connected by a low concentration solution tube 35. The low concentration solution pipe 35 is provided with a low concentration solution pump 36 that pumps the low concentration solution Sc in the intermediate temperature absorber 30 to the low temperature absorber 50. The storage unit 53 of the low-temperature absorber 50 and the dilute solution spray nozzle 72 of the regenerator 70 are connected by a dilute solution tube 55. An intermediate temperature heat exchanger 38 is disposed in the low concentration solution tube 35 and the high concentration solution tube 75. The intermediate temperature heat exchanger 38 is a device that exchanges heat between the low concentration solution Sc flowing through the low concentration solution tube 35 and the high concentration solution Sa flowing through the high concentration solution tube 75. A low temperature heat exchanger 58 is disposed in the dilute solution tube 55 and the high concentration solution tube 75. The low-temperature heat exchanger 58 is a device that performs heat exchange between the dilute solution Sw flowing through the dilute solution tube 55 and the high concentration solution Sa flowing through the high concentration solution tube 75. Further, the other end of the refrigerant liquid pipe 88 connected at one end to the condenser 80 is connected to the evaporator 60 in the concentrating device 1 (see FIG. 1), but in the concentrating device 1A according to the present modification, the temperature is high. The refrigerant liquid pipe 82 connected to the evaporator 20 and the refrigerant liquid pipe 86 connected to the low-temperature evaporator 60 are connected, and the refrigerant liquid Vf in the condenser 80 is transferred to the high-temperature evaporator 20, the intermediate-temperature evaporator 40, and the low-temperature evaporator. It can be distributed to the evaporator 60. The refrigerant liquid pipe 86 is provided with a flow rate adjusting valve 87 for adjusting the flow rate of the refrigerant liquid Vf introduced into the low temperature evaporator 60. The configuration of the concentrator 1A other than that described so far is the same as that of the concentrator 1 (see FIG. 1).

引き続き図2を参照して、濃縮装置1Aの作用を説明する。まず、吸収ヒートポンプ部の冷媒側のサイクルについて、凝縮器80では、再生器70で発生した再生器冷媒蒸気Vgを受け入れて、冷却水管81を流れる冷却水cで再生器冷媒蒸気Vgを冷却して凝縮し、冷媒液Vfとする。凝縮した冷媒液Vfは、凝縮冷媒ポンプ89で高温蒸発器20、中温蒸発器40、及び低温蒸発器60に向けて圧送される。凝縮冷媒ポンプ89で圧送された冷媒液Vfは、冷媒液管88を流れ、途中の離脱ドレン熱交換器98Dで温度が上昇した後、冷媒液管82と冷媒液管86とに分流される。冷媒液管82を流れる冷媒液Vfは、途中で一部が冷媒液管84に流入し、残りはそのまま冷媒液管82を流れて高温冷媒液供給管22に導入される。冷媒液管84を流れる冷媒液Vfは、中温冷媒液供給管42に導入される。冷媒液管86を流れる冷媒液Vfは、低温蒸発器60に導入される。   With continued reference to FIG. 2, the operation of the concentration apparatus 1A will be described. First, regarding the cycle on the refrigerant side of the absorption heat pump unit, the condenser 80 receives the regenerator refrigerant vapor Vg generated in the regenerator 70 and cools the regenerator refrigerant vapor Vg with the cooling water c flowing through the cooling water pipe 81. Condensate to make refrigerant liquid Vf. The condensed refrigerant liquid Vf is pumped toward the high temperature evaporator 20, the medium temperature evaporator 40, and the low temperature evaporator 60 by the condensation refrigerant pump 89. The refrigerant liquid Vf pressure-fed by the condensing refrigerant pump 89 flows through the refrigerant liquid pipe 88 and is divided into the refrigerant liquid pipe 82 and the refrigerant liquid pipe 86 after the temperature rises in the separation drain heat exchanger 98D. A part of the refrigerant liquid Vf flowing through the refrigerant liquid pipe 82 flows into the refrigerant liquid pipe 84 in the middle, and the rest flows through the refrigerant liquid pipe 82 as it is and is introduced into the high-temperature refrigerant liquid supply pipe 22. The refrigerant liquid Vf flowing through the refrigerant liquid pipe 84 is introduced into the intermediate temperature refrigerant liquid supply pipe 42. The refrigerant liquid Vf flowing through the refrigerant liquid pipe 86 is introduced into the low temperature evaporator 60.

低温蒸発器60では、濃縮装置1(図1参照)における蒸発器60と同様の作用が行われ、低温冷媒蒸気Vcが発生する。低温蒸発器60で発生した低温冷媒蒸気Vcは、低温蒸発器60と連通する低温吸収器50へと移動する。他方、中温冷媒液供給管42に導入された冷媒液Vfは、気泡ポンプの作用によって低温吸収器50の加熱管51に流入する。加熱管51に流入した冷媒液Vfは、低温吸収器50において、低温蒸発器60から移動してきた低温冷媒蒸気Vcが低濃度溶液Scに吸収される際に発生する吸収熱により加熱され、この加熱により蒸発して中温冷媒蒸気Vbとなる。加熱管51内で発生した中温冷媒蒸気Vbは、中温冷媒蒸気受入管44を流れ、冷媒気液分離胴41に至る。冷媒気液分離胴41に流入した中温冷媒蒸気Vbは、中温冷媒蒸気管49を介して中温蒸発器40と連通する中温吸収器30へと移動する。また、高温冷媒液供給管22に導入された冷媒液Vfは、気泡ポンプの作用によって中温吸収器30の加熱管31に流入する。加熱管31に流入した冷媒液Vfは、中温吸収器30において、中温蒸発器40から移動してきた中温冷媒蒸気Vbが中濃度溶液Sbに吸収される際に発生する吸収熱により加熱され、この加熱により蒸発して高温冷媒蒸気Vaとなる。加熱管31内で発生した高温冷媒蒸気Vaは、高温冷媒蒸気受入管24を流れ、冷媒気液分離胴21に至る。冷媒気液分離胴21に流入した高温冷媒蒸気Vaは、高温冷媒蒸気管29を介して高温蒸発器20と連通する高温吸収器10へと移動する。   In the low temperature evaporator 60, the same operation as the evaporator 60 in the concentrating device 1 (see FIG. 1) is performed, and the low temperature refrigerant vapor Vc is generated. The low-temperature refrigerant vapor Vc generated in the low-temperature evaporator 60 moves to the low-temperature absorber 50 that communicates with the low-temperature evaporator 60. On the other hand, the refrigerant liquid Vf introduced into the intermediate temperature refrigerant liquid supply pipe 42 flows into the heating pipe 51 of the low temperature absorber 50 by the action of the bubble pump. The refrigerant liquid Vf flowing into the heating pipe 51 is heated by the absorption heat generated when the low-temperature refrigerant vapor Vc moved from the low-temperature evaporator 60 is absorbed by the low-concentration solution Sc in the low-temperature absorber 50. Evaporates to medium temperature refrigerant vapor Vb. The intermediate temperature refrigerant vapor Vb generated in the heating pipe 51 flows through the intermediate temperature refrigerant vapor receiving pipe 44 and reaches the refrigerant gas-liquid separation cylinder 41. The intermediate temperature refrigerant vapor Vb flowing into the refrigerant gas-liquid separation cylinder 41 moves to the intermediate temperature absorber 30 communicating with the intermediate temperature evaporator 40 via the intermediate temperature refrigerant vapor pipe 49. The refrigerant liquid Vf introduced into the high-temperature refrigerant liquid supply pipe 22 flows into the heating pipe 31 of the intermediate temperature absorber 30 by the action of the bubble pump. The refrigerant liquid Vf flowing into the heating pipe 31 is heated by the absorption heat generated when the intermediate temperature refrigerant vapor Vb moved from the intermediate temperature evaporator 40 is absorbed by the intermediate concentration solution Sb in the intermediate temperature absorber 30, and this heating is performed. Evaporates to a high-temperature refrigerant vapor Va. The high-temperature refrigerant vapor Va generated in the heating pipe 31 flows through the high-temperature refrigerant vapor receiving pipe 24 and reaches the refrigerant gas-liquid separation cylinder 21. The high-temperature refrigerant vapor Va flowing into the refrigerant gas-liquid separation cylinder 21 moves to the high-temperature absorber 10 that communicates with the high-temperature evaporator 20 via the high-temperature refrigerant vapor pipe 29.

次に、濃縮装置1Aの吸収ヒートポンプ部の吸収液側のサイクルについて、高温吸収器10では、高濃度溶液Saが高濃度溶液散布ノズル12から散布され、この散布された高濃度溶液Saが高温蒸発器20から移動してきた高温冷媒蒸気Vaを吸収する。高温冷媒蒸気Vaを吸収した高濃度溶液Saは、濃度が低下して中濃度溶液Sbとなる。高温吸収器10では、高濃度溶液Saが高温冷媒蒸気Vaを吸収する際に吸収熱が発生する。この吸収熱により、伝熱管11を流れる濃縮関連物質Wが加熱される。伝熱管11で加熱された濃縮関連物質Wは、濃縮槽91に導入され、濃縮装置1(図1参照)における濃縮槽91まわりと同様の作用が行われて、濃縮液Wcが濃縮液管97から取り出され、離脱蒸気Wvは離脱蒸気管99に流出する。濃縮槽91から離脱蒸気管99に流出した離脱蒸気Wvは、濃縮装置1(図1参照)と同様に系内で利用される分と系外で利用される分とに分かれる。系内で利用される分の離脱蒸気Wvは、濃縮装置1(図1参照)と同様に蒸発器離脱蒸気管99Aと再生器離脱蒸気管99Bとの二手に分かれて蒸発器60内と再生器70内を通過した後に再び合流し、離脱ドレンWqとして離脱ドレン熱交換器98Dに流入し冷媒液Vfと熱交換して温度が低下した後に系外に流出する。   Next, in the high-temperature absorber 10, the high-concentration solution Sa is sprayed from the high-concentration solution spray nozzle 12 for the cycle on the absorption liquid side of the absorption heat pump unit of the concentrator 1 </ b> A. The high-temperature refrigerant vapor Va that has moved from the vessel 20 is absorbed. The high-concentration solution Sa that has absorbed the high-temperature refrigerant vapor Va is reduced in concentration to become a medium-concentration solution Sb. In the high-temperature absorber 10, heat of absorption is generated when the high-concentration solution Sa absorbs the high-temperature refrigerant vapor Va. Due to this absorbed heat, the concentration-related substance W flowing through the heat transfer tube 11 is heated. The concentration-related substance W heated by the heat transfer tube 11 is introduced into the concentration tank 91, and the same action as that around the concentration tank 91 in the concentration apparatus 1 (see FIG. 1) is performed, so that the concentrated liquid Wc becomes the concentrated liquid pipe 97. The separated steam Wv flows out into the detached steam pipe 99. The separation steam Wv that has flowed out of the concentration tank 91 into the separation steam pipe 99 is divided into a part that is used inside the system and a part that is used outside the system, similarly to the concentration device 1 (see FIG. 1). The evacuated steam Wv used in the system is divided into two parts, an evaporator detachment steam pipe 99A and a regenerator detachment steam pipe 99B, as in the concentrator 1 (see FIG. 1). After passing through the inside 70, they merge again, flow into the detachment drain heat exchanger 98D as detachment drain Wq, exchange heat with the refrigerant liquid Vf, and then flow out of the system.

高温吸収器10で高温冷媒蒸気Vaを吸収した高濃度溶液Saは、濃度が低下して中濃度溶液Sbとなり、貯留部13に貯留される。貯留部13内の中濃度溶液Sbは、中濃度溶液ポンプ16の作動により中温吸収器30に向かって中濃度溶液管15を流れ、高温熱交換器18で高濃度溶液Saと熱交換して温度が低下した後に、中濃度溶液散布ノズル32に至る。このように、本変形例に係る濃縮装置1Aでは、高温吸収器10内の吸収液Sを直接(他の吸収器を経由せずに)中温吸収器30に導入している。なお、高温吸収器10の内部圧力が中温吸収器30の内部圧力よりも高くなり、中濃度溶液ポンプ16が作動していなくても両者の内圧の差によって、高温吸収器10内の中濃度溶液Sbを中温吸収器30に搬送することができる場合は、中濃度溶液ポンプ16を止めるとよい。   The high-concentration solution Sa that has absorbed the high-temperature refrigerant vapor Va by the high-temperature absorber 10 is reduced in concentration to become a medium-concentration solution Sb and stored in the storage unit 13. The intermediate concentration solution Sb in the reservoir 13 flows through the intermediate concentration solution tube 15 toward the intermediate temperature absorber 30 by the operation of the intermediate concentration solution pump 16, and exchanges heat with the high concentration solution Sa in the high temperature heat exchanger 18. After the decrease, the medium concentration solution spray nozzle 32 is reached. Thus, in the concentration apparatus 1A according to the present modification, the absorbing liquid S in the high temperature absorber 10 is directly introduced into the intermediate temperature absorber 30 (without passing through other absorbers). It should be noted that the internal pressure of the high temperature absorber 10 is higher than the internal pressure of the intermediate temperature absorber 30, and even if the intermediate concentration solution pump 16 is not operating, the medium concentration solution in the high temperature absorber 10 is caused by the difference between the internal pressures of both. When Sb can be conveyed to the intermediate temperature absorber 30, the intermediate concentration solution pump 16 may be stopped.

中温吸収器30では、中濃度溶液Sbが中濃度溶液散布ノズル32から散布され、この散布された中濃度溶液Sbが中温蒸発器40から移動してきた中温冷媒蒸気Vbを吸収する。中温冷媒蒸気Vbを吸収した中濃度溶液Sbは、濃度が低下して低濃度溶液Scとなり、貯留部33に貯留される。中温吸収器30では、中濃度溶液Sbが中温冷媒蒸気Vbを吸収する際に吸収熱が発生する。この吸収熱により、前述したように、加熱管31を流れる冷媒液Vfが加熱される。貯留部33内の低濃度溶液Scは、低濃度溶液ポンプ36の作動により低温吸収器50に向かって低濃度溶液管35を流れ、中温熱交換器38で高濃度溶液Saと熱交換して温度が低下した後に、低濃度溶液散布ノズル52に至る。このように、本実施の形態では、高温吸収器10内の吸収液Sを、中温吸収器30を経由して間接的に低温吸収器50に導入している。なお、中温吸収器30の内部圧力が低温吸収器50の内部圧力よりも高くなり、低濃度溶液ポンプ36が作動していなくても両者の内圧の差によって中温吸収器30内の低濃度溶液Scを低温吸収器50に搬送することができる場合は、低濃度溶液ポンプ36を止めるとよい。   In the intermediate temperature absorber 30, the intermediate concentration solution Sb is dispersed from the intermediate concentration solution spray nozzle 32, and the dispersed intermediate concentration solution Sb absorbs the intermediate temperature refrigerant vapor Vb moved from the intermediate temperature evaporator 40. The medium concentration solution Sb that has absorbed the intermediate temperature refrigerant vapor Vb is reduced in concentration to become a low concentration solution Sc and stored in the storage unit 33. In the intermediate temperature absorber 30, heat of absorption is generated when the intermediate concentration solution Sb absorbs the intermediate temperature refrigerant vapor Vb. As described above, the refrigerant liquid Vf flowing through the heating pipe 31 is heated by this absorbed heat. The low-concentration solution Sc in the reservoir 33 flows through the low-concentration solution pipe 35 toward the low-temperature absorber 50 by the operation of the low-concentration solution pump 36, and exchanges heat with the high-concentration solution Sa in the intermediate temperature heat exchanger 38. After the decrease, the low concentration solution spray nozzle 52 is reached. Thus, in the present embodiment, the absorbing liquid S in the high temperature absorber 10 is indirectly introduced into the low temperature absorber 50 via the intermediate temperature absorber 30. The internal pressure of the intermediate temperature absorber 30 is higher than the internal pressure of the low temperature absorber 50, and even if the low concentration solution pump 36 is not operating, the low concentration solution Sc in the intermediate temperature absorber 30 is caused by the difference in internal pressure between the two. Can be transported to the low temperature absorber 50, the low concentration solution pump 36 may be stopped.

低温吸収器50では、低濃度溶液散布ノズル52に流入した低濃度溶液Scが加熱管51に向けて散布される。散布された低濃度溶液Scは、低温蒸発器60から移動してきた低温冷媒蒸気Vcを吸収する。低温冷媒蒸気Vcを吸収した低濃度溶液Scは、濃度が低下して希溶液Swとなる。低温吸収器50では、低濃度溶液Scが低温冷媒蒸気Vcを吸収する際に吸収熱が発生する。この吸収熱により、前述したように、加熱管51を流れる冷媒液Vfが加熱され、中温冷媒蒸気Vbが生成される。低温吸収器50内の希溶液Swは、重力により再生器70に向かって希溶液管55を流れる。この際、希溶液Swは、低温熱交換器58で高濃度溶液Saと熱交換して温度が低下した後に、再生器70に導入される。このように、本変形例に係る濃縮装置1Aでは、高温吸収器10内の吸収液Sを、中温吸収器30及び低温吸収器50を経由して間接的に再生器70に導入している。再生器70では、濃縮装置1(図1参照)における再生器70と同様の作用が行われ、再生器冷媒蒸気Vgが凝縮器80へと移動し、高濃度溶液Saが高濃度溶液ポンプ76の作動により、高濃度溶液管75に流出する。   In the low temperature absorber 50, the low concentration solution Sc that has flowed into the low concentration solution spray nozzle 52 is sprayed toward the heating pipe 51. The dispersed low-concentration solution Sc absorbs the low-temperature refrigerant vapor Vc that has moved from the low-temperature evaporator 60. The low-concentration solution Sc that has absorbed the low-temperature refrigerant vapor Vc is reduced in concentration to become a dilute solution Sw. In the low-temperature absorber 50, absorption heat is generated when the low-concentration solution Sc absorbs the low-temperature refrigerant vapor Vc. As described above, the absorbed heat heats the refrigerant liquid Vf flowing through the heating pipe 51 to generate the intermediate temperature refrigerant vapor Vb. The dilute solution Sw in the low-temperature absorber 50 flows through the dilute solution tube 55 toward the regenerator 70 by gravity. At this time, the dilute solution Sw is introduced into the regenerator 70 after the low temperature heat exchanger 58 exchanges heat with the high concentration solution Sa to lower the temperature. Thus, in the concentration apparatus 1A according to the present modification, the absorbing liquid S in the high temperature absorber 10 is indirectly introduced into the regenerator 70 via the intermediate temperature absorber 30 and the low temperature absorber 50. In the regenerator 70, the same operation as the regenerator 70 in the concentrator 1 (see FIG. 1) is performed, the regenerator refrigerant vapor Vg moves to the condenser 80, and the high concentration solution Sa becomes the high concentration solution pump 76. By operation, it flows out to the high concentration solution tube 75.

以上で説明したように、本変形例に係る濃縮装置1Aは、吸収ヒートポンプ部が多段昇温型の第二種吸収ヒートポンプとなっているので、未濃縮液Wdを濃縮液Wcに濃縮した際に副次的に生成される離脱蒸気Wvの温度を、濃縮装置1(図1参照)の場合よりも高くすることができる。あるいは、濃縮装置1Aは、濃縮装置1(図1参照)で使用した温度の熱源(蒸発器熱源温水he、再生器熱源温水hg)よりも低い温度の熱源を使用して濃縮装置1と同じ温度の離脱蒸気Wvを得ることができる。すなわち、濃縮装置1の場合よりも、離脱蒸気Wvと熱源との温度差を大きくすることができる。さらに、濃縮対象流体が化学液の場合や高圧流体の場合等で蒸気を離脱するための沸騰温度が高い場合には、濃縮対象流体を濃縮するためには濃縮対象流体をその高い沸騰温度迄加熱する必要があるが、その場合でも、濃縮装置1Aによれば、濃縮装置1(図1参照)で使用したのと同じ温度の熱源から濃縮対象流体を高温に加熱することができて濃縮することができる。つまり、濃縮対象流体が化学液の場合や高圧流体の場合等で蒸気を離脱するための沸騰温度が高い場合には、多段昇温型の第二種吸収ヒートポンプを採用した本変形例の濃縮装置1Aが適している。   As described above, in the concentrating device 1A according to the present modification, the absorption heat pump unit is a multistage temperature rising type second type absorption heat pump, and therefore when the unconcentrated liquid Wd is concentrated to the concentrated liquid Wc. The temperature of the separation steam Wv generated as a secondary can be made higher than in the case of the concentrator 1 (see FIG. 1). Alternatively, the concentrator 1A uses the heat source having a temperature lower than that of the heat source (evaporator heat source hot water he, regenerator heat source hot water hg) used in the concentrator 1 (see FIG. 1). Can be obtained. That is, the temperature difference between the separated steam Wv and the heat source can be made larger than in the case of the concentrator 1. Further, when the boiling temperature for removing the vapor is high when the fluid to be concentrated is a chemical liquid or a high pressure fluid, the fluid to be concentrated is heated to the high boiling temperature in order to concentrate the fluid to be concentrated. Even in that case, according to the concentration device 1A, the fluid to be concentrated can be heated to a high temperature from the heat source having the same temperature as that used in the concentration device 1 (see FIG. 1) and concentrated. Can do. In other words, when the concentration target fluid is a chemical liquid or a high-pressure fluid and the boiling temperature for releasing steam is high, the concentration device according to this modification adopting the second-stage absorption heat pump of the multistage temperature increase type 1A is suitable.

なお、以上の説明では、濃縮装置1の吸収ヒートポンプ部が単段昇温型で、濃縮装置1Aの吸収ヒートポンプ部が三段昇温型であるとしたが、二段昇温型であってもよい。二段昇温型とする場合、三段昇温型の濃縮装置1Aの吸収ヒートポンプ部の構成から中温吸収器30及び中温蒸発器40まわりの構成を省略し、高温蒸発器20の高温冷媒液供給管22及び高温冷媒蒸気受入管24を低温吸収器50の加熱管51に接続し、中濃度溶液管15を低濃度溶液散布ノズル52に接続して高温吸収器10内の中濃度溶液Sbを直接(他の吸収器を経由せずに)低温吸収器50に導入するように構成すればよい。   In the above description, the absorption heat pump unit of the concentrating device 1 is a single-stage heating type, and the absorption heat pump unit of the concentrating device 1A is a three-stage heating type. Good. In the case of the two-stage temperature rising type, the structure around the intermediate temperature absorber 30 and the intermediate temperature evaporator 40 is omitted from the structure of the absorption heat pump unit of the three-stage temperature rising type concentrator 1A, and the high-temperature refrigerant liquid supply of the high-temperature evaporator 20 is omitted. The pipe 22 and the high-temperature refrigerant vapor receiving pipe 24 are connected to the heating pipe 51 of the low-temperature absorber 50, the medium-concentration solution pipe 15 is connected to the low-concentration solution spray nozzle 52, and the medium-concentration solution Sb in the high-temperature absorber 10 is directly supplied. What is necessary is just to comprise so that it may introduce into the low-temperature absorber 50 (without going through another absorber).

次に図3を参照して、本発明の第2の実施の形態に係る濃縮装置2を説明する。図3は、濃縮装置2の模式的系統図である。濃縮装置2は、濃縮装置1(図1参照)と比較して、以下の点が異なっている。濃縮装置2は、吸収ヒートポンプ部の主要構成として、吸収器10と、蒸発器60Aと、再生器70Aと、凝縮器80とを有している。吸収器10及び凝縮器80は、濃縮装置1(図1参照)のものと同じである。蒸発器60Aは、蒸発器加熱管69(図1参照)が設けられていない点で蒸発器60(図1参照)と異なっている。再生器70Aは、再生器加熱管79(図1参照)が設けられていない点で再生器70(図1参照)と異なっている。   Next, with reference to FIG. 3, a concentrating device 2 according to a second embodiment of the present invention will be described. FIG. 3 is a schematic system diagram of the concentrating device 2. The concentration device 2 is different from the concentration device 1 (see FIG. 1) in the following points. The concentrating device 2 includes an absorber 10, an evaporator 60A, a regenerator 70A, and a condenser 80 as main components of the absorption heat pump unit. The absorber 10 and the condenser 80 are the same as those of the concentrating device 1 (see FIG. 1). The evaporator 60A is different from the evaporator 60 (see FIG. 1) in that the evaporator heating tube 69 (see FIG. 1) is not provided. The regenerator 70A differs from the regenerator 70 (see FIG. 1) in that the regenerator heating tube 79 (see FIG. 1) is not provided.

また、濃縮装置2は、濃縮槽91とは別に、低温濃縮槽191を備えている。低温濃縮槽191は、被濃縮液Wdxを導入し加熱して、被濃縮液Wdxから濃度が上昇した濃縮液Wcxを生成する機器である。被濃縮液Wdxは、濃縮対象流体に相当し、本実施の形態では、未濃縮液供給管95を流れる未濃縮液Wdと同じになっている。低温濃縮槽191は、濃縮槽91で発生した離脱蒸気Wvを流す離脱蒸気流通管193を内部に有している。離脱蒸気流通管193は、導入した離脱蒸気Wvの熱で被濃縮液Wdxを加熱するように構成されており、加熱部に相当する。濃縮装置2では、被濃縮液Wdxが被加熱流体に相当する。低温濃縮槽191には、被濃縮液ポンプ196が配設された被濃縮液供給管195と、濃縮液管197と、低温濃縮蒸気管199とが接続されている。被濃縮液Wdxよりも濃縮液Wcxの方が比重が大きい場合が多いので、低温濃縮槽191内では濃縮液Wcxが沈降する傾向がある。そこで、被濃縮液供給管195は、離脱蒸気流通管193の上部に相当する高さ又は離脱蒸気流通管193の上端よりも上方の高さで、低温濃縮槽191の側面に接続されている。また、濃縮液Wcxが流出する濃縮液管197は、低温濃縮槽191の下部(典型的には最下部)に接続されている。なお、被濃縮液Wdx及び濃縮液Wcxが低温濃縮槽191内での流動に支障がない程度の粘度である場合は、被濃縮液供給管195を低温濃縮槽191の側面下部に接続してもよい。本実施の形態では、未濃縮液供給管95と被濃縮液供給管195とが並列に接続されており、未濃縮液Wd(被濃縮液Wdx)が濃縮槽91及び低温濃縮槽191に並行して供給されるように構成されている。濃縮液管197は、低温濃縮槽191の底部又は下部の濃縮液Wcxが貯留される部分に接続されている。低温濃縮蒸気管199は、低温濃縮槽191の上部(典型的には頂部)に接続されている。被濃縮液供給管195及び濃縮液管197には、被濃縮液供給管195を流れる被濃縮液Wdxと濃縮液管197を流れる濃縮液Wcxとの間で熱交換を行わせる濃縮液熱交換器198Sが配設されている。濃縮装置2では、離脱蒸気管99は、離脱蒸気流通管193が流路中に配置され、蒸発器60A及び再生器70Aを通過せずに、離脱ドレン熱交換器98Dを通過している。なお、図示は省略しているが、濃縮槽91と低温濃縮槽191との間の離脱蒸気管99に、内部を流れる離脱蒸気Wvの流量を調節可能な離脱蒸気弁等の離脱蒸気流量調節装置を設けると共に、当該離脱蒸気流量調節装置の上流側の離脱蒸気管99に、外部離脱蒸気弁99Vc(図1参照)が配設された外部離脱蒸気管99C(図1参照)の一端を接続して、系外の蒸気利用装置(不図示)に向けて離脱蒸気Wvを供給可能に構成してもよい。濃縮装置2の上記以外の構成は、濃縮装置1(図1参照)と同様である。   Further, the concentrating device 2 includes a low-temperature concentrating tank 191 separately from the concentrating tank 91. The low-temperature concentration tank 191 is a device that introduces the concentrated liquid Wdx and heats it to generate the concentrated liquid Wcx whose concentration has increased from the concentrated liquid Wdx. The liquid to be concentrated Wdx corresponds to the fluid to be concentrated, and is the same as the non-concentrated liquid Wd flowing through the non-concentrated liquid supply pipe 95 in the present embodiment. The low-temperature concentration tank 191 has a separation steam circulation pipe 193 that flows the separation steam Wv generated in the concentration tank 91 inside. The separation steam flow pipe 193 is configured to heat the concentrated liquid Wdx with the heat of the introduced separation steam Wv, and corresponds to a heating unit. In the concentrating device 2, the liquid to be concentrated Wdx corresponds to the fluid to be heated. To the low-temperature concentration tank 191, a concentrated liquid supply pipe 195 provided with a concentrated liquid pump 196, a concentrated liquid pipe 197, and a low temperature concentrated steam pipe 199 are connected. In many cases, the concentrated liquid Wcx has a higher specific gravity than the concentrated liquid Wdx, and therefore the concentrated liquid Wcx tends to settle in the low-temperature concentration tank 191. Therefore, the concentrated liquid supply pipe 195 is connected to the side surface of the low-temperature concentration tank 191 at a height corresponding to the upper part of the separation steam circulation pipe 193 or a height above the upper end of the separation steam circulation pipe 193. In addition, the concentrate pipe 197 from which the concentrate Wcx flows out is connected to the lower part (typically the lowermost part) of the low-temperature concentration tank 191. Note that, when the concentrate Wdx and the concentrate Wcx have a viscosity that does not hinder the flow in the low-temperature concentration tank 191, the concentrate supply pipe 195 may be connected to the lower side of the low-temperature concentration tank 191. Good. In the present embodiment, the non-concentrated liquid supply pipe 95 and the concentrated liquid supply pipe 195 are connected in parallel, and the non-concentrated liquid Wd (the concentrated liquid Wdx) is parallel to the concentrating tank 91 and the low-temperature concentrating tank 191. Configured to be supplied. The concentrated liquid pipe 197 is connected to a portion where the concentrated liquid Wcx at the bottom or lower part of the low temperature concentration tank 191 is stored. The low temperature concentration steam pipe 199 is connected to the upper part (typically the top) of the low temperature concentration tank 191. The concentrated liquid supply pipe 195 and the concentrated liquid pipe 197 include a concentrated liquid heat exchanger that exchanges heat between the concentrated liquid Wdx that flows through the concentrated liquid supply pipe 195 and the concentrated liquid Wcx that flows through the concentrated liquid pipe 197. 198S is provided. In the concentrating device 2, the separation steam pipe 99 has the separation steam circulation pipe 193 disposed in the flow path, and passes through the separation drain heat exchanger 98D without passing through the evaporator 60A and the regenerator 70A. In addition, although illustration is abbreviate | omitted, separation | steam vapor flow control apparatuses, such as a separation | steam steam valve which can adjust the flow volume of the separation | steaming steam Wv which flows through the separation | steaming steam pipe 99 between the concentration tank 91 and the low temperature concentration tank 191 inside. And one end of an external detachment steam pipe 99C (see FIG. 1) provided with an external detachment steam valve 99Vc (see FIG. 1) is connected to the detachment steam pipe 99 upstream of the detachment steam flow control device. Thus, the separation steam Wv may be supplied to a steam utilization apparatus (not shown) outside the system. The other configuration of the concentrating device 2 is the same as that of the concentrating device 1 (see FIG. 1).

上述のように構成された濃縮装置2では、吸収ヒートポンプ部における吸収液及び冷媒のサイクル、並びに濃縮槽91における作用は、濃縮装置1(図1参照)と同様である。そして濃縮槽91において未濃縮液Wdから分離された離脱蒸気Wvは、離脱蒸気管99に流出し、低温濃縮槽191内の離脱蒸気流通管193に流入する。他方、低温濃縮槽191には、被濃縮液ポンプ196の作動により、被濃縮液Wdxが被濃縮液供給管195を圧送され、途中の濃縮液熱交換器198Sで濃縮液Wcxと熱交換して温度が上昇した後、低温濃縮槽191に導入される。低温濃縮槽191に導入された被濃縮液Wdxは、離脱蒸気流通管193を流れる離脱蒸気Wvの熱で加熱され、一部が蒸発して低温蒸気Wvxとなり、残りが被濃縮液Wdxから濃度が上昇した濃縮液Wcxとなって、両者は分離される。分離された濃縮液Wcxは、低温濃縮槽191の下部に貯留され、濃縮液管197に流入し、利用場所に搬送される。低温濃縮槽191で分離されて低温濃縮蒸気管199を介して低温濃縮槽191から流出した低温蒸気Wvxは、濃縮装置2外で応用してもよい。他方、離脱蒸気流通管193で被濃縮液Wdxに熱を与えた離脱蒸気Wvは、温度が低下して離脱ドレンWqとなって離脱ドレン熱交換器98Dに流入し冷媒液Vfと熱交換して温度がさらに低下した後に系外に流出する。なお、蒸発器60A及び/又は再生器70Aに、濃縮装置1(図1参照)における蒸発器60内に設けられた蒸発器加熱管69及び/又は再生器70内に設けられた再生器加熱管79を設け、離脱蒸気流通管193から流出した離脱ドレンWqを蒸発器60A及び/又は再生器70Aに導くこととしてもよい。離脱ドレンWqは、蒸発器熱源温水he及び再生器熱源温水hgよりも高温であるため、蒸発器60A及び/又は再生器70Aに導くことで、蒸発器60A内の冷媒液Vf及び/又は再生器70A内の希溶液Swを加熱することができる。   In the concentrating device 2 configured as described above, the absorption liquid and refrigerant cycle in the absorption heat pump unit and the operation in the concentrating tank 91 are the same as those in the concentrating device 1 (see FIG. 1). Then, the separated steam Wv separated from the non-concentrated liquid Wd in the concentration tank 91 flows into the separated steam pipe 99 and flows into the detached steam circulation pipe 193 in the low-temperature concentration tank 191. On the other hand, the concentrated liquid Wdx is pumped through the concentrated liquid supply pipe 195 to the low temperature concentration tank 191 by the operation of the concentrated liquid pump 196 and exchanged with the concentrated liquid Wcx in the concentrated liquid heat exchanger 198S. After the temperature rises, it is introduced into the low-temperature concentration tank 191. The liquid to be concentrated Wdx introduced into the low-temperature concentration tank 191 is heated by the heat of the separation steam Wv flowing through the separation steam flow pipe 193, part of it is evaporated to become the low-temperature steam Wvx, and the rest is concentrated from the liquid to be concentrated Wdx. As a result, the concentrated liquid Wcx is raised, and both are separated. The separated concentrated liquid Wcx is stored in the lower part of the low-temperature concentration tank 191, flows into the concentrated liquid pipe 197, and is transported to the use place. The low-temperature steam Wvx separated in the low-temperature concentration tank 191 and flowing out from the low-temperature concentration tank 191 through the low-temperature concentration steam pipe 199 may be applied outside the concentration apparatus 2. On the other hand, the separation steam Wv that has given heat to the liquid Wdx to be concentrated in the separation steam flow pipe 193 decreases in temperature and becomes separation drain Wq, flows into the separation drain heat exchanger 98D, and exchanges heat with the refrigerant liquid Vf. After the temperature further decreases, it flows out of the system. It should be noted that the evaporator 60A and / or the regenerator 70A are connected to the evaporator heating tube 69 and / or the regenerator heating tube provided in the regenerator 70 in the concentrator 1 (see FIG. 1). 79 may be provided so that the separation drain Wq flowing out of the separation steam flow pipe 193 is guided to the evaporator 60A and / or the regenerator 70A. Since the separation drain Wq is higher than the evaporator heat source hot water he and the regenerator heat source hot water hg, the separated drain Wq is guided to the evaporator 60A and / or the regenerator 70A, so that the refrigerant liquid Vf in the evaporator 60A and / or the regenerator. The dilute solution Sw in 70A can be heated.

以上で説明したように、本実施の形態に係る濃縮装置2は、未濃縮液Wd(被濃縮液Wdx)が濃縮槽91及び低温濃縮槽191に並行して供給されるので、濃縮対象流体の処理量を増加させることできる。なお、上述の濃縮装置2の説明では、未濃縮液供給管95と被濃縮液供給管195とが並列に接続されており、未濃縮液Wd(被濃縮液Wdx)が濃縮槽91及び低温濃縮槽191に並行して供給されるように構成されていることとしたが、低温濃縮槽191に接続された濃縮液管197が未濃縮液供給管95に接続され、低温濃縮槽191から流出した濃縮液Wcxが未濃縮液Wdとして濃縮槽91に供給されるように構成されていてもよい。低温濃縮槽191から流出した濃縮液Wcxが濃縮槽91に供給されるように構成した場合、濃縮液の濃縮率を上昇させることができる。   As described above, the concentration device 2 according to the present embodiment supplies the unconcentrated liquid Wd (the liquid to be concentrated Wdx) in parallel to the concentration tank 91 and the low-temperature concentration tank 191, The throughput can be increased. In the description of the concentration device 2 described above, the non-concentrated liquid supply pipe 95 and the concentrated liquid supply pipe 195 are connected in parallel, and the non-concentrated liquid Wd (concentrated liquid Wdx) is concentrated in the concentration tank 91 and the low-temperature concentration. Although it was configured to be supplied to the tank 191 in parallel, the concentrated liquid pipe 197 connected to the low-temperature concentration tank 191 was connected to the non-concentrated liquid supply pipe 95 and flowed out of the low-temperature concentration tank 191. The concentrated liquid Wcx may be configured to be supplied to the concentration tank 91 as the unconcentrated liquid Wd. When the concentrate Wcx flowing out from the low temperature concentration tank 191 is configured to be supplied to the concentration tank 91, the concentration rate of the concentrate can be increased.

あるいは図4に示す、変形例に係る濃縮装置2Aのように、低温濃縮槽191から流出した低温蒸気Wvxを、蒸発器60及び再生器70に導くようにしてもよい。濃縮装置2Aは、蒸発器60及び再生器70の構成が、濃縮装置1(図1参照)と同じである点で、濃縮装置2(図3参照)と異なっている。濃縮装置2Aでは、蒸発器加熱管69が蒸発器追加加熱部に相当し、再生器加熱管79が追加再生器加熱部に相当する。また、濃縮装置2Aでは、低温濃縮蒸気管199が、途中、蒸発器低温濃縮蒸気管199Aと再生器低温濃縮蒸気管199Bと外部低温濃縮蒸気管199Cとに分かれ、蒸発器加熱管69が蒸発器低温濃縮蒸気管199Aの流路中に配置され、再生器加熱管79が再生器低温濃縮蒸気管199Bの流路中に配置されて、外部低温濃縮蒸気管199Cに流入した以外の、蒸発器低温濃縮蒸気管199Aと再生器低温濃縮蒸気管199Bとに分かれた低温蒸気Wvxが低温濃縮蒸気導入部69pから蒸発器60に、低温濃縮蒸気導入部79pから再生器70に、それぞれ導入されるように構成されている点でも濃縮装置2(図3参照)と異なっている。なお、蒸発器60及び再生器70に導入された低温蒸気Wvxは、低温ドレンWqxとなって放出される。蒸発器低温濃縮蒸気弁199Vaが配設された蒸発器低温濃縮蒸気管199Aは、濃縮装置1(図1参照)における蒸発器離脱蒸気弁99Vaが配設された蒸発器離脱蒸気管99Aに対応する。再生器低温濃縮蒸気弁199Vbが配設された再生器低温濃縮蒸気管199Bは、濃縮装置1(図1参照)における再生器離脱蒸気弁99Vbが配設された再生器離脱蒸気管99Bに対応する。蒸発器低温濃縮蒸気管199A及び再生器低温濃縮蒸気管199Bは導入部低温離脱蒸気流路に相当し、蒸発器低温濃縮蒸気弁199Va及び再生器低温濃縮蒸気弁199Vbは導入部低温離脱蒸気流量調節装置に相当する。また、外部低温濃縮蒸気弁199Vcが配設された外部低温濃縮蒸気管199Cは、濃縮装置1(図1参照)における外部離脱蒸気弁99Vcが配設された外部離脱蒸気管99Cに対応する。外部低温濃縮蒸気管199Cは外部低温離脱蒸気流路に相当し、外部低温濃縮蒸気弁199Vcは外部低温離脱蒸気流量調節装置に相当する。   Alternatively, the low temperature steam Wvx flowing out from the low temperature concentration tank 191 may be guided to the evaporator 60 and the regenerator 70 as in the concentration device 2A according to the modification shown in FIG. The concentrator 2A is different from the concentrator 2 (see FIG. 3) in that the configuration of the evaporator 60 and the regenerator 70 is the same as that of the concentrator 1 (see FIG. 1). In the concentrating device 2A, the evaporator heating tube 69 corresponds to an evaporator additional heating unit, and the regenerator heating tube 79 corresponds to an additional regenerator heating unit. In the concentrating device 2A, the low-temperature concentration steam pipe 199 is divided into an evaporator low-temperature concentration steam pipe 199A, a regenerator low-temperature concentration steam pipe 199B, and an external low-temperature concentration steam pipe 199C, and the evaporator heating pipe 69 is an evaporator. The evaporator low temperature is disposed in the flow path of the low temperature concentrated steam pipe 199A, and the regenerator heating pipe 79 is disposed in the flow path of the regenerator low temperature concentrated steam pipe 199B and flows into the external low temperature concentrated steam pipe 199C. The low-temperature steam Wvx divided into the concentrated steam pipe 199A and the regenerator low-temperature concentrated steam pipe 199B is introduced from the low-temperature concentrated steam introduction section 69p to the evaporator 60 and from the low-temperature concentrated steam introduction section 79p to the regenerator 70, respectively. It differs from the concentration apparatus 2 (refer FIG. 3) also in the point comprised. Note that the low-temperature steam Wvx introduced into the evaporator 60 and the regenerator 70 is discharged as a low-temperature drain Wqx. The evaporator low-temperature concentration steam pipe 199A provided with the evaporator low-temperature concentration steam valve 199Va corresponds to the evaporator release steam pipe 99A provided with the evaporator release steam valve 99Va in the concentration apparatus 1 (see FIG. 1). . The regenerator low-temperature concentration steam pipe 199B provided with the regenerator low-temperature concentration steam valve 199Vb corresponds to the regenerator release steam pipe 99B provided with the regenerator release steam valve 99Vb in the concentrator 1 (see FIG. 1). . The evaporator low-temperature concentration steam pipe 199A and the regenerator low-temperature concentration steam pipe 199B correspond to the introduction part low-temperature desorption steam flow path, and the evaporator low-temperature concentration steam valve 199Va and the regenerator low-temperature concentration steam valve 199Vb adjust the introduction part low-temperature desorption steam flow rate. It corresponds to a device. Further, the external low-temperature concentration steam pipe 199C provided with the external low-temperature concentration steam valve 199Vc corresponds to the external release steam pipe 99C provided with the external release steam valve 99Vc in the concentrator 1 (see FIG. 1). The external low-temperature concentrated steam pipe 199C corresponds to an external low-temperature desorption steam flow path, and the external low-temperature concentrated steam valve 199Vc corresponds to an external low-temperature desorption steam flow control device.

上述のように構成された濃縮装置2Aは、低温濃縮槽191で発生した低温蒸気Wvxを蒸発器60及び再生器70の加熱源として利用することができ、装置の熱利用効率を向上させることができる。また、低温蒸気Wvxを系外の蒸気利用装置(不図示)で利用することができ、低温蒸気Wvxの用途が拡大し、系外での低温蒸気Wvxの利用を促進させることができる。なお、以上の濃縮装置2Aの説明では、系内で利用される低温蒸気Wvxを蒸発器加熱管69及び再生器加熱管79の双方に導入することとしたが、いずれか一方に導入することとしてもよく、あるいはこれらに代えて又はこれらと共に、蒸発器熱源管61及び/又は再生器熱源管71に導入することとしてもよい。つまり、低温蒸気Wvxを、蒸発器加熱管69、再生器加熱管79、蒸発器熱源管61、再生器熱源管71の少なくとも1つに導入する構成としてもよい。低温蒸気Wvxを蒸発器熱源管61、再生器熱源管71に導入する構成とした場合、それぞれにチーズ等の分岐部を設け、これを導入部とするとよい。同様に、濃縮装置1、1A(図1、図2参照)においても、離脱蒸気Wvを、蒸発器加熱管69及び再生器加熱管79の双方あるいはどちらか一方に導入することに代えて又はこれらと共に、蒸発器熱源管61及び/又は再生器熱源管71に導入することとしてもよい。濃縮装置2(図3参照)において離脱蒸気流通管193から流出した離脱ドレンWqを蒸発器60A及び/又は再生器70Aに導く場合も同様に、蒸発器熱源管61及び/又は再生器熱源管71に離脱ドレンWqを導入することとしてもよい。また、濃縮装置1、1A、2、2Aにおいて離脱蒸気Wvを系外に供給しない場合は外部離脱蒸気弁99Vcが配設された外部離脱蒸気管99Cを設けなくてよく、濃縮装置2Aにおいて低温蒸気Wvxを系外に供給しない場合は外部低温濃縮蒸気弁199Vcが配設された外部低温濃縮蒸気管199Cを設けなくてよい。   The concentrating device 2A configured as described above can use the low-temperature steam Wvx generated in the low-temperature concentrating tank 191 as a heating source for the evaporator 60 and the regenerator 70, thereby improving the heat utilization efficiency of the device. it can. Further, the low-temperature steam Wvx can be used in a steam utilization apparatus (not shown) outside the system, the use of the low-temperature steam Wvx can be expanded, and the use of the low-temperature steam Wvx outside the system can be promoted. In the above description of the concentrating device 2A, the low-temperature steam Wvx used in the system is introduced into both the evaporator heating pipe 69 and the regenerator heating pipe 79, but is introduced into either one of them. Alternatively, instead of or together with these, it may be introduced into the evaporator heat source pipe 61 and / or the regenerator heat source pipe 71. That is, the low temperature steam Wvx may be introduced into at least one of the evaporator heating pipe 69, the regenerator heating pipe 79, the evaporator heat source pipe 61, and the regenerator heat source pipe 71. When it is set as the structure which introduce | transduces the low temperature vapor | steam Wvx into the evaporator heat source pipe | tube 61 and the regenerator heat source pipe | tube 71, it is good to provide branch parts, such as cheese, in each, and let this be an introduction part. Similarly, in the concentrators 1 and 1A (see FIGS. 1 and 2), instead of introducing the separated steam Wv into the evaporator heating pipe 69 and / or the regenerator heating pipe 79, or these At the same time, it may be introduced into the evaporator heat source pipe 61 and / or the regenerator heat source pipe 71. Similarly, when the drainage drain Wq flowing out of the stripping steam flow pipe 193 in the concentrating device 2 (see FIG. 3) is led to the evaporator 60A and / or the regenerator 70A, the evaporator heat source pipe 61 and / or the regenerator heat source pipe 71 are similarly used. It is good also as introducing the leaving drain Wq. Further, when the concentrating devices 1, 1A, 2, 2A do not supply the disengagement steam Wv outside the system, it is not necessary to provide the external disengagement steam pipe 99C provided with the external disengagement steam valve 99Vc. When Wvx is not supplied outside the system, it is not necessary to provide the external low-temperature concentrated steam pipe 199C provided with the external low-temperature concentrated steam valve 199Vc.

以上の濃縮装置2、2Aの説明では、吸収ヒートポンプ部が単段の場合で説明したが、濃縮装置1A(図2参照)のように三段昇温型としてもよく、あるいは二段昇温型等の多段昇温型としてもよい。   In the above description of the concentrators 2 and 2A, the case where the absorption heat pump unit is a single stage has been described. However, as in the concentrator 1A (see FIG. 2), a three-stage temperature rise type or a two-stage temperature rise type may be used. It is good also as a multistage temperature rising type.

以上の説明では、吸収器10の伝熱管11に流入した未濃縮液Wdが、吸収器10における吸収熱により加熱されることにより、一部が蒸発して離脱蒸気Wvと濃縮液Wcとが混合した状態の混合液Wmとして混合液管94を流れることとしたが、濃縮対象流体が結晶する可能性がある場合は、ポンプ等で加圧する等により未濃縮液Wdの状態で混合液管94を流れるようにし、未濃縮液Wdが濃縮槽91に流入したときに未濃縮液Wdの一部が蒸発して離脱蒸気Wvと濃縮液Wcとが発生するように構成してもよい。   In the above description, the non-concentrated liquid Wd that has flowed into the heat transfer tube 11 of the absorber 10 is heated by the absorption heat in the absorber 10, so that part of it evaporates and the separated vapor Wv and the concentrated liquid Wc are mixed. The mixed liquid tube 94 flows as the mixed liquid Wm in a state where the liquid to be concentrated is crystallized. However, when there is a possibility that the fluid to be concentrated may crystallize, the mixed liquid pipe 94 is kept in the unconcentrated liquid Wd state by pressurizing with a pump or the like. It may be configured to flow so that when the non-concentrated liquid Wd flows into the concentration tank 91, a part of the non-concentrated liquid Wd evaporates and the separated vapor Wv and the concentrated liquid Wc are generated.

1、1A、2、2A 濃縮装置
10 吸収器
11 伝熱管
60、60A 蒸発器
61 蒸発器熱源管
69 蒸発器加熱管
69p 低温ドレン導入部
70、70A 再生器
71 再生器熱源管
79 再生器加熱管
79p 低温ドレン導入部
80 凝縮器
91 濃縮槽
99A 蒸発器離脱蒸気管
99B 再生器離脱蒸気管
99C 外部離脱蒸気管
99Va 蒸発器離脱蒸気弁
99Vb 再生器離脱蒸気弁
99Vc 外部離脱蒸気弁
98D 離脱ドレン熱交換器
191 低温濃縮槽
193 離脱蒸気流通管
199A 蒸発器低温濃縮蒸気管
199B 再生器低温濃縮蒸気管
199C 外部低温濃縮蒸気管
199Va 蒸発器低温濃縮蒸気弁
199Vb 再生器低温濃縮蒸気弁
199Vc 外部低温濃縮蒸気弁
he 蒸発器熱源温水
hg 再生器熱源温水
Sa 高濃度溶液
Sw 希溶液
Ve 蒸発器冷媒蒸気
Vf 冷媒液
W 濃縮対象流体
Wc 濃縮液
Wm 混合液
Wv 離脱蒸気
Wdx 被濃縮液
Wvx 低温蒸気
1, 1A, 2, 2A Concentrator 10 Absorber 11 Heat transfer tube 60, 60A Evaporator 61 Evaporator heat source tube 69 Evaporator heating tube 69p Low temperature drain introduction part 70, 70A Regenerator 71 Regenerator heat source tube 79 Regenerator heating tube 79p Low-temperature drain introduction part 80 Condenser 91 Concentration tank 99A Evaporator detachment steam pipe 99B Regenerator detachment steam pipe 99C External detachment steam pipe 99Va Evaporator detachment steam valve 99Vb Regenerator detachment steam valve 99Vc External detachment steam valve 98D Removal drain heat exchange 191 Low temperature concentrating tank 193 Departure steam flow pipe 199A Evaporator low temperature concentration steam pipe 199B Regenerator low temperature concentration steam pipe 199C External low temperature concentration steam pipe 199Va Evaporator low temperature concentration steam valve 199Vb Regenerator low temperature concentration steam valve 199Vc External low temperature concentration steam valve he evaporator heat source hot water hg regenerator heat source hot water Sa high concentration solution Sw dilute solution Ve evaporator Medium steam Vf refrigerant liquid W concentrated target fluid Wc concentrate Wm mixture Wv leaving vapor Wdx the concentrate Wvx cryogen vapor

Claims (11)

濃縮対象流体を流す濃縮対象流体流路を有し、吸収液が冷媒の蒸気を吸収したときに生じた吸収熱で前記濃縮対象流体流路を流れる前記濃縮対象流体を加熱する吸収器と;
冷媒加熱流体流路を有し、前記冷媒加熱流体流路を流れる冷媒加熱流体が保有する熱で冷媒の液を加熱して、前記吸収器に直接又は間接的に供給する冷媒の蒸気を生成する蒸発器と;
吸収液加熱流体流路を有し、前記吸収器において前記冷媒の蒸気を吸収した前記吸収液を直接又は間接的に導入して、導入した前記吸収液を、前記吸収液加熱流体流路を流れる吸収液加熱流体が保有する熱で加熱して、前記吸収液から冷媒を離脱させて前記吸収液の濃度を上昇させる再生器と;
前記再生器において前記吸収液から離脱した冷媒の蒸気を導入し、導入した前記冷媒の蒸気を冷却し凝縮させて、前記蒸発器に供給する冷媒の液を生成する凝縮器と;
前記吸収器で加熱された前記濃縮対象流体を導入し、前記濃縮対象流体から離脱した離脱蒸気と、前記濃縮対象流体から前記離脱蒸気が離脱した後の濃縮液とに分離する気液分離器と;
前記離脱蒸気を導入し、導入した前記離脱蒸気の熱で被加熱流体を加熱する加熱部とを備え;
前記吸収器の内部圧力が前記再生器の内部圧力よりも高く構成された;
濃縮装置。
An absorber having a concentration target fluid flow path for flowing the concentration target fluid, and heating the concentration target fluid flowing in the concentration target fluid flow path with absorption heat generated when the absorbing liquid absorbs the vapor of the refrigerant;
A refrigerant heating fluid channel is provided, and the refrigerant liquid is heated with heat held by the refrigerant heating fluid flowing through the refrigerant heating fluid channel to generate refrigerant vapor to be supplied directly or indirectly to the absorber. With an evaporator;
An absorption liquid heating fluid flow path is provided, and the absorption liquid that has absorbed the refrigerant vapor in the absorber is directly or indirectly introduced, and the introduced absorption liquid flows through the absorption liquid heating fluid flow path. A regenerator that heats with heat held by the absorption liquid heating fluid to release the refrigerant from the absorption liquid to increase the concentration of the absorption liquid;
A condenser that introduces a refrigerant vapor separated from the absorbing liquid in the regenerator, cools and condenses the introduced refrigerant vapor, and generates a refrigerant liquid to be supplied to the evaporator;
A gas-liquid separator that introduces the concentration target fluid heated by the absorber and separates the separated vapor separated from the concentration target fluid and the concentrated liquid after the separated vapor is separated from the concentration target fluid; ;
A heating unit that introduces the desorption steam and heats the fluid to be heated with the heat of the introduced desorption vapor;
The internal pressure of the absorber was configured to be higher than the internal pressure of the regenerator;
Concentrator.
前記加熱部に前記離脱蒸気を供給する加熱部離脱蒸気流路と;
前記加熱部離脱蒸気流路を流れる前記離脱蒸気の流量を調節する加熱部離脱蒸気流量調節装置と;
前記濃縮装置の外部に前記離脱蒸気を供給する外部離脱蒸気流路と;
前記外部離脱蒸気流路を流れる前記離脱蒸気の流量を調節する外部離脱蒸気流量調節装置とを備える;
請求項1に記載の濃縮装置。
A heating part separation steam channel for supplying the separation steam to the heating part;
A heating unit detachment steam flow rate adjusting device for adjusting a flow rate of the detachment steam flowing through the heating unit detachment steam channel;
An external desorption steam channel for supplying the desorption steam to the outside of the concentrator;
An external detachment steam flow rate adjusting device for adjusting a flow rate of the detachment steam flowing through the external detachment steam flow path;
The concentration apparatus according to claim 1.
前記加熱部離脱蒸気流路を流れる前記離脱蒸気の流量と前記外部離脱蒸気流路を流れる前記離脱蒸気の流量とが所定の比率になるように、前記加熱部離脱蒸気流量調節装置及び前記外部離脱蒸気流量調節装置を設定する;
請求項2に記載の濃縮装置。
The heating unit detachment steam flow rate adjusting device and the external detachment so that the flow rate of the detachment steam flowing through the heating unit detachment steam channel and the flow rate of the detachment steam flowing through the external detachment steam channel become a predetermined ratio. Set the steam flow regulator;
The concentration apparatus according to claim 2.
前記加熱部が、前記蒸発器及び前記再生器の少なくとも一方に設けられた;
請求項1乃至請求項3のいずれか1項に記載の濃縮装置。
The heating unit is provided in at least one of the evaporator and the regenerator;
The concentrator according to any one of claims 1 to 3.
前記加熱部は、前記蒸発器に設けられたときは前記冷媒加熱流体流路の下方に配置され、前記再生器に設けられたときは前記吸収液加熱流体流路の下方に配置された;
請求項4に記載の濃縮装置。
The heating unit is disposed below the refrigerant heating fluid channel when provided in the evaporator, and is disposed below the absorbent heating fluid channel when provided in the regenerator;
The concentration apparatus according to claim 4.
前記吸収器よりも作動圧力が低い低温吸収器であって、加熱対象流体を流す加熱対象流体流路を有し、前記吸収器において前記冷媒の蒸気を吸収した前記吸収液を直接又は間接的に導入し、導入した前記吸収液が冷媒の蒸気を吸収したときに生じた吸収熱で前記加熱対象流体流路を流れる前記加熱対象流体を加熱する低温吸収器を備える;
請求項1乃至請求項5のいずれか1項に記載の濃縮装置。
A low-temperature absorber having an operating pressure lower than that of the absorber, having a heating target fluid passage for flowing a heating target fluid, and directly or indirectly receiving the absorbing liquid that has absorbed the refrigerant vapor in the absorber. A low-temperature absorber that introduces and heats the heating target fluid that flows through the heating target fluid flow path with absorption heat generated when the introduced absorbing liquid absorbs the vapor of the refrigerant;
The concentrator according to any one of claims 1 to 5.
前記加熱部を内部に有する低温濃縮槽であって、前記加熱部における被加熱流体として濃縮対象流体を導入し、導入した濃縮対象流体を前記離脱蒸気の熱で加熱して濃縮液を生成する低温濃縮槽を備える;
請求項1乃至請求項6のいずれか1項に記載の濃縮装置。
A low-temperature concentration tank having the heating unit therein, wherein a concentration target fluid is introduced as a fluid to be heated in the heating unit, and the introduced concentration target fluid is heated by the heat of the separated steam to generate a concentrate With a concentration tank;
The concentrator according to any one of claims 1 to 6.
前記低温濃縮槽において前記濃縮対象流体から離脱した蒸気である低温離脱蒸気を、前記蒸発器に設けられた蒸発器追加加熱部、前記再生器に設けられた再生器追加加熱部、前記冷媒加熱流体流路、及び前記吸収液加熱流体流路の少なくとも1つに導く導入部を備える;
請求項7に記載の濃縮装置。
In the low-temperature concentration tank, low-temperature desorption steam, which is vapor desorbed from the fluid to be concentrated, is supplied to an evaporator additional heating unit provided in the evaporator, a regenerator additional heating unit provided in the regenerator, and the refrigerant heating fluid. A flow path, and an introduction portion leading to at least one of the absorption liquid heating fluid flow path;
The concentration apparatus according to claim 7.
前記低温離脱蒸気を前記導入部に供給する導入部低温離脱蒸気流路と;
前記導入部低温離脱蒸気流路を流れる前記低温離脱蒸気の流量を調節する導入部低温離脱蒸気流量調節装置と;
前記濃縮装置の外部に前記低温離脱蒸気を供給する外部低温離脱蒸気流路と;
前記外部低温離脱蒸気流路を流れる前記低温離脱蒸気の流量を調節する外部低温離脱蒸気流量調節装置とを備える;
請求項8に記載の濃縮装置。
An introduction portion low temperature desorption steam flow path for supplying the low temperature desorption vapor to the introduction portion;
An introduction unit low temperature desorption steam flow rate adjusting device for adjusting a flow rate of the low temperature desorption vapor flowing through the introduction unit low temperature desorption vapor channel;
An external low temperature release steam flow path for supplying the low temperature release steam to the outside of the concentrator;
An external low-temperature desorption steam flow rate adjusting device for adjusting a flow rate of the low-temperature desorption steam flowing through the external low-temperature desorption steam flow path;
The concentrating device according to claim 8.
前記導入部低温離脱蒸気流路を流れる前記低温離脱蒸気の流量と前記外部低温離脱蒸気流路を流れる前記低温離脱蒸気の流量とが所定の比率になるように、前記導入部低温離脱蒸気流量調節装置及び前記外部低温離脱蒸気流量調節装置を設定する;
請求項9に記載の濃縮装置。
The introduction portion low temperature desorption steam flow rate adjustment so that the flow rate of the low temperature desorption steam flowing through the introduction portion low temperature desorption vapor flow path and the flow rate of the low temperature desorption steam flowing through the external low temperature desorption vapor flow path become a predetermined ratio. Setting the device and the external low temperature desorption steam flow control device;
The concentration apparatus according to claim 9.
前記加熱部で前記被加熱流体を加熱した後の前記離脱蒸気のドレンと、前記凝縮器から前記蒸発器へ供給される前記冷媒の液との間で熱交換を行わせる熱交換器を備える;
請求項1乃至請求項10のいずれか1項に記載の濃縮装置。
A heat exchanger that exchanges heat between the drained steam drained after the heated fluid is heated by the heating unit and the refrigerant liquid supplied from the condenser to the evaporator;
The concentrator according to any one of claims 1 to 10.
JP2016160913A 2015-10-13 2016-08-18 Concentrator Active JP6280170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610890239.XA CN107024036B (en) 2015-10-13 2016-10-12 Concentration device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015201852 2015-10-13
JP2015201852 2015-10-13

Publications (2)

Publication Number Publication Date
JP2017075772A true JP2017075772A (en) 2017-04-20
JP6280170B2 JP6280170B2 (en) 2018-02-14

Family

ID=58551089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016160913A Active JP6280170B2 (en) 2015-10-13 2016-08-18 Concentrator

Country Status (2)

Country Link
JP (1) JP6280170B2 (en)
CN (1) CN107024036B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019035560A (en) * 2017-08-21 2019-03-07 荏原冷熱システム株式会社 Absorption type heat exchange system
CN109974329A (en) * 2017-12-25 2019-07-05 荏原冷热系统株式会社 Absorption type heat exchange system
CN111760309A (en) * 2020-07-08 2020-10-13 袁东立 High-efficient solution enrichment facility suitable for energy tower system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210239367A1 (en) * 2018-04-27 2021-08-05 Maxeff Teknoloji Anonim Sirketi A method of separation by solidification used in absorption heating cooling systems working with crystallization / freezing / icing methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2726519A (en) * 1954-09-23 1955-12-13 Standard Oil Co Absorption-cooled vapor condenser system
JPH11159906A (en) * 1997-11-27 1999-06-15 Matsushita Electric Ind Co Ltd Absorption heat pump system
JP2004257705A (en) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd Concentration device using absorption heat pump
JP2010164248A (en) * 2009-01-16 2010-07-29 Ebara Corp Absorption heat pump
JP2010255904A (en) * 2009-04-23 2010-11-11 Ebara Corp Absorption heat pump
JP2015025629A (en) * 2013-07-28 2015-02-05 井上 修行 Temperature rise type absorption heat pump

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299936A (en) * 2008-06-11 2009-12-24 Ebara Refrigeration Equipment & Systems Co Ltd Absorption refrigerating machine
JP2011075180A (en) * 2009-09-30 2011-04-14 Sanyo Electric Co Ltd Absorption type refrigerating machine
IT1403103B1 (en) * 2010-12-15 2013-10-04 Guerra MULTI-STAGE AND SELF-ADAPTING HEAT PUMP
CN203704425U (en) * 2011-07-12 2014-07-09 爱信精机株式会社 Vehicle-mounted absorptive heat pump apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2726519A (en) * 1954-09-23 1955-12-13 Standard Oil Co Absorption-cooled vapor condenser system
JPH11159906A (en) * 1997-11-27 1999-06-15 Matsushita Electric Ind Co Ltd Absorption heat pump system
JP2004257705A (en) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd Concentration device using absorption heat pump
JP2010164248A (en) * 2009-01-16 2010-07-29 Ebara Corp Absorption heat pump
JP2010255904A (en) * 2009-04-23 2010-11-11 Ebara Corp Absorption heat pump
JP2015025629A (en) * 2013-07-28 2015-02-05 井上 修行 Temperature rise type absorption heat pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019035560A (en) * 2017-08-21 2019-03-07 荏原冷熱システム株式会社 Absorption type heat exchange system
CN109974329A (en) * 2017-12-25 2019-07-05 荏原冷热系统株式会社 Absorption type heat exchange system
JP2019113259A (en) * 2017-12-25 2019-07-11 荏原冷熱システム株式会社 Absorption type heat exchange system
CN111760309A (en) * 2020-07-08 2020-10-13 袁东立 High-efficient solution enrichment facility suitable for energy tower system

Also Published As

Publication number Publication date
CN107024036A (en) 2017-08-08
CN107024036B (en) 2020-09-18
JP6280170B2 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
JP6280170B2 (en) Concentrator
JP2014190680A (en) Absorption heat pump
CA3030589C (en) A low-temperature distillation facility
JP2007127342A (en) Absorption heat pump and steam supply system
CN108180670B (en) Absorption heat exchange system
JP4542985B2 (en) Absorption heat pump
WO2012140974A1 (en) Extraction device and method for refrigerating machine
JP6429550B2 (en) Absorption heat pump
JP6896968B2 (en) Absorption heat exchange system
CN109269150B (en) Absorption heat pump
JP4926794B2 (en) Absorption refrigeration system
CN209801851U (en) Absorption heat exchange system
JP6903852B2 (en) Absorption heat exchange system
JP6570965B2 (en) Absorption heat pump
CN209431705U (en) Absorption type heat exchange system
JP6521793B2 (en) Absorption heat pump
JP6337056B2 (en) Absorption heat pump
JP2017053499A (en) Absorption type refrigerator
CN109425144B (en) Absorption heat exchange system
WO2018164085A1 (en) Cooling device and gas-liquid separation tank
CN106949671B (en) Absorption heat pump
JP2022128038A (en) Distillation device including distillation tower
CN116907118A (en) Absorption heat pump and absorption cycle process
JP5513980B2 (en) Absorption heat pump
JP2016205786A (en) Liquid transport device, adsorption type heat pump, and heat storage system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180118

R150 Certificate of patent or registration of utility model

Ref document number: 6280170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250