JP6521793B2 - Absorption heat pump - Google Patents

Absorption heat pump Download PDF

Info

Publication number
JP6521793B2
JP6521793B2 JP2015160661A JP2015160661A JP6521793B2 JP 6521793 B2 JP6521793 B2 JP 6521793B2 JP 2015160661 A JP2015160661 A JP 2015160661A JP 2015160661 A JP2015160661 A JP 2015160661A JP 6521793 B2 JP6521793 B2 JP 6521793B2
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
pipe
medium
refrigerant liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015160661A
Other languages
Japanese (ja)
Other versions
JP2017040387A (en
Inventor
宏幸 山田
宏幸 山田
與四郎 竹村
與四郎 竹村
Original Assignee
荏原冷熱システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原冷熱システム株式会社 filed Critical 荏原冷熱システム株式会社
Priority to JP2015160661A priority Critical patent/JP6521793B2/en
Publication of JP2017040387A publication Critical patent/JP2017040387A/en
Application granted granted Critical
Publication of JP6521793B2 publication Critical patent/JP6521793B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は吸収ヒートポンプに関し、特に内部の流体の熱交換を効率よく行う吸収ヒートポンプに関する。   BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to an absorption heat pump, and more particularly to an absorption heat pump that performs heat exchange of internal fluid efficiently.

駆動熱源温度より高い温度の被加熱媒体を取り出す熱源機械として、吸収ヒートポンプがある。吸収ヒートポンプは、冷媒液を蒸発させる蒸発器、冷媒蒸気を吸収液で吸収させる吸収器、吸収液から冷媒を離脱させる再生器、冷媒蒸気を凝縮させる凝縮器を主要構成として備えている。吸収ヒートポンプでは、COP(成績係数)の向上を図ることを目的の1つとして、系外に流出した分の被加熱媒体を補給する補給流体、及び凝縮器から蒸発器へ送られる冷媒液の予熱が行われる。補給流体及び冷媒液を予熱するために、補給流体の流路及び冷媒液の流路のそれぞれに熱交換器を設置したものがある(例えば、特許文献1参照。)。   There is an absorption heat pump as a heat source machine which takes out the medium to be heated having a temperature higher than the driving heat source temperature. The absorption heat pump mainly includes an evaporator for evaporating the refrigerant liquid, an absorber for absorbing the refrigerant vapor by the absorption liquid, a regenerator for separating the refrigerant from the absorption liquid, and a condenser for condensing the refrigerant vapor. In the absorption heat pump, one of the purposes is to improve the COP (coefficient of performance), by replenishing the medium to be heated which has flowed out of the system, and preheating the refrigerant liquid sent from the condenser to the evaporator. Is done. In order to preheat the replenishment fluid and the refrigerant liquid, there is one in which a heat exchanger is installed in each of the flow path of the replenishment fluid and the flow path of the refrigerant liquid (see, for example, Patent Document 1).

特開2006−162113号公報(図5等)JP, 2006-162113, A (Drawing 5 grade etc.)

しかしながら、補給流体及び冷媒液は、加熱側流体よりも流量が少ない場合が多く、補給流体あるいは冷媒液と加熱側流体との熱バランスを取りにくいと共に、熱交換器の圧力損失の増大を回避するために大きい流量の方に合わせた選定をすることで熱交換器が大型になってしまう。また、多段昇温型のような冷媒液を複数箇所に供給する場合は、冷媒液の流路が増えることで、熱交換器の数が増加してしまうことになる。   However, the replenishment fluid and the refrigerant liquid often have a flow rate smaller than that of the heating side fluid, and it is difficult to achieve heat balance between the replenishment fluid or the refrigerant liquid and the heating side fluid, and the pressure loss of the heat exchanger is avoided. Therefore, the heat exchanger becomes large by selecting it according to the large flow rate. In addition, in the case of supplying the refrigerant liquid to a plurality of places as in the multistage temperature rising type, the number of heat exchangers is increased by increasing the number of refrigerant liquid flow paths.

本発明は上述の課題に鑑み、補給流体及び冷媒液と加熱側流体との熱バランスを取りつつ熱交換器の数を削減する吸収ヒートポンプを提供することを目的とする。   An object of the present invention is to provide an absorption heat pump which reduces the number of heat exchangers while maintaining heat balance between the replenishing fluid and the refrigerant liquid and the heating side fluid.

上記目的を達成するために、本発明の第1の態様に係る吸収ヒートポンプは、例えば図1に示すように、被加熱媒体Wを内部に流す伝熱管11を有し、冷媒の蒸気である冷媒蒸気Vaを吸収液Saに吸収させた際に生じた吸収熱で被加熱媒体Wを加熱する高温吸収器10と;再生器熱源流体hgを内部に流す再生器熱源流体管71を有し、高温吸収器10において冷媒蒸気Vaを吸収した吸収液Sbを直接又は間接的に導入し、導入した吸収液Swを再生器熱源流体hgで加熱して、吸収液Swから冷媒蒸気Vgを発生させて吸収液Swの濃度を上昇させる再生器70と;再生器70において発生した冷媒蒸気Vgを導入し、導入した冷媒蒸気Vgを冷却し凝縮させて冷媒液Vfを生成する凝縮器80と;蒸発器熱源流体heを内部に流す蒸発器熱源流体管61を有し、凝縮器80から冷媒液Vfを導入し、導入した冷媒液Vfを蒸発器熱源流体heで加熱して冷媒蒸気Vcを生成する低温蒸発器60と;伝熱管11に導入される被加熱媒体Wを補給する補給流体Wsを供給する補給流体供給部97と;再生器70に導入される吸収液Sw、再生器熱源流体管71に導入される再生器熱源流体hg、再生器熱源流体管71から流出した再生器熱源流体hg、蒸発器熱源流体管61に導入される蒸発器熱源流体he、及び蒸発器熱源流体管61から流出した蒸発器熱源流体heのいずれかから選択された加熱側流体Swを流す加熱側流路155と、補給流体Wsを流す補給流体流路195と、凝縮器80から流出した冷媒液Vfを流す冷媒液流路188とを有し、加熱側流路155を流れる流体Swが保有する熱を、補給流体流路195を流れる補給流体Ws及び冷媒液流路188を流れる冷媒液Vfに伝達させる熱交換器100とを備える。   In order to achieve the above object, an absorption heat pump according to a first aspect of the present invention has a heat transfer pipe 11 for flowing a medium to be heated W inside, as shown in FIG. 1, for example, The high temperature absorber 10 which heats the medium to be heated W with the absorption heat generated when absorbing the vapor Va into the absorbing solution Sa; and the regenerator heat source fluid pipe 71 for flowing the regenerator heat source fluid hg inside, high temperature In the absorber 10, the absorbent Sb which absorbed the refrigerant vapor Va is directly or indirectly introduced, and the introduced absorbent Sw is heated by the regenerator heat source fluid hg to generate the refrigerant vapor Vg from the absorbent Sw to be absorbed. A regenerator 70 for increasing the concentration of the liquid Sw; a condenser 80 for introducing the refrigerant vapor Vg generated in the regenerator 70; cooling and condensing the introduced refrigerant vapor Vg; and producing the refrigerant liquid Vf; Steaming the fluid he inside A low temperature evaporator 60 for introducing a refrigerant liquid Vf from the condenser 80 and heating the introduced refrigerant liquid Vf with the evaporator heat source fluid he to generate refrigerant vapor Vc; A resupply fluid supply unit 97 for supplying a resupply fluid Ws for resupplying the medium to be heated W introduced into the fluid; an absorbent Sw introduced into the regenerator 70; a regenerator heat source fluid hg introduced into the regenerator heat source fluid pipe 71 The regenerator heat source fluid hg flowing out from the regenerator heat source fluid pipe 71, the evaporator heat source fluid he introduced into the evaporator heat source fluid pipe 61, or the evaporator heat source fluid he flowing out from the evaporator heat source fluid pipe 61 A heating side flow passage 155 for flowing the heating side fluid Sw selected from the above, a replenishment fluid flow passage 195 for flowing the replenishment fluid Ws, and a refrigerant liquid passage 188 for flowing the refrigerant liquid Vf which has flowed out of the condenser 80, Heating side channel 155 Heat fluid Sw's to be, and a heat exchanger 100 to be transmitted to the refrigerant liquid Vf flowing up fluid Ws and the coolant flow path 188 through the supply fluid passage 195.

このように構成すると、比較的流量が小さい補給流体及び冷媒液を、比較的流量が大きい加熱側流体と同時に熱交換させるので、補給流体及び冷媒液と加熱側流体との熱バランスが取りやすくなると共に、補給流体用の熱交換器と冷媒液用の熱交換器とを個別に設けなくて済むため熱交換器の数を削減することができる。   With this configuration, heat exchange between the relatively small flow rate of the replenishment fluid and the refrigerant liquid is performed simultaneously with the relatively large flow rate of the heating side fluid, so that the heat balance between the replenishment fluid and the refrigerant liquid and the heating side fluid is facilitated. At the same time, the number of heat exchangers can be reduced because it is not necessary to separately provide heat exchangers for the replenishment fluid and heat exchangers for the refrigerant liquid.

また、本発明の第2の態様に係る吸収ヒートポンプは、例えば図1並びに図3(B)及び図3(C)に示すように、上記本発明の第1の態様に係る吸収ヒートポンプにおいて、凝縮器80から流出された冷媒液Vfを内部に流す第1の冷媒加熱管51を有し、高温吸収器10において冷媒蒸気Vaを吸収した吸収液Sbを再生器70に導入する前に直接又は間接的に導入すると共に低温蒸発器60で生成された冷媒蒸気Vcを導入し、導入した冷媒蒸気Vcを吸収液Scに吸収させた際に生じた吸収熱で、第1の冷媒加熱管51の内部を流れる冷媒液Vfを加熱する低温吸収器50を備え;熱交換器100B、100Cは、冷媒液流路が、低温蒸発器60に導入される冷媒液Vfを流す低温用冷媒液流路186と、第1の冷媒加熱管51に導入される冷媒液Vfを流す中温用冷媒液流路183、184とを含んで構成されている。   The absorption heat pump according to the second aspect of the present invention is, for example, as shown in FIG. 1, FIG. 3 (B) and FIG. 3 (C), the absorption heat pump according to the first aspect of the present invention Directly or indirectly before introducing into the regenerator 70 the absorbing liquid Sb which has the first refrigerant heating pipe 51 for flowing the refrigerant liquid Vf flowing out from the vessel 80 inside and which has absorbed the refrigerant vapor Va in the high temperature absorber 10 Inside the first refrigerant heating pipe 51 by absorption heat generated when the refrigerant vapor Vc generated by the low temperature evaporator 60 is introduced and the introduced refrigerant vapor Vc is absorbed by the absorbing liquid Sc. Heat exchangers 100B and 100C, the refrigerant liquid flow path is a low temperature refrigerant liquid flow path 186 for flowing the refrigerant liquid Vf introduced to the low temperature evaporator 60 and the heat exchangers 100B and 100C , Leading to the first refrigerant heating pipe 51 It is configured to include a medium temperature refrigerant liquid flow paths 183 and 184 to flow a refrigerant liquid Vf being.

このように構成すると、補給流体に加えて低温用冷媒液流路を流れる冷媒液及び中温用冷媒液流路を流れる冷媒液を、加熱側流体と同時に熱交換させるので、補給流体及び冷媒液と加熱側流体との熱バランスがより取りやすくなる。   According to this structure, the refrigerant fluid flowing through the low temperature refrigerant fluid channel and the refrigerant fluid flowing through the medium temperature refrigerant fluid channel in addition to the replenishment fluid are subjected to heat exchange simultaneously with the heating side fluid. Heat balance with the heating side fluid can be more easily achieved.

また、本発明の第3の態様に係る吸収ヒートポンプは、例えば図1及び図3(C)に示すように、上記本発明の第2の態様に係る吸収ヒートポンプにおいて、第1の冷媒加熱管51で加熱された冷媒を導入し、導入した冷媒から冷媒蒸気Vbを分離する中温気液分離器41と;凝縮器80から流出された冷媒液Vfを内部に流す第2の冷媒加熱管31を有し、高温吸収器10において冷媒蒸気Vaを吸収した吸収液Sbを低温吸収器50に導入する前に直接又は間接的に導入すると共に中温気液分離器41で分離された冷媒蒸気Vbを導入し、導入した冷媒蒸気Vbを吸収液Sbに吸収させた際に生じた吸収熱で、第2の冷媒加熱管31の内部を流れる冷媒液Vfを加熱する中温吸収器30を備え;熱交換器100Cは、冷媒液流路が、第2の冷媒加熱管31に導入される高温用冷媒液Vfを流す高温用冷媒液流路182を含んで構成されている。   The absorption heat pump according to the third aspect of the present invention is, for example, as shown in FIG. 1 and FIG. 3C, in the absorption heat pump according to the second aspect of the present invention, the first refrigerant heating pipe 51 Medium-heated gas-liquid separator 41 for introducing the refrigerant heated at step S2 and separating the refrigerant vapor Vb from the introduced refrigerant; and the second refrigerant heating pipe 31 for flowing the refrigerant liquid Vf discharged from the condenser 80 inside; Before introducing the absorbing solution Sb which has absorbed the refrigerant vapor Va in the high temperature absorber 10 into the low temperature absorber 50 directly or indirectly, and introducing the refrigerant vapor Vb separated in the medium-temperature air-liquid separator 41 The medium temperature absorber 30 for heating the refrigerant liquid Vf flowing inside the second refrigerant heating pipe 31 by the absorption heat generated when the introduced refrigerant vapor Vb is absorbed by the absorbing liquid Sb; heat exchanger 100C The refrigerant liquid flow path is the second It is configured to include a high-temperature refrigerant liquid flow path 182 for flowing the high-temperature refrigerant liquid Vf to be introduced into the refrigerant heating pipe 31.

このように構成すると、補給流体、低温用冷媒液流路を流れる冷媒液、及び中温用冷媒液流路を流れる冷媒液に加えて、高温用冷媒液流路を流れる冷媒液を、加熱側流体と同時に熱交換させるので、補給流体及び冷媒液と加熱側流体との熱バランスがさらに取りやすくなる。   According to this configuration, the refrigerant fluid flowing through the high temperature refrigerant liquid flow passage is heated in addition to the replenishment fluid, the refrigerant liquid flowing through the low temperature refrigerant liquid flow passage, and the refrigerant fluid flowing through the medium temperature refrigerant liquid flow passage. At the same time, the heat exchange is performed, which further facilitates the heat balance between the replenishing fluid and the refrigerant liquid and the heating side fluid.

また、本発明の第4の態様に係る吸収ヒートポンプは、例えば図1を参照して示すと、上記本発明の第1の態様乃至第3の態様のいずれか1つの態様に係る吸収ヒートポンプ1において、加熱側流路155が、再生器70に導入される吸収液Swを流す吸収液流路である。   The absorption heat pump according to the fourth aspect of the present invention is, for example, as shown in FIG. 1, in the absorption heat pump 1 according to any one of the first to third aspects of the present invention. The heating side flow path 155 is an absorption liquid flow path in which the absorption liquid Sw introduced into the regenerator 70 flows.

このように構成すると、再生器に流入する吸収液の温度を下げることができ、再生器に流入した吸収液が自己蒸発することを抑制することができて、外部から汲み上げる熱量の減少を抑制することができる。また、再生器に流入する吸収液が自己蒸発することを抑制することで、吸収液が自己蒸発することに伴う体積流量及び圧力損失の増大を抑制することができ、所望の吸収液の流量を確保することができる。   According to this structure, the temperature of the absorbing liquid flowing into the regenerator can be lowered, and the absorbing liquid flowing into the regenerator can be inhibited from self-evaporation, thereby suppressing a decrease in the amount of heat drawn from the outside. be able to. Further, by suppressing the self-evaporation of the absorbent flowing into the regenerator, it is possible to suppress the increase in volumetric flow rate and pressure loss accompanying the self-vaporization of the absorbent, and the desired flow rate of the absorbent can be obtained. It can be secured.

本発明によれば、比較的流量が小さい補給流体及び冷媒液を、比較的流量が大きい加熱側流体と同時に熱交換させるので、補給流体及び冷媒液と加熱側流体との熱バランスが取りやすくなると共に、補給流体用の熱交換器と冷媒液用の熱交換器とを個別に設けなくて済むため熱交換器の数を削減することができる。   According to the present invention, heat exchange between the relatively small flow rate of the replenishing fluid and the refrigerant liquid is simultaneously performed with the relatively large flow rate of the heating side fluid, so that the heat balance between the replenishing fluid and the refrigerant liquid and the heating side fluid is facilitated. At the same time, the number of heat exchangers can be reduced because it is not necessary to separately provide heat exchangers for the replenishment fluid and heat exchangers for the refrigerant liquid.

本発明の実施の形態に係る吸収ヒートポンプの模式的系統図である。It is a typical systematic diagram of an absorption heat pump concerning an embodiment of the invention. 本発明の実施の形態に係る吸収ヒートポンプの予熱熱交換器の構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of the preheat heat exchanger of the absorption heat pump which concerns on embodiment of this invention. (A)は本発明の実施の形態に係る吸収ヒートポンプの予熱熱交換器まわりの概略系統図、(B)は本発明の実施の形態の第1の変形例に係る三段昇温型吸収ヒートポンプの予熱熱交換器まわりの概略系統図、(C)は本発明の実施の形態の第2の変形例に係る三段昇温型吸収ヒートポンプの予熱熱交換器まわりの概略系統図である。(A) is a schematic diagram around a preheating heat exchanger of an absorption heat pump according to an embodiment of the present invention, (B) is a three-stage temperature rising absorption heat pump according to a first modification of the embodiment of the present invention FIG. 7C is a schematic diagram of the periphery of the preheating heat exchanger of the three-stage temperature rising absorption heat pump according to a second modification of the embodiment of the present invention. (A)は本発明の実施の形態の第3の変形例に係る二段昇温型吸収ヒートポンプの予熱熱交換器まわりの概略系統図、(B)は本発明の実施の形態の第4の変形例に係る二段昇温型吸収ヒートポンプの予熱熱交換器まわりの概略系統図である。(A) is a schematic system diagram around a preheating heat exchanger of a two-stage temperature rising absorption heat pump according to a third modification of the embodiment of the present invention, (B) is a fourth schematic view of the embodiment of the present invention It is a schematic diagram of a preheating heat exchanger circumference of a two-stage temperature rising absorption heat pump concerning a modification. 本発明の実施の形態の第5の変形例に係る単段昇温型吸収ヒートポンプの予熱熱交換器まわりの概略系統図である。It is a schematic diagram of a preheating heat exchanger circumference of a single stage temperature rising absorption heat pump concerning the 5th modification of an embodiment of the invention.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each of the drawings, the same or corresponding members are denoted by the same or similar reference numerals, and the redundant description will be omitted.

まず図1を参照して、本発明の実施の形態に係る吸収ヒートポンプ1を説明する。図1は、吸収ヒートポンプ1の模式的系統図である。吸収ヒートポンプ1は、三段昇温型の吸収ヒートポンプである。吸収ヒートポンプ1は、本実施の形態では、比較的利用価値の低い低温(例えば80℃〜90℃程度)の排温水he、hgを熱源媒体として導入し、利用価値の高い被加熱媒体蒸気Wv(例えば、圧力が約0.2MPa(ゲージ圧)を超え、望ましくは0.8MPa(ゲージ圧)程度)を取り出すことができる、第二種吸収ヒートポンプである。吸収ヒートポンプ1は、主要構成機器として、高温吸収器10と、高温蒸発器20と、中温吸収器30と、中温蒸発器40と、低温吸収器50と、低温蒸発器60と、再生器70と、凝縮器80とを備えている。また、吸収ヒートポンプ1は、被加熱媒体蒸気Wvを取り出す気液分離器90と、予熱熱交換器100とを備えている。   First, an absorption heat pump 1 according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram of the absorption heat pump 1. The absorption heat pump 1 is a three-stage temperature rising absorption heat pump. In the present embodiment, the absorption heat pump 1 introduces, as a heat source medium, low temperature (for example, about 80 ° C. to 90 ° C.) low temperature (eg, about 80 ° C. to 90 ° C.) drainage hot water he that has low utility value as a heat source medium. For example, it is a second-type absorption heat pump capable of taking out a pressure exceeding about 0.2 MPa (gauge pressure), desirably about 0.8 MPa (gauge pressure). The absorption heat pump 1 includes, as main components, a high temperature absorber 10, a high temperature evaporator 20, a medium temperature absorber 30, a medium temperature evaporator 40, a low temperature absorber 50, a low temperature evaporator 60, and a regenerator 70. , And a condenser 80. Moreover, the absorption heat pump 1 is provided with the gas-liquid separator 90 which takes out the to-be-heated-medium vapor | steam Wv, and the preheat heat exchanger 100. As shown in FIG.

なお、以下の説明においては、吸収液(「溶液」という場合もある)に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「高濃度溶液Sa」、「中濃度溶液Sb」、「低濃度溶液Sc」、「希溶液Sw」等と呼称するが、性状等を不問にするときは総称して「吸収液S」ということとする。同様に、冷媒に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「高温冷媒蒸気Va」、「中温冷媒蒸気Vb」、「低温冷媒蒸気Vc」、「再生器冷媒蒸気Vg」、「冷媒液Vf」等と呼称するが、性状等を不問にするときは総称して「冷媒V」ということとする。本実施の形態では、吸収液S(吸収剤と冷媒Vとの混合物)としてLiBr水溶液が用いられており、冷媒Vとして水(HO)が用いられている。また、被加熱媒体Wは、液体の被加熱媒体Wである被加熱媒体液Wq、気体の被加熱媒体Wである被加熱媒体蒸気Wv、被加熱媒体液Wqと被加熱媒体蒸気Wvとが混合した混合被加熱媒体Wm、補給水Wsの総称である。本実施の形態では、被加熱媒体Wとして水(HO)が用いられている。 In the following description, “high concentration solution Sa” according to the property and the position on the heat pump cycle, in order to facilitate the distinction on the heat pump cycle, regarding the absorbent (sometimes referred to as “solution”). It is called “medium concentration solution Sb”, “low concentration solution Sc”, “diluted solution Sw”, etc., but when the property etc. are unquestioned, it is collectively referred to as “absorption solution S”. Similarly, regarding the refrigerant, in order to facilitate distinction on the heat pump cycle, “high temperature refrigerant vapor Va”, “medium temperature refrigerant vapor Vb”, “low temperature refrigerant vapor Vc”, “high temperature refrigerant vapor Va” according to the property or the position on the heat pump cycle. It is called "regenerator refrigerant vapor Vg", "refrigerant liquid Vf", etc., but when the property etc. are unquestioned, it is collectively referred to as "refriger V". In the present embodiment, an LiBr aqueous solution is used as the absorbent S (a mixture of an absorbent and a refrigerant V), and water (H 2 O) is used as the refrigerant V. Further, the medium to be heated W is a medium to be heated W, which is a medium to be heated of liquid W, a medium to be heated vapor Wv which is a medium to be heated of W, and a medium to be heated Wq mixed with a medium to be heated Wv. It is a generic term for mixed heated medium Wm and make-up water Ws. In the present embodiment, water (H 2 O) is used as the medium to be heated W.

高温吸収器10は、被加熱媒体Wの流路を構成する伝熱管11と、高濃度溶液Saを散布する高濃度溶液散布ノズル12とを内部に有している。高濃度溶液散布ノズル12は、散布した高濃度溶液Saが伝熱管11に降りかかるように、伝熱管11の上方に配設されている。高温吸収器10は、高濃度溶液散布ノズル12から高濃度溶液Saが散布され、高濃度溶液Saが高温冷媒蒸気Vaを吸収する際に吸収熱を発生させる。この吸収熱を、伝熱管11を流れる被加熱媒体Wが受熱して、被加熱媒体Wが加熱されるように構成されている。高温吸収器10の下部には、中濃度溶液Sbが貯留される貯留部13が形成されている。中濃度溶液Sbは、高濃度溶液散布ノズル12から散布された高濃度溶液Saが高温冷媒蒸気Vaを吸収して、高濃度溶液Saから濃度が低下した吸収液Sである。伝熱管11は、中濃度溶液Sbに没入しないように、貯留部13よりも上方に配設されている。このようにすると、発生した吸収熱が伝熱管11内を流れる被加熱媒体Wに速やかに伝わり、吸収能力の回復を早めることができる。   The high temperature absorber 10 internally includes a heat transfer tube 11 constituting a flow path of the medium to be heated W and a high concentration solution dispersion nozzle 12 for dispersing the high concentration solution Sa. The high concentration solution dispersion nozzle 12 is disposed above the heat transfer tube 11 so that the dispersed high concentration solution Sa falls on the heat transfer tube 11. The high temperature absorber 10 disperses the high concentration solution Sa from the high concentration solution dispersion nozzle 12 and generates absorption heat when the high concentration solution Sa absorbs the high temperature refrigerant vapor Va. The absorbed heat is received by the medium to be heated W flowing through the heat transfer tube 11, and the medium to be heated W is heated. In the lower part of the high temperature absorber 10, a storage portion 13 in which the medium concentration solution Sb is stored is formed. The medium concentration solution Sb is an absorbing solution S in which the high concentration solution Sa dispersed from the high concentration solution dispersion nozzle 12 absorbs the high temperature refrigerant vapor Va and the concentration decreases from the high concentration solution Sa. The heat transfer tube 11 is disposed above the storage portion 13 so as not to be immersed in the medium concentration solution Sb. In this way, the generated absorption heat is rapidly transmitted to the medium to be heated W flowing in the heat transfer tube 11, and the recovery of the absorption capacity can be accelerated.

高温蒸発器20は、高温吸収器10に高温冷媒蒸気Vaを供給する構成部材である。高温蒸発器20は、冷媒液Vf及び高温冷媒蒸気Vaを収容する冷媒気液分離胴21と、高温冷媒液供給管22と、高温冷媒蒸気受入管24とを有している。高温冷媒液供給管22は、冷媒液Vfを中温吸収器30の加熱管31に導く流路を構成する管である。高温冷媒蒸気受入管24は、中温吸収器30の加熱管31で冷媒液Vfが加熱されて生成された高温冷媒蒸気Vaあるいは高温冷媒蒸気Vaと冷媒液Vfとの冷媒気液混相を冷媒気液分離胴21まで案内する流路を構成する管である。冷媒気液分離胴21内には、高温冷媒蒸気Va中に含まれる冷媒Vの液滴を衝突分離させるバッフル板(不図示)が設けられている。本実施の形態では、中温吸収器30の加熱管31の内面を高温蒸発器20の伝熱面としている。また、高温蒸発器20には冷媒液Vfを導入する冷媒液管82が接続されている。高温蒸発器20に接続された冷媒液管82には、流量調節弁83が配設されている。高温冷媒液供給管22は、冷媒気液分離胴21の冷媒液Vfが貯留されている部分に一端が接続され、他端が加熱管31の一端に接続されている。高温冷媒蒸気受入管24は、冷媒気液分離胴21に一端が接続され、他端が加熱管31の他端に接続されている。高温蒸発器20は、加熱管31の内部で冷媒液Vfが蒸気に変化して密度が大幅に減少するので、加熱管31を気泡ポンプとして機能させることとして、冷媒気液分離胴21内の冷媒液Vfを加熱管31に送るポンプを省略している。なお、冷媒気液分離胴21内の冷媒液Vfを加熱管31に送るポンプ(不図示)を高温冷媒液供給管22に配設してもよい。   The high temperature evaporator 20 is a component for supplying the high temperature refrigerant vapor Va to the high temperature absorber 10. The high temperature evaporator 20 has a refrigerant gas-liquid separation cylinder 21 accommodating the refrigerant liquid Vf and the high temperature refrigerant vapor Va, a high temperature refrigerant liquid supply pipe 22, and a high temperature refrigerant vapor reception pipe 24. The high temperature refrigerant liquid supply pipe 22 is a pipe which constitutes a flow path for leading the refrigerant liquid Vf to the heating pipe 31 of the medium temperature absorber 30. The high temperature refrigerant vapor receiving pipe 24 is a refrigerant gas-liquid phase of the high temperature refrigerant vapor Va or the high temperature refrigerant vapor Va and the refrigerant liquid Vf generated by heating the refrigerant liquid Vf in the heating pipe 31 of the medium temperature absorber 30 It is a pipe that constitutes a flow path for guiding to the separation cylinder 21. In the refrigerant gas-liquid separation cylinder 21, a baffle plate (not shown) for colliding and separating droplets of the refrigerant V contained in the high-temperature refrigerant vapor Va is provided. In the present embodiment, the inner surface of the heating tube 31 of the medium temperature absorber 30 is used as the heat transfer surface of the high temperature evaporator 20. Further, a refrigerant liquid pipe 82 for introducing the refrigerant liquid Vf is connected to the high temperature evaporator 20. A flow control valve 83 is disposed in the refrigerant liquid pipe 82 connected to the high temperature evaporator 20. One end of the high temperature refrigerant liquid supply pipe 22 is connected to the portion of the refrigerant gas-liquid separation cylinder 21 where the refrigerant liquid Vf is stored, and the other end is connected to one end of the heating pipe 31. One end of the high temperature refrigerant vapor receiving pipe 24 is connected to the refrigerant gas-liquid separation cylinder 21, and the other end is connected to the other end of the heating pipe 31. In the high-temperature evaporator 20, the refrigerant liquid Vf changes to steam inside the heating pipe 31, and the density is greatly reduced. Therefore, the refrigerant in the refrigerant gas-liquid separation cylinder 21 is operated as the heating pipe 31 functions as a bubble pump. The pump for sending the liquid Vf to the heating pipe 31 is omitted. A pump (not shown) for sending the refrigerant liquid Vf in the refrigerant gas-liquid separation cylinder 21 to the heating pipe 31 may be disposed in the high temperature refrigerant liquid supply pipe 22.

高温蒸発器20と高温吸収器10とは、高温冷媒蒸気流路としての高温冷媒蒸気管29で接続されている。高温冷媒蒸気管29は、一方の端部が冷媒気液分離胴21の上部(典型的には頂部)に接続されており、他方の端部が高濃度溶液散布ノズル12よりも上方で高温吸収器10に接続されている。このような構成により、高温蒸発器20で生成された高温冷媒蒸気Vaを、高温冷媒蒸気管29を介して、高温吸収器10に供給することができるようになっている。   The high temperature evaporator 20 and the high temperature absorber 10 are connected by a high temperature refrigerant vapor pipe 29 as a high temperature refrigerant vapor flow path. One end of the high temperature refrigerant vapor pipe 29 is connected to the upper portion (typically the top) of the refrigerant gas-liquid separation cylinder 21, and the other end is high temperature absorption above the high concentration solution dispersion nozzle 12 Connected to the vessel 10. With such a configuration, the high temperature refrigerant vapor Va generated by the high temperature evaporator 20 can be supplied to the high temperature absorber 10 through the high temperature refrigerant vapor pipe 29.

中温吸収器30は、冷媒液Vf及び高温冷媒蒸気Vaの流路を構成する第2の冷媒加熱管としての加熱管31と、中濃度溶液散布ノズル32とを内部に有している。加熱管31は、上述のように、一端に高温冷媒液供給管22が、他端に高温冷媒蒸気受入管24が、それぞれ接続されている。中濃度溶液散布ノズル32は、本実施の形態では、中濃度溶液Sbを散布する。中濃度溶液散布ノズル32は、散布した中濃度溶液Sbが加熱管31に降りかかるように、加熱管31の上方に配設されている。中濃度溶液散布ノズル32には、中濃度溶液Sbを内部に流す中濃度溶液管15の一端が接続されている。中温吸収器30は、中濃度溶液散布ノズル32から中濃度溶液Sbが散布され、中濃度溶液Sbが中温冷媒蒸気Vbを吸収する際に生じる吸収熱により、加熱管31を流れる冷媒液Vfを加熱して高温冷媒蒸気Vaを生成することができるように構成されている。中温吸収器30は、高温吸収器10よりも低い圧力(露点温度)で作動するように構成されており、高温吸収器10よりも作動温度が低くなっている。中温吸収器30の下部には、低濃度溶液Scが貯留される貯留部33が形成されている。低濃度溶液Scは、中濃度溶液散布ノズル32から散布された中濃度溶液Sbが中温冷媒蒸気Vbを吸収して濃度が低下した吸収液Sである。加熱管31は、貯留部33よりも上方に配設されている。   The medium temperature absorber 30 internally includes a heating pipe 31 as a second refrigerant heating pipe that constitutes a flow path of the refrigerant liquid Vf and the high-temperature refrigerant vapor Va, and a medium concentration solution dispersion nozzle 32. As described above, the heating pipe 31 is connected at one end to the high temperature refrigerant liquid supply pipe 22 and at the other end to the high temperature refrigerant vapor receiving pipe 24. The medium concentration solution dispersion nozzle 32 disperses the medium concentration solution Sb in the present embodiment. The medium concentration solution dispersion nozzle 32 is disposed above the heating tube 31 so that the dispersed medium concentration solution Sb falls on the heating tube 31. One end of a medium concentration solution pipe 15 through which the medium concentration solution Sb flows is connected to the medium concentration solution dispersion nozzle 32. The medium temperature absorber 30 heats the refrigerant liquid Vf flowing through the heating pipe 31 by the absorption heat generated when the medium concentration solution Sb is dispersed from the medium concentration solution dispersion nozzle 32 and the medium concentration solution Sb absorbs the medium temperature refrigerant vapor Vb. Thus, the high temperature refrigerant vapor Va can be generated. The medium temperature absorber 30 is configured to operate at a lower pressure (dew point temperature) than the high temperature absorber 10, and has a lower operating temperature than the high temperature absorber 10. In the lower part of the medium-temperature absorber 30, a storage portion 33 in which the low concentration solution Sc is stored is formed. The low concentration solution Sc is an absorbing solution S in which the medium concentration solution Sb dispersed from the medium concentration solution dispersion nozzle 32 absorbs the medium temperature refrigerant vapor Vb to reduce the concentration. The heating pipe 31 is disposed above the storage section 33.

中温蒸発器40は、中温吸収器30に中温冷媒蒸気Vbを供給する構成部材である。中温蒸発器40は、冷媒液Vf及び中温冷媒蒸気Vbを収容する中温気液分離器としての冷媒気液分離胴41と、中温冷媒液供給管42と、中温冷媒蒸気受入管44とを有している。中温冷媒液供給管42は、冷媒液Vfを低温吸収器50の加熱管51に導く流路を構成する管である。中温冷媒蒸気受入管44は、低温吸収器50の加熱管51で冷媒液Vfが加熱されて生成された中温冷媒蒸気Vbあるいは中温冷媒蒸気Vbと冷媒液Vfとの冷媒気液混相を冷媒気液分離胴41まで案内する流路を構成する管である。冷媒気液分離胴41は、高温蒸発器20の冷媒気液分離胴21と同様に構成されている。本実施の形態では、低温吸収器50の加熱管51の内面を中温蒸発器40の伝熱面としている。また、中温蒸発器40には冷媒液Vfを導入する冷媒液管84が接続されている。冷媒液管84は、冷媒液管82から分岐している。中温蒸発器40に接続された冷媒液管84には、流量調節弁85が配設されている。中温冷媒液供給管42は、冷媒気液分離胴41の冷媒液Vfが貯留されている部分に一端が接続され、他端が加熱管51の一端に接続されている。中温冷媒蒸気受入管44は、冷媒気液分離胴41に一端が接続され、他端が加熱管51の他端に接続されている。中温蒸発器40は、加熱管51の内部で冷媒液Vfが蒸気に変化して密度が大幅に減少するので、加熱管51を気泡ポンプとして機能させることとして、冷媒気液分離胴41内の冷媒液Vfを加熱管51に送るポンプを省略している。なお、冷媒気液分離胴41内の冷媒液Vfを加熱管51に送るポンプ(不図示)を中温冷媒液供給管42に配設してもよい。   The medium temperature evaporator 40 is a component that supplies the medium temperature refrigerant vapor Vb to the medium temperature absorber 30. The medium-temperature evaporator 40 has a refrigerant gas-liquid separation cylinder 41 as a medium-temperature gas-liquid separator containing the refrigerant liquid Vf and the medium-temperature refrigerant vapor Vb, an medium-temperature refrigerant liquid supply pipe 42, and an medium-temperature refrigerant vapor reception pipe 44. ing. The medium temperature refrigerant liquid supply pipe 42 is a pipe that constitutes a flow path for leading the refrigerant liquid Vf to the heating pipe 51 of the low temperature absorber 50. The medium temperature refrigerant vapor receiving pipe 44 is a refrigerant gas / liquid phase of the medium temperature refrigerant vapor Vb generated by heating the refrigerant liquid Vf in the heating pipe 51 of the low temperature absorber 50 or the medium temperature refrigerant vapor Vb and the refrigerant liquid Vf. It is a pipe that constitutes a flow path for guiding to the separation cylinder 41. The refrigerant gas-liquid separation cylinder 41 is configured in the same manner as the refrigerant gas-liquid separation cylinder 21 of the high temperature evaporator 20. In the present embodiment, the inner surface of the heating tube 51 of the low temperature absorber 50 is used as the heat transfer surface of the medium temperature evaporator 40. Further, a refrigerant liquid pipe 84 for introducing the refrigerant liquid Vf is connected to the medium temperature evaporator 40. The refrigerant liquid pipe 84 is branched from the refrigerant liquid pipe 82. A flow control valve 85 is disposed in the refrigerant liquid pipe 84 connected to the medium temperature evaporator 40. The medium temperature refrigerant liquid supply pipe 42 has one end connected to the portion of the refrigerant gas-liquid separation cylinder 41 where the refrigerant liquid Vf is stored, and the other end connected to one end of the heating pipe 51. The medium temperature refrigerant vapor receiving pipe 44 has one end connected to the refrigerant gas-liquid separation cylinder 41 and the other end connected to the other end of the heating pipe 51. Since the medium temperature evaporator 40 changes the refrigerant liquid Vf to steam inside the heating pipe 51 and the density is greatly reduced, the refrigerant in the refrigerant gas-liquid separation cylinder 41 is made to function as the heating pipe 51 as a bubble pump. The pump for sending the liquid Vf to the heating pipe 51 is omitted. A pump (not shown) for feeding the refrigerant liquid Vf in the refrigerant gas-liquid separation cylinder 41 to the heating pipe 51 may be disposed in the medium temperature refrigerant liquid supply pipe 42.

中温蒸発器40と中温吸収器30とは、中温冷媒蒸気流路としての中温冷媒蒸気管49で接続されている。中温冷媒蒸気管49は、一方の端部が冷媒気液分離胴41の上部(典型的には頂部)に接続されており、他方の端部が中濃度溶液散布ノズル32よりも上方で中温吸収器30に接続されている。このような構成により、中温蒸発器40で生成された中温冷媒蒸気Vbを、中温冷媒蒸気管49を介して、中温吸収器30に供給することができるようになっている。   The medium temperature evaporator 40 and the medium temperature absorber 30 are connected by a medium temperature refrigerant vapor pipe 49 as an medium temperature refrigerant vapor flow path. One end of the medium temperature refrigerant vapor pipe 49 is connected to the upper portion (typically the top) of the refrigerant gas-liquid separation cylinder 41, and the other end is medium temperature absorption above the medium concentration solution dispersion nozzle 32. It is connected to the vessel 30. With such a configuration, the medium temperature refrigerant vapor Vb generated by the medium temperature evaporator 40 can be supplied to the medium temperature absorber 30 through the medium temperature refrigerant vapor pipe 49.

低温吸収器50は、冷媒液Vf及び中温冷媒蒸気Vbの流路を構成する第1の冷媒加熱管としての加熱管51と、低濃度溶液散布ノズル52とを内部に有している。加熱管51は、上述のように、一端に中温冷媒液供給管42が、他端に中温冷媒蒸気受入管44が、それぞれ接続されている。低濃度溶液散布ノズル52は、本実施の形態では低濃度溶液Scを散布する。低濃度溶液散布ノズル52は、散布した低濃度溶液Scが加熱管51に降りかかるように、加熱管51の上方に配設されている。低濃度溶液散布ノズル52には、低濃度溶液Scを内部に流す低濃度溶液管35の一端が接続されている。低温吸収器50は、低濃度溶液散布ノズル52から低濃度溶液Scが散布され、低濃度溶液Scが低温冷媒蒸気Vcを吸収する際に生じる吸収熱により、加熱管51を流れる冷媒液Vfを加熱して中温冷媒蒸気Vbを生成することができるように構成されている。低温吸収器50は、中温吸収器30よりも低い圧力(露点温度)で作動するように構成されており、中温吸収器30よりも作動温度が低くなっている。低温吸収器50の下部には、希溶液Swが貯留される貯留部53が形成されている。希溶液Swは、低濃度溶液散布ノズル52から散布された吸収液S(本実施の形態では低濃度溶液Sc)が低温冷媒蒸気Vcを吸収して濃度が低下した吸収液Sである。希溶液Swは、高濃度溶液Sa及び中濃度溶液Sbと比較して、冷媒Vを多く含んでいる。加熱管51は、貯留部53よりも上方に配設されている。   The low temperature absorber 50 internally includes a heating pipe 51 as a first refrigerant heating pipe that constitutes a flow path of the refrigerant liquid Vf and the medium temperature refrigerant vapor Vb, and a low concentration solution dispersion nozzle 52. As described above, the heating pipe 51 is connected at one end to the medium temperature refrigerant liquid supply pipe 42 and at the other end to the medium temperature refrigerant vapor receiving pipe 44. The low concentration solution distribution nozzle 52 distributes the low concentration solution Sc in the present embodiment. The low concentration solution dispersion nozzle 52 is disposed above the heating tube 51 so that the dispersed low concentration solution Sc falls on the heating tube 51. One end of a low concentration solution pipe 35 through which the low concentration solution Sc flows is connected to the low concentration solution dispersion nozzle 52. In the low temperature absorber 50, the low concentration solution Sc is dispersed from the low concentration solution dispersion nozzle 52, and the refrigerant heat flowing through the heating pipe 51 is heated by the absorption heat generated when the low concentration solution Sc absorbs the low temperature refrigerant vapor Vc. The intermediate temperature refrigerant vapor Vb can be generated. The low temperature absorber 50 is configured to operate at a pressure (dew point temperature) lower than that of the medium temperature absorber 30, and the operating temperature is lower than that of the medium temperature absorber 30. In the lower part of the low temperature absorber 50, a storage part 53 in which the dilute solution Sw is stored is formed. The dilute solution Sw is an absorbing solution S in which the absorbing solution S (in the present embodiment, the low concentration solution Sc) dispersed from the low concentration solution dispersion nozzle 52 absorbs the low temperature refrigerant vapor Vc to reduce the concentration. The dilute solution Sw contains a large amount of the refrigerant V as compared with the high concentration solution Sa and the medium concentration solution Sb. The heating pipe 51 is disposed above the storage section 53.

低温蒸発器60は、蒸発器熱源流体としての蒸発器熱源温水heの流路を構成する蒸発器熱源流体管としての熱源管61と、冷媒液Vfを散布する冷媒液散布ノズル62とを内部に有している。冷媒液散布ノズル62は、散布した冷媒液Vfが熱源管61に降りかかるように、熱源管61の上方に配設されている。低温蒸発器60には、冷媒液Vfを内部に流す冷媒液管86の一端が接続されている。冷媒液管86には、低温蒸発器60に導入する冷媒液Vfの流量を調節する流量調節弁87が配設されている。低温蒸発器60の下部(典型的には底部)には、低温蒸発器60の下部に貯留された冷媒液Vfを冷媒液散布ノズル62へ導く低温冷媒液管65の一端が接続されている。低温冷媒液管65の他端は、冷媒液散布ノズル62に接続されている。低温冷媒液管65には、内部を流れる冷媒液Vfを圧送する低温冷媒液ポンプ66が配設されている。低温蒸発器60は、冷媒液散布ノズル62から冷媒液Vfが散布され、散布された冷媒液Vfが熱源管61内を流れる蒸発器熱源温水heの熱で蒸発して低温冷媒蒸気Vcが発生するように構成されている。低温蒸発器60は、中温蒸発器40よりも低い圧力(露点温度)で作動するように構成されており、中温蒸発器40よりも作動温度が低くなっている。   The low temperature evaporator 60 includes a heat source pipe 61 as an evaporator heat source fluid pipe that constitutes a flow path of the evaporator heat source hot water as an evaporator heat source fluid, and a refrigerant liquid dispersion nozzle 62 for dispersing the refrigerant liquid Vf. Have. The refrigerant liquid dispersion nozzle 62 is disposed above the heat source pipe 61 so that the dispersed refrigerant liquid Vf falls on the heat source pipe 61. The low temperature evaporator 60 is connected to one end of a refrigerant liquid pipe 86 through which the refrigerant liquid Vf flows. The refrigerant liquid pipe 86 is provided with a flow control valve 87 for adjusting the flow of the refrigerant liquid Vf introduced into the low temperature evaporator 60. One end of a low temperature refrigerant liquid pipe 65 for leading the refrigerant liquid Vf stored in the lower part of the low temperature evaporator 60 to the refrigerant liquid distribution nozzle 62 is connected to the lower portion (typically the bottom) of the low temperature evaporator 60. The other end of the low temperature refrigerant liquid pipe 65 is connected to the refrigerant liquid dispersion nozzle 62. The low temperature refrigerant liquid pipe 65 is provided with a low temperature refrigerant liquid pump 66 for pressure-feeding the refrigerant liquid Vf flowing therein. In the low temperature evaporator 60, the refrigerant liquid Vf is dispersed from the refrigerant liquid distribution nozzle 62, and the dispersed refrigerant liquid Vf is evaporated by the heat of the evaporator heat source warm water he flowing in the heat source pipe 61 to generate the low temperature refrigerant vapor Vc. Is configured as. The low temperature evaporator 60 is configured to operate at a pressure (dew point temperature) lower than that of the medium temperature evaporator 40, and the operating temperature is lower than that of the medium temperature evaporator 40.

低温吸収器50と低温蒸発器60とは、相互に連通している。低温吸収器50と低温蒸発器60とが連通することにより、低温蒸発器60で発生した低温冷媒蒸気Vcを低温吸収器50に供給することができるように構成されている。低温吸収器50と低温蒸発器60とは、典型的には、低濃度溶液散布ノズル52より上方及び冷媒液散布ノズル62より上方で連通している。   The low temperature absorber 50 and the low temperature evaporator 60 are in communication with each other. The low temperature absorber 50 and the low temperature evaporator 60 communicate with each other so that the low temperature refrigerant vapor Vc generated in the low temperature evaporator 60 can be supplied to the low temperature absorber 50. The low temperature absorber 50 and the low temperature evaporator 60 are typically communicated with each other above the low concentration solution distribution nozzle 52 and above the refrigerant liquid distribution nozzle 62.

再生器70は、再生器熱源流体としての再生器熱源温水hgの流路を構成する再生器熱源流体管としての熱源管71と、希溶液Swを散布する希溶液散布ノズル72とを有している。再生器70の熱源管71を流れる再生器熱源温水hgは、低温蒸発器60の熱源管61を流れる蒸発器熱源温水heと同じ温水であってもよく、その場合は、熱源管61を流れた後に熱源管71を流れるように配管(不図示)で接続されているとよい。各熱源管61、71に異なる熱源媒体が流れることとしてもよい。希溶液散布ノズル72は、散布した希溶液Swが熱源管71に降りかかるように、熱源管71の上方に配設されている。再生器70は、散布された希溶液Swが再生器熱源温水hgで加熱されることにより、希溶液Swから冷媒Vが蒸発して濃度が上昇した高濃度溶液Saが生成される。再生器70は、生成された高濃度溶液Saが下部に貯留されるように構成されている。   The regenerator 70 has a heat source pipe 71 as a regenerator heat source fluid pipe that constitutes a flow path of the regenerator heat source warm water hg as a regenerator heat source fluid, and a dilute solution dispersion nozzle 72 that disperses the dilute solution Sw. There is. The regenerator heat source warm water hg flowing through the heat source pipe 71 of the regenerator 70 may be the same hot water as the evaporator heat source warm water he flowing through the heat source pipe 61 of the low temperature evaporator 60. It is good to be connected by piping (not shown) so that it may flow through heat source pipe 71 later. Different heat source media may flow in the heat source tubes 61 and 71, respectively. The dilute solution spray nozzle 72 is disposed above the heat source pipe 71 so that the sprayed dilute solution Sw falls on the heat source pipe 71. In the regenerator 70, the dispersed dilute solution Sw is heated by the regenerator heat source warm water hg, whereby the refrigerant V evaporates from the dilute solution Sw to generate a high concentration solution Sa having an increased concentration. The regenerator 70 is configured such that the generated high concentration solution Sa is stored at the bottom.

凝縮器80は、冷却媒体流路を形成する冷却水管81を有している。冷却水管81には、冷却媒体としての冷却水cが流れる。凝縮器80は、再生器70で発生した冷媒Vの蒸気である再生器冷媒蒸気Vgを導入し、これを冷却水cで冷却して凝縮させるように構成されている。冷却水管81は、再生器冷媒蒸気Vgを直接冷却することができるように、再生器冷媒蒸気Vgが凝縮した冷媒液Vfに浸らないように配設されている。凝縮器80には、凝縮した冷媒液Vfを、高温蒸発器20、中温蒸発器40、及び低温蒸発器60に向けて送る冷媒液管88の一端が接続されている。冷媒液管88の他端は、高温蒸発器20に接続された冷媒液管82及び低温蒸発器60に接続された冷媒液管86に接続されており、凝縮器80内の冷媒液Vfを高温蒸発器20と中温蒸発器40と低温蒸発器60とに分配することができるように構成されている。冷媒液管88には、冷媒液Vfを圧送するための凝縮冷媒ポンプ89が配設されている。   The condenser 80 has a cooling water pipe 81 which forms a cooling medium channel. Cooling water c as a cooling medium flows through the cooling water pipe 81. The condenser 80 is configured to introduce a regenerator refrigerant vapor Vg, which is the vapor of the refrigerant V generated by the regenerator 70, and cool and condense it with the cooling water c. The cooling water pipe 81 is disposed so as not to be immersed in the refrigerant liquid Vf in which the regenerator refrigerant vapor Vg is condensed so that the regenerator refrigerant vapor Vg can be directly cooled. Connected to the condenser 80 is one end of a refrigerant liquid pipe 88 that sends the condensed refrigerant liquid Vf toward the high temperature evaporator 20, the medium temperature evaporator 40, and the low temperature evaporator 60. The other end of the refrigerant liquid pipe 88 is connected to the refrigerant liquid pipe 82 connected to the high temperature evaporator 20 and the refrigerant liquid pipe 86 connected to the low temperature evaporator 60, and the refrigerant liquid Vf in the condenser 80 is heated to a high temperature It is configured to be able to be distributed to the evaporator 20, the medium temperature evaporator 40 and the low temperature evaporator 60. The refrigerant liquid pipe 88 is provided with a condensing refrigerant pump 89 for pressure-feeding the refrigerant liquid Vf.

再生器70と凝縮器80とは、相互に連通している。再生器70と凝縮器80とが連通することにより、再生器70で発生した再生器冷媒蒸気Vgを凝縮器80に供給することができるように構成されている。再生器70と凝縮器80とは、上部の気相部で連通している。また、本実施の形態では、再生器70及び凝縮器80が、高温吸収器10、高温蒸発器20、中温吸収器30、中温蒸発器40、低温吸収器50、低温蒸発器60の下方に設けられている。   The regenerator 70 and the condenser 80 are in communication with each other. The regenerator 70 and the condenser 80 communicate with each other, so that the regenerator refrigerant vapor Vg generated in the regenerator 70 can be supplied to the condenser 80. The regenerator 70 and the condenser 80 communicate with each other in the upper gas phase portion. In the present embodiment, the regenerator 70 and the condenser 80 are provided below the high temperature absorber 10, the high temperature evaporator 20, the medium temperature absorber 30, the medium temperature evaporator 40, the low temperature absorber 50, and the low temperature evaporator 60. It is done.

再生器70の高濃度溶液Saが貯留される部分と、高温吸収器10の高濃度溶液散布ノズル12とは、高濃度溶液管75で接続されている。高濃度溶液管75には、再生器70内の高濃度溶液Saを高濃度溶液散布ノズル12に圧送する高濃度溶液ポンプ76が配設されている。高温吸収器10の貯留部13と、中温吸収器30の中濃度溶液散布ノズル32とは、中濃度溶液管15で接続されている。中濃度溶液管15には、高温吸収器10内の中濃度溶液Sbを中温吸収器30に圧送する中濃度溶液ポンプ16が配設されている。中温吸収器30の貯留部33と、低温吸収器50の低濃度溶液散布ノズル52とは、低濃度溶液管35で接続されている。低濃度溶液管35には、中温吸収器30内の低濃度溶液Scを低温吸収器50に圧送する低濃度溶液ポンプ36が配設されている。低温吸収器50の貯留部53と、再生器70の希溶液散布ノズル72とは、希溶液管55で接続されている。   A portion of the regenerator 70 where the high concentration solution Sa is stored, and the high concentration solution dispersion nozzle 12 of the high temperature absorber 10 are connected by a high concentration solution pipe 75. In the high concentration solution pipe 75, a high concentration solution pump 76 that pumps the high concentration solution Sa in the regenerator 70 to the high concentration solution dispersion nozzle 12 is disposed. The storage portion 13 of the high temperature absorber 10 and the medium concentration solution dispersion nozzle 32 of the medium temperature absorber 30 are connected by a medium concentration solution pipe 15. A medium concentration solution pump 16 for pressure-feeding the medium concentration solution Sb in the high temperature absorber 10 to the medium temperature absorber 30 is disposed in the medium concentration solution pipe 15. The storage portion 33 of the medium temperature absorber 30 and the low concentration solution dispersion nozzle 52 of the low temperature absorber 50 are connected by a low concentration solution pipe 35. In the low concentration solution pipe 35, a low concentration solution pump 36 for pumping the low concentration solution Sc in the medium temperature absorber 30 to the low temperature absorber 50 is disposed. The reservoir 53 of the low temperature absorber 50 and the dilute solution dispersion nozzle 72 of the regenerator 70 are connected by a dilute solution pipe 55.

中濃度溶液管15及び高濃度溶液管75には、高温熱交換器18が配設されている。高温熱交換器18は、中濃度溶液管15を流れる中濃度溶液Sbと、高濃度溶液管75を流れる高濃度溶液Saとの間で熱交換を行わせる機器である。低濃度溶液管35及び高濃度溶液管75には、中温熱交換器38が配設されている。中温熱交換器38は、低濃度溶液管35を流れる低濃度溶液Scと、高濃度溶液管75を流れる高濃度溶液Saとの間で熱交換を行わせる機器である。希溶液管55及び高濃度溶液管75には、低温熱交換器58が配設されている。低温熱交換器58は、希溶液管55を流れる希溶液Swと、高濃度溶液管75を流れる高濃度溶液Saとの間で熱交換を行わせる機器である。   A high temperature heat exchanger 18 is disposed in the medium concentration solution pipe 15 and the high concentration solution pipe 75. The high temperature heat exchanger 18 is a device for performing heat exchange between the medium concentration solution Sb flowing through the medium concentration solution pipe 15 and the high concentration solution Sa flowing through the high concentration solution pipe 75. A medium temperature heat exchanger 38 is disposed in the low concentration solution pipe 35 and the high concentration solution pipe 75. The medium-temperature heat exchanger 38 is a device that performs heat exchange between the low concentration solution Sc flowing through the low concentration solution pipe 35 and the high concentration solution Sa flowing through the high concentration solution pipe 75. A low temperature heat exchanger 58 is disposed in the dilute solution pipe 55 and the high concentration solution pipe 75. The low temperature heat exchanger 58 is a device for performing heat exchange between the dilute solution Sw flowing in the dilute solution pipe 55 and the high concentration solution Sa flowing in the high concentration solution pipe 75.

気液分離器90は、高温吸収器10の伝熱管11を流れて加熱された被加熱媒体Wを導入し、被加熱媒体蒸気Wvと被加熱媒体液Wqとを分離する機器である。気液分離器90の下部と高温吸収器10の伝熱管11の一端とは、被加熱媒体液Wqを伝熱管11に導く被加熱媒体液管92で接続されている。内部が気相部となる気液分離器90の側面と伝熱管11の他端とは、加熱された被加熱媒体Wを気液分離器90に導く加熱後被加熱媒体管94で接続されている。被加熱媒体液管92には、蒸気として系外に供給された分の被加熱媒体Wを補うための補給流体としての補給水Wsを系外から導入する補給水管95が接続されている。補給水管95には、気液分離器90に向けて補給水Wsを圧送する補給水ポンプ96が配設されている。本実施の形態では、補給水管95と補給水ポンプ96とで、補給水供給部97を構成している。また、気液分離器90には、被加熱媒体蒸気Wvを系外に供給する被加熱媒体蒸気供給管99が上部(典型的には頂部)に接続されている。気液分離器90は、伝熱管11内で被加熱媒体液Wqの一部が蒸発して被加熱媒体液Wqと被加熱媒体蒸気Wvとが混合した混合被加熱媒体Wmを導入してもよく、被加熱媒体液Wqのまま気液分離器90に導いて減圧し一部を気化させて混合被加熱媒体Wmとしたものを気液分離させるようにしてもよい。   The gas-liquid separator 90 is a device that flows through the heat transfer tube 11 of the high-temperature absorber 10 to introduce the heated heating medium W and separates the heating medium vapor Wv and the heating medium liquid Wq. The lower portion of the gas-liquid separator 90 and one end of the heat transfer pipe 11 of the high temperature absorber 10 are connected by a heated medium liquid pipe 92 which guides the heated medium liquid Wq to the heat transfer pipe 11. The side surface of the gas-liquid separator 90 whose inside is a gas phase portion and the other end of the heat transfer tube 11 are connected by a heated heated medium pipe 94 for guiding the heated heated medium W to the gas-liquid separator 90 There is. Connected to the heated medium liquid pipe 92 is a replenishing water pipe 95 for introducing replenishing water Ws from the outside of the system as a replenishing fluid for replenishing the heated medium W supplied to the outside of the system as steam. A makeup water pump 96 for pumping the makeup water Ws toward the gas-liquid separator 90 is disposed in the makeup water pipe 95. In the present embodiment, the makeup water supply unit 97 is configured by the makeup water pipe 95 and the makeup water pump 96. Further, in the gas-liquid separator 90, a heated medium vapor supply pipe 99 for supplying the heated medium vapor Wv out of the system is connected to the top (typically at the top). The gas-liquid separator 90 may introduce a mixed heated medium Wm in which the heated medium liquid Wq and the heated medium vapor Wv are mixed by evaporating a part of the heated medium liquid Wq in the heat transfer pipe 11 The liquid to be heated Wq may be introduced into the gas-liquid separator 90 as it is, decompressed, and partially vaporized to make the mixed medium to be heated Wm gas-liquid separated.

予熱熱交換器100は、本実施の形態では、低温熱交換器58よりも下流側の希溶液管55を流れる希溶液Swと、冷媒液管88を流れる冷媒液Vf及び補給水管95を流れる補給水Wsとの間で熱交換を行わせる熱交換器である。予熱熱交換器100は、本実施の形態では、シェルアンドチューブ型熱交換器(多管式熱交換器)が用いられている。吸収ヒートポンプ1の運転時は、一例を示すと、高温蒸発器20、中温蒸発器40、低温蒸発器60のそれぞれに、約5〜10リットル毎分の冷媒液Vfが供給される。したがって、冷媒液管88には、約15〜30リットル毎分の冷媒液Vfが流れることになる。また、補給水管95には、約5〜10リットル毎分の補給水Wsが流れる。他方、希溶液管55を流れる希溶液Swは、約100〜150リットル毎分である。   In the present embodiment, the preheating heat exchanger 100 supplies the dilute solution Sw flowing through the dilute solution pipe 55 downstream of the low temperature heat exchanger 58, the refrigerant liquid Vf flowing through the refrigerant liquid pipe 88, and the replenishment flowing through the makeup water pipe 95. It is a heat exchanger which performs heat exchange with water Ws. In the present embodiment, a shell and tube type heat exchanger (multi-tubular type heat exchanger) is used as the preheating heat exchanger 100. During operation of the absorption heat pump 1, for example, the refrigerant liquid Vf of approximately 5 to 10 liters per minute is supplied to each of the high temperature evaporator 20, the medium temperature evaporator 40, and the low temperature evaporator 60. Therefore, the refrigerant liquid Vf flows about 15 to 30 liters per minute through the refrigerant liquid pipe 88. In addition, makeup water Ws of approximately 5 to 10 liters per minute flows through the makeup water pipe 95. On the other hand, the dilute solution Sw flowing through the dilute solution pipe 55 is about 100 to 150 liters per minute.

図2に、予熱熱交換器100の構成の一例を示す。予熱熱交換器100は、本実施の形態では、希溶液Swがシェル側を流れ、冷媒液Vf及び補給水Wsがチューブ内を流れるように構成されている。予熱熱交換器100は、冷媒液Vfを流す冷媒液流路としての冷媒液チューブ188と、補給水Wsを流す補給流体流路としての補給水チューブ195とが、シェル101の内部に設けられている。冷媒液チューブ188及び補給水チューブ195の外側の、シェル101の内部は、希溶液Swが流れる希溶液流路155となっている。希溶液流路155は吸収液流路に相当し、吸収液流路は加熱側流路の一形態である。シェル101の内部には、希溶液Swと冷媒液チューブ188及び補給水チューブ195との接触面積を増加させるために、希溶液Swを希溶液流路155内で蛇行させるためのプレート102が設けられている。冷媒液チューブ188は、冷媒液管88に接続されている。補給水チューブ195は、補給水管95に接続されている。希溶液流路155は、希溶液管55に接続されている。   An example of a structure of the preheat heat exchanger 100 is shown in FIG. In the present embodiment, in the preheating heat exchanger 100, the dilute solution Sw flows on the shell side, and the refrigerant liquid Vf and the makeup water Ws flow in the tube. In the preheating heat exchanger 100, a refrigerant liquid tube 188 as a refrigerant liquid flow path for flowing the refrigerant liquid Vf and a replenishment water tube 195 as a replenishment fluid flow path for flowing the replenishment water Ws are provided inside the shell 101. There is. The inside of the shell 101 outside the refrigerant liquid tube 188 and the makeup water tube 195 is a dilute solution flow path 155 through which the dilute solution Sw flows. The dilute solution flow channel 155 corresponds to an absorption liquid flow channel, and the absorption liquid flow channel is a form of the heating side flow channel. Inside the shell 101, a plate 102 for meandering the dilute solution Sw in the dilute solution flow path 155 is provided in order to increase the contact area between the dilute solution Sw and the refrigerant liquid tube 188 and the makeup water tube 195. ing. The refrigerant liquid tube 188 is connected to the refrigerant liquid pipe 88. The makeup water tube 195 is connected to the makeup water pipe 95. The dilute solution flow channel 155 is connected to the dilute solution pipe 55.

引き続き図1を参照して、吸収ヒートポンプ1の作用を説明する。まず、冷媒側のサイクルを説明する。凝縮器80では、再生器70で発生した再生器冷媒蒸気Vgを受け入れて、冷却水管81を流れる冷却水cで再生器冷媒蒸気Vgを冷却して凝縮し、冷媒液Vfとする。凝縮した冷媒液Vfは、凝縮冷媒ポンプ89で高温蒸発器20、中温蒸発器40、及び低温蒸発器60に向けて圧送される。凝縮冷媒ポンプ89で圧送された冷媒液Vfは、冷媒液管88を流れ、途中の予熱熱交換器100で温度が上昇した後、冷媒液管82と冷媒液管86とに分流される。冷媒液Vfが予熱熱交換器100で予熱されることで、吸収ヒートポンプ1の起動が早くなり、早期に運転を安定させることができる。冷媒液管82を流れる冷媒液Vfは、途中で一部が冷媒液管84に流入し、残りはそのまま冷媒液管82を流れて高温冷媒液供給管22に導入される。冷媒液管84を流れる冷媒液Vfは、中温冷媒液供給管42に導入される。冷媒液管86を流れる冷媒液Vfは、低温蒸発器60に導入される。   Continuing to refer to FIG. 1, the operation of the absorption heat pump 1 will be described. First, the refrigerant side cycle will be described. In the condenser 80, the regenerator refrigerant vapor Vg generated in the regenerator 70 is received, and the regenerator refrigerant vapor Vg is cooled and condensed by the cooling water c flowing through the cooling water pipe 81 to be the refrigerant liquid Vf. The condensed refrigerant liquid Vf is pressure-fed by the condensing refrigerant pump 89 toward the high temperature evaporator 20, the medium temperature evaporator 40, and the low temperature evaporator 60. The refrigerant liquid Vf pressure-fed by the condensing refrigerant pump 89 flows through the refrigerant liquid pipe 88, and the temperature thereof is increased by the preheating heat exchanger 100 in the middle, and then is divided into the refrigerant liquid pipe 82 and the refrigerant liquid pipe 86. The refrigerant liquid Vf is preheated by the preheating heat exchanger 100, whereby the start-up of the absorption heat pump 1 is quickened, and the operation can be stabilized early. A part of the refrigerant liquid Vf flowing through the refrigerant liquid pipe 82 flows into the refrigerant liquid pipe 84 along the way, and the remainder flows through the refrigerant liquid pipe 82 and is introduced into the high temperature refrigerant liquid supply pipe 22. The refrigerant liquid Vf flowing through the refrigerant liquid pipe 84 is introduced into the medium temperature refrigerant liquid supply pipe 42. The refrigerant liquid Vf flowing through the refrigerant liquid pipe 86 is introduced into the low temperature evaporator 60.

低温蒸発器60に導入された冷媒液Vfは、低温冷媒液ポンプ66によって冷媒液散布ノズル62に圧送され、冷媒液散布ノズル62から熱源管61に向けて散布される。冷媒液散布ノズル62から散布された冷媒液Vfは、熱源管61内を流れる蒸発器熱源温水heによって加熱され蒸発して低温冷媒蒸気Vcとなる。低温蒸発器60で発生した低温冷媒蒸気Vcは、低温蒸発器60と連通する低温吸収器50へと移動する。他方、中温冷媒液供給管42に導入された冷媒液Vfは、気泡ポンプの作用によって低温吸収器50の加熱管51に流入する。加熱管51に流入した冷媒液Vfは、低温吸収器50において、低温蒸発器60から移動してきた低温冷媒蒸気Vcが低濃度溶液Scに吸収される際に発生する吸収熱により加熱され、この加熱により蒸発して中温冷媒蒸気Vbとなる。加熱管51内で発生した中温冷媒蒸気Vbは、中温冷媒蒸気受入管44を流れ、冷媒気液分離胴41に至る。冷媒気液分離胴41に流入した中温冷媒蒸気Vbは、中温冷媒蒸気管49を介して中温蒸発器40と連通する中温吸収器30へと移動する。また、高温冷媒液供給管22に導入された冷媒液Vfは、気泡ポンプの作用によって中温吸収器30の加熱管31に流入する。加熱管31に流入した冷媒液Vfは、中温吸収器30において、中温蒸発器40から移動してきた中温冷媒蒸気Vbが中濃度溶液Sbに吸収される際に発生する吸収熱により加熱され、この加熱により蒸発して高温冷媒蒸気Vaとなる。加熱管31内で発生した高温冷媒蒸気Vaは、高温冷媒蒸気受入管24を流れ、冷媒気液分離胴21に至る。冷媒気液分離胴21に流入した高温冷媒蒸気Vaは、高温冷媒蒸気管29を介して高温蒸発器20と連通する高温吸収器10へと移動する。   The refrigerant liquid Vf introduced into the low temperature evaporator 60 is pressure-fed to the refrigerant liquid distribution nozzle 62 by the low temperature refrigerant liquid pump 66 and dispersed from the refrigerant liquid distribution nozzle 62 toward the heat source pipe 61. The refrigerant liquid Vf distributed from the refrigerant liquid distribution nozzle 62 is heated by the evaporator heat source warm water he flowing in the heat source pipe 61 and evaporated to become the low temperature refrigerant vapor Vc. The low temperature refrigerant vapor Vc generated in the low temperature evaporator 60 moves to the low temperature absorber 50 in communication with the low temperature evaporator 60. On the other hand, the refrigerant liquid Vf introduced into the medium temperature refrigerant liquid supply pipe 42 flows into the heating pipe 51 of the low temperature absorber 50 by the action of the bubble pump. The refrigerant liquid Vf having flowed into the heating pipe 51 is heated in the low temperature absorber 50 by the absorption heat generated when the low temperature refrigerant vapor Vc moved from the low temperature evaporator 60 is absorbed by the low concentration solution Sc, It evaporates by this and becomes medium temperature refrigerant vapor Vb. The medium temperature refrigerant vapor Vb generated in the heating pipe 51 flows through the medium temperature refrigerant vapor receiving pipe 44 and reaches the refrigerant gas-liquid separation cylinder 41. The medium temperature refrigerant vapor Vb that has flowed into the refrigerant gas-liquid separation cylinder 41 moves to the medium temperature absorber 30 communicating with the medium temperature evaporator 40 via the medium temperature refrigerant vapor pipe 49. Further, the refrigerant liquid Vf introduced into the high temperature refrigerant liquid supply pipe 22 flows into the heating pipe 31 of the medium temperature absorber 30 by the action of the bubble pump. The refrigerant liquid Vf flowing into the heating pipe 31 is heated by the absorption heat generated when the medium temperature refrigerant vapor Vb transferred from the medium temperature evaporator 40 is absorbed by the medium concentration solution Sb in the medium temperature absorber 30, and this heating is performed It evaporates by this and becomes high temperature refrigerant vapor Va. The high temperature refrigerant vapor Va generated in the heating pipe 31 flows through the high temperature refrigerant vapor receiving pipe 24 and reaches the refrigerant gas-liquid separation cylinder 21. The high temperature refrigerant vapor Va flowing into the refrigerant gas-liquid separation cylinder 21 moves to the high temperature absorber 10 in communication with the high temperature evaporator 20 through the high temperature refrigerant vapor pipe 29.

次に吸収ヒートポンプ1の吸収液側のサイクルを説明する。高温吸収器10では、高濃度溶液Saが高濃度溶液散布ノズル12から散布され、この散布された高濃度溶液Saが高温蒸発器20から移動してきた高温冷媒蒸気Vaを吸収する。高温冷媒蒸気Vaを吸収した高濃度溶液Saは、濃度が低下して中濃度溶液Sbとなる。高温吸収器10では、高濃度溶液Saが高温冷媒蒸気Vaを吸収する際に吸収熱が発生する。この吸収熱により、伝熱管11を流れる被加熱媒体液Wqが加熱される。ここで、被加熱媒体蒸気Wvを取り出すための気液分離器90まわりの作用について説明する。   Next, the cycle on the absorbent side of the absorption heat pump 1 will be described. In the high temperature absorber 10, the high concentration solution Sa is dispersed from the high concentration solution dispersion nozzle 12, and the dispersed high concentration solution Sa absorbs the high temperature refrigerant vapor Va transferred from the high temperature evaporator 20. The high concentration solution Sa that has absorbed the high temperature refrigerant vapor Va is reduced in concentration to become a medium concentration solution Sb. In the high temperature absorber 10, absorption heat is generated when the high concentration solution Sa absorbs the high temperature refrigerant vapor Va. The absorbed heat causes the heated medium liquid Wq flowing through the heat transfer tube 11 to be heated. Here, the operation around the gas-liquid separator 90 for taking out the heating medium vapor Wv will be described.

気液分離器90には、系外から補給水Wsが補給水管95を介して導入される。補給水Wsは、補給水ポンプ96により補給水管95を圧送され、途中の予熱熱交換器100で温度が上昇した後、被加熱媒体液管92に導入される。補給水Wsが予熱熱交換器100で予熱されることで、吸収ヒートポンプ1のCOPが高くなり、生成される被加熱媒体蒸気Wvの流量を増加させることができる。被加熱媒体液管92に導入された補給水Wsは、被加熱媒体液Wqとして、気液分離器90の下部から流れてきた被加熱媒体液Wqと合流し、気泡ポンプの作用により、高温吸収器10の伝熱管11に流入する。伝熱管11に流入した被加熱媒体液Wqは、高温吸収器10における上述の吸収熱により加熱される。伝熱管11で加熱された被加熱媒体液Wqは、一部が蒸発して被加熱媒体蒸気Wvとなった混合被加熱媒体Wmとして、あるいは温度が上昇した被加熱媒体液Wqとして、気液分離器90に向けて加熱後被加熱媒体管94を流れる。加熱後被加熱媒体管94を、温度が上昇した被加熱媒体液Wqが流れる場合、被加熱媒体液Wqは、気液分離器90に導入される際に減圧され、一部が蒸発して被加熱媒体蒸気Wvとなった混合被加熱媒体Wmとして気液分離器90に導入される。気液分離器90に導入された混合被加熱媒体Wmは、被加熱媒体液Wqと被加熱媒体蒸気Wvとが分離される。分離された被加熱媒体液Wqは、気液分離器90の下部に貯留され、再び高温吸収器10の伝熱管11に送られる。他方、分離された被加熱媒体蒸気Wvは、被加熱媒体蒸気供給管99に流出し、蒸気利用場所に供給される。本実施の形態では、0.8MPa(ゲージ圧)程度の被加熱媒体蒸気Wvが供給される。   The makeup water Ws is introduced into the gas-liquid separator 90 from outside the system via the makeup water pipe 95. The makeup water Ws is pressure-fed through the makeup water pipe 95 by the makeup water pump 96 and is introduced into the heated medium liquid pipe 92 after the temperature thereof is increased by the preheating heat exchanger 100 in the middle. By making the makeup water Ws preheated by the preheating heat exchanger 100, the COP of the absorption heat pump 1 becomes high, and the flow rate of the heating medium vapor Wv to be generated can be increased. The make-up water Ws introduced into the medium fluid pipe 92 to be heated merges with the medium fluid Wq to be heated which has flowed from the lower part of the gas-liquid separator 90 as the medium fluid Wq to be heated. Flows into the heat transfer tube 11 of the vessel 10. The to-be-heated medium liquid Wq which has flowed into the heat transfer tube 11 is heated by the above-mentioned absorption heat in the high temperature absorber 10. The liquid-to-be-heated liquid Wq heated by the heat transfer tube 11 is separated as a mixed liquid-to-be-heated medium Wm in which a part is evaporated to become the liquid-to-be-heated medium vapor Wv After heating to the vessel 90, it flows through the heated medium tube 94. When the heated medium liquid Wq whose temperature has risen flows through the heated medium pipe 94 after heating, the heated medium liquid Wq is decompressed when introduced into the gas-liquid separator 90, and a part of it is evaporated to be heated. It is introduced into the gas-liquid separator 90 as the mixed heated medium Wm that has become the heating medium vapor Wv. The mixed heated medium Wm introduced into the gas-liquid separator 90 separates the heated medium liquid Wq and the heated medium vapor Wv. The separated medium fluid Wq to be heated is stored in the lower part of the gas-liquid separator 90 and is again sent to the heat transfer tube 11 of the high temperature absorber 10. On the other hand, the separated heated medium vapor Wv flows out to the heated medium vapor supply pipe 99 and is supplied to the steam utilization site. In the present embodiment, the heating medium vapor Wv of about 0.8 MPa (gauge pressure) is supplied.

再び吸収ヒートポンプ1の吸収液側のサイクルの説明に戻る。高温吸収器10で高温冷媒蒸気Vaを吸収した高濃度溶液Saは、濃度が低下して中濃度溶液Sbとなり、貯留部13に貯留される。貯留部13内の中濃度溶液Sbは、中濃度溶液ポンプ16の作動により中温吸収器30に向かって中濃度溶液管15を流れ、高温熱交換器18で高濃度溶液Saと熱交換して温度が低下した後に、中濃度溶液散布ノズル32に至る。このように、本実施の形態では、高温吸収器10内の吸収液Sを直接(他の吸収器を経由せずに)中温吸収器30に導入している。なお、高温吸収器10の内部圧力が中温吸収器30の内部圧力よりも高くなり、中濃度溶液ポンプ16が作動していなくても両者の内圧の差によって、高温吸収器10内の中濃度溶液Sbを中温吸収器30に搬送することができる場合は、中濃度溶液ポンプ16を止めるとよい。   It returns to description of the cycle by the side of absorption liquid of absorption heat pump 1 again. The high concentration solution Sa that has absorbed the high temperature refrigerant vapor Va by the high temperature absorber 10 is reduced in concentration to become a medium concentration solution Sb, and is stored in the storage section 13. The medium concentration solution Sb in the reservoir 13 flows through the medium concentration solution pipe 15 toward the medium temperature absorber 30 by the operation of the medium concentration solution pump 16 and exchanges heat with the high concentration solution Sa in the high temperature heat exchanger 18 Reaches a medium concentration solution spray nozzle 32. As described above, in the present embodiment, the absorbent S in the high temperature absorber 10 is directly introduced into the medium temperature absorber 30 (without passing through another absorber). The internal pressure of the high temperature absorber 10 becomes higher than the internal pressure of the medium temperature absorber 30, and even if the medium concentration solution pump 16 is not operating, the medium concentration solution in the high temperature absorber 10 is determined If Sb can be delivered to the medium temperature absorber 30, the medium concentration solution pump 16 may be stopped.

中温吸収器30では、中濃度溶液Sbが中濃度溶液散布ノズル32から散布され、この散布された中濃度溶液Sbが中温蒸発器40から移動してきた中温冷媒蒸気Vbを吸収する。中温冷媒蒸気Vbを吸収した中濃度溶液Sbは、濃度が低下して低濃度溶液Scとなり、貯留部33に貯留される。中温吸収器30では、中濃度溶液Sbが中温冷媒蒸気Vbを吸収する際に吸収熱が発生する。この吸収熱により、前述したように、加熱管31を流れる冷媒液Vfが加熱される。貯留部33内の低濃度溶液Scは、低濃度溶液ポンプ36の作動により低温吸収器50に向かって低濃度溶液管35を流れ、中温熱交換器38で高濃度溶液Saと熱交換して温度が低下した後に、低濃度溶液散布ノズル52に至る。このように、本実施の形態では、高温吸収器10内の吸収液Sを、中温吸収器30を経由して間接的に低温吸収器50に導入している。なお、中温吸収器30の内部圧力が低温吸収器50の内部圧力よりも高くなり、低濃度溶液ポンプ36が作動していなくても両者の内圧の差によって中温吸収器30内の低濃度溶液Scを低温吸収器50に搬送することができる場合は、低濃度溶液ポンプ36を止めるとよい。   In the medium temperature absorber 30, the medium concentration solution Sb is dispersed from the medium concentration solution dispersion nozzle 32, and the dispersed medium concentration solution Sb absorbs the medium temperature refrigerant vapor Vb transferred from the medium temperature evaporator 40. The medium concentration solution Sb having absorbed the medium temperature refrigerant vapor Vb is reduced in concentration to be a low concentration solution Sc, and is stored in the storage section 33. In the medium temperature absorber 30, absorption heat is generated when the medium concentration solution Sb absorbs the medium temperature refrigerant vapor Vb. As described above, the refrigerant liquid Vf flowing through the heating pipe 31 is heated by the absorbed heat. The low concentration solution Sc in the reservoir 33 flows through the low concentration solution pipe 35 toward the low temperature absorber 50 by the operation of the low concentration solution pump 36 and exchanges heat with the high concentration solution Sa in the medium temperature heat exchanger 38 Reaches a low concentration solution spray nozzle 52. As described above, in the present embodiment, the absorbent S in the high temperature absorber 10 is indirectly introduced to the low temperature absorber 50 via the medium temperature absorber 30. The internal pressure of the medium temperature absorber 30 becomes higher than the internal pressure of the low temperature absorber 50, and even if the low concentration solution pump 36 is not operating, the low concentration solution Sc in the intermediate temperature absorber 30 is determined The low concentration solution pump 36 may be stopped if it can be transported to the low temperature absorber 50.

低温吸収器50では、低濃度溶液散布ノズル52に流入した低濃度溶液Scが加熱管51に向けて散布される。散布された低濃度溶液Scは、低温蒸発器60から移動してきた低温冷媒蒸気Vcを吸収する。低温冷媒蒸気Vcを吸収した低濃度溶液Scは、濃度が低下して希溶液Swとなる。低温吸収器50では、低濃度溶液Scが低温冷媒蒸気Vcを吸収する際に吸収熱が発生する。この吸収熱により、前述したように、加熱管51を流れる冷媒液Vfが加熱され、中温冷媒蒸気Vbが生成される。低温吸収器50内の希溶液Swは、重力により再生器70に向かって希溶液管55を流れる。この際、希溶液Swは、低温熱交換器58で高濃度溶液Saと熱交換して温度が低下し、さらに予熱熱交換器100で冷媒液Vf及び補給水Wsと熱交換して温度が低下した後に、再生器70に導入される。このように、本実施の形態では、高温吸収器10内の吸収液Sを、中温吸収器30及び低温吸収器50を経由して間接的に再生器70に導入している。   In the low temperature absorber 50, the low concentration solution Sc flowing into the low concentration solution dispersion nozzle 52 is dispersed toward the heating pipe 51. The sprayed low concentration solution Sc absorbs the low temperature refrigerant vapor Vc transferred from the low temperature evaporator 60. The low concentration solution Sc that has absorbed the low temperature refrigerant vapor Vc has a reduced concentration and becomes a dilute solution Sw. In the low temperature absorber 50, absorption heat is generated when the low concentration solution Sc absorbs the low temperature refrigerant vapor Vc. As described above, the refrigerant liquid Vf flowing through the heating pipe 51 is heated by the absorbed heat, and the medium temperature refrigerant vapor Vb is generated. The dilute solution Sw in the low temperature absorber 50 flows in the dilute solution pipe 55 toward the regenerator 70 by gravity. At this time, the dilute solution Sw exchanges heat with the high concentration solution Sa in the low temperature heat exchanger 58 to lower the temperature, and further exchanges heat with the refrigerant liquid Vf and the makeup water Ws in the preheating heat exchanger 100 to reduce the temperature After that, it is introduced into the regenerator 70. As described above, in the present embodiment, the absorbent S in the high temperature absorber 10 is indirectly introduced into the regenerator 70 via the medium temperature absorber 30 and the low temperature absorber 50.

予熱熱交換器100では、比較的流量が大きい希溶液Swに対して、比較的流量が小さい冷媒液Vf及び補給水Wsをまとめて同時に熱交換させるので、希溶液Swと、冷媒液Vf及び補給水Wsとの熱バランスを取りやすい。また、予熱熱交換器100において、再生器70に流入する手前の希溶液Swの温度を下げることにより、再生器70に流入した希溶液Swが自己蒸発することを抑制することができ、再生器70において再生器熱源温水hgの熱をより多く利用することが可能になり、再生器熱源温水hgが排温水である場合は特に有用となる。また、仮に希溶液Swが希溶液管55の内外で自己蒸発してしまうと体積流量が増加し圧力損失が増大して希溶液Swの流量が不足する可能性があるが、予熱熱交換器100において希溶液Swの温度を下げることにより、希溶液Swが希溶液管55の内外で自己蒸発することを抑制することができ、所望の希溶液Swの流量を確保することができる。   In the preheating heat exchanger 100, the refrigerant liquid Vf and the makeup water Ws having relatively small flow rates are simultaneously subjected to heat exchange simultaneously with respect to the dilute solution Sw having a relatively large flow rate. Therefore, the dilute solution Sw, the refrigerant liquid Vf, and the replenishment are supplied. Easy to balance heat with water Ws. Further, in the preheating heat exchanger 100, by lowering the temperature of the dilute solution Sw before flowing into the regenerator 70, it is possible to suppress the self-evaporation of the diluted solution Sw flowing into the regenerator 70. At 70, the heat of the regenerator heat source warm water hg can be used more and it becomes particularly useful when the regenerator heat source warm water hg is waste water. In addition, if the dilute solution Sw is self-evaporated inside and outside the dilute solution pipe 55, volumetric flow rate may increase, pressure loss may increase, and the flow rate of the dilute solution Sw may run short. By reducing the temperature of the dilute solution Sw at this time, it is possible to suppress the self evaporation of the dilute solution Sw inside and outside the dilute solution tube 55, and it is possible to secure the desired flow rate of the dilute solution Sw.

再生器70に送られた希溶液Swは、希溶液散布ノズル72から散布される。希溶液散布ノズル72から散布された希溶液Swは、熱源管71を流れる再生器熱源温水hg(本実施の形態では約80℃前後)によって加熱され、散布された希溶液Sw中の冷媒が蒸発して高濃度溶液Saとなり、再生器70の下部に貯留される。他方、希溶液Swから蒸発した冷媒Vは、再生器冷媒蒸気Vgとして凝縮器80へと移動する。再生器70の下部に貯留された高濃度溶液Saは、高濃度溶液ポンプ76により、高濃度溶液管75を介して高温吸収器10の高濃度溶液散布ノズル12に圧送される。高濃度溶液管75を流れる高濃度溶液Saは、低温熱交換器58で希溶液Swと熱交換して温度が上昇し、中温熱交換器38で低濃度溶液Scと熱交換してさらに温度が上昇し、次いで高温熱交換器18で中濃度溶液Sbと熱交換してさらに温度が上昇してから高温吸収器10に流入し、高濃度溶液散布ノズル12から散布される。以降、同様のサイクルを繰り返す。   The dilute solution Sw sent to the regenerator 70 is sprayed from a dilute solution spray nozzle 72. The dilute solution Sw sprayed from the dilute solution spray nozzle 72 is heated by the regenerator heat source warm water hg (about 80 ° C. in this embodiment) flowing through the heat source pipe 71, and the refrigerant in the sprayed dilute solution Sw evaporates As a result, the high concentration solution Sa is stored in the lower part of the regenerator 70. On the other hand, the refrigerant V evaporated from the dilute solution Sw moves to the condenser 80 as a regenerator refrigerant vapor Vg. The high concentration solution Sa stored in the lower part of the regenerator 70 is pumped by the high concentration solution pump 76 to the high concentration solution dispersion nozzle 12 of the high temperature absorber 10 through the high concentration solution pipe 75. The high concentration solution Sa flowing through the high concentration solution pipe 75 exchanges heat with the dilute solution Sw in the low temperature heat exchanger 58 and rises in temperature, and exchanges heat with the low concentration solution Sc in the medium temperature heat exchanger 38 to further increase the temperature The temperature rises and then exchanges heat with the medium concentration solution Sb in the high temperature heat exchanger 18 to further increase the temperature, and then flows into the high temperature absorber 10 and is dispersed from the high concentration solution dispersion nozzle 12. The same cycle is repeated thereafter.

以上で説明したように、本実施の形態に係る吸収ヒートポンプ1は、予熱熱交換器100において、比較的流量が大きい希溶液Swに対して、比較的流量が小さい冷媒液Vf及び補給水Wsをまとめて同時に熱交換させるので、希溶液Swと冷媒液Vf及び補給水Wsとの熱バランスを取りやすい。また、予熱熱交換器100において、再生器70に流入する手前の希溶液Swの温度を下げることにより、再生器熱源温水hgの熱をより多く利用することが可能になると共に、所望の希溶液Swの流量を確保することができる。   As described above, in the preheating heat exchanger 100, the absorption heat pump 1 according to the present embodiment uses the refrigerant liquid Vf and the makeup water Ws, which have a relatively small flow rate, with respect to the dilute solution Sw, which has a relatively large flow rate. Since heat exchange is performed simultaneously and collectively, it is easy to maintain heat balance between the dilute solution Sw and the refrigerant liquid Vf and the makeup water Ws. Further, in the preheating heat exchanger 100, by lowering the temperature of the dilute solution Sw before flowing into the regenerator 70, it becomes possible to use more heat of the regenerator heat source hot water hg, and the desired dilute solution The flow rate of Sw can be secured.

以上の説明では、吸収ヒートポンプ1が三段昇温型であるとしたが、二段昇温型や単段昇温型であってもよい。二段昇温型とする場合、三段昇温型の吸収ヒートポンプ1の構成から中温吸収器30及び中温蒸発器40まわりの構成を省略し、高温蒸発器20の高温冷媒液供給管22及び高温冷媒蒸気受入管24を低温吸収器50の加熱管51に接続し、中濃度溶液管15を低濃度溶液散布ノズル52に接続して高温吸収器10内の中濃度溶液Sbを直接(他の吸収器を経由せずに)低温吸収器50に導入するように構成すればよい。単段昇温型とする場合、上述の二段昇温型の吸収ヒートポンプの構成からさらに高温蒸発器20及び低温吸収器50を省略し、低温蒸発器60で発生した低温冷媒蒸気Vcが高温吸収器10内に導入されるように構成し、中濃度溶液管15を再生器70内の希溶液散布ノズル72に接続して高温吸収器10内の中濃度溶液Sbを直接(他の吸収器を経由せずに)再生器70に導入するように構成すればよい。また、三段昇温型、二段昇温型、単段昇温型の各吸収ヒートポンプにおいて、予熱熱交換器まわりの構成を種々変形することができ、以下に例示する。   In the above description, although the absorption heat pump 1 is a three-stage temperature rising type, it may be a two-stage temperature rising type or a single-stage temperature rising type. In the case of the two-stage heating type, the configuration around the medium-temperature absorber 30 and the middle-temperature evaporator 40 is omitted from the configuration of the three-stage heating absorption heat pump 1, and the high-temperature refrigerant liquid supply pipe 22 and the high temperature of the high-temperature evaporator 20 are omitted. The refrigerant vapor receiving pipe 24 is connected to the heating pipe 51 of the low temperature absorber 50, and the medium concentration solution pipe 15 is connected to the low concentration solution dispersion nozzle 52 so that the medium concentration solution Sb in the high temperature absorber 10 is directly To the low temperature absorber 50). In the case of the single-stage heating type, the high-temperature evaporator 20 and the low-temperature absorber 50 are further omitted from the configuration of the above-described two-stage heating type absorption heat pump, and the low-temperature refrigerant vapor Vc generated in the low-temperature evaporator 60 absorbs high temperatures The medium concentration solution tube 15 is connected to the dilute solution dispersion nozzle 72 in the regenerator 70 to directly introduce the medium concentration solution Sb in the high temperature absorber 10 (other absorbers are It may be configured to be introduced into the regenerator 70). Further, in each of the three-stage heating type, the two-stage heating type, and the single-stage heating type absorption heat pump, the configuration around the preheating heat exchanger can be variously modified, and is exemplified below.

図3(A)は、これまで説明してきた吸収ヒートポンプ1の予熱熱交換器100まわりの概略系統図である。予熱熱交換器100は、前述のように、加熱側流路としての希溶液流路155と、補給流体流路としての補給水チューブ195と、冷媒液流路としての冷媒液チューブ188とを有している。以下の変形例の説明では、主として本実施の形態に係る予熱熱交換器100まわりとの構成の相違点を説明する。図3(B)は、本発明の実施の形態の第1の変形例に係る三段昇温型吸収ヒートポンプの予熱熱交換器100Bまわりの概略系統図である。予熱熱交換器100Bは、冷媒液流路が、低温蒸発器60に導入される冷媒液Vfを流す低温用冷媒液流路としての低温冷媒液チューブ186と、中高温冷媒液チューブ183とを含んでいる。中高温冷媒液チューブ183は、中温蒸発器40を経由した低温吸収器50の加熱管51内部及び高温蒸発器20を経由した中温吸収器30の加熱管31内部に導入される冷媒液Vfを流し、中温用冷媒液流路と高温用冷媒液流路とを兼ねている。この第1の変形例では、冷媒液管88(図3(A)参照)が省略されて、凝縮冷媒ポンプ89Lが配設された冷媒液管86及び凝縮冷媒ポンプ89MHが配設された冷媒液管82の2系統が直接凝縮器80に接続されている。冷媒液管86には低温冷媒液チューブ186が接続され、冷媒液管82には中高温冷媒液チューブ183が接続されている。予熱熱交換器100Bは、従来3つに分割されていた熱交換器が1つに集約している。   FIG. 3A is a schematic system diagram around the preheating heat exchanger 100 of the absorption heat pump 1 described above. As described above, the preheating heat exchanger 100 has the dilute solution flow path 155 as the heating side flow path, the replenishment water tube 195 as the replenishment fluid flow path, and the refrigerant liquid tube 188 as the refrigerant liquid flow path. doing. In the following description of the modified examples, differences in configuration from the periphery of the preheating heat exchanger 100 according to the present embodiment will be mainly described. FIG. 3B is a schematic system diagram around a preheating heat exchanger 100B of a three-stage temperature rising absorption heat pump according to a first modified example of the embodiment of the present invention. The preheating heat exchanger 100B includes a low temperature refrigerant liquid tube 186 as a low temperature refrigerant liquid flow passage for flowing the refrigerant liquid Vf introduced into the low temperature evaporator 60, and a medium high temperature refrigerant liquid tube 183. It is. The medium-high temperature refrigerant liquid tube 183 flows the refrigerant liquid Vf introduced into the inside of the heating tube 51 of the low temperature absorber 50 via the medium temperature evaporator 40 and the inside of the heating tube 31 of the medium temperature absorber 30 via the high temperature evaporator 20. And the high temperature coolant liquid flow path. In the first modification, the refrigerant liquid pipe 88 (see FIG. 3A) is omitted, and the refrigerant liquid pipe 86 provided with the condensing refrigerant pump 89L and the refrigerant liquid provided with the condensing refrigerant pump 89MH. Two lines of tubes 82 are directly connected to the condenser 80. A low temperature refrigerant liquid tube 186 is connected to the refrigerant liquid pipe 86, and a medium high temperature refrigerant liquid pipe 183 is connected to the refrigerant liquid pipe 82. In the preheating heat exchanger 100B, the heat exchangers conventionally divided into three are integrated into one.

図3(C)は、本発明の実施の形態の第2の変形例に係る三段昇温型吸収ヒートポンプの予熱熱交換器100Cまわりの概略系統図である。予熱熱交換器100Cは、冷媒液流路が、低温蒸発器60に導入される冷媒液Vfを流す低温用冷媒液流路としての低温冷媒液チューブ186と、中温蒸発器40を介して低温吸収器50の加熱管51内部に導入される冷媒液Vfを流す中温用冷媒液流路としての中温冷媒液チューブ184と、高温蒸発器20を介して中温吸収器30の加熱管31内部に導入される冷媒液Vfを流す高温用冷媒液流路としての高温冷媒液チューブ182とを含んでいる。この第2の変形例では、冷媒液管88(図3(A)参照)が省略され、凝縮冷媒ポンプ89Lが配設された冷媒液管86、凝縮冷媒ポンプ89Mが配設された冷媒液管84、凝縮冷媒ポンプ89Hが配設された冷媒液管82の3系統それぞれが直接凝縮器80に接続されている。冷媒液管86には低温冷媒液チューブ186が接続され、冷媒液管84には中温冷媒液チューブ184が接続され、冷媒液管82には高温冷媒液チューブ182が接続されている。予熱熱交換器100Cは、従来4つに分割されていた熱交換器が1つに集約している。   FIG. 3C is a schematic system diagram around a preheating heat exchanger 100C of a three-stage temperature rising absorption heat pump according to a second modification of the embodiment of the present invention. The preheating heat exchanger 100C absorbs the low temperature through the medium temperature evaporator 40 and the low temperature refrigerant liquid tube 186 as a low temperature refrigerant liquid flow path for the refrigerant liquid flow path to flow the refrigerant liquid Vf introduced into the low temperature evaporator 60. The medium temperature refrigerant liquid tube 184 as a medium temperature refrigerant liquid flow path for flowing the refrigerant liquid Vf introduced into the heating pipe 51 inside the heating unit 50 and the inside of the heating pipe 31 of the medium temperature absorber 30 via the high temperature evaporator 20 And a high temperature refrigerant liquid tube 182 as a high temperature refrigerant liquid flow path for flowing the refrigerant liquid Vf. In the second modification, the refrigerant liquid pipe 88 (see FIG. 3A) is omitted, and the refrigerant liquid pipe 86 provided with the condensing refrigerant pump 89L and the refrigerant liquid pipe provided with the condensing refrigerant pump 89M. Each of three systems of the refrigerant liquid pipe 82 in which the condensing refrigerant pump 89H is disposed is directly connected to the condenser 80. A low temperature refrigerant liquid tube 186 is connected to the refrigerant liquid pipe 86, a medium temperature refrigerant liquid pipe 184 is connected to the refrigerant liquid pipe 84, and a high temperature refrigerant liquid pipe 182 is connected to the refrigerant liquid pipe 82. In the preheating heat exchanger 100C, the heat exchangers conventionally divided into four are integrated into one.

図4(A)は、本発明の実施の形態の第3の変形例に係る二段昇温型吸収ヒートポンプの予熱熱交換器100Dまわりの概略系統図である。予熱熱交換器100Dは、冷媒液流路が、低温蒸発器60に導入される冷媒液Vf、及び高温蒸発器20を経由した低温吸収器50の加熱管51内部に導入される冷媒液Vfを流す低高温冷媒液チューブ185となっている。低高温冷媒液チューブ185は、低温用冷媒液流路と中温用冷媒液流路とを兼ねている。この第3の変形例では、中温吸収器30(図3(A)参照)及び中温蒸発器40(図3(A)参照)が省略されていることから冷媒液管84(図3(A)参照)が設けられていないものの、予熱熱交換器100Dを通過した後に冷媒液管86と冷媒液管82とに分岐する点は予熱熱交換器100(図3(A)参照)と同様である。冷媒液管88には低高温冷媒液チューブ185が接続されている。予熱熱交換器100Dは、従来2つに分割されていた熱交換器が1つに集約している。   FIG. 4A is a schematic system diagram around a preheating heat exchanger 100D of a two-stage temperature rising absorption heat pump according to a third modification of the embodiment of the present invention. In the preheating heat exchanger 100D, the refrigerant liquid flow path includes the refrigerant liquid Vf introduced into the low temperature evaporator 60 and the refrigerant liquid Vf introduced into the inside of the heating pipe 51 of the low temperature absorber 50 via the high temperature evaporator 20. It is a low temperature / high temperature refrigerant liquid tube 185 to flow. The low temperature / high temperature refrigerant liquid tube 185 serves both as the low temperature refrigerant liquid flow path and the medium temperature refrigerant liquid flow path. In the third modification, since the medium temperature absorber 30 (see FIG. 3A) and the medium temperature evaporator 40 (see FIG. 3A) are omitted, the refrigerant liquid pipe 84 (FIG. 3A) Although it is not provided, it is similar to the preheating heat exchanger 100 (see FIG. 3A) in that the refrigerant liquid pipe 86 and the refrigerant liquid pipe 82 are branched after passing through the preheating heat exchanger 100D. . A low temperature / high temperature refrigerant liquid tube 185 is connected to the refrigerant liquid pipe 88. In the preheating heat exchanger 100D, the heat exchangers conventionally divided into two are integrated into one.

図4(B)は、本発明の実施の形態の第4の変形例に係る二段昇温型吸収ヒートポンプの予熱熱交換器100Eまわりの概略系統図である。予熱熱交換器100Eは、冷媒液流路が、低温蒸発器60に導入される冷媒液Vfを流す低温用冷媒液流路としての低温冷媒液チューブ186と、高温蒸発器20を介して低温吸収器50の加熱管51内部に導入される冷媒液Vfを流す中温用冷媒液流路としての高温冷媒液チューブ182とを含んでいる。この第4の変形例では、冷媒液管88(図3(A)参照)が省略され、冷媒液管86及び冷媒液管82の2系統それぞれが直接凝縮器80に接続されている。冷媒液管86には低温冷媒液チューブ186が接続され、冷媒液管82には高温冷媒液チューブ182が接続されている。予熱熱交換器100Eは、従来3つに分割されていた熱交換器が1つに集約している。   FIG. 4B is a schematic system diagram around a preheating heat exchanger 100E of a two-stage temperature rising absorption heat pump according to a fourth modification of the embodiment of the present invention. In the preheating heat exchanger 100E, low temperature absorption through the high temperature evaporator 20 and the low temperature refrigerant liquid tube 186 as the low temperature refrigerant liquid flow channel for the low temperature refrigerant liquid flow path in which the refrigerant liquid flow path flows the refrigerant liquid Vf introduced into the low temperature evaporator 60 And a high temperature refrigerant liquid tube 182 as a medium temperature refrigerant liquid flow path for flowing the refrigerant liquid Vf introduced into the heating pipe 51 of the vessel 50. In the fourth modification, the refrigerant liquid pipe 88 (see FIG. 3A) is omitted, and two systems of the refrigerant liquid pipe 86 and the refrigerant liquid pipe 82 are directly connected to the condenser 80. A low temperature refrigerant liquid tube 186 is connected to the refrigerant liquid pipe 86, and a high temperature refrigerant liquid pipe 182 is connected to the refrigerant liquid pipe 82. In the preheating heat exchanger 100E, the heat exchangers conventionally divided into three are integrated into one.

図5は、本発明の実施の形態の第5の変形例に係る単段昇温型吸収ヒートポンプの予熱熱交換器100Fまわりの概略系統図である。予熱熱交換器100Fは、冷媒液流路が、低温蒸発器60に導入される冷媒液Vfを流す低温冷媒液流路としての低温冷媒液チューブ186となっている。この第5の変形例では、冷媒液管86が凝縮器80に接続されており、冷媒液管86には低温冷媒液チューブ186が接続されている。予熱熱交換器100Fは、従来2つに分割されていた熱交換器が1つに集約している。   FIG. 5 is a schematic system diagram around a preheating heat exchanger 100F of a single-stage temperature rising absorption heat pump according to a fifth modification of the embodiment of the present invention. In the preheating heat exchanger 100F, the refrigerant liquid flow path is a low temperature refrigerant liquid tube 186 as a low temperature refrigerant liquid flow path for flowing the refrigerant liquid Vf introduced into the low temperature evaporator 60. In the fifth modification, a refrigerant liquid pipe 86 is connected to the condenser 80, and a low temperature refrigerant liquid tube 186 is connected to the refrigerant liquid pipe 86. In the preheating heat exchanger 100F, the heat exchangers conventionally divided into two are integrated into one.

以上の説明では、予熱熱交換器100〜100Fの加熱側流路を流れる流体が希溶液Swであるとしたが、希溶液Swに代えて、再生器70の熱源管71に導入される再生器熱源温水hg、熱源管71から流出した再生器熱源温水hg、低温蒸発器60の熱源管61に導入される蒸発器熱源温水he、あるいは熱源管61から流出した蒸発器熱源温水heであってもよい。   In the above description, the fluid flowing through the heating side flow passage of the preheating heat exchanger 100 to 100F is the diluted solution Sw, but instead of the diluted solution Sw, the regenerator introduced into the heat source pipe 71 of the regenerator 70 Even heat source warm water hg, regenerator heat source warm water hg flowing out from heat source tube 71, evaporator heat source warm water he introduced into heat source tube 61 of low temperature evaporator 60, or evaporator heat source warm water he flowing out from heat source tube 61 Good.

1 吸収ヒートポンプ
10 高温吸収器
11 伝熱管
30 中温吸収器
31 加熱管
41 冷媒気液分離胴
50 低温吸収器
51 加熱管
60 低温蒸発器
61 熱源管
70 再生器
71 熱源管
80 凝縮器
97 補給水供給部
100 予熱熱交換器
155 希溶液流路
182 高温冷媒液チューブ
183 中高温冷媒液チューブ
184 中温冷媒液チューブ
185 低高温冷媒液チューブ
186 低温冷媒液チューブ
188 冷媒液チューブ
195 補給水チューブ
he 蒸発器熱源温水
hg 再生器熱源温水
Sa 高濃度溶液
Sb 中濃度溶液
Sc 低濃度溶液
Sw 希溶液
Va 高温冷媒蒸気
Vb 中温冷媒蒸気
Vc 低温冷媒蒸気
Vg 再生器冷媒蒸気
Vf 冷媒液
W 被加熱媒体
Ws 補給水
DESCRIPTION OF SYMBOLS 1 absorption heat pump 10 high temperature absorber 11 heat transfer tube 30 medium temperature absorber 31 heating tube 41 refrigerant gas-liquid separation cylinder 50 low temperature absorber 51 heating tube 60 low temperature evaporator 61 heat source tube 70 regenerator 71 heat source tube 80 condenser 97 supply water supply Part 100 Preheating heat exchanger 155 Dilute solution flow path 182 High temperature refrigerant liquid tube 183 Medium temperature refrigerant liquid tube 184 Medium temperature refrigerant liquid tube 185 Low temperature refrigerant liquid tube 186 Low temperature refrigerant liquid tube 188 Refrigerant liquid tube 195 Refill water tube he Evaporator heat source Hot water hg Regenerator heat source Hot water Sa High concentration solution Sb Medium concentration solution Sc Low concentration solution Sw Dilute solution Va High temperature refrigerant vapor Vb Medium temperature refrigerant vapor Vc Low temperature refrigerant vapor Vg Regenerator refrigerant vapor Vf Refrigerant liquid W Heated medium Ws Refill water

Claims (4)

被加熱媒体を内部に流す伝熱管を有し、冷媒の蒸気である冷媒蒸気を吸収液に吸収させた際に生じた吸収熱で前記被加熱媒体を加熱する高温吸収器と;
再生器熱源流体を内部に流す再生器熱源流体管を有し、前記高温吸収器において前記冷媒蒸気を吸収した前記吸収液を直接又は間接的に導入し、導入した前記吸収液を前記再生器熱源流体で加熱して、前記吸収液から冷媒蒸気を発生させて前記吸収液の濃度を上昇させる再生器と;
前記再生器において発生した冷媒蒸気を導入し、導入した前記冷媒蒸気を冷却し凝縮させて冷媒液を生成する凝縮器と;
蒸発器熱源流体を内部に流す蒸発器熱源流体管を有し、前記凝縮器から前記冷媒液を導入し、導入した前記冷媒液を前記蒸発器熱源流体で加熱して冷媒蒸気を生成する低温蒸発器と;
前記伝熱管に導入される前記被加熱媒体を補給する補給流体を供給する補給流体供給部と;
前記再生器に導入される前記吸収液、前記再生器熱源流体管に導入される再生器熱源流体、前記再生器熱源流体管から流出した再生器熱源流体、前記蒸発器熱源流体管に導入される蒸発器熱源流体、及び前記蒸発器熱源流体管から流出した蒸発器熱源流体のいずれかから選択された加熱側流体を流す加熱側流路と、前記補給流体を流す補給流体流路と、前記凝縮器から流出した前記冷媒液を流す冷媒液流路とを有し、前記加熱側流路を流れる流体が保有する熱を、前記補給流体流路を流れる前記補給流体及び前記冷媒液流路を流れる前記冷媒液に伝達させる熱交換器とを備える;
吸収ヒートポンプ。
A high temperature absorber having a heat transfer pipe for flowing a medium to be heated inside, and heating the medium to be heated by absorption heat generated when absorbing refrigerant vapor which is refrigerant vapor into the absorbing liquid;
The regenerator heat source fluid pipe for flowing the regenerator heat source fluid inside, the absorption liquid which absorbed the refrigerant vapor in the high temperature absorber is directly or indirectly introduced, and the absorption liquid introduced is the regenerator heat source A regenerator, which is heated with a fluid to generate refrigerant vapor from the absorbing liquid to increase the concentration of the absorbing liquid;
A condenser which introduces refrigerant vapor generated in the regenerator, cools and condenses the introduced refrigerant vapor, and generates a refrigerant liquid;
An evaporator heat source fluid pipe for internally flowing an evaporator heat source fluid, the refrigerant liquid is introduced from the condenser, and the introduced refrigerant liquid is heated by the evaporator heat source fluid to generate refrigerant vapor. And
A replenishing fluid supply unit that supplies a replenishing fluid to replenish the heated medium introduced into the heat transfer tube;
The absorbing liquid introduced into the regenerator, the regenerator heat source fluid introduced into the regenerator heat source fluid pipe, the regenerator heat source fluid flowing out from the regenerator heat source fluid pipe, the evaporator heat source fluid pipe A heating side channel for flowing a heating side fluid selected from any of an evaporator heat source fluid and an evaporator heat source fluid flowing out from the evaporator heat source fluid pipe, a replenishment fluid flow path for flowing the replenishment fluid, and the condensation And a refrigerant liquid flow path for flowing the refrigerant liquid that has flowed out of the cooling unit, and heat held by the fluid flowing in the heating side flow path flows in the replenishment fluid flow path and the refrigerant liquid flow path flowing in the replenishment fluid flow path. A heat exchanger for transferring the refrigerant liquid;
Absorption heat pump.
前記凝縮器から流出された前記冷媒液を内部に流す第1の冷媒加熱管を有し、前記高温吸収器において前記冷媒蒸気を吸収した前記吸収液を前記再生器に導入する前に直接又は間接的に導入すると共に前記低温蒸発器で生成された冷媒蒸気を導入し、導入した前記冷媒蒸気を前記吸収液に吸収させた際に生じた吸収熱で、前記第1の冷媒加熱管の内部を流れる前記冷媒液を加熱する低温吸収器を備え;
前記熱交換器は、前記冷媒液流路が、前記低温蒸発器に導入される前記冷媒液を流す低温用冷媒液流路と、前記第1の冷媒加熱管に導入される前記冷媒液を流す中温用冷媒液流路とを含んで構成された;
請求項1に記載の吸収ヒートポンプ。
It has a first refrigerant heating pipe for flowing the refrigerant liquid discharged from the condenser into the inside, and the high temperature absorber directly or indirectly before introducing the absorption liquid which has absorbed the refrigerant vapor into the regenerator Inside the first refrigerant heating pipe by the absorption heat generated when the refrigerant vapor generated by the low temperature evaporator is introduced and the introduced refrigerant vapor is absorbed by the absorbing liquid. A low temperature absorber for heating the flowing refrigerant liquid;
In the heat exchanger, the refrigerant liquid flow path flows the refrigerant liquid flow path for low temperature flowing the refrigerant liquid introduced to the low temperature evaporator, and the refrigerant liquid introduced to the first refrigerant heating pipe Configured to include a medium temperature refrigerant liquid flow path;
The absorption heat pump according to claim 1.
前記第1の冷媒加熱管で加熱された冷媒を導入し、導入した冷媒から冷媒蒸気を分離する中温気液分離器と;
前記凝縮器から流出された前記冷媒液を内部に流す第2の冷媒加熱管を有し、前記高温吸収器において前記冷媒蒸気を吸収した前記吸収液を前記低温吸収器に導入する前に直接又は間接的に導入すると共に前記中温気液分離器で分離された冷媒蒸気を導入し、導入した前記冷媒蒸気を前記吸収液に吸収させた際に生じた吸収熱で、前記第2の冷媒加熱管の内部を流れる前記冷媒液を加熱する中温吸収器を備え;
前記熱交換器は、前記冷媒液流路が、前記第2の冷媒加熱管に導入される前記高温用冷媒液を流す高温用冷媒液流路を含んで構成された;
請求項2に記載の吸収ヒートポンプ。
A medium-temperature gas-liquid separator for introducing a refrigerant heated by the first refrigerant heating pipe and separating refrigerant vapor from the introduced refrigerant;
It has a second refrigerant heating pipe for internally flowing the refrigerant liquid discharged from the condenser, and the high temperature absorber directly or before introducing the absorption liquid having absorbed the refrigerant vapor into the low temperature absorber The second refrigerant heating pipe is generated by the absorption heat generated when the refrigerant vapor separated by the medium temperature air-liquid separator is introduced while being introduced indirectly and the introduced refrigerant vapor is absorbed by the absorbing liquid. A medium temperature absorber for heating the refrigerant liquid flowing inside the chamber;
In the heat exchanger, the refrigerant liquid flow path includes a high temperature refrigerant liquid flow path for flowing the high temperature refrigerant liquid introduced into the second refrigerant heating pipe;
The absorption heat pump according to claim 2.
前記加熱側流路が、前記再生器に導入される前記吸収液を流す吸収液流路である;
請求項1乃至請求項3のいずれか1項に記載の吸収ヒートポンプ。
The heating side flow path is an absorption liquid flow path for flowing the absorption liquid introduced into the regenerator;
The absorption heat pump of any one of Claim 1 thru | or 3.
JP2015160661A 2015-08-17 2015-08-17 Absorption heat pump Active JP6521793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015160661A JP6521793B2 (en) 2015-08-17 2015-08-17 Absorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015160661A JP6521793B2 (en) 2015-08-17 2015-08-17 Absorption heat pump

Publications (2)

Publication Number Publication Date
JP2017040387A JP2017040387A (en) 2017-02-23
JP6521793B2 true JP6521793B2 (en) 2019-05-29

Family

ID=58203373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015160661A Active JP6521793B2 (en) 2015-08-17 2015-08-17 Absorption heat pump

Country Status (1)

Country Link
JP (1) JP6521793B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL236719B1 (en) 2017-08-31 2021-02-08 King Abdulaziz City Sci & Tech System of multi-stage adsorptive distillation with the cooling function

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818574B2 (en) * 1975-12-23 1983-04-13 カブシキガイシヤ エバラセイサクシヨ heat pump
US5016444A (en) * 1989-12-11 1991-05-21 Erickson Donald C One-and-a-half effect absorption cycle
JP2006162113A (en) * 2004-12-03 2006-06-22 Ebara Corp Absorption heat pump
JP2007127341A (en) * 2005-11-04 2007-05-24 Ebara Corp Absorption heat pump and steam supply system
JP2007285649A (en) * 2006-04-19 2007-11-01 Ebara Corp Absorption heating value control method for absorption heat pump device, and absorption heat pump device
JP2015025610A (en) * 2013-07-26 2015-02-05 井上 修行 Three-stage temperature rising type absorption heat pump

Also Published As

Publication number Publication date
JP2017040387A (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5250340B2 (en) Absorption heat pump
JP2010164248A (en) Absorption heat pump
JP5261073B2 (en) Gas-liquid separator, high-temperature regenerator, absorption refrigerator, and absorption heat pump
JP4701147B2 (en) 2-stage absorption refrigerator
JP6397747B2 (en) Absorption heat pump
JP6280170B2 (en) Concentrator
JP6521793B2 (en) Absorption heat pump
JP6084485B2 (en) Absorption heat pump and operation method of absorption heat pump
JP6429550B2 (en) Absorption heat pump
JP4542985B2 (en) Absorption heat pump
JP5514003B2 (en) Absorption heat pump
JP6337056B2 (en) Absorption heat pump
JP6896968B2 (en) Absorption heat exchange system
CN109269150B (en) Absorption heat pump
JP4926794B2 (en) Absorption refrigeration system
JP2015025629A (en) Temperature rise type absorption heat pump
JP6903852B2 (en) Absorption heat exchange system
JP6570965B2 (en) Absorption heat pump
CN108375238B (en) Absorption refrigerator
JP6805473B2 (en) Absorption chiller
JP2018080907A (en) Absorber and absorption heat pump
JP2015025615A (en) Temperature rise type absorption heat pump
JP6337055B2 (en) Absorption heat pump
JP5513979B2 (en) Absorption heat pump
JP2015025610A (en) Three-stage temperature rising type absorption heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190423

R150 Certificate of patent or registration of utility model

Ref document number: 6521793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250