JP6570965B2 - Absorption heat pump - Google Patents

Absorption heat pump Download PDF

Info

Publication number
JP6570965B2
JP6570965B2 JP2015211007A JP2015211007A JP6570965B2 JP 6570965 B2 JP6570965 B2 JP 6570965B2 JP 2015211007 A JP2015211007 A JP 2015211007A JP 2015211007 A JP2015211007 A JP 2015211007A JP 6570965 B2 JP6570965 B2 JP 6570965B2
Authority
JP
Japan
Prior art keywords
refrigerant
absorber
temperature
liquid
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015211007A
Other languages
Japanese (ja)
Other versions
JP2017083062A (en
Inventor
宏幸 山田
宏幸 山田
智芳 入江
智芳 入江
雅裕 上総
雅裕 上総
與四郎 竹村
與四郎 竹村
Original Assignee
荏原冷熱システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原冷熱システム株式会社 filed Critical 荏原冷熱システム株式会社
Priority to JP2015211007A priority Critical patent/JP6570965B2/en
Priority to CN201610940447.6A priority patent/CN106871487B/en
Publication of JP2017083062A publication Critical patent/JP2017083062A/en
Application granted granted Critical
Publication of JP6570965B2 publication Critical patent/JP6570965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は吸収ヒートポンプに関し、特に安全弁を設けることなく吸収器缶胴の内部の圧力上昇を抑制する吸収ヒートポンプに関する。   The present invention relates to an absorption heat pump, and more particularly to an absorption heat pump that suppresses an increase in pressure inside an absorber can body without providing a safety valve.

駆動熱源温度より高い温度の被加熱媒体を取り出す熱源機械として、第2種吸収ヒートポンプがある。第2種吸収ヒートポンプは、冷媒液を蒸発させる蒸発器、冷媒蒸気を吸収液で吸収させる吸収器、吸収液から冷媒を離脱させる再生器、冷媒蒸気を凝縮させる凝縮器を主要構成として備え、蒸発器及び吸収器の内部圧力が再生器及び凝縮器の内部圧力よりも高くなる状態で運転する。吸収ヒートポンプ機内で、大気圧よりも高くなり得る部分には、過度な圧力上昇を回避する措置が施される。一例として、第2種吸収ヒートポンプにおいて、熱を汲み上げて加熱して生成された被加熱媒体が外部に供給される被加熱媒体蒸気管に、安全弁が設けられたものがある(例えば、特許文献1参照。)。   As a heat source machine for taking out a heated medium having a temperature higher than the driving heat source temperature, there is a second type absorption heat pump. The second type absorption heat pump mainly includes an evaporator for evaporating the refrigerant liquid, an absorber for absorbing the refrigerant vapor with the absorbing liquid, a regenerator for removing the refrigerant from the absorbing liquid, and a condenser for condensing the refrigerant vapor. The internal pressure of the regenerator and the absorber is operated in a state higher than the internal pressure of the regenerator and the condenser. In the absorption heat pump machine, measures to avoid an excessive pressure rise are applied to a portion that can be higher than the atmospheric pressure. As an example, in the second type absorption heat pump, there is one in which a safety valve is provided in a heated medium vapor pipe to which a heated medium generated by pumping and heating heat is supplied to the outside (for example, Patent Document 1). reference.).

特開2013−253748号公報(図1等)JP2013-253748A (FIG. 1 etc.)

特許文献1に記載されたヒートポンプは、被加熱媒体が外部に供給される被加熱媒体蒸気管に安全弁が設けられているが、導入される熱源の温度等の運転条件によっては、蒸発器及び吸収器の内部圧力が大気圧を超える場合があり得る。また、蒸発器及び吸収器を複数設けて多段に昇温させる構成のものは、高圧側の蒸発器及び吸収器の内部圧力が大気圧を超える場合がある。このような場合、大気圧を超え得る蒸発器及び吸収器の系統に過度な圧力上昇を回避する措置を施すことになる。しかし、蒸発器及び吸収器の系統に安全弁を設けると、ヒートポンプの運転を停止して負圧になったときに、内部に空気が侵入するおそれがある。蒸発器や吸収器の内部に空気が侵入すると、内部に腐食が生じるおそれがある。   The heat pump described in Patent Document 1 is provided with a safety valve in a heated medium vapor pipe to which a heated medium is supplied to the outside. However, depending on operating conditions such as the temperature of a heat source to be introduced, an evaporator and an absorption The internal pressure of the vessel may exceed atmospheric pressure. In the case of a configuration in which a plurality of evaporators and absorbers are provided to raise the temperature in multiple stages, the internal pressure of the evaporator and absorber on the high pressure side may exceed the atmospheric pressure. In such cases, measures are taken to avoid excessive pressure rises in the evaporator and absorber systems that may exceed atmospheric pressure. However, if a safety valve is provided in the evaporator / absorber system, air may enter the interior when the operation of the heat pump is stopped and a negative pressure is reached. If air enters the evaporator or the absorber, corrosion may occur inside.

本発明は上述の課題に鑑み、安全弁を設けることなく吸収器缶胴の内部の圧力上昇を抑制する吸収ヒートポンプを提供することを目的とする。   In view of the above-described problems, an object of the present invention is to provide an absorption heat pump that suppresses an increase in pressure inside an absorber can body without providing a safety valve.

上記目的を達成するために、本発明の第1の態様に係る吸収ヒートポンプは、例えば図1に示すように、被加熱流体流路11(31、51)と、被加熱流体流路11(31、51)に向けて吸収液Sa(Sb、Sc)を供給する吸収液供給部12(32、52)と、被加熱流体流路11(31、51)及び吸収液供給部12(32、52)を収容する吸収器缶胴14(34、54)とを有し、吸収液供給部12(32、52)から供給された吸収液Sa(Sb、Sc)が冷媒の蒸気Va(Vb、Vc)を吸収したときに生じた吸収熱で被加熱流体流路11(31、51)を流れる流体Wq(Vf、Vf)を加熱する吸収器10(30、50)と;吸収器50において冷媒の蒸気Vcを吸収して濃度が低下した吸収液である希溶液Swを導入し、加熱して、希溶液Swから冷媒を離脱させて吸収液Swの濃度を上昇させる再生器70と;再生器70において希溶液Swよりも濃度が上昇した吸収液Saを吸収液供給部12に導く濃溶液搬送部75、76と;再生器70において希溶液Swから離脱した冷媒の蒸気Vgを導入し、冷却して凝縮させて冷媒の液Vfを生成する凝縮器80と;凝縮器80において生成された冷媒の液Vfを導入し、加熱して蒸発させて、吸収器10(30、50)に供給する冷媒の蒸気Va(Vb、Vc)を生成する蒸発器20(40、60)と;凝縮器80の冷媒の液Vfを蒸発器20(40、60)に導く冷媒液搬送部82、84、86、88、89と;吸収器缶胴14(34、54)の内部圧力を直接又は間接的に検知する圧力検知器14P(34P、54P)と;圧力検知器14P(34P、54P)で検知された圧力が所定の圧力以上のときに、吸収液供給部12(32、52)への吸収液Sa(Sb、Sc)の導入及び蒸発器20(40、60)への冷媒の液Vfの導入の少なくとも一方を停止する制御装置100とを備える。   In order to achieve the above object, the absorption heat pump according to the first aspect of the present invention includes a heated fluid channel 11 (31, 51) and a heated fluid channel 11 (31, as shown in FIG. 1, for example. , 51), the absorbent supply unit 12 (32, 52) for supplying the absorbent Sa (Sb, Sc), the heated fluid channel 11 (31, 51), and the absorbent supply unit 12 (32, 52). ) And the absorption liquid Sa (Sb, Sc) supplied from the absorption liquid supply unit 12 (32, 52) is the refrigerant vapor Va (Vb, Vc). Absorber 10 (30, 50) that heats the fluid Wq (Vf, Vf) that flows through the heated fluid flow path 11 (31, 51) with the absorption heat generated when absorbing the refrigerant); The dilute solution Sw, which is an absorbing solution whose concentration has been reduced by absorbing the vapor Vc, is introduced. A regenerator 70 for heating and releasing the refrigerant from the dilute solution Sw to increase the concentration of the absorbing solution Sw; and the absorbing solution Sa having a concentration higher than that of the dilute solution Sw in the regenerator 70 is guided to the absorbing solution supply unit 12. Concentrated solution transport parts 75 and 76; a condenser 80 that introduces the refrigerant vapor Vg separated from the dilute solution Sw in the regenerator 70, cools and condenses it, and generates a refrigerant liquid Vf; An evaporator 20 (40, 60) that introduces the refrigerant liquid Vf, which is heated and evaporated to generate refrigerant vapor Va (Vb, Vc) to be supplied to the absorber 10 (30, 50); The refrigerant liquid conveying parts 82, 84, 86, 88, 89 for guiding the refrigerant liquid Vf of the condenser 80 to the evaporator 20 (40, 60); or the internal pressure of the absorber can body 14 (34, 54) directly or Indirectly detecting pressure detector 14P (34 , 54P); When the pressure detected by the pressure detector 14P (34P, 54P) is equal to or higher than a predetermined pressure, the absorption liquid Sa (Sb, Sc) is introduced into the absorption liquid supply unit 12 (32, 52). And a control device 100 that stops at least one of introduction of the refrigerant liquid Vf to the evaporator 20 (40, 60).

このように構成すると、圧力検知器で検知された圧力が所定の圧力以上のときに、吸収器缶胴の内部圧力の上昇要因となり得る吸収熱の発生及び吸収器に供給される冷媒の蒸気の発生の少なくとも一方を止めることができ、安全弁を設けることなく吸収器缶胴の内部の圧力上昇を抑制することができる。   With this configuration, when the pressure detected by the pressure detector is equal to or higher than a predetermined pressure, the generation of absorption heat that can increase the internal pressure of the absorber can body and the refrigerant vapor supplied to the absorber At least one of the occurrences can be stopped, and an increase in pressure inside the absorber can body can be suppressed without providing a safety valve.

また、本発明の第2の態様に係る吸収ヒートポンプは、例えば図1に示すように、上記本発明の第1の態様に係る吸収ヒートポンプ1において、制御装置100は、圧力検知器14P(34P、54P)で検知された圧力が所定の圧力以上のときに、蒸発器20(40、60)への冷媒の液Vfの導入を停止しつつ、吸収液供給部12(32、52)への吸収液Sa(Sb、Sc)の導入を継続する。   In addition, the absorption heat pump according to the second aspect of the present invention is, for example, as shown in FIG. 1, in the absorption heat pump 1 according to the first aspect of the present invention, the control device 100 includes a pressure detector 14P (34P, When the pressure detected at 54P) is equal to or higher than a predetermined pressure, the absorption of the refrigerant liquid Vf into the evaporator 20 (40, 60) is stopped and the absorption into the absorption liquid supply unit 12 (32, 52) is stopped. The introduction of the liquid Sa (Sb, Sc) is continued.

このように構成すると、蒸発器で発生する冷媒の蒸気が早く減少する一方で、吸収器では冷媒の蒸気の吸収が行われるため、吸収器缶胴内の冷媒の蒸気の量が急減し、吸収器缶胴内の圧力を早く低下させることができる。   With this configuration, the refrigerant vapor generated in the evaporator quickly decreases, while the absorber absorbs the refrigerant vapor, so the amount of refrigerant vapor in the absorber can body decreases rapidly and is absorbed. The pressure in the can body can be quickly reduced.

また、本発明の第3の態様に係る吸収ヒートポンプは、例えば図1に示すように、上記本発明の第1の態様又は第2の態様に係る吸収ヒートポンプ1において、吸収器は、高温吸収器10と、高温吸収器10よりも作動圧力が低い低温吸収器50とを含んで構成され;蒸発器は、高温蒸発器20と、高温蒸発器20よりも作動圧力が低い低温蒸発器60とを含んで構成され;低温蒸発器60で生成された冷媒の蒸気Vcが低温吸収器50に導入されると共に高温蒸発器20で生成された冷媒の蒸気Vaが高温吸収器10に導入されるように構成され;圧力検知部14P、54Pは、高温吸収器10及び低温吸収器50のそれぞれの吸収器缶胴14、54の内部圧力を直接又は間接的に検知するように構成され;所定の圧力は、高温吸収器10と低温吸収器50とで個別に設定されている。   Moreover, the absorption heat pump according to the third aspect of the present invention is, for example, as shown in FIG. 1, in the absorption heat pump 1 according to the first aspect or the second aspect of the present invention, the absorber is a high-temperature absorber. 10 and a low-temperature absorber 50 having an operating pressure lower than that of the high-temperature absorber 10; the evaporator includes a high-temperature evaporator 20 and a low-temperature evaporator 60 having an operating pressure lower than that of the high-temperature evaporator 20. The refrigerant vapor Vc generated in the low-temperature evaporator 60 is introduced into the low-temperature absorber 50 and the refrigerant vapor Va generated in the high-temperature evaporator 20 is introduced into the high-temperature absorber 10. The pressure detectors 14P and 54P are configured to directly or indirectly detect the internal pressures of the absorber can bodies 14 and 54 of the high-temperature absorber 10 and the low-temperature absorber 50, respectively. , High temperature absorber 10 It is set separately for the low temperature absorber 50.

このように構成すると、高温吸収器及び低温吸収器のそれぞれの吸収器缶胴を作動圧力に適するように個別に構成して吸収ヒートポンプの軽量化を図りつつ、各吸収器缶胴の内圧が許容圧力近くに上昇したときに圧力上昇を抑制することができる。   If comprised in this way, each absorber can body of a high-temperature absorber and a low-temperature absorber is comprised individually so that it may be suitable for an operating pressure, and the internal pressure of each absorber can body is permitted, reducing the weight of an absorption heat pump. When the pressure rises close to the pressure, the pressure rise can be suppressed.

また、本発明の第4の態様に係る吸収ヒートポンプは、例えば図1に示すように、上記本発明の第1の態様乃至第3の態様のいずれか1つの態様に係る吸収ヒートポンプ1において、制御装置100は、圧力検知器14P(34P、54P)で検知された圧力が所定の圧力以上のときに、再生器70への加熱源hgの一部又は全部の導入、蒸発器60への加熱源heの一部又は全部の導入、及び凝縮器80への冷却源の一部又は全部の導入のうちの少なくとも一つを停止する。   Moreover, the absorption heat pump according to the fourth aspect of the present invention is controlled in the absorption heat pump 1 according to any one of the first to third aspects of the present invention as shown in FIG. When the pressure detected by the pressure detector 14P (34P, 54P) is equal to or higher than a predetermined pressure, the apparatus 100 introduces a part or all of the heating source hg to the regenerator 70, and the heating source to the evaporator 60. At least one of the introduction of part or all of he and the introduction of part or all of the cooling source to the condenser 80 is stopped.

このように構成すると、吸収熱の発生及び吸収器に供給される冷媒の蒸気の発生を抑制することができ、吸収器缶胴の内部の圧力上昇の抑制に寄与することとなる。   If comprised in this way, generation | occurrence | production of absorption heat and generation | occurrence | production of the vapor | steam of the refrigerant | coolant supplied to an absorber can be suppressed, and it will contribute to suppression of the pressure rise inside an absorber can body.

また、本発明の第5の態様に係る吸収ヒートポンプは、例えば図1に示すように、上記本発明の第1の態様乃至第4の態様のいずれか1つの態様に係る吸収ヒートポンプ1において、凝縮器80の冷媒の液Vfを再生器70に導入することを可能にする冷媒液導入部78、78vを備え;制御装置100は、圧力検知器14P(34P、54P)で検知された圧力が所定の圧力以上のときに、凝縮器80の冷媒の液Vfの、再生器70への導入を開始する。   In addition, the absorption heat pump according to the fifth aspect of the present invention is the same as the absorption heat pump 1 according to any one of the first to fourth aspects of the present invention, as shown in FIG. The refrigerant liquid introduction portions 78 and 78v that allow the refrigerant liquid Vf of the regenerator 80 to be introduced into the regenerator 70 are provided; the control device 100 has a predetermined pressure detected by the pressure detector 14P (34P and 54P). When the pressure is equal to or higher than the pressure, introduction of the refrigerant liquid Vf of the condenser 80 into the regenerator 70 is started.

このように構成すると、蒸発器への冷媒の液の導入を停止して吸収器に冷媒の蒸気が導入されずに濃度が低下しない吸収液が再生器に導入されることにより、及び/又は、吸収器への吸収液の導入を停止して再生器内の吸収液の流動が停止することにより、再生器に導入される吸収液の濃度が高くなった場合に、再生器の吸収液の濃度を低下させることができる。   With this configuration, by stopping the introduction of the refrigerant liquid into the evaporator and introducing into the regenerator an absorption liquid that does not reduce the concentration without the refrigerant vapor being introduced into the absorber, and / or When the concentration of the absorbing liquid introduced into the regenerator becomes high by stopping the introduction of the absorbing liquid into the absorber and stopping the flow of the absorbing liquid in the regenerator, the concentration of the absorbing liquid in the regenerator Can be reduced.

本発明によれば、圧力検知器で検知された圧力が所定の圧力以上のときに、吸収器缶胴の内部圧力の上昇要因となり得る吸収熱の発生及び吸収器に供給される冷媒の蒸気の発生の少なくとも一方を止めることができ、安全弁を設けることなく吸収器缶胴の内部の圧力上昇を抑制することができる。   According to the present invention, when the pressure detected by the pressure detector is equal to or higher than a predetermined pressure, the generation of absorption heat that can increase the internal pressure of the absorber can body and the vapor of the refrigerant supplied to the absorber. At least one of the occurrences can be stopped, and an increase in pressure inside the absorber can body can be suppressed without providing a safety valve.

本発明の実施の形態に係る吸収ヒートポンプの模式的系統図である。1 is a schematic system diagram of an absorption heat pump according to an embodiment of the present invention. (A)は蒸発器への冷媒液の導入を停止しつつ吸収器への吸収液の導入を継続した場合の気液分離器及び吸収器缶胴の内圧の変化の一例を示すグラフ、(B)は吸収器への吸収液の導入を停止しつつ蒸発器への冷媒液の導入を継続した場合の気液分離器及び吸収器缶胴の内圧の変化の一例を示すグラフである。(A) is a graph showing an example of changes in the internal pressure of the gas-liquid separator and the absorber can body when the introduction of the absorbing liquid into the absorber is continued while stopping the introduction of the refrigerant liquid into the evaporator; ) Is a graph showing an example of changes in internal pressure of the gas-liquid separator and the absorber can body when the introduction of the refrigerant liquid into the evaporator is continued while the introduction of the absorbent into the absorber is stopped.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or similar members are denoted by the same or similar reference numerals, and redundant description is omitted.

まず図1を参照して、本発明の実施の形態に係る吸収ヒートポンプ1を説明する。図1は、吸収ヒートポンプ1の模式的系統図である。吸収ヒートポンプ1は、三段昇温型の吸収ヒートポンプである。吸収ヒートポンプ1は、本実施の形態では、比較的利用価値の低い低温(例えば80℃〜90℃程度)の排温水he、hgを熱源媒体として導入し、利用価値の高い被加熱水蒸気Wv(例えば、圧力が約0.2MPa(ゲージ圧)を超え、望ましくは0.8MPa(ゲージ圧)程度)を取り出すことができる、第二種吸収ヒートポンプである。吸収ヒートポンプ1は、主要構成機器として、高温吸収器10と、高温蒸発器20と、中温吸収器30と、中温蒸発器40と、低温吸収器50と、低温蒸発器60と、再生器70と、凝縮器80とを備えている。また、吸収ヒートポンプ1は、制御装置100を備えている。   First, an absorption heat pump 1 according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic system diagram of the absorption heat pump 1. The absorption heat pump 1 is a three-stage temperature rising type absorption heat pump. In the present embodiment, the absorption heat pump 1 introduces, as a heat source medium, low-temperature (for example, about 80 ° C. to 90 ° C.) low-temperature (for example, about 80 ° C. to 90 ° C.) waste heat water hev, which has a relatively low utility value. , A second type absorption heat pump that can take out a pressure exceeding about 0.2 MPa (gauge pressure), desirably about 0.8 MPa (gauge pressure). The absorption heat pump 1 includes a high temperature absorber 10, a high temperature evaporator 20, an intermediate temperature absorber 30, an intermediate temperature evaporator 40, a low temperature absorber 50, a low temperature evaporator 60, and a regenerator 70 as main components. The condenser 80 is provided. In addition, the absorption heat pump 1 includes a control device 100.

なお、以下の説明においては、吸収液(「溶液」という場合もある)に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「高濃度溶液Sa」、「中濃度溶液Sb」、「低濃度溶液Sc」、「希溶液Sw」等と呼称するが、性状等を不問にするときは総称して「吸収液S」ということとする。同様に、冷媒に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「高温冷媒蒸気Va」、「中温冷媒蒸気Vb」、「低温冷媒蒸気Vc」、「再生器冷媒蒸気Vg」、「冷媒液Vf」等と呼称するが、性状等を不問にするときは総称して「冷媒V」ということとする。本実施の形態では、吸収液S(吸収剤と冷媒Vとの混合物)としてLiBr水溶液が用いられており、冷媒Vとして水(HO)が用いられている。また、吸収ヒートポンプ1から外部に生産物(目的物)として被加熱水蒸気Wvを供給するように構成されている。被加熱水蒸気Wvは、被加熱水液Wqが蒸発したものであり、これらの性状を不問にするときは被加熱水Wということとする。本実施の形態では、被加熱水Wとして水(HO)が用いられている。 In the following description, regarding the absorbing liquid (sometimes referred to as “solution”), in order to facilitate the distinction on the heat pump cycle, the “high concentration solution Sa”, depending on the properties and the position on the heat pump cycle, Although referred to as “medium concentration solution Sb”, “low concentration solution Sc”, “dilute solution Sw”, etc., when the properties are not questioned, they are collectively referred to as “absorbing solution S”. Similarly, in order to easily distinguish the refrigerant on the heat pump cycle, “high temperature refrigerant vapor Va”, “medium temperature refrigerant vapor Vb”, “low temperature refrigerant vapor Vc”, “ Although referred to as “regenerator refrigerant vapor Vg”, “refrigerant liquid Vf”, etc., when the properties are not questioned, they are collectively referred to as “refrigerant V”. In the present embodiment, an LiBr aqueous solution is used as the absorbing liquid S (a mixture of the absorbent and the refrigerant V), and water (H 2 O) is used as the refrigerant V. Moreover, it is comprised so that the to-be-heated water vapor | steam Wv may be supplied from the absorption heat pump 1 to the exterior as a product (target object). The heated water vapor Wv is obtained by evaporating the heated water liquid Wq, and is referred to as heated water W when these properties are not questioned. In the present embodiment, water (H 2 O) is used as the heated water W.

高温吸収器10は、被加熱水Wの流路を構成する伝熱管11と、高濃度溶液Saを散布する高濃度溶液散布ノズル12とを、高温吸収器缶胴14の内部に有している。伝熱管11は被加熱流体流路に相当し、高濃度溶液散布ノズル12は吸収液供給部に相当し、高温吸収器缶胴14は吸収器缶胴に相当する。高濃度溶液散布ノズル12は、散布した高濃度溶液Saが伝熱管11に降りかかるように、伝熱管11の上方に配設されている。高温吸収器10は、高濃度溶液散布ノズル12から高濃度溶液Saが散布され、高濃度溶液Saが高温冷媒蒸気Vaを吸収する際に吸収熱を発生させる。この吸収熱を、伝熱管11を流れる被加熱水Wが受熱して、被加熱水Wが加熱されるように構成されている。高温吸収器10において、伝熱管11の内部を流れる被加熱水Wは被加熱流体に相当する。高温吸収器10の下部には、中濃度溶液Sbが貯留される貯留部13が形成されている。中濃度溶液Sbは、高濃度溶液散布ノズル12から散布された高濃度溶液Saが高温冷媒蒸気Vaを吸収して、高濃度溶液Saから濃度が低下した吸収液Sである。伝熱管11は、中濃度溶液Sbに没入しないように、貯留部13よりも上方に配設されている。このようにすると、発生した吸収熱が伝熱管11内を流れる被加熱水Wに速やかに伝わり、吸収能力の回復を早めることができる。また、高温吸収器缶胴14は、設計運転圧力に余裕分を加えた圧力に耐え得る厚さになっている。高温吸収器缶胴14には、内部の圧力を検知する圧力検知器としての高温吸収器圧力計14Pが設けられている。   The high-temperature absorber 10 has a heat transfer tube 11 constituting a flow path of the water to be heated W and a high-concentration solution spray nozzle 12 for spraying the high-concentration solution Sa inside the high-temperature absorber can body 14. . The heat transfer tube 11 corresponds to a heated fluid channel, the high-concentration solution spray nozzle 12 corresponds to an absorbent supply unit, and the high-temperature absorber can body 14 corresponds to an absorber can body. The high-concentration solution spray nozzle 12 is disposed above the heat transfer tube 11 so that the sprayed high-concentration solution Sa falls on the heat transfer tube 11. The high temperature absorber 10 generates heat of absorption when the high concentration solution Sa is sprayed from the high concentration solution spray nozzle 12 and the high concentration solution Sa absorbs the high temperature refrigerant vapor Va. The heated water W flowing through the heat transfer tube 11 receives this absorbed heat, and the heated water W is heated. In the high-temperature absorber 10, the heated water W flowing inside the heat transfer tube 11 corresponds to the heated fluid. In the lower part of the high-temperature absorber 10, a storage part 13 in which the medium concentration solution Sb is stored is formed. The medium concentration solution Sb is an absorbing solution S whose concentration is lowered from the high concentration solution Sa because the high concentration solution Sa sprayed from the high concentration solution spray nozzle 12 absorbs the high-temperature refrigerant vapor Va. The heat transfer tube 11 is disposed above the storage portion 13 so as not to be immersed in the medium concentration solution Sb. If it does in this way, the absorbed heat which generate | occur | produced will be rapidly transmitted to the to-be-heated water W which flows through the inside of the heat exchanger tube 11, and recovery | restoration of absorption capability can be accelerated. The high-temperature absorber can body 14 has a thickness that can withstand a pressure obtained by adding a margin to the design operating pressure. The high temperature absorber can body 14 is provided with a high temperature absorber pressure gauge 14P as a pressure detector for detecting the internal pressure.

高温蒸発器20は、高温吸収器10に高温冷媒蒸気Vaを供給する構成部材である。高温蒸発器20は、冷媒液Vf及び高温冷媒蒸気Vaを収容する冷媒気液分離胴21と、高温冷媒液供給管22と、高温冷媒蒸気受入管24とを有している。高温冷媒液供給管22は、冷媒液Vfを中温吸収器30の加熱管31に導く流路を構成する管である。高温冷媒蒸気受入管24は、中温吸収器30の加熱管31で冷媒液Vfが加熱されて生成された高温冷媒蒸気Vaあるいは高温冷媒蒸気Vaと冷媒液Vfとの冷媒気液混相を冷媒気液分離胴21まで案内する流路を構成する管である。冷媒気液分離胴21内には、高温冷媒蒸気Va中に含まれる冷媒Vの液滴を衝突分離させるバッフル板(不図示)が設けられている。本実施の形態では、中温吸収器30の加熱管31の内面を高温蒸発器20の伝熱面としている。また、高温蒸発器20には冷媒液Vfを導入する冷媒液管82が接続されている。高温蒸発器20に接続された冷媒液管82には、流量調節弁83が配設されている。高温冷媒液供給管22は、冷媒気液分離胴21の冷媒液Vfが貯留されている部分に一端が接続され、他端が加熱管31の一端に接続されている。高温冷媒蒸気受入管24は、冷媒気液分離胴21に一端が接続され、他端が加熱管31の他端に接続されている。高温蒸発器20は、加熱管31の内部で冷媒液Vfが蒸気に変化して密度が大幅に減少するので、加熱管31を気泡ポンプとして機能させることとして、冷媒気液分離胴21内の冷媒液Vfを加熱管31に送るポンプを省略している。なお、冷媒気液分離胴21内の冷媒液Vfを加熱管31に送るポンプ(不図示)を高温冷媒液供給管22に配設してもよい。   The high-temperature evaporator 20 is a component that supplies the high-temperature refrigerant vapor Va to the high-temperature absorber 10. The high-temperature evaporator 20 includes a refrigerant gas-liquid separation cylinder 21 that stores the refrigerant liquid Vf and the high-temperature refrigerant vapor Va, a high-temperature refrigerant liquid supply pipe 22, and a high-temperature refrigerant vapor receiving pipe 24. The high-temperature refrigerant liquid supply pipe 22 is a pipe constituting a flow path that guides the refrigerant liquid Vf to the heating pipe 31 of the intermediate temperature absorber 30. The high-temperature refrigerant vapor receiving pipe 24 represents the refrigerant gas-liquid mixed phase of the high-temperature refrigerant vapor Va generated by the refrigerant liquid Vf being heated by the heating pipe 31 of the intermediate temperature absorber 30 or the high-temperature refrigerant vapor Va and the refrigerant liquid Vf. It is a tube constituting a flow path for guiding to the separation cylinder 21. A baffle plate (not shown) that collides and separates the droplets of the refrigerant V contained in the high-temperature refrigerant vapor Va is provided in the refrigerant gas-liquid separation cylinder 21. In the present embodiment, the inner surface of the heating tube 31 of the intermediate temperature absorber 30 is used as the heat transfer surface of the high temperature evaporator 20. The high temperature evaporator 20 is connected to a refrigerant liquid pipe 82 for introducing the refrigerant liquid Vf. A flow rate adjustment valve 83 is disposed in the refrigerant liquid pipe 82 connected to the high temperature evaporator 20. One end of the high-temperature refrigerant liquid supply pipe 22 is connected to the portion of the refrigerant gas-liquid separation cylinder 21 where the refrigerant liquid Vf is stored, and the other end is connected to one end of the heating pipe 31. The high temperature refrigerant vapor receiving pipe 24 has one end connected to the refrigerant gas-liquid separation cylinder 21 and the other end connected to the other end of the heating pipe 31. In the high-temperature evaporator 20, the refrigerant liquid Vf changes to steam inside the heating pipe 31 and the density is greatly reduced. Therefore, the refrigerant in the refrigerant gas-liquid separation cylinder 21 is assumed to function as the bubble pump. A pump for sending the liquid Vf to the heating pipe 31 is omitted. A pump (not shown) that sends the refrigerant liquid Vf in the refrigerant gas-liquid separation cylinder 21 to the heating pipe 31 may be disposed in the high-temperature refrigerant liquid supply pipe 22.

高温蒸発器20と高温吸収器10とは、高温冷媒蒸気流路としての高温冷媒蒸気管29で接続されている。高温冷媒蒸気管29は、一方の端部が冷媒気液分離胴21の上部(典型的には頂部)に接続されており、他方の端部が高濃度溶液散布ノズル12よりも上方で高温吸収器缶胴14に接続されている。このような構成により、高温蒸発器20で生成された高温冷媒蒸気Vaを、高温冷媒蒸気管29を介して、高温吸収器10に供給することができるようになっている。また、高温吸収器10と高温蒸発器20とは、高温冷媒蒸気管29を介して連通していることにより、概ね同じ内部圧力となる。   The high temperature evaporator 20 and the high temperature absorber 10 are connected by a high temperature refrigerant vapor pipe 29 as a high temperature refrigerant vapor flow path. One end of the high-temperature refrigerant vapor pipe 29 is connected to the upper part (typically the top) of the refrigerant gas-liquid separation cylinder 21, and the other end is absorbed at a high temperature above the high-concentration solution spray nozzle 12. The container body 14 is connected. With such a configuration, the high-temperature refrigerant vapor Va generated by the high-temperature evaporator 20 can be supplied to the high-temperature absorber 10 through the high-temperature refrigerant vapor pipe 29. Further, the high-temperature absorber 10 and the high-temperature evaporator 20 communicate with each other via the high-temperature refrigerant vapor pipe 29, so that the internal pressure becomes substantially the same.

中温吸収器30は、冷媒液Vf及び高温冷媒蒸気Vaの流路を構成する加熱管31と、中濃度溶液散布ノズル32とを、中温吸収器缶胴34の内部に有している。加熱管31は被加熱流体流路に相当し、中濃度溶液散布ノズル32は吸収液供給部に相当し、中温吸収器缶胴34は吸収器缶胴に相当する。加熱管31は、上述のように、一端に高温冷媒液供給管22が、他端に高温冷媒蒸気受入管24が、それぞれ接続されている。中濃度溶液散布ノズル32は、本実施の形態では、中濃度溶液Sbを散布する。中濃度溶液散布ノズル32は、散布した中濃度溶液Sbが加熱管31に降りかかるように、加熱管31の上方に配設されている。中濃度溶液散布ノズル32には、中濃度溶液Sbを内部に流す中濃度溶液管15の一端が接続されている。中温吸収器30は、中濃度溶液散布ノズル32から中濃度溶液Sbが散布され、中濃度溶液Sbが中温冷媒蒸気Vbを吸収する際に生じる吸収熱により、加熱管31を流れる冷媒液Vfを加熱して高温冷媒蒸気Vaを生成することができるように構成されている。中温吸収器30において、加熱管31の内部を流れる冷媒液Vf及び高温冷媒蒸気Vaは被加熱流体に相当する。中温吸収器30は、高温吸収器10よりも低い圧力(露点温度)で作動するように構成されており、高温吸収器10よりも作動温度が低くなっている。中温吸収器30の下部には、低濃度溶液Scが貯留される貯留部33が形成されている。低濃度溶液Scは、中濃度溶液散布ノズル32から散布された中濃度溶液Sbが中温冷媒蒸気Vbを吸収して濃度が低下した吸収液Sである。加熱管31は、貯留部33よりも上方に配設されている。また、中温吸収器缶胴34は、設計運転圧力に余裕分を加えた圧力に耐え得る厚さになっている。中温吸収器30の作動圧力は高温吸収器10の作動圧力よりも低いため、中温吸収器缶胴34は、高温吸収器缶胴14よりも厚さを薄くすることができる。中温吸収器缶胴34には、内部の圧力を検知する圧力検知器としての中温吸収器圧力計34Pが設けられている。   The intermediate temperature absorber 30 includes a heating pipe 31 constituting a flow path for the refrigerant liquid Vf and the high temperature refrigerant vapor Va and an intermediate concentration solution spray nozzle 32 inside the intermediate temperature absorber can body 34. The heating tube 31 corresponds to a heated fluid flow path, the medium concentration solution spray nozzle 32 corresponds to an absorbent supply unit, and the intermediate temperature absorber can body 34 corresponds to an absorber can body. As described above, the heating pipe 31 has one end connected to the high-temperature refrigerant liquid supply pipe 22 and the other end connected to the high-temperature refrigerant vapor receiving pipe 24. The medium concentration solution spray nozzle 32 sprays the medium concentration solution Sb in the present embodiment. The medium concentration solution spray nozzle 32 is disposed above the heating tube 31 so that the sprayed medium concentration solution Sb falls on the heating tube 31. One end of a medium concentration solution tube 15 for flowing the medium concentration solution Sb is connected to the medium concentration solution spray nozzle 32. The intermediate temperature absorber 30 heats the refrigerant liquid Vf flowing through the heating pipe 31 by absorption heat generated when the intermediate concentration solution Sb is applied from the intermediate concentration solution spray nozzle 32 and the intermediate concentration solution Sb absorbs the intermediate temperature refrigerant vapor Vb. Thus, the high-temperature refrigerant vapor Va can be generated. In the intermediate temperature absorber 30, the refrigerant liquid Vf and the high-temperature refrigerant vapor Va flowing inside the heating pipe 31 correspond to the fluid to be heated. The intermediate temperature absorber 30 is configured to operate at a pressure (dew point temperature) lower than that of the high temperature absorber 10, and the operating temperature is lower than that of the high temperature absorber 10. A storage part 33 for storing the low-concentration solution Sc is formed in the lower part of the intermediate temperature absorber 30. The low-concentration solution Sc is an absorbing solution S whose concentration is lowered by the medium-concentration solution Sb sprayed from the medium-concentration solution spray nozzle 32 absorbing the intermediate temperature refrigerant vapor Vb. The heating tube 31 is disposed above the storage unit 33. In addition, the intermediate temperature absorber can body 34 has a thickness that can withstand a pressure obtained by adding a margin to the design operating pressure. Since the operating pressure of the intermediate temperature absorber 30 is lower than the operating pressure of the high temperature absorber 10, the intermediate temperature absorber can body 34 can be made thinner than the high temperature absorber can body 14. The intermediate temperature absorber can body 34 is provided with an intermediate temperature absorber pressure gauge 34P as a pressure detector for detecting the internal pressure.

中温蒸発器40は、中温吸収器30に中温冷媒蒸気Vbを供給する構成部材である。中温蒸発器40は、冷媒液Vf及び中温冷媒蒸気Vbを収容する冷媒気液分離胴41と、中温冷媒液供給管42と、中温冷媒蒸気受入管44とを有している。中温冷媒液供給管42は、冷媒液Vfを低温吸収器50の加熱管51に導く流路を構成する管である。中温冷媒蒸気受入管44は、低温吸収器50の加熱管51で冷媒液Vfが加熱されて生成された中温冷媒蒸気Vbあるいは中温冷媒蒸気Vbと冷媒液Vfとの冷媒気液混相を冷媒気液分離胴41まで案内する流路を構成する管である。冷媒気液分離胴41は、高温蒸発器20の冷媒気液分離胴21と同様に構成されている。本実施の形態では、低温吸収器50の加熱管51の内面を中温蒸発器40の伝熱面としている。また、中温蒸発器40には冷媒液Vfを導入する冷媒液管84が接続されている。冷媒液管84は、冷媒液管82から分岐している。中温蒸発器40に接続された冷媒液管84には、流量調節弁85が配設されている。中温冷媒液供給管42は、冷媒気液分離胴41の冷媒液Vfが貯留されている部分に一端が接続され、他端が加熱管51の一端に接続されている。中温冷媒蒸気受入管44は、冷媒気液分離胴41に一端が接続され、他端が加熱管51の他端に接続されている。中温蒸発器40は、加熱管51の内部で冷媒液Vfが蒸気に変化して密度が大幅に減少するので、加熱管51を気泡ポンプとして機能させることとして、冷媒気液分離胴41内の冷媒液Vfを加熱管51に送るポンプを省略している。なお、冷媒気液分離胴41内の冷媒液Vfを加熱管51に送るポンプ(不図示)を中温冷媒液供給管42に配設してもよい。   The intermediate temperature evaporator 40 is a component that supplies the intermediate temperature refrigerant vapor Vb to the intermediate temperature absorber 30. The intermediate temperature evaporator 40 includes a refrigerant gas-liquid separation cylinder 41 that stores the refrigerant liquid Vf and the intermediate temperature refrigerant vapor Vb, an intermediate temperature refrigerant liquid supply pipe 42, and an intermediate temperature refrigerant vapor receiving pipe 44. The intermediate temperature refrigerant liquid supply pipe 42 is a pipe that constitutes a flow path that guides the refrigerant liquid Vf to the heating pipe 51 of the low temperature absorber 50. The intermediate-temperature refrigerant vapor receiving pipe 44 is a refrigerant gas-liquid that represents an intermediate-temperature refrigerant vapor Vb generated by heating the refrigerant liquid Vf in the heating pipe 51 of the low-temperature absorber 50 or a refrigerant gas-liquid mixed phase of the intermediate-temperature refrigerant vapor Vb and the refrigerant liquid Vf. It is a tube constituting a flow path for guiding to the separation cylinder 41. The refrigerant gas-liquid separation cylinder 41 is configured in the same manner as the refrigerant gas-liquid separation cylinder 21 of the high-temperature evaporator 20. In the present embodiment, the inner surface of the heating tube 51 of the low temperature absorber 50 is used as the heat transfer surface of the intermediate temperature evaporator 40. In addition, a refrigerant liquid pipe 84 for introducing the refrigerant liquid Vf is connected to the intermediate temperature evaporator 40. The refrigerant liquid pipe 84 branches from the refrigerant liquid pipe 82. A flow rate adjustment valve 85 is disposed in the refrigerant liquid pipe 84 connected to the intermediate temperature evaporator 40. The intermediate temperature refrigerant liquid supply pipe 42 has one end connected to the portion of the refrigerant gas-liquid separation cylinder 41 where the refrigerant liquid Vf is stored, and the other end connected to one end of the heating pipe 51. The intermediate temperature refrigerant vapor receiving pipe 44 has one end connected to the refrigerant gas-liquid separation cylinder 41 and the other end connected to the other end of the heating pipe 51. In the intermediate temperature evaporator 40, since the refrigerant liquid Vf changes to steam inside the heating pipe 51 and the density is greatly reduced, the refrigerant in the refrigerant gas-liquid separation cylinder 41 is assumed to function as the bubble pump. A pump for sending the liquid Vf to the heating pipe 51 is omitted. A pump (not shown) that sends the refrigerant liquid Vf in the refrigerant gas-liquid separation cylinder 41 to the heating pipe 51 may be disposed in the intermediate temperature refrigerant liquid supply pipe 42.

中温蒸発器40と中温吸収器30とは、中温冷媒蒸気流路としての中温冷媒蒸気管49で接続されている。中温冷媒蒸気管49は、一方の端部が冷媒気液分離胴41の上部(典型的には頂部)に接続されており、他方の端部が中濃度溶液散布ノズル32よりも上方で中温吸収器缶胴34に接続されている。このような構成により、中温蒸発器40で生成された中温冷媒蒸気Vbを、中温冷媒蒸気管49を介して、中温吸収器30に供給することができるようになっている。また、中温吸収器30と中温蒸発器40とは、中温冷媒蒸気管49を介して連通していることにより、概ね同じ内部圧力となる。   The intermediate temperature evaporator 40 and the intermediate temperature absorber 30 are connected by an intermediate temperature refrigerant vapor pipe 49 as an intermediate temperature refrigerant vapor channel. One end of the intermediate temperature refrigerant vapor pipe 49 is connected to the upper part (typically the top) of the refrigerant gas-liquid separation cylinder 41, and the other end is above the intermediate concentration solution spray nozzle 32 and absorbs the intermediate temperature. The container body 34 is connected. With such a configuration, the intermediate temperature refrigerant vapor Vb generated by the intermediate temperature evaporator 40 can be supplied to the intermediate temperature absorber 30 via the intermediate temperature refrigerant vapor pipe 49. Further, the intermediate temperature absorber 30 and the intermediate temperature evaporator 40 communicate with each other via the intermediate temperature refrigerant vapor pipe 49, and therefore have substantially the same internal pressure.

低温吸収器50は、冷媒液Vf及び中温冷媒蒸気Vbの流路を構成する加熱管51と、低濃度溶液散布ノズル52とを、低温吸収器缶胴54の内部に有している。加熱管51は被加熱流体流路に相当し、低濃度溶液散布ノズル52は吸収液供給部に相当し、低温吸収器缶胴54は吸収器缶胴に相当する。加熱管51は、上述のように、一端に中温冷媒液供給管42が、他端に中温冷媒蒸気受入管44が、それぞれ接続されている。低濃度溶液散布ノズル52は、本実施の形態では、低濃度溶液Scを散布する。低濃度溶液散布ノズル52は、散布した低濃度溶液Scが加熱管51に降りかかるように、加熱管51の上方に配設されている。低濃度溶液散布ノズル52には、低濃度溶液Scを内部に流す低濃度溶液管35の一端が接続されている。低温吸収器50は、低濃度溶液散布ノズル52から低濃度溶液Scが散布され、低濃度溶液Scが低温冷媒蒸気Vcを吸収する際に生じる吸収熱により、加熱管51を流れる冷媒液Vfを加熱して中温冷媒蒸気Vbを生成することができるように構成されている。低温吸収器50において、加熱管51の内部を流れる冷媒液Vf及び中温冷媒蒸気Vbは被加熱流体に相当する。低温吸収器50は、中温吸収器30よりも低い圧力(露点温度)で作動するように構成されており、中温吸収器30よりも作動温度が低くなっている。低温吸収器50の下部には、希溶液Swが貯留される貯留部53が形成されている。希溶液Swは、低濃度溶液散布ノズル52から散布された吸収液S(本実施の形態では低濃度溶液Sc)が低温冷媒蒸気Vcを吸収して濃度が低下した吸収液Sである。希溶液Swは、高濃度溶液Sa及び中濃度溶液Sbと比較して、冷媒Vを多く含んでいる。加熱管51は、貯留部53よりも上方に配設されている。また、低温吸収器缶胴54は、設計運転圧力に余裕分を加えた圧力に耐え得る厚さになっている。低温吸収器50の作動圧力は中温吸収器30の作動圧力よりも低いため、低温吸収器缶胴54は、中温吸収器缶胴34よりも厚さを薄くすることができる。低温吸収器缶胴54には、内部の圧力を検知する圧力検知器としての低温吸収器圧力計54Pが設けられている。   The low-temperature absorber 50 has a heating pipe 51 that constitutes a flow path for the refrigerant liquid Vf and the medium-temperature refrigerant vapor Vb, and a low-concentration solution spray nozzle 52 inside the low-temperature absorber can body 54. The heating pipe 51 corresponds to a fluid flow path to be heated, the low-concentration solution spray nozzle 52 corresponds to an absorbent supply unit, and the low-temperature absorber can body 54 corresponds to an absorber can body. As described above, the heating pipe 51 is connected to the intermediate temperature refrigerant liquid supply pipe 42 at one end and the intermediate temperature refrigerant vapor receiving pipe 44 at the other end. The low concentration solution spray nozzle 52 sprays the low concentration solution Sc in the present embodiment. The low concentration solution spray nozzle 52 is disposed above the heating tube 51 so that the sprayed low concentration solution Sc falls on the heating tube 51. The low concentration solution spray nozzle 52 is connected to one end of a low concentration solution pipe 35 that allows the low concentration solution Sc to flow inside. The low-temperature absorber 50 sprays the low-concentration solution Sc from the low-concentration solution spray nozzle 52, and heats the refrigerant liquid Vf flowing through the heating pipe 51 by heat absorbed when the low-concentration solution Sc absorbs the low-temperature refrigerant vapor Vc. Thus, the intermediate temperature refrigerant vapor Vb can be generated. In the low temperature absorber 50, the refrigerant liquid Vf and the intermediate temperature refrigerant vapor Vb flowing inside the heating pipe 51 correspond to the fluid to be heated. The low temperature absorber 50 is configured to operate at a pressure (dew point temperature) lower than that of the intermediate temperature absorber 30, and the operating temperature is lower than that of the intermediate temperature absorber 30. A storage part 53 for storing the dilute solution Sw is formed below the low-temperature absorber 50. The dilute solution Sw is an absorbing solution S whose concentration is lowered by absorbing the low-temperature refrigerant vapor Vc by the absorbing solution S (low concentration solution Sc in the present embodiment) sprayed from the low concentration solution spray nozzle 52. The dilute solution Sw contains more refrigerant V than the high concentration solution Sa and the medium concentration solution Sb. The heating tube 51 is disposed above the storage unit 53. The low temperature absorber can body 54 has a thickness that can withstand a pressure obtained by adding a margin to the design operating pressure. Since the operating pressure of the low temperature absorber 50 is lower than the operating pressure of the intermediate temperature absorber 30, the low temperature absorber can body 54 can be made thinner than the intermediate temperature absorber can body 34. The low-temperature absorber can body 54 is provided with a low-temperature absorber pressure gauge 54P as a pressure detector for detecting the internal pressure.

低温蒸発器60は、蒸発器熱源流体としての蒸発器熱源温水heの流路を構成する熱源管61と、冷媒液Vfを散布する冷媒液散布ノズル62とを内部に有している。冷媒液散布ノズル62は、散布した冷媒液Vfが熱源管61に降りかかるように、熱源管61の上方に配設されている。低温蒸発器60には、冷媒液Vfを内部に流す冷媒液管86の一端が接続されている。冷媒液管86には、低温蒸発器60に導入する冷媒液Vfの流量を調節する流量調節弁87が配設されている。低温蒸発器60の下部(典型的には底部)には、低温蒸発器60の下部に貯留された冷媒液Vfを冷媒液散布ノズル62へ導く低温冷媒液管65の一端が接続されている。低温冷媒液管65の他端は、冷媒液散布ノズル62に接続されている。低温冷媒液管65には、内部を流れる冷媒液Vfを圧送する低温冷媒液ポンプ66が配設されている。低温蒸発器60は、冷媒液散布ノズル62から冷媒液Vfが散布され、散布された冷媒液Vfが熱源管61内を流れる蒸発器熱源温水heの熱で蒸発して低温冷媒蒸気Vcが発生するように構成されている。蒸発器熱源温水heは、冷媒液Vfを加熱する加熱源となっている。熱源管61を流れた後の蒸発器熱源温水heを流す流路には、熱源管61を流れる蒸発器熱源温水heの流量を調節可能な蒸発器熱源温水弁64が設けられている。低温蒸発器60は、中温蒸発器40よりも低い圧力(露点温度)で作動するように構成されており、中温蒸発器40よりも作動温度が低くなっている。   The low-temperature evaporator 60 includes therein a heat source pipe 61 that forms a flow path of the evaporator heat source hot water he as an evaporator heat source fluid, and a refrigerant liquid spray nozzle 62 that sprays the refrigerant liquid Vf. The refrigerant liquid spray nozzle 62 is disposed above the heat source pipe 61 so that the sprayed refrigerant liquid Vf falls on the heat source pipe 61. One end of a refrigerant liquid pipe 86 for flowing the refrigerant liquid Vf to the inside is connected to the low temperature evaporator 60. The refrigerant liquid pipe 86 is provided with a flow rate adjusting valve 87 for adjusting the flow rate of the refrigerant liquid Vf introduced into the low temperature evaporator 60. One end of a low-temperature refrigerant liquid pipe 65 that guides the refrigerant liquid Vf stored in the lower part of the low-temperature evaporator 60 to the refrigerant liquid spray nozzle 62 is connected to the lower part (typically the bottom part) of the low-temperature evaporator 60. The other end of the low-temperature refrigerant liquid pipe 65 is connected to the refrigerant liquid spray nozzle 62. The low-temperature refrigerant liquid pipe 65 is provided with a low-temperature refrigerant liquid pump 66 that pumps the refrigerant liquid Vf flowing inside. In the low-temperature evaporator 60, the refrigerant liquid Vf is sprayed from the refrigerant liquid spray nozzle 62, and the sprayed refrigerant liquid Vf is evaporated by the heat of the evaporator heat source hot water he flowing in the heat source pipe 61 to generate the low-temperature refrigerant vapor Vc. It is configured as follows. The evaporator heat source hot water he serves as a heating source for heating the refrigerant liquid Vf. An evaporator heat source hot water valve 64 capable of adjusting the flow rate of the evaporator heat source hot water he flowing through the heat source pipe 61 is provided in the flow path for flowing the evaporator heat source hot water he after flowing through the heat source pipe 61. The low-temperature evaporator 60 is configured to operate at a pressure (dew point temperature) lower than that of the intermediate temperature evaporator 40, and the operating temperature is lower than that of the intermediate temperature evaporator 40.

低温吸収器50と低温蒸発器60とは、相互に連通している。低温吸収器50と低温蒸発器60とが連通することにより、低温蒸発器60で発生した低温冷媒蒸気Vcを低温吸収器50に供給することができるように構成されている。低温吸収器50と低温蒸発器60とは、典型的には、低濃度溶液散布ノズル52より上方及び冷媒液散布ノズル62より上方で連通している。また、低温吸収器50と低温蒸発器60とは、連通していることにより、概ね同じ内部圧力となる。   The low temperature absorber 50 and the low temperature evaporator 60 communicate with each other. The low temperature absorber 50 and the low temperature evaporator 60 communicate with each other so that the low temperature refrigerant vapor Vc generated in the low temperature evaporator 60 can be supplied to the low temperature absorber 50. The low-temperature absorber 50 and the low-temperature evaporator 60 typically communicate with each other above the low-concentration solution spray nozzle 52 and above the refrigerant liquid spray nozzle 62. Further, since the low temperature absorber 50 and the low temperature evaporator 60 are in communication with each other, they have substantially the same internal pressure.

再生器70は、再生器熱源流体としての再生器熱源温水hgの流路を構成する熱源管71と、希溶液Swを散布する希溶液散布ノズル72とを有している。再生器70の熱源管71を流れる再生器熱源温水hgは、低温蒸発器60の熱源管61を流れる蒸発器熱源温水heと同じ温水であってもよく、その場合は、熱源管61を流れた後に熱源管71を流れるように配管(不図示)で接続されているとよい。各熱源管61、71に異なる熱源媒体が流れることとしてもよい。希溶液散布ノズル72は、散布した希溶液Swが熱源管71に降りかかるように、熱源管71の上方に配設されている。再生器70は、散布された希溶液Swが再生器熱源温水hgで加熱されることにより、希溶液Swから冷媒Vが蒸発して濃度が上昇した高濃度溶液Saが生成される。再生器熱源温水hgは、希溶液Swを加熱する加熱源となっている。再生器70は、生成された高濃度溶液Saが下部に貯留されるように構成されている。熱源管71を流れた後の再生器熱源温水hgを流す流路には、熱源管71を流れる再生器熱源温水hgの流量を調節可能な再生器熱源温水弁74が設けられている。   The regenerator 70 includes a heat source pipe 71 that forms a flow path of the regenerator heat source hot water hg as a regenerator heat source fluid, and a dilute solution spray nozzle 72 that sprays the dilute solution Sw. The regenerator heat source hot water hg flowing through the heat source pipe 71 of the regenerator 70 may be the same hot water as the evaporator heat source hot water he flowing through the heat source pipe 61 of the low temperature evaporator 60, and in that case, the regenerator heat source hot water hg flowed through the heat source pipe 61. It is good to be connected by piping (not shown) so that it may flow through the heat source pipe 71 later. Different heat source media may flow through the heat source tubes 61 and 71. The dilute solution spray nozzle 72 is disposed above the heat source pipe 71 so that the sprayed dilute solution Sw falls on the heat source pipe 71. In the regenerator 70, the sprayed dilute solution Sw is heated by the regenerator heat source hot water hg, whereby the refrigerant V evaporates from the dilute solution Sw to generate a high concentration solution Sa having an increased concentration. The regenerator heat source hot water hg is a heating source for heating the dilute solution Sw. The regenerator 70 is configured such that the generated high concentration solution Sa is stored in the lower part. A regenerator heat source hot water valve 74 capable of adjusting the flow rate of the regenerator heat source hot water hg flowing through the heat source pipe 71 is provided in the flow path for flowing the regenerator heat source hot water hg after flowing through the heat source pipe 71.

凝縮器80は、冷却媒体流路を形成する冷却水管81を有している。冷却水管81には、冷却媒体としての冷却水cが流れる。凝縮器80は、再生器70で発生した冷媒Vの蒸気である再生器冷媒蒸気Vgを導入し、これを冷却水cで冷却して凝縮させるように構成されている。冷却水cは、再生器冷媒蒸気Vgを冷却する冷却源となっている。冷却水管81は、再生器冷媒蒸気Vgを直接冷却することができるように、再生器冷媒蒸気Vgが凝縮した冷媒液Vfに浸らないように配設されている。冷却水管81を流れた後の冷却水cを流す流路には、冷却水管81を流れる冷却水cの流量を調節可能な冷却水弁81vが設けられている。凝縮器80には、凝縮した冷媒液Vfを、高温蒸発器20、中温蒸発器40、及び低温蒸発器60に向けて送る冷媒液管88の一端が接続されている。冷媒液管88の他端は、高温蒸発器20に接続された冷媒液管82及び低温蒸発器60に接続された冷媒液管86に接続されており、凝縮器80内の冷媒液Vfを高温蒸発器20と中温蒸発器40と低温蒸発器60とに分配することができるように構成されている。冷媒液管88には、冷媒液Vfを圧送するための凝縮冷媒ポンプ89が配設されている。本実施の形態では、冷媒液管88及び凝縮冷媒ポンプ89並びに冷媒液管82、84、86で冷媒液搬送部を構成している。   The condenser 80 has a cooling water pipe 81 that forms a cooling medium flow path. The cooling water c as a cooling medium flows through the cooling water pipe 81. The condenser 80 is configured to introduce the regenerator refrigerant vapor Vg, which is the vapor of the refrigerant V generated in the regenerator 70, and to cool and condense it with the cooling water c. The cooling water c is a cooling source for cooling the regenerator refrigerant vapor Vg. The cooling water pipe 81 is disposed so that the regenerator refrigerant vapor Vg is not immersed in the condensed refrigerant liquid Vf so that the regenerator refrigerant vapor Vg can be directly cooled. A cooling water valve 81v capable of adjusting the flow rate of the cooling water c flowing through the cooling water pipe 81 is provided in the flow path for flowing the cooling water c after flowing through the cooling water pipe 81. One end of a refrigerant liquid pipe 88 that sends the condensed refrigerant liquid Vf toward the high-temperature evaporator 20, the intermediate-temperature evaporator 40, and the low-temperature evaporator 60 is connected to the condenser 80. The other end of the refrigerant liquid pipe 88 is connected to a refrigerant liquid pipe 82 connected to the high temperature evaporator 20 and a refrigerant liquid pipe 86 connected to the low temperature evaporator 60, and the refrigerant liquid Vf in the condenser 80 is heated to a high temperature. The evaporator 20, the intermediate temperature evaporator 40, and the low temperature evaporator 60 can be distributed. The refrigerant liquid pipe 88 is provided with a condensing refrigerant pump 89 for pumping the refrigerant liquid Vf. In the present embodiment, the refrigerant liquid pipe 88, the condensing refrigerant pump 89, and the refrigerant liquid pipes 82, 84, and 86 constitute a refrigerant liquid transport unit.

再生器70と凝縮器80とは、相互に連通している。再生器70と凝縮器80とが連通することにより、再生器70で発生した再生器冷媒蒸気Vgを凝縮器80に供給することができるように構成されている。再生器70と凝縮器80とは、上部の気相部で連通している。また、再生器70と凝縮器80とは、連通していることにより、概ね同じ内部圧力となる。また、再生器70の下部と凝縮器80の下部とは、冷媒液導入管78で接続されている。冷媒液導入管78は、凝縮器80側では冷媒液Vfが貯留される部分に端部が接続されており、再生器70側では缶胴を貫通して吸収液Sの液面よりも上方で端部が開口している。冷媒液導入管78には、流体の流通を遮断可能な冷媒液導入弁78vが配設されている。冷媒液導入管78と冷媒液導入弁78vとで冷媒液導入部を構成している。また、本実施の形態では、再生器70及び凝縮器80が、高温吸収器10、高温蒸発器20、中温吸収器30、中温蒸発器40、低温吸収器50、低温蒸発器60の下方に設けられている。   The regenerator 70 and the condenser 80 are in communication with each other. By connecting the regenerator 70 and the condenser 80, the regenerator refrigerant vapor Vg generated in the regenerator 70 can be supplied to the condenser 80. The regenerator 70 and the condenser 80 communicate with each other in the upper gas phase portion. Further, the regenerator 70 and the condenser 80 communicate with each other, so that the internal pressure is substantially the same. The lower part of the regenerator 70 and the lower part of the condenser 80 are connected by a refrigerant liquid introduction pipe 78. The refrigerant liquid introduction pipe 78 has an end connected to a portion where the refrigerant liquid Vf is stored on the condenser 80 side, and passes through the can body on the regenerator 70 side above the liquid surface of the absorbing liquid S. The end is open. The refrigerant liquid introduction pipe 78 is provided with a refrigerant liquid introduction valve 78v that can block the flow of fluid. The refrigerant liquid introduction pipe 78 and the refrigerant liquid introduction valve 78v constitute a refrigerant liquid introduction part. In the present embodiment, the regenerator 70 and the condenser 80 are provided below the high temperature absorber 10, the high temperature evaporator 20, the intermediate temperature absorber 30, the intermediate temperature evaporator 40, the low temperature absorber 50, and the low temperature evaporator 60. It has been.

再生器70の高濃度溶液Saが貯留される部分と、高温吸収器10の高濃度溶液散布ノズル12とは、高濃度溶液管75で接続されている。高濃度溶液管75には、再生器70内の高濃度溶液Saを高濃度溶液散布ノズル12に圧送する高濃度溶液ポンプ76が配設されている。高濃度溶液管75及び高濃度溶液ポンプ76は、濃溶液搬送部の構成要素となっている。高温吸収器10の貯留部13と、中温吸収器30の中濃度溶液散布ノズル32とは、中濃度溶液管15で接続されている。中濃度溶液管15には、高温吸収器10内の中濃度溶液Sbを中温吸収器30に圧送する中濃度溶液ポンプ16が配設されている。中温吸収器30の貯留部33と、低温吸収器50の低濃度溶液散布ノズル52とは、低濃度溶液管35で接続されている。低濃度溶液管35には、中温吸収器30内の低濃度溶液Scを低温吸収器50に圧送する低濃度溶液ポンプ36が配設されている。低温吸収器50の貯留部53と、再生器70の希溶液散布ノズル72とは、希溶液管55で接続されている。   The portion of the regenerator 70 where the high concentration solution Sa is stored and the high concentration solution spray nozzle 12 of the high temperature absorber 10 are connected by a high concentration solution tube 75. The high concentration solution pipe 75 is provided with a high concentration solution pump 76 that pumps the high concentration solution Sa in the regenerator 70 to the high concentration solution spray nozzle 12. The high-concentration solution pipe 75 and the high-concentration solution pump 76 are components of the concentrated solution transport unit. The storage unit 13 of the high temperature absorber 10 and the medium concentration solution spray nozzle 32 of the medium temperature absorber 30 are connected by a medium concentration solution tube 15. The medium concentration solution pipe 15 is provided with a medium concentration solution pump 16 that pumps the medium concentration solution Sb in the high temperature absorber 10 to the medium temperature absorber 30. The storage unit 33 of the intermediate temperature absorber 30 and the low concentration solution spray nozzle 52 of the low temperature absorber 50 are connected by a low concentration solution tube 35. The low concentration solution pipe 35 is provided with a low concentration solution pump 36 that pumps the low concentration solution Sc in the intermediate temperature absorber 30 to the low temperature absorber 50. The storage unit 53 of the low-temperature absorber 50 and the dilute solution spray nozzle 72 of the regenerator 70 are connected by a dilute solution tube 55.

中濃度溶液管15及び高濃度溶液管75には、高温熱交換器18が配設されている。高温熱交換器18は、中濃度溶液管15を流れる中濃度溶液Sbと、高濃度溶液管75を流れる高濃度溶液Saとの間で熱交換を行わせる機器である。低濃度溶液管35及び高濃度溶液管75には、中温熱交換器38が配設されている。中温熱交換器38は、低濃度溶液管35を流れる低濃度溶液Scと、高濃度溶液管75を流れる高濃度溶液Saとの間で熱交換を行わせる機器である。希溶液管55及び高濃度溶液管75には、低温熱交換器58が配設されている。低温熱交換器58は、希溶液管55を流れる希溶液Swと、高濃度溶液管75を流れる高濃度溶液Saとの間で熱交換を行わせる機器である。   A high temperature heat exchanger 18 is disposed in the medium concentration solution tube 15 and the high concentration solution tube 75. The high temperature heat exchanger 18 is a device that exchanges heat between the medium concentration solution Sb flowing through the medium concentration solution tube 15 and the high concentration solution Sa flowing through the high concentration solution tube 75. An intermediate temperature heat exchanger 38 is disposed in the low concentration solution tube 35 and the high concentration solution tube 75. The intermediate temperature heat exchanger 38 is a device that exchanges heat between the low concentration solution Sc flowing through the low concentration solution tube 35 and the high concentration solution Sa flowing through the high concentration solution tube 75. A low temperature heat exchanger 58 is disposed in the dilute solution tube 55 and the high concentration solution tube 75. The low-temperature heat exchanger 58 is a device that performs heat exchange between the dilute solution Sw flowing through the dilute solution tube 55 and the high concentration solution Sa flowing through the high concentration solution tube 75.

吸収ヒートポンプ1は、上述した主要構成機器のほか、高温吸収器10の伝熱管11を流れて加熱された被加熱水Wを被加熱水蒸気Wvと被加熱水液Wqとに分離する気液分離器90を備えている。気液分離器90の下部と高温吸収器10の伝熱管11の一端とは、被加熱水液Wqを伝熱管11に導く被加熱水液管92で接続されている。内部が気相部となる気液分離器90の側面と伝熱管11の他端とは、加熱された被加熱水Wを気液分離器90に導く加熱後被加熱水管94で接続されている。被加熱水液管92には、蒸気として系外に供給された分の被加熱水Wを補うための補給流体としての補給水Wsを系外から導入する補給水管95が接続されている。補給水管95には、気液分離器90に向けて補給水Wsを圧送する補給水ポンプ96が配設されている。また、気液分離器90には、被加熱水蒸気Wvを系外に供給する被加熱水蒸気供給管99が上部(典型的には頂部)に接続されている。被加熱水蒸気供給管99には、安全弁98が設けられている。なお、安全弁98は、被加熱水蒸気管99に代えて、気液分離器90の上部(典型的には頂部)に設けられていてもよい。気液分離器90は、伝熱管11内で被加熱水液Wqの一部が蒸発して被加熱水液Wqと被加熱水蒸気Wvとが混合した混合流体Wmを導入してもよく、被加熱水液Wqのまま気液分離器90に導いて減圧し一部を気化させて混合流体Wmとしたものを気液分離させるようにしてもよい。   The absorption heat pump 1 is a gas-liquid separator that separates the heated water W heated by flowing through the heat transfer tube 11 of the high-temperature absorber 10 into the heated water vapor Wv and the heated water liquid Wq in addition to the main components described above. 90. The lower part of the gas-liquid separator 90 and one end of the heat transfer pipe 11 of the high-temperature absorber 10 are connected by a heated water liquid pipe 92 that guides the heated water liquid Wq to the heat transfer pipe 11. The side surface of the gas-liquid separator 90 whose inside is a gas phase portion and the other end of the heat transfer tube 11 are connected by a heated water tube 94 after heating that guides the heated water W to be heated to the gas-liquid separator 90. . Connected to the heated water liquid pipe 92 is a replenishment water pipe 95 for introducing replenishment water Ws as a replenishment fluid for supplementing the heated water W supplied to the outside of the system as steam. The makeup water pipe 95 is provided with a makeup water pump 96 that pumps the makeup water Ws toward the gas-liquid separator 90. In addition, a heated steam supply pipe 99 that supplies heated steam Wv to the outside of the system is connected to the upper part (typically the top) of the gas-liquid separator 90. The heated steam supply pipe 99 is provided with a safety valve 98. The safety valve 98 may be provided in the upper part (typically the top part) of the gas-liquid separator 90 in place of the heated steam pipe 99. The gas-liquid separator 90 may introduce a mixed fluid Wm in which a part of the heated water liquid Wq is evaporated in the heat transfer tube 11 and the heated water liquid Wq and the heated steam Wv are mixed. The water-liquid Wq may be guided to the gas-liquid separator 90, and the pressure may be reduced to partially vaporize the mixed fluid Wm to be gas-liquid separated.

制御装置100は、吸収ヒートポンプ1の作動を制御する。制御装置100は、中濃度溶液ポンプ16、低濃度溶液ポンプ36、低温冷媒液ポンプ66、高濃度溶液ポンプ76、凝縮冷媒ポンプ89、補給水ポンプ96とそれぞれ信号ケーブルで接続されており、各ポンプの発停及び回転速度の調節をすることができるように構成されている。また、制御装置100は、高温吸収器圧力計14P、中温吸収器圧力計34P、低温吸収器圧力計54Pとそれぞれ信号ケーブルで接続されており、各圧力計14P、34P、54Pで検知された値を信号として受信することができるように構成されている。また、制御装置100は、蒸発器熱源温水弁64、再生器熱源温水弁74、冷却水弁81vとそれぞれ信号ケーブルで接続されており、各弁64、74、81vの開度を調節することができるように構成されている。また、制御装置100は、冷媒液導入弁78vと信号ケーブルで接続されており、冷媒液導入弁78vの開閉を制御することができるように構成されている。   The control device 100 controls the operation of the absorption heat pump 1. The control device 100 is connected to each of the medium concentration solution pump 16, the low concentration solution pump 36, the low temperature refrigerant liquid pump 66, the high concentration solution pump 76, the condensing refrigerant pump 89, and the makeup water pump 96 through signal cables. It is configured to be able to adjust the start / stop and rotation speed. Further, the control device 100 is connected to the high temperature absorber pressure gauge 14P, the intermediate temperature absorber pressure gauge 34P, and the low temperature absorber pressure gauge 54P through signal cables, and the values detected by the pressure gauges 14P, 34P, 54P. Can be received as a signal. The control device 100 is connected to the evaporator heat source hot water valve 64, the regenerator heat source hot water valve 74, and the cooling water valve 81v through signal cables, respectively, and can adjust the opening degree of each valve 64, 74, 81v. It is configured to be able to. The control device 100 is connected to the refrigerant liquid introduction valve 78v by a signal cable, and is configured to be able to control opening and closing of the refrigerant liquid introduction valve 78v.

引き続き図1を参照して、吸収ヒートポンプ1の作用を説明する。吸収ヒートポンプ1の起動時及び定常運転時は、冷媒液導入弁78vは閉となっており、蒸発器熱源温水弁64及び再生器熱源温水弁74並びに各流量調節弁83、85、87は開となっている。まず、冷媒側のサイクルを説明する。凝縮器80では、再生器70で発生した再生器冷媒蒸気Vgを受け入れて、冷却水管81を流れる冷却水cで再生器冷媒蒸気Vgを冷却して凝縮し、冷媒液Vfとする。凝縮した冷媒液Vfは、凝縮冷媒ポンプ89で高温蒸発器20、中温蒸発器40、及び低温蒸発器60に向けて圧送される。凝縮冷媒ポンプ89で圧送された冷媒液Vfは、冷媒液管88を流れ、冷媒液管82と冷媒液管86とに分流される。冷媒液管82を流れる冷媒液Vfは、途中で一部が冷媒液管84に流入し、残りはそのまま冷媒液管82を流れて高温冷媒液供給管22に導入される。冷媒液管84を流れる冷媒液Vfは、中温冷媒液供給管42に導入される。冷媒液管86を流れる冷媒液Vfは、低温蒸発器60に導入される。   With continued reference to FIG. 1, the operation of the absorption heat pump 1 will be described. During startup and steady operation of the absorption heat pump 1, the refrigerant liquid introduction valve 78v is closed, and the evaporator heat source hot water valve 64, the regenerator heat source hot water valve 74, and the flow rate adjustment valves 83, 85, 87 are opened. It has become. First, the refrigerant side cycle will be described. The condenser 80 receives the regenerator refrigerant vapor Vg generated in the regenerator 70, cools the regenerator refrigerant vapor Vg with the cooling water c flowing through the cooling water pipe 81, and condenses it into a refrigerant liquid Vf. The condensed refrigerant liquid Vf is pumped toward the high temperature evaporator 20, the medium temperature evaporator 40, and the low temperature evaporator 60 by the condensation refrigerant pump 89. The refrigerant liquid Vf pumped by the condensing refrigerant pump 89 flows through the refrigerant liquid pipe 88 and is divided into the refrigerant liquid pipe 82 and the refrigerant liquid pipe 86. A part of the refrigerant liquid Vf flowing through the refrigerant liquid pipe 82 flows into the refrigerant liquid pipe 84 in the middle, and the rest flows through the refrigerant liquid pipe 82 as it is and is introduced into the high-temperature refrigerant liquid supply pipe 22. The refrigerant liquid Vf flowing through the refrigerant liquid pipe 84 is introduced into the intermediate temperature refrigerant liquid supply pipe 42. The refrigerant liquid Vf flowing through the refrigerant liquid pipe 86 is introduced into the low temperature evaporator 60.

低温蒸発器60に導入された冷媒液Vfは、低温冷媒液ポンプ66によって冷媒液散布ノズル62に圧送され、冷媒液散布ノズル62から熱源管61に向けて散布される。冷媒液散布ノズル62から散布された冷媒液Vfは、熱源管61内を流れる蒸発器熱源温水heによって加熱され蒸発して低温冷媒蒸気Vcとなる。低温蒸発器60で発生した低温冷媒蒸気Vcは、低温蒸発器60と連通する低温吸収器50へと移動する。他方、中温冷媒液供給管42に導入された冷媒液Vfは、気泡ポンプの作用によって低温吸収器50の加熱管51に流入する。加熱管51に流入した冷媒液Vfは、低温吸収器50において、低温蒸発器60から移動してきた低温冷媒蒸気Vcが低濃度溶液Scに吸収される際に発生する吸収熱により加熱され、この加熱により蒸発して中温冷媒蒸気Vbとなる。加熱管51内で発生した中温冷媒蒸気Vbは、中温冷媒蒸気受入管44を流れ、冷媒気液分離胴41に至る。冷媒気液分離胴41に流入した中温冷媒蒸気Vbは、中温冷媒蒸気管49を介して中温蒸発器40と連通する中温吸収器30へと移動する。また、高温冷媒液供給管22に導入された冷媒液Vfは、気泡ポンプの作用によって中温吸収器30の加熱管31に流入する。加熱管31に流入した冷媒液Vfは、中温吸収器30において、中温蒸発器40から移動してきた中温冷媒蒸気Vbが中濃度溶液Sbに吸収される際に発生する吸収熱により加熱され、この加熱により蒸発して高温冷媒蒸気Vaとなる。加熱管31内で発生した高温冷媒蒸気Vaは、高温冷媒蒸気受入管24を流れ、冷媒気液分離胴21に至る。冷媒気液分離胴21に流入した高温冷媒蒸気Vaは、高温冷媒蒸気管29を介して高温蒸発器20と連通する高温吸収器10へと移動する。   The refrigerant liquid Vf introduced into the low temperature evaporator 60 is pumped to the refrigerant liquid spray nozzle 62 by the low temperature refrigerant liquid pump 66 and sprayed from the refrigerant liquid spray nozzle 62 toward the heat source pipe 61. The refrigerant liquid Vf sprayed from the refrigerant liquid spray nozzle 62 is heated and evaporated by the evaporator heat source hot water he flowing in the heat source pipe 61 to become a low-temperature refrigerant vapor Vc. The low-temperature refrigerant vapor Vc generated in the low-temperature evaporator 60 moves to the low-temperature absorber 50 that communicates with the low-temperature evaporator 60. On the other hand, the refrigerant liquid Vf introduced into the intermediate temperature refrigerant liquid supply pipe 42 flows into the heating pipe 51 of the low temperature absorber 50 by the action of the bubble pump. The refrigerant liquid Vf flowing into the heating pipe 51 is heated by the absorption heat generated when the low-temperature refrigerant vapor Vc moved from the low-temperature evaporator 60 is absorbed by the low-concentration solution Sc in the low-temperature absorber 50. Evaporates to medium temperature refrigerant vapor Vb. The intermediate temperature refrigerant vapor Vb generated in the heating pipe 51 flows through the intermediate temperature refrigerant vapor receiving pipe 44 and reaches the refrigerant gas-liquid separation cylinder 41. The intermediate temperature refrigerant vapor Vb flowing into the refrigerant gas-liquid separation cylinder 41 moves to the intermediate temperature absorber 30 communicating with the intermediate temperature evaporator 40 via the intermediate temperature refrigerant vapor pipe 49. The refrigerant liquid Vf introduced into the high-temperature refrigerant liquid supply pipe 22 flows into the heating pipe 31 of the intermediate temperature absorber 30 by the action of the bubble pump. The refrigerant liquid Vf flowing into the heating pipe 31 is heated by the absorption heat generated when the intermediate temperature refrigerant vapor Vb moved from the intermediate temperature evaporator 40 is absorbed by the intermediate concentration solution Sb in the intermediate temperature absorber 30, and this heating is performed. Evaporates to a high-temperature refrigerant vapor Va. The high-temperature refrigerant vapor Va generated in the heating pipe 31 flows through the high-temperature refrigerant vapor receiving pipe 24 and reaches the refrigerant gas-liquid separation cylinder 21. The high-temperature refrigerant vapor Va flowing into the refrigerant gas-liquid separation cylinder 21 moves to the high-temperature absorber 10 that communicates with the high-temperature evaporator 20 via the high-temperature refrigerant vapor pipe 29.

次に吸収ヒートポンプ1の吸収液側のサイクルを説明する。高温吸収器10では、高濃度溶液Saが高濃度溶液散布ノズル12から散布され、この散布された高濃度溶液Saが高温蒸発器20から移動してきた高温冷媒蒸気Vaを吸収する。高温冷媒蒸気Vaを吸収した高濃度溶液Saは、濃度が低下して中濃度溶液Sbとなる。高温吸収器10では、高濃度溶液Saが高温冷媒蒸気Vaを吸収する際に吸収熱が発生する。この吸収熱により、伝熱管11を流れる被加熱水液Wqが加熱される。ここで、被加熱水蒸気Wvを取り出すための気液分離器90まわりの作用について説明する。   Next, the cycle on the absorption liquid side of the absorption heat pump 1 will be described. In the high temperature absorber 10, the high concentration solution Sa is sprayed from the high concentration solution spray nozzle 12, and the sprayed high concentration solution Sa absorbs the high temperature refrigerant vapor Va that has moved from the high temperature evaporator 20. The high-concentration solution Sa that has absorbed the high-temperature refrigerant vapor Va is reduced in concentration to become a medium-concentration solution Sb. In the high-temperature absorber 10, heat of absorption is generated when the high-concentration solution Sa absorbs the high-temperature refrigerant vapor Va. The heated water liquid Wq flowing through the heat transfer tube 11 is heated by the absorbed heat. Here, the effect | action around the gas-liquid separator 90 for taking out the to-be-heated water vapor | steam Wv is demonstrated.

気液分離器90には、系外から補給水Wsが補給水管95を介して導入される。補給水Wsは、補給水ポンプ96により補給水管95を圧送され、被加熱水液管92に導入される。被加熱水液管92に導入された補給水Wsは、被加熱水液Wqとして、気液分離器90の下部から流れてきた被加熱水液Wqと合流し、気泡ポンプの作用により、高温吸収器10の伝熱管11に流入する。伝熱管11に流入した被加熱水液Wqは、高温吸収器10における上述の吸収熱により加熱される。伝熱管11で加熱された被加熱水液Wqは、一部が蒸発して被加熱水蒸気Wvとなった混合流体Wmとして、あるいは温度が上昇した被加熱水液Wqとして、気液分離器90に向けて加熱後被加熱水管94を流れる。加熱後被加熱水管94を、温度が上昇した被加熱水液Wqが流れる場合、被加熱水液Wqは、気液分離器90に導入される際に、気液分離器90への導入部に設けた弁やオリフィス等の減圧装置(不図示)により減圧され、一部が蒸発して被加熱水蒸気Wvとなった混合流体Wmとして気液分離器90に導入される。気液分離器90に導入された混合流体Wmは、被加熱水液Wqと被加熱水蒸気Wvとが分離される。分離された被加熱水液Wqは、気液分離器90の下部に貯留され、再び高温吸収器10の伝熱管11に送られる。他方、分離された被加熱水蒸気Wvは、被加熱水蒸気供給管99に流出し、蒸気利用場所に供給される。本実施の形態では、0.8MPa(ゲージ圧)程度の被加熱水蒸気Wvが供給される。   The gas-liquid separator 90 is introduced with make-up water Ws from outside the system through a make-up water pipe 95. The makeup water Ws is pumped through the makeup water pipe 95 by the makeup water pump 96 and introduced into the heated water liquid pipe 92. The makeup water Ws introduced into the heated water liquid pipe 92 joins with the heated water liquid Wq flowing from the lower part of the gas-liquid separator 90 as the heated water liquid Wq, and is absorbed at a high temperature by the action of the bubble pump. It flows into the heat transfer tube 11 of the vessel 10. The heated liquid Wq flowing into the heat transfer tube 11 is heated by the above-described absorbed heat in the high-temperature absorber 10. The heated liquid Wq heated by the heat transfer tube 11 is supplied to the gas-liquid separator 90 as a mixed fluid Wm partially evaporated to become heated steam Wv or as a heated liquid Wq whose temperature has increased. After being heated, it flows through the heated water pipe 94. When the heated water liquid Wq whose temperature has risen flows through the heated water pipe 94 after heating, the heated water liquid Wq is introduced into the introduction portion to the gas-liquid separator 90 when introduced into the gas-liquid separator 90. The pressure is reduced by a pressure reducing device (not shown) such as a provided valve or orifice, and the mixed fluid Wm partially evaporated to be heated steam Wv is introduced into the gas-liquid separator 90. In the mixed fluid Wm introduced into the gas-liquid separator 90, the heated water liquid Wq and the heated water vapor Wv are separated. The separated heated liquid Wq is stored in the lower part of the gas-liquid separator 90 and sent again to the heat transfer tube 11 of the high-temperature absorber 10. On the other hand, the separated heated steam Wv flows out to the heated steam supply pipe 99 and is supplied to the steam utilization place. In the present embodiment, heated steam Wv of about 0.8 MPa (gauge pressure) is supplied.

再び吸収ヒートポンプ1の吸収液側のサイクルの説明に戻る。高温吸収器10で高温冷媒蒸気Vaを吸収した高濃度溶液Saは、濃度が低下して中濃度溶液Sbとなり、貯留部13に貯留される。貯留部13内の中濃度溶液Sbは、中濃度溶液ポンプ16の作動により中温吸収器30に向かって中濃度溶液管15を流れ、高温熱交換器18で高濃度溶液Saと熱交換して温度が低下した後に、中濃度溶液散布ノズル32に至る。このように、本実施の形態では、高温吸収器10内の吸収液Sを直接(他の吸収器を経由せずに)中温吸収器30に導入している。なお、高温吸収器10の内部圧力が中温吸収器30の内部圧力よりも高くなり、中濃度溶液ポンプ16が作動していなくても両者の内圧の差によって、高温吸収器10内の中濃度溶液Sbを中温吸収器30に搬送することができる場合は、中濃度溶液ポンプ16を止めるとよい。   Returning to the description of the cycle on the absorption liquid side of the absorption heat pump 1 again. The high-concentration solution Sa that has absorbed the high-temperature refrigerant vapor Va by the high-temperature absorber 10 is reduced in concentration to become a medium-concentration solution Sb and stored in the storage unit 13. The intermediate concentration solution Sb in the reservoir 13 flows through the intermediate concentration solution tube 15 toward the intermediate temperature absorber 30 by the operation of the intermediate concentration solution pump 16, and exchanges heat with the high concentration solution Sa in the high temperature heat exchanger 18. After the decrease, the medium concentration solution spray nozzle 32 is reached. Thus, in this Embodiment, the absorption liquid S in the high temperature absorber 10 is directly introduce | transduced into the intermediate temperature absorber 30 (without passing through another absorber). It should be noted that the internal pressure of the high temperature absorber 10 is higher than the internal pressure of the intermediate temperature absorber 30, and even if the intermediate concentration solution pump 16 is not operating, the medium concentration solution in the high temperature absorber 10 is caused by the difference between the internal pressures of both. When Sb can be conveyed to the intermediate temperature absorber 30, the intermediate concentration solution pump 16 may be stopped.

中温吸収器30では、中濃度溶液Sbが中濃度溶液散布ノズル32から散布され、この散布された中濃度溶液Sbが中温蒸発器40から移動してきた中温冷媒蒸気Vbを吸収する。中温冷媒蒸気Vbを吸収した中濃度溶液Sbは、濃度が低下して低濃度溶液Scとなり、貯留部33に貯留される。中温吸収器30では、中濃度溶液Sbが中温冷媒蒸気Vbを吸収する際に吸収熱が発生する。この吸収熱により、前述したように、加熱管31を流れる冷媒液Vfが加熱される。貯留部33内の低濃度溶液Scは、低濃度溶液ポンプ36の作動により低温吸収器50に向かって低濃度溶液管35を流れ、中温熱交換器38で高濃度溶液Saと熱交換して温度が低下した後に、低濃度溶液散布ノズル52に至る。このように、本実施の形態では、高温吸収器10内の吸収液Sを、中温吸収器30を経由して間接的に低温吸収器50に導入している。なお、中温吸収器30の内部圧力が低温吸収器50の内部圧力よりも高くなり、低濃度溶液ポンプ36が作動していなくても両者の内圧の差によって中温吸収器30内の低濃度溶液Scを低温吸収器50に搬送することができる場合は、低濃度溶液ポンプ36を止めるとよい。   In the intermediate temperature absorber 30, the intermediate concentration solution Sb is dispersed from the intermediate concentration solution spray nozzle 32, and the dispersed intermediate concentration solution Sb absorbs the intermediate temperature refrigerant vapor Vb moved from the intermediate temperature evaporator 40. The medium concentration solution Sb that has absorbed the intermediate temperature refrigerant vapor Vb is reduced in concentration to become a low concentration solution Sc and stored in the storage unit 33. In the intermediate temperature absorber 30, heat of absorption is generated when the intermediate concentration solution Sb absorbs the intermediate temperature refrigerant vapor Vb. As described above, the refrigerant liquid Vf flowing through the heating pipe 31 is heated by this absorbed heat. The low-concentration solution Sc in the reservoir 33 flows through the low-concentration solution pipe 35 toward the low-temperature absorber 50 by the operation of the low-concentration solution pump 36, and exchanges heat with the high-concentration solution Sa in the intermediate temperature heat exchanger 38. After the decrease, the low concentration solution spray nozzle 52 is reached. Thus, in the present embodiment, the absorbing liquid S in the high temperature absorber 10 is indirectly introduced into the low temperature absorber 50 via the intermediate temperature absorber 30. The internal pressure of the intermediate temperature absorber 30 is higher than the internal pressure of the low temperature absorber 50, and even if the low concentration solution pump 36 is not operating, the low concentration solution Sc in the intermediate temperature absorber 30 is caused by the difference in internal pressure between the two. Can be transported to the low temperature absorber 50, the low concentration solution pump 36 may be stopped.

低温吸収器50では、低濃度溶液散布ノズル52に流入した低濃度溶液Scが加熱管51に向けて散布される。散布された低濃度溶液Scは、低温蒸発器60から移動してきた低温冷媒蒸気Vcを吸収する。低温冷媒蒸気Vcを吸収した低濃度溶液Scは、濃度が低下して希溶液Swとなる。低温吸収器50では、低濃度溶液Scが低温冷媒蒸気Vcを吸収する際に吸収熱が発生する。この吸収熱により、前述したように、加熱管51を流れる冷媒液Vfが加熱され、中温冷媒蒸気Vbが生成される。低温吸収器50内の希溶液Swは、重力により再生器70に向かって希溶液管55を流れる。この際、希溶液Swは、低温熱交換器58で高濃度溶液Saと熱交換して温度が低下した後に、再生器70に導入される。このように、本実施の形態では、高温吸収器10内の吸収液Sを、中温吸収器30及び低温吸収器50を経由して間接的に再生器70に導入している。   In the low temperature absorber 50, the low concentration solution Sc that has flowed into the low concentration solution spray nozzle 52 is sprayed toward the heating pipe 51. The dispersed low-concentration solution Sc absorbs the low-temperature refrigerant vapor Vc that has moved from the low-temperature evaporator 60. The low-concentration solution Sc that has absorbed the low-temperature refrigerant vapor Vc is reduced in concentration to become a dilute solution Sw. In the low-temperature absorber 50, absorption heat is generated when the low-concentration solution Sc absorbs the low-temperature refrigerant vapor Vc. As described above, the absorbed heat heats the refrigerant liquid Vf flowing through the heating pipe 51 to generate the intermediate temperature refrigerant vapor Vb. The dilute solution Sw in the low-temperature absorber 50 flows through the dilute solution tube 55 toward the regenerator 70 by gravity. At this time, the dilute solution Sw is introduced into the regenerator 70 after the low temperature heat exchanger 58 exchanges heat with the high concentration solution Sa to lower the temperature. Thus, in the present embodiment, the absorbing liquid S in the high temperature absorber 10 is indirectly introduced into the regenerator 70 via the intermediate temperature absorber 30 and the low temperature absorber 50.

再生器70に送られた希溶液Swは、希溶液散布ノズル72から散布される。希溶液散布ノズル72から散布された希溶液Swは、熱源管71を流れる再生器熱源温水hg(本実施の形態では約80℃前後)によって加熱され、散布された希溶液Sw中の冷媒が蒸発して高濃度溶液Saとなり、再生器70の下部に貯留される。他方、希溶液Swから蒸発した冷媒Vは、再生器冷媒蒸気Vgとして凝縮器80へと移動する。再生器70の下部に貯留された高濃度溶液Saは、高濃度溶液ポンプ76により、高濃度溶液管75を介して高温吸収器10の高濃度溶液散布ノズル12に圧送される。高濃度溶液管75を流れる高濃度溶液Saは、低温熱交換器58で希溶液Swと熱交換して温度が上昇し、中温熱交換器38で低濃度溶液Scと熱交換してさらに温度が上昇し、次いで高温熱交換器18で中濃度溶液Sbと熱交換してさらに温度が上昇してから高温吸収器10に流入し、高濃度溶液散布ノズル12から散布される。以降、同様のサイクルを繰り返す。   The dilute solution Sw sent to the regenerator 70 is sprayed from the dilute solution spray nozzle 72. The dilute solution Sw sprayed from the dilute solution spray nozzle 72 is heated by the regenerator heat source hot water hg flowing in the heat source pipe 71 (about 80 ° C. in the present embodiment), and the refrigerant in the sprayed dilute solution Sw evaporates. As a result, it becomes a high concentration solution Sa and is stored in the lower part of the regenerator 70. On the other hand, the refrigerant V evaporated from the dilute solution Sw moves to the condenser 80 as the regenerator refrigerant vapor Vg. The high concentration solution Sa stored in the lower part of the regenerator 70 is pumped by the high concentration solution pump 76 to the high concentration solution spray nozzle 12 of the high temperature absorber 10 through the high concentration solution pipe 75. The high-concentration solution Sa flowing through the high-concentration solution tube 75 heat-exchanges with the dilute solution Sw in the low-temperature heat exchanger 58 to increase the temperature, and heat-exchanges with the low-concentration solution Sc in the intermediate-temperature heat exchanger 38 to further increase the temperature. Then, the high-temperature heat exchanger 18 exchanges heat with the medium-concentration solution Sb to further increase the temperature, and then flows into the high-temperature absorber 10 and is sprayed from the high-concentration solution spray nozzle 12. Thereafter, the same cycle is repeated.

上述のように吸収ヒートポンプ1が作動すると、蒸発器熱源温水he及び再生器熱源温水hgの導入により、また、吸収液Sが冷媒Vの蒸気を吸収して発生した吸収熱により、気液分離器90や各吸収器缶胴14、34、54の内部圧力は上昇し、大気圧を超えるものもある。大気圧を超える缶胴は、圧力容器に該当し、内部の圧力を最高使用圧力以下に保持することが求められる。気液分離器90は、その内部と連通する被加熱水蒸気供給管99(又は気液分離器90の上部)に安全弁98が設けられているため、最高使用圧力を超えると安全弁98が開放され、最高使用圧力以下に保たれる。他方、各吸収器缶胴14、34、54は、吸収ヒートポンプ1の停止時に内圧が大気圧未満になるため、缶胴内部と連通する部分に安全弁を設けると、大気圧未満になったときに安全弁を介して内部に空気が侵入するおそれがあり、空気の混入に起因して出力が低下するおそれや缶胴内部の腐食が進行するおそれがある。そこで、本実施の形態に係る吸収ヒートポンプ1では、缶胴内部と連通する部分に安全弁を設けなくても缶胴の内部が所定の圧力を超えることを抑制することができるように、以下の制御を行うこととしている。   When the absorption heat pump 1 operates as described above, the gas-liquid separator is introduced by the introduction of the evaporator heat source hot water he and the regenerator heat source hot water hg, and the absorption heat generated by the absorption liquid S absorbing the vapor of the refrigerant V. 90 and the internal pressure of each absorber can body 14, 34, 54 increase, and some of them exceed atmospheric pressure. The can body exceeding the atmospheric pressure corresponds to a pressure vessel, and the internal pressure is required to be kept below the maximum operating pressure. Since the gas-liquid separator 90 is provided with a safety valve 98 in the heated steam supply pipe 99 (or the upper part of the gas-liquid separator 90) communicating with the inside thereof, the safety valve 98 is opened when the maximum operating pressure is exceeded, Keep below maximum working pressure. On the other hand, since each absorber can body 14, 34, 54 has an internal pressure of less than atmospheric pressure when the absorption heat pump 1 is stopped, when a safety valve is provided in a portion communicating with the inside of the can barrel, There is a possibility that air may enter the inside through the safety valve, and there is a possibility that the output may be reduced due to air mixing and corrosion inside the can body may proceed. Therefore, in the absorption heat pump 1 according to the present embodiment, the following control is performed so that the inside of the can body can be prevented from exceeding a predetermined pressure without providing a safety valve in a portion communicating with the inside of the can body. Is going to do.

すなわち、制御装置100は、吸収ヒートポンプ1の運転中、高温吸収器圧力計14P、中温吸収器圧力計34P、低温吸収器圧力計54Pで検知された圧力が、それぞれ個別に設定された所定の圧力以上となったか否かを判断している。所定の圧力は、例えば、高温吸収器缶胴14内は0.35MPa(ゲージ圧)、中温吸収器缶胴34内は0.1MPa(ゲージ圧)、低温吸収器缶胴54内は0.05MPa(ゲージ圧)とすることができる。各圧力計14P、34P、54Pで検知された圧力のいずれか1つでも所定の圧力以上となったら、制御装置100は、低温冷媒液ポンプ66及び凝縮冷媒ポンプ89を停止する。低温冷媒液ポンプ66を停止すると、冷媒液散布ノズル62からの冷媒液Vfの散布が停止するため、低温冷媒蒸気Vcの生成が止まり、低温吸収器50における吸収熱の発生が止まる。これにより、低温吸収器50内の圧力の上昇が抑制される。また、凝縮冷媒ポンプ89を停止すると、低温蒸発器60への冷媒液Vfの供給が止まると共に、中温冷媒液供給管42及び高温冷媒液供給管22への冷媒液Vfの供給も止まる。すると、中温蒸発器40における中温冷媒蒸気Vbの発生及び高温蒸発器20における高温冷媒蒸気Vaの発生が止まり、中温吸収器30における吸収熱の発生及び高温吸収器10における吸収熱の発生が止まる。これにより、中温吸収器30内の圧力の上昇及び高温吸収器10内の圧力の上昇が抑制される。そして、各吸収器10、30、50では、吸収熱の発生の停止後、時間の経過と共に温度が低下し、それに連れて内圧も低下していく。   That is, the control device 100 determines the pressures detected by the high-temperature absorber pressure gauge 14P, the intermediate-temperature absorber pressure gauge 34P, and the low-temperature absorber pressure gauge 54P during the operation of the absorption heat pump 1, respectively. It is determined whether or not the above has been reached. The predetermined pressure is, for example, 0.35 MPa (gauge pressure) in the high temperature absorber can body 14, 0.1 MPa (gauge pressure) in the intermediate temperature absorber can body 34, and 0.05 MPa in the low temperature absorber can body 54. (Gauge pressure). When any one of the pressures detected by the pressure gauges 14P, 34P, 54P becomes equal to or higher than a predetermined pressure, the control device 100 stops the low-temperature refrigerant liquid pump 66 and the condensing refrigerant pump 89. When the low-temperature refrigerant liquid pump 66 is stopped, the distribution of the refrigerant liquid Vf from the refrigerant liquid spray nozzle 62 is stopped, so the generation of the low-temperature refrigerant vapor Vc is stopped, and the generation of heat absorbed in the low-temperature absorber 50 is stopped. Thereby, the rise in the pressure in the low temperature absorber 50 is suppressed. When the condensing refrigerant pump 89 is stopped, the supply of the refrigerant liquid Vf to the low temperature evaporator 60 is stopped, and the supply of the refrigerant liquid Vf to the intermediate temperature refrigerant liquid supply pipe 42 and the high temperature refrigerant liquid supply pipe 22 is also stopped. Then, the generation of the intermediate temperature refrigerant vapor Vb in the intermediate temperature evaporator 40 and the generation of the high temperature refrigerant vapor Va in the high temperature evaporator 20 are stopped, and the generation of the absorption heat in the intermediate temperature absorber 30 and the generation of the absorption heat in the high temperature absorber 10 are stopped. Thereby, the rise in the pressure in the intermediate temperature absorber 30 and the rise in the pressure in the high temperature absorber 10 are suppressed. And in each absorber 10, 30, and 50, after generation | occurrence | production of absorption heat stops, temperature falls with progress of time and internal pressure also falls along with it.

このとき、本実施の形態では、高濃度溶液ポンプ76の運転を継続し、必要に応じて中濃度溶液ポンプ16及び/又は低濃度溶液ポンプ36の運転も継続している。換言すれば、本実施の形態では、各圧力計14P、34P、54Pで検知された圧力のいずれか1つでも所定の圧力以上となったときに、各蒸発器20、40、60への冷媒液Vfの導入を停止しつつ、各吸収器10、30、50への吸収液Sの導入を継続している。高温蒸発器20への冷媒液Vfの導入を停止しつつ、高温吸収器10への高濃度溶液Saの導入を継続すると、高温蒸発器20に残存する高温冷媒蒸気Vaが高温吸収器10に移動して高濃度溶液Saに吸収されるため、高温吸収器缶胴14及びこれに連通する冷媒気液分離胴21内の冷媒の蒸気の量が減少し、高温吸収器缶胴14内の圧力を比較的早く低下させることができる。同様に、中温吸収器30及び低温吸収器50への吸収液の導入を継続すると、中温吸収器缶胴34内の圧力及び低温吸収器缶胴54内の圧力を比較的早く低下させることができる。   At this time, in the present embodiment, the operation of the high concentration solution pump 76 is continued, and the operation of the medium concentration solution pump 16 and / or the low concentration solution pump 36 is also continued as necessary. In other words, in the present embodiment, when any one of the pressures detected by the pressure gauges 14P, 34P, 54P exceeds a predetermined pressure, the refrigerant to each evaporator 20, 40, 60 While stopping the introduction of the liquid Vf, the introduction of the absorbing liquid S to each of the absorbers 10, 30, and 50 is continued. When the introduction of the high-concentration solution Sa to the high-temperature absorber 10 is continued while the introduction of the refrigerant liquid Vf to the high-temperature evaporator 20 is stopped, the high-temperature refrigerant vapor Va remaining in the high-temperature evaporator 20 moves to the high-temperature absorber 10. Therefore, the amount of refrigerant vapor in the high-temperature absorber can body 14 and the refrigerant gas-liquid separation cylinder 21 communicating with the high-concentration solution Sa is reduced, and the pressure in the high-temperature absorber can body 14 is reduced. It can be reduced relatively quickly. Similarly, if the introduction of the absorbing liquid into the intermediate temperature absorber 30 and the low temperature absorber 50 is continued, the pressure in the intermediate temperature absorber can body 34 and the pressure in the low temperature absorber can body 54 can be reduced relatively quickly. .

図2(A)に、各蒸発器20、40、60への冷媒液Vfの導入を停止しつつ、各吸収器10、30、50への吸収液Sの導入を継続した場合の、気液分離器90、高温吸収器缶胴14、中温吸収器缶胴34の内圧の変化の一例を示す。図2(A)に示すグラフは、縦軸に圧力、横軸に時間を取り、線図P90は気液分離器90の内圧を、線図P10は高温吸収器缶胴14の内圧を、線図P30は中温吸収器缶胴34の内圧を、それぞれ示している。図2(A)に示すグラフでは、中温吸収器缶胴34の内部圧力が徐々に上昇し、時間t1にて所定の圧力に達したので、各蒸発器20、40、60への冷媒液Vfの導入を停止した状況を示している。図2(A)に示す例では、時間t1で各蒸発器20、40、60への冷媒液Vfの導入を停止してから、気液分離器90、高温吸収器缶胴14、及び中温吸収器缶胴34の内圧が速やかに低下していくのが分かる。   FIG. 2A shows the gas-liquid when the introduction of the absorbing liquid S to each of the absorbers 10, 30, 50 is continued while the introduction of the refrigerant liquid Vf to each of the evaporators 20, 40, 60 is stopped. An example of the change of the internal pressure of the separator 90, the high temperature absorber can body 14, and the intermediate temperature absorber can body 34 is shown. In the graph shown in FIG. 2A, pressure is plotted on the vertical axis and time is plotted on the horizontal axis, line P90 shows the internal pressure of the gas-liquid separator 90, line P10 shows the internal pressure of the high-temperature absorber can body 14, P30 shows the internal pressure of the intermediate temperature absorber can body 34, respectively. In the graph shown in FIG. 2A, since the internal pressure of the intermediate temperature absorber can body 34 gradually increases and reaches a predetermined pressure at time t1, the refrigerant liquid Vf to each of the evaporators 20, 40, 60 is shown. It shows the situation where the introduction of. In the example shown in FIG. 2A, after the introduction of the refrigerant liquid Vf to each of the evaporators 20, 40, 60 is stopped at time t1, the gas-liquid separator 90, the high-temperature absorber can body 14, and the intermediate temperature absorption are performed. It can be seen that the internal pressure of the container can body 34 quickly decreases.

以上で説明したように、本実施の形態に係る吸収ヒートポンプ1によれば、各圧力計14P、34P、54Pで検知された圧力のいずれか1つでも所定の圧力以上となったときに、各蒸発器20、40、60への冷媒液Vfの導入を停止するので、安全弁を設けることなく各吸収器缶胴14、34、54の内部圧力の上昇を抑制することができる。また、各蒸発器20、40、60への冷媒液Vfの導入を停止する一方で、各吸収器10、30、50への吸収液Sの導入を継続するので、各吸収器缶胴14、34、54の内部圧力を比較的早く低下させることができる。   As explained above, according to the absorption heat pump 1 according to the present embodiment, when any one of the pressures detected by the pressure gauges 14P, 34P, 54P is equal to or higher than a predetermined pressure, Since the introduction of the refrigerant liquid Vf to the evaporators 20, 40, 60 is stopped, an increase in the internal pressure of each absorber can body 14, 34, 54 can be suppressed without providing a safety valve. In addition, while the introduction of the refrigerant liquid Vf to each of the evaporators 20, 40, 60 is stopped, the introduction of the absorption liquid S to each of the absorbers 10, 30, 50 is continued, so that each absorber can body 14, The internal pressures 34 and 54 can be reduced relatively quickly.

以上の説明では、各圧力計14P、34P、54Pで検知された圧力の少なくとも1つが所定の圧力以上となったときに、各蒸発器20、40、60への冷媒液Vfの導入を停止することとしたが、各蒸発器20、40、60への冷媒液Vfの導入を停止することに代えて、各吸収器10、30、50への吸収液Sの導入を停止してもよい。各吸収器10、30、50への吸収液の導入を停止するには、高濃度溶液ポンプ76、中濃度溶液ポンプ16、及び低濃度溶液ポンプ36の運転を停止すればよい。これらのポンプ76、16、36を停止すると、高温吸収器10では、高濃度溶液散布ノズル12からの高濃度溶液Saの散布が停止するため、高濃度溶液Saによる高温冷媒蒸気Vaの吸収が止まり、高温吸収器10における吸収熱の発生が止まる。これにより、高温吸収器10内の圧力の上昇が抑制される。同様に、中温吸収器30では、中濃度溶液散布ノズル32からの中濃度溶液Sbの散布が停止して中温吸収器30における吸収熱の発生が止まり、低温吸収器50では、低濃度溶液散布ノズル52からの低濃度溶液Scの散布が停止して低温吸収器50における吸収熱の発生が止まる。これにより、中温吸収器30内の圧力の上昇及び低温吸収器50内の圧力の上昇が抑制される。そして、各吸収器10、30、50では、吸収熱の発生の停止後、時間の経過と共に温度が低下し、それに連れて内圧も低下していく。   In the above description, when at least one of the pressures detected by the pressure gauges 14P, 34P, 54P becomes equal to or higher than a predetermined pressure, the introduction of the refrigerant liquid Vf to the evaporators 20, 40, 60 is stopped. However, instead of stopping the introduction of the refrigerant liquid Vf to each of the evaporators 20, 40, 60, the introduction of the absorbing liquid S to each of the absorbers 10, 30, 50 may be stopped. In order to stop the introduction of the absorbing solution into each of the absorbers 10, 30, and 50, the operation of the high concentration solution pump 76, the medium concentration solution pump 16, and the low concentration solution pump 36 may be stopped. When these pumps 76, 16, 36 are stopped, the high-temperature absorber 10 stops spraying the high-concentration solution Sa from the high-concentration solution spray nozzle 12, so that the absorption of the high-temperature refrigerant vapor Va by the high-concentration solution Sa stops. The generation of absorbed heat in the high-temperature absorber 10 stops. Thereby, the rise in the pressure in the high temperature absorber 10 is suppressed. Similarly, in the intermediate temperature absorber 30, the application of the intermediate concentration solution Sb from the intermediate concentration solution spray nozzle 32 is stopped, and the generation of heat of absorption in the intermediate temperature absorber 30 stops. In the low temperature absorber 50, the low concentration solution spray nozzle is stopped. The spraying of the low-concentration solution Sc from 52 stops and the generation of heat of absorption in the low-temperature absorber 50 stops. Thereby, the rise in the pressure in the intermediate temperature absorber 30 and the rise in the pressure in the low temperature absorber 50 are suppressed. And in each absorber 10, 30, and 50, after generation | occurrence | production of absorption heat stops, temperature falls with progress of time and internal pressure also falls along with it.

図2(B)に、各吸収器10、30、50への吸収液Sの導入を停止しつつ、各蒸発器20、40、60への冷媒液Vfの導入を継続した場合の、気液分離器90、高温吸収器缶胴14、中温吸収器缶胴34の内圧の変化の一例を示す。図2(B)に示すグラフは、図2(A)に示すグラフと同様、縦軸に圧力、横軸に時間を取り、線図P90、線図P10、線図P30は、それぞれ、気液分離器90、高温吸収器缶胴14、中温吸収器缶胴34の内圧を示している。図2(B)に示すグラフでは、中温吸収器缶胴34の内部圧力が徐々に上昇し、時間t2にて所定の圧力に達したので、各ポンプ76、16、36を停止することで各吸収器10、30、50への吸収液の導入を停止した状況を示している。図2(B)に示す例では、時間t2で各ポンプ76、16、36を停止してから、高温吸収器缶胴14及び中温吸収器缶胴34で一時的に内圧が上昇した後、気液分離器90、高温吸収器缶胴14、及び中温吸収器缶胴34の内圧が速やかに低下していくのが分かる。なお、各吸収器10、30、50への吸収液の導入を停止した際に高温吸収器缶胴14及び中温吸収器缶胴34で一時的に内圧が上昇するのは、各ポンプ76、16、36の停止後に、各吸収器缶胴14、34、54の内圧差により吸収器缶胴14、34、54の内部に残留する吸収液がしばらく流れたためである。   FIG. 2B shows the gas-liquid when the introduction of the refrigerant liquid Vf to each of the evaporators 20, 40, 60 is continued while the introduction of the absorbing liquid S to each of the absorbers 10, 30, 50 is stopped. An example of the change of the internal pressure of the separator 90, the high temperature absorber can body 14, and the intermediate temperature absorber can body 34 is shown. The graph shown in FIG. 2 (B), like the graph shown in FIG. 2 (A), takes pressure on the vertical axis and time on the horizontal axis, and the diagrams P90, P10, and P30 are gas-liquid, respectively. The internal pressures of the separator 90, the high temperature absorber can body 14, and the intermediate temperature absorber can body 34 are shown. In the graph shown in FIG. 2B, since the internal pressure of the intermediate temperature absorber can body 34 gradually increases and reaches a predetermined pressure at time t2, each pump 76, 16, and 36 is stopped. The situation where the introduction of the absorbing liquid into the absorbers 10, 30, and 50 is stopped is shown. In the example shown in FIG. 2B, after the pumps 76, 16, and 36 are stopped at time t2, the internal pressure temporarily rises in the high temperature absorber can body 14 and the intermediate temperature absorber can body 34, It can be seen that the internal pressures of the liquid separator 90, the high temperature absorber can body 14, and the intermediate temperature absorber can body 34 are rapidly reduced. The internal pressure temporarily rises in the high-temperature absorber can body 14 and the intermediate-temperature absorber can body 34 when the introduction of the absorbing liquid to each absorber 10, 30, 50 is stopped. This is because the absorption liquid remaining in the absorber can bodies 14, 34, 54 has flowed for a while due to the internal pressure difference between the absorber can bodies 14, 34, 54 after the stop of 36, 36.

あるいは、各圧力計14P、34P、54Pで検知された圧力の少なくとも1つが所定の圧力以上となったときに、各蒸発器20、40、60への冷媒液Vfの導入を停止することと、各吸収器10、30、50への吸収液Sの導入を停止することとの一方を行うのではなく、これらの両方共行うこととしてもよい。さらに、各蒸発器20、40、60への冷媒液Vfの導入の停止及び/又は各吸収器10、30、50への吸収液Sの導入の停止に重畳して、蒸発器熱源温水弁64及び/又は再生器熱源温水弁74及び/又は冷却水弁81vの開度を調節して低温蒸発器60への蒸発器熱源温水heの一部又は全部の導入及び/又は再生器70への再生器熱源温水hgの一部又は全部の導入及び/又は凝縮器80への冷却水cの一部又は全部の導入を停止してもよい。低温蒸発器60への蒸発器熱源温水heの一部又は全部の導入を停止すると、低温冷媒蒸気Vcの発生が抑制され、低温吸収器50における吸収熱の発生が抑制されて、各吸収器10、30、50の内圧の上昇の抑制に寄与することとなる。他方、再生器70への再生器熱源温水hgの一部又は全部の導入を停止すると、再生器70における吸収液Sの濃縮が抑制され、高温吸収器10における吸収熱の発生が抑制されて、各吸収器10、30、50の内圧の上昇の抑制に寄与することとなる。また、凝縮器80への冷却水cの一部又は全部の導入を停止すると、凝縮器80から放出される熱量が減少し、再生器冷媒蒸気Vgが凝縮する露点が上昇するため、凝縮器80に連通する再生器70において吸収液Sの沸騰温度が上昇し再生器熱源温水hgによる吸収液Sへの加熱量が減少して吸収液Sの濃縮が抑制され、高温吸収器10における吸収熱の発生が抑制されて、各吸収器10、30、50の内圧の上昇の抑制に寄与することとなる。   Alternatively, when at least one of the pressures detected by each of the pressure gauges 14P, 34P, 54P becomes equal to or higher than a predetermined pressure, the introduction of the refrigerant liquid Vf to each of the evaporators 20, 40, 60 is stopped, Instead of performing one of stopping the introduction of the absorbing liquid S to each of the absorbers 10, 30, and 50, both of them may be performed. Further, the evaporator heat source hot water valve 64 is superimposed on the stop of introduction of the refrigerant liquid Vf to each evaporator 20, 40, 60 and / or the stop of introduction of the absorbent S to each absorber 10, 30, 50. And / or adjusting the opening of the regenerator heat source hot water valve 74 and / or the cooling water valve 81v to introduce part or all of the evaporator heat source hot water he into the low temperature evaporator 60 and / or regenerate the regenerator 70. The introduction of a part or the whole of the heat source hot water hg and / or the introduction of a part or the whole of the cooling water c to the condenser 80 may be stopped. When the introduction of part or all of the evaporator heat source hot water he to the low temperature evaporator 60 is stopped, the generation of the low temperature refrigerant vapor Vc is suppressed, the generation of the absorption heat in the low temperature absorber 50 is suppressed, and each absorber 10 is suppressed. , 30, 50 contributes to the suppression of the increase in internal pressure. On the other hand, when the introduction of part or all of the regenerator heat source hot water hg to the regenerator 70 is stopped, the concentration of the absorption liquid S in the regenerator 70 is suppressed, and the generation of heat of absorption in the high temperature absorber 10 is suppressed. It will contribute to the suppression of the increase in the internal pressure of each absorber 10, 30, 50. Further, when the introduction of a part or all of the cooling water c to the condenser 80 is stopped, the amount of heat released from the condenser 80 decreases, and the dew point at which the regenerator refrigerant vapor Vg condenses rises. In the regenerator 70 that communicates with the regenerator 70, the boiling temperature of the absorbing liquid S rises, the amount of heating to the absorbing liquid S by the regenerator heat source hot water hg decreases, and the concentration of the absorbing liquid S is suppressed. Generation | occurrence | production is suppressed and it will contribute to suppression of the raise of the internal pressure of each absorber 10,30,50.

また、各圧力計14P、34P、54Pで検知された圧力の少なくとも1つが所定の圧力以上となったときに、各蒸発器20、40、60への冷媒液Vfの導入の停止及び/又は各吸収器10、30、50への吸収液Sの導入の停止に重畳して、あるいはこれらに加えて低温蒸発器60への蒸発器熱源温水heの一部又は全部の導入の停止及び/又は再生器70への再生器熱源温水hgの一部又は全部の導入の停止及び/又は凝縮器80への冷却水cの一部又は全部の導入の停止に重畳して、冷媒液導入弁78vを開にして凝縮器80内の冷媒液Vfを冷媒液導入管78を介して再生器70に導入させてもよい。凝縮器80内の冷媒液Vfを再生器70に導入させると、吸収液Sが冷媒Vの蒸気を吸収しなくなって濃度が最も高くなった再生器70内の吸収液Sを希釈することができ、吸収液Sが結晶することを防ぐことができる。各蒸発器20、40、60への冷媒液Vfの導入を停止すると、各吸収器10、30、50に冷媒Vの蒸気が流入しなくなり、各吸収器10、30、50の出口の吸収液Sの濃度が濃いままとなって、この吸収液Sが再生器70に流入することで、再生器70内の吸収液Sの濃度が高くなる。あるいは、各吸収器10、30、50への吸収液Sの導入を停止すると、再生器70内の吸収液Sの流動も停止し、再生器70内の吸収液Sは再生器熱源温水hgの残留熱で濃縮され、再生器70内の吸収液Sの濃度が高くなる。冷媒液導入弁78vを開にして凝縮器80内の冷媒液Vfを再生器70に導入させることで、再生器70内の吸収液Sの結晶を抑制することができる。なお、吸収液Sの結晶のおそれがない等の理由により、凝縮器80内の冷媒液Vfを再生器70に導入させることを行わない場合は、冷媒液導入管78及び冷媒液導入弁78vを省略してもよい。   Further, when at least one of the pressures detected by each of the pressure gauges 14P, 34P, 54P becomes equal to or higher than a predetermined pressure, the introduction of the refrigerant liquid Vf to each of the evaporators 20, 40, 60 is stopped and / or The introduction and / or regeneration of part or all of the evaporator heat source hot water he to the low-temperature evaporator 60 is superimposed on or in addition to the suspension of the introduction of the absorbent S to the absorbers 10, 30, 50. The refrigerant liquid introduction valve 78v is opened so as to overlap the stoppage of part or all of the regenerator heat source hot water hg to the condenser 70 and / or the stoppage of part or all of the cooling water c to the condenser 80. The refrigerant liquid Vf in the condenser 80 may be introduced into the regenerator 70 via the refrigerant liquid introduction pipe 78. When the refrigerant liquid Vf in the condenser 80 is introduced into the regenerator 70, the absorption liquid S in the regenerator 70 having the highest concentration because the absorption liquid S no longer absorbs the vapor of the refrigerant V can be diluted. , The absorption liquid S can be prevented from crystallizing. When the introduction of the refrigerant liquid Vf to each evaporator 20, 40, 60 is stopped, the vapor of the refrigerant V does not flow into each absorber 10, 30, 50, and the absorption liquid at the outlet of each absorber 10, 30, 50 When the concentration of S remains high and the absorbing liquid S flows into the regenerator 70, the concentration of the absorbing liquid S in the regenerator 70 increases. Alternatively, when the introduction of the absorbing liquid S to each of the absorbers 10, 30, and 50 is stopped, the flow of the absorbing liquid S in the regenerator 70 is also stopped, and the absorbing liquid S in the regenerator 70 is supplied from the regenerator heat source hot water hg. Concentrated by the residual heat, the concentration of the absorbing liquid S in the regenerator 70 increases. By opening the refrigerant liquid introduction valve 78v and introducing the refrigerant liquid Vf in the condenser 80 into the regenerator 70, the crystals of the absorbing liquid S in the regenerator 70 can be suppressed. If the refrigerant liquid Vf in the condenser 80 is not introduced into the regenerator 70 because there is no risk of crystallization of the absorbing liquid S, the refrigerant liquid introduction pipe 78 and the refrigerant liquid introduction valve 78v are provided. It may be omitted.

以上の説明では、各圧力計14P、34P、54Pによって各吸収器缶胴14、34、54の内部圧力を直接検知することとしたが、高温吸収器10と高温蒸発器20、中温吸収器30と中温蒸発器40、低温吸収器50と低温蒸発器60は、それぞれ連通しているので、各蒸発器20、40、60の内部圧力を検知して間接的に各吸収器缶胴14、34、54の内部圧力を検知することとしてもよく、各蒸発器20、40、60において冷媒の飽和温度を検知してこれを圧力に換算することで間接的に各吸収器缶胴14、34、54の内部圧力を検知することとしてもよい。   In the above description, the internal pressures of the absorber can bodies 14, 34, and 54 are directly detected by the pressure gauges 14P, 34P, and 54P, but the high-temperature absorber 10, the high-temperature evaporator 20, and the intermediate-temperature absorber 30 are used. And the intermediate temperature evaporator 40, the low temperature absorber 50, and the low temperature evaporator 60 are in communication with each other, so that the internal pressures of the evaporators 20, 40, 60 are detected to indirectly detect the absorber can bodies 14, 34. , 54 may be detected, and in each of the evaporators 20, 40, 60, the saturation temperature of the refrigerant is detected and converted into a pressure indirectly, whereby each absorber can body 14, 34, The internal pressure of 54 may be detected.

以上の説明では、高濃度溶液Saを再生器70から高温吸収器10に送り、その後、中温吸収器30、低温吸収器50へと吸収液を直列に送ることとしたが、再生器70から各吸収器10、30、50へ吸収液を並列に送ることとしてもよい。   In the above description, the high-concentration solution Sa is sent from the regenerator 70 to the high-temperature absorber 10, and then the absorbent is sent in series to the intermediate-temperature absorber 30 and the low-temperature absorber 50. It is good also as sending absorption liquid to absorber 10, 30, 50 in parallel.

以上の説明では、吸収ヒートポンプ1が三段昇温型であるとしたが、二段昇温型や単段昇温型であってもよい。二段昇温型とする場合、三段昇温型の吸収ヒートポンプ1の構成から中温吸収器30及び中温蒸発器40まわりの構成を省略し、高温蒸発器20の高温冷媒液供給管22及び高温冷媒蒸気受入管24を低温吸収器50の加熱管51に接続し、中濃度溶液管15を低濃度溶液散布ノズル52に接続して高温吸収器10内の中濃度溶液Sbを直接(他の吸収器を経由せずに)低温吸収器50に導入するように構成すればよい。単段昇温型とする場合、上述の二段昇温型の吸収ヒートポンプの構成からさらに高温蒸発器20及び低温吸収器50を省略し、低温蒸発器60で発生した低温冷媒蒸気Vcが高温吸収器10内に導入されるように構成し、中濃度溶液管15を再生器70内の希溶液散布ノズル72に接続して高温吸収器10内の中濃度溶液Sbを直接(他の吸収器を経由せずに)再生器70に導入するように構成すればよい。   In the above description, the absorption heat pump 1 is a three-stage temperature rising type, but it may be a two-stage temperature rising type or a single-stage temperature rising type. In the case of the two-stage temperature rising type, the structure around the intermediate temperature absorber 30 and the intermediate temperature evaporator 40 is omitted from the structure of the three-stage temperature rising type absorption heat pump 1, and the high-temperature refrigerant liquid supply pipe 22 and the high temperature of the high-temperature evaporator 20 are omitted. The refrigerant vapor receiving pipe 24 is connected to the heating pipe 51 of the low-temperature absorber 50, the medium-concentration solution pipe 15 is connected to the low-concentration solution spray nozzle 52, and the medium-concentration solution Sb in the high-temperature absorber 10 is directly (other absorptions). What is necessary is just to comprise so that it may introduce | transduce into the low temperature absorber 50 (without going through a device). In the case of the single-stage temperature rising type, the high-temperature evaporator 20 and the low-temperature absorber 50 are further omitted from the configuration of the above-described two-stage temperature rising type absorption heat pump, and the low-temperature refrigerant vapor Vc generated in the low-temperature evaporator 60 is absorbed at high temperature. The medium concentration solution tube 15 is connected to the dilute solution spray nozzle 72 in the regenerator 70 and the medium concentration solution Sb in the high temperature absorber 10 is directly connected (other absorbers are connected). It may be configured to be introduced into the regenerator 70 (without going through).

1 吸収ヒートポンプ
10 高温吸収器
11 伝熱管
12 高濃度溶液散布ノズル
14 高温吸収器缶胴
14P 高温吸収器圧力計
20 高温蒸発器
30 中温吸収器
31 加熱管
32 中濃度溶液散布ノズル
34 中温吸収器缶胴
34P 中温吸収器圧力計
40 中温蒸発器
50 低温吸収器
51 加熱管
52 低濃度溶液散布ノズル
54 低温吸収器缶胴
54P 低温吸収器圧力計
60 低温蒸発器
70 再生器
78 冷媒液導入管
78v 冷媒液導入弁
80 凝縮器
75 高濃度溶液管
76 高濃度溶液ポンプ
82、84、86、88 冷媒液管
89 凝縮冷媒ポンプ
100 制御装置
he 蒸発器熱源温水
hg 再生器熱源温水
Sa 高濃度溶液
Sb 中濃度溶液
Sc 低濃度溶液
Sw 希溶液
Va 高温冷媒蒸気
Vb 中温冷媒蒸気
Vc 低温冷媒蒸気
Vf 冷媒液
Vg 再生器冷媒蒸気
Wq 被加熱水液
DESCRIPTION OF SYMBOLS 1 Absorption heat pump 10 High temperature absorber 11 Heat transfer tube 12 High concentration solution spray nozzle 14 High temperature absorber can body 14P High temperature absorber pressure gauge 20 High temperature evaporator 30 Medium temperature absorber 31 Heating tube 32 Medium concentration solution spray nozzle 34 Medium temperature absorber can Body 34P Medium temperature absorber pressure gauge 40 Medium temperature evaporator 50 Low temperature absorber 51 Heating pipe 52 Low concentration solution spray nozzle 54 Low temperature absorber can body 54P Low temperature absorber pressure gauge 60 Low temperature evaporator 70 Regenerator 78 Refrigerant liquid introduction pipe 78v Refrigerant Liquid introduction valve 80 Condenser 75 High-concentration solution pipe 76 High-concentration solution pump 82, 84, 86, 88 Refrigerant liquid pipe 89 Condensing refrigerant pump 100 Controller he Evaporator heat source hot water hg Regenerator heat source hot water Sa High concentration solution Sb Medium concentration Solution Sc Low concentration solution Sw Dilute solution Va High temperature refrigerant vapor Vb Medium temperature refrigerant vapor Vc Low temperature refrigerant vapor Vf Refrigerant liquid Vg Regenerator refrigerant vapor q-be-heated water solution

Claims (5)

被加熱流体流路と、前記被加熱流体流路に向けて吸収液を供給する吸収液供給部と、前記被加熱流体流路及び前記吸収液供給部を収容する吸収器缶胴とを有し、前記吸収液供給部から供給された前記吸収液が冷媒の蒸気を吸収したときに生じた吸収熱で前記被加熱流体流路を流れる流体を加熱する吸収器と;
前記吸収器において前記冷媒の蒸気を吸収して濃度が低下した吸収液である希溶液を導入し、加熱して、前記希溶液から冷媒を離脱させて前記吸収液の濃度を上昇させる再生器と;
前記再生器において前記希溶液よりも濃度が上昇した前記吸収液を前記吸収液供給部に導く濃溶液搬送部と;
前記再生器において前記希溶液から離脱した冷媒の蒸気を導入し、冷却して凝縮させて前記冷媒の液を生成する凝縮器と;
前記凝縮器において生成された前記冷媒の液を導入し、加熱して蒸発させて、前記吸収器に供給する冷媒の蒸気を生成する蒸発器と;
前記凝縮器の前記冷媒の液を前記蒸発器に導く冷媒液搬送部と;
前記吸収器缶胴の内部圧力を直接又は間接的に検知する圧力検知器と;
前記圧力検知器で検知された圧力が所定の圧力以上のときに、前記吸収液供給部への前記吸収液の導入及び前記蒸発器への前記冷媒の液の導入の少なくとも一方を停止する制御装置とを備える;
吸収ヒートポンプ。
A heated fluid flow path, an absorbent supply section that supplies an absorbent toward the heated fluid flow path, and an absorber can body that houses the heated fluid flow path and the absorbent supply section An absorber that heats the fluid flowing through the heated fluid flow path with absorption heat generated when the absorption liquid supplied from the absorption liquid supply unit absorbs the vapor of the refrigerant;
A regenerator for introducing a dilute solution, which is an absorption liquid having a reduced concentration by absorbing vapor of the refrigerant in the absorber, and heating the desorbed liquid to release the refrigerant from the dilute solution to increase the concentration of the absorption liquid; ;
A concentrated solution transport unit that guides the absorbing solution whose concentration is higher than that of the diluted solution in the regenerator to the absorbing solution supply unit;
A condenser for introducing the vapor of the refrigerant separated from the dilute solution in the regenerator, cooling and condensing the refrigerant, and generating a liquid of the refrigerant;
An evaporator that introduces the liquid of the refrigerant generated in the condenser, heats and evaporates it to generate vapor of the refrigerant to be supplied to the absorber;
A refrigerant liquid transport section for guiding the refrigerant liquid of the condenser to the evaporator;
A pressure detector for directly or indirectly detecting the internal pressure of the absorber can body;
A control device that stops at least one of introduction of the absorption liquid into the absorption liquid supply unit and introduction of the refrigerant liquid into the evaporator when the pressure detected by the pressure detector is equal to or higher than a predetermined pressure. And comprising:
Absorption heat pump.
前記制御装置は、前記圧力検知器で検知された圧力が所定の圧力以上のときに、前記蒸発器への前記冷媒の液の導入を停止しつつ、前記吸収液供給部への前記吸収液の導入を継続する;
請求項1に記載の吸収ヒートポンプ。
When the pressure detected by the pressure detector is equal to or higher than a predetermined pressure, the control device stops introduction of the refrigerant liquid into the evaporator, while the absorption liquid supply to the absorption liquid supply unit is stopped. Continue the introduction;
The absorption heat pump according to claim 1.
前記吸収器は、高温吸収器と、前記高温吸収器よりも作動圧力が低い低温吸収器とを含んで構成され;
前記蒸発器は、高温蒸発器と、前記高温蒸発器よりも作動圧力が低い低温蒸発器とを含んで構成され;
前記低温蒸発器で生成された前記冷媒の蒸気が前記低温吸収器に導入されると共に前記高温蒸発器で生成された前記冷媒の蒸気が前記高温吸収器に導入されるように構成され;
前記圧力検知部は、前記高温吸収器及び前記低温吸収器のそれぞれの前記吸収器缶胴の内部圧力を直接又は間接的に検知するように構成され;
前記所定の圧力は、前記高温吸収器と前記低温吸収器とで個別に設定されている;
請求項1又は請求項2に記載の吸収ヒートポンプ。
The absorber comprises a high temperature absorber and a low temperature absorber having a lower operating pressure than the high temperature absorber;
The evaporator comprises a high temperature evaporator and a low temperature evaporator having a lower operating pressure than the high temperature evaporator;
The refrigerant vapor generated in the low temperature evaporator is introduced into the low temperature absorber and the refrigerant vapor generated in the high temperature evaporator is introduced into the high temperature absorber;
The pressure detector is configured to directly or indirectly detect an internal pressure of the absorber can body of each of the high temperature absorber and the low temperature absorber;
The predetermined pressure is set individually for the high temperature absorber and the low temperature absorber;
The absorption heat pump according to claim 1 or 2.
前記制御装置は、前記圧力検知器で検知された圧力が所定の圧力以上のときに、前記再生器への加熱源の一部又は全部の導入、前記蒸発器への加熱源の一部又は全部の導入、及び前記凝縮器への冷却源の一部又は全部の導入のうちの少なくとも一つを停止する;
請求項1乃至請求項3のいずれか1項に記載の吸収ヒートポンプ。
When the pressure detected by the pressure detector is equal to or higher than a predetermined pressure, the control device introduces a part or all of the heating source to the regenerator, or part or all of the heating source to the evaporator. And at least one of the introduction of part or all of the cooling source to the condenser is stopped;
The absorption heat pump according to any one of claims 1 to 3.
前記凝縮器の前記冷媒の液を前記再生器に導入することを可能にする冷媒液導入部を備え;
前記制御装置は、前記圧力検知器で検知された圧力が所定の圧力以上のときに、前記凝縮器の前記冷媒の液の、前記再生器への導入を開始する;
請求項1乃至請求項4のいずれか1項に記載の吸収ヒートポンプ。
A refrigerant liquid introduction section that allows the refrigerant liquid of the condenser to be introduced into the regenerator;
The control device starts introducing the refrigerant liquid of the condenser into the regenerator when the pressure detected by the pressure detector is equal to or higher than a predetermined pressure;
The absorption heat pump according to any one of claims 1 to 4.
JP2015211007A 2015-10-27 2015-10-27 Absorption heat pump Active JP6570965B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015211007A JP6570965B2 (en) 2015-10-27 2015-10-27 Absorption heat pump
CN201610940447.6A CN106871487B (en) 2015-10-27 2016-10-25 Absorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015211007A JP6570965B2 (en) 2015-10-27 2015-10-27 Absorption heat pump

Publications (2)

Publication Number Publication Date
JP2017083062A JP2017083062A (en) 2017-05-18
JP6570965B2 true JP6570965B2 (en) 2019-09-04

Family

ID=58714273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015211007A Active JP6570965B2 (en) 2015-10-27 2015-10-27 Absorption heat pump

Country Status (2)

Country Link
JP (1) JP6570965B2 (en)
CN (1) CN106871487B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114111106A (en) * 2021-12-08 2022-03-01 荏原冷热系统(中国)有限公司 Control method and second-class absorption heat pump

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003765A (en) * 2002-06-03 2004-01-08 Meidensha Corp Absorption refrigerating machine/absorption heat pump
JP4786504B2 (en) * 2006-11-10 2011-10-05 川崎重工業株式会社 Heat medium supply facility, solar combined power generation facility, and control method thereof
JP6080598B2 (en) * 2013-02-21 2017-02-15 荏原冷熱システム株式会社 Absorption heat pump and operation method of absorption heat pump
JP6297377B2 (en) * 2014-03-25 2018-03-20 荏原冷熱システム株式会社 Absorption heat pump

Also Published As

Publication number Publication date
JP2017083062A (en) 2017-05-18
CN106871487B (en) 2020-07-10
CN106871487A (en) 2017-06-20

Similar Documents

Publication Publication Date Title
JP5250340B2 (en) Absorption heat pump
JP6397747B2 (en) Absorption heat pump
JP6280170B2 (en) Concentrator
JP2010276304A (en) Steam generation system
JP6080598B2 (en) Absorption heat pump and operation method of absorption heat pump
JP2015025628A (en) Multi-stage temperature rising type absorption heat pump device
JP6570965B2 (en) Absorption heat pump
JP6084485B2 (en) Absorption heat pump and operation method of absorption heat pump
JP5514003B2 (en) Absorption heat pump
JP5395502B2 (en) Absorption heat pump
JP6337062B2 (en) Absorption heat pump
JP6337056B2 (en) Absorption heat pump
JP2015025629A (en) Temperature rise type absorption heat pump
CN103363713B (en) An absorption heat pump
JP5513981B2 (en) Absorption heat pump
JP6200655B2 (en) Absorption heat pump and operation method of absorption heat pump
JP6521793B2 (en) Absorption heat pump
JP2017053499A (en) Absorption type refrigerator
JP5513980B2 (en) Absorption heat pump
JP5513979B2 (en) Absorption heat pump
JP2015025609A (en) Three-stage temperature rising type absorption heat pump
JP2015025610A (en) Three-stage temperature rising type absorption heat pump
JP5816135B2 (en) Absorption heat pump and operation method of absorption heat pump
JP6337055B2 (en) Absorption heat pump
JP2016173196A (en) Absorption type refrigerating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190807

R150 Certificate of patent or registration of utility model

Ref document number: 6570965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250