JP6903852B2 - Absorption heat exchange system - Google Patents

Absorption heat exchange system Download PDF

Info

Publication number
JP6903852B2
JP6903852B2 JP2017182961A JP2017182961A JP6903852B2 JP 6903852 B2 JP6903852 B2 JP 6903852B2 JP 2017182961 A JP2017182961 A JP 2017182961A JP 2017182961 A JP2017182961 A JP 2017182961A JP 6903852 B2 JP6903852 B2 JP 6903852B2
Authority
JP
Japan
Prior art keywords
temperature
fluid
heat exchange
absorption
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017182961A
Other languages
Japanese (ja)
Other versions
JP2018096673A (en
Inventor
青山 淳
淳 青山
與四郎 竹村
與四郎 竹村
甲介 平田
甲介 平田
Original Assignee
荏原冷熱システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原冷熱システム株式会社 filed Critical 荏原冷熱システム株式会社
Priority to CN201721633121.5U priority Critical patent/CN207662009U/en
Priority to CN201711224394.9A priority patent/CN108180670B/en
Publication of JP2018096673A publication Critical patent/JP2018096673A/en
Application granted granted Critical
Publication of JP6903852B2 publication Critical patent/JP6903852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は吸収式熱交換システムに関し、特に低温流体の出口温度が高温流体の入口温度よりも高くなるように2つの流体間で熱交換させる吸収式熱交換システムに関する。 The present invention relates to an absorption type heat exchange system, and more particularly to an absorption type heat exchange system in which heat is exchanged between two fluids so that the outlet temperature of the low temperature fluid is higher than the inlet temperature of the high temperature fluid.

熱交換器は、高温の流体と低温の流体との間で熱を交換する装置として広く用いられている。2つの流体の間で直接熱交換が行われる熱交換器では、低温の流体の出口温度を、高温の流体の入口温度よりも高い温度にすることはできない(例えば、特許文献1参照。)。 Heat exchangers are widely used as devices for exchanging heat between hot and cold fluids. In a heat exchanger in which heat exchange is performed directly between two fluids, the outlet temperature of the cold fluid cannot be set higher than the inlet temperature of the hot fluid (see, for example, Patent Document 1).

特許第5498809号公報(図11等参照)Japanese Patent No. 5498809 (see FIG. 11 etc.)

熱交換器の用途の1つとして、排熱を回収することが挙げられる。排熱は、使用されずに捨てられる熱であるため、排熱を回収して温度を上昇させる低温の流体の出口温度を、排熱を含む高温の流体の入口温度よりも高い温度にすることができれば、活用の幅が広がることとなる。 One of the uses of heat exchangers is to recover exhaust heat. Since the exhaust heat is the heat that is discarded without being used, the outlet temperature of the low temperature fluid that recovers the exhaust heat and raises the temperature should be higher than the inlet temperature of the hot fluid including the exhaust heat. If it can be done, the range of utilization will be expanded.

本発明は上述の課題に鑑み、低温の流体に相当する被加熱流体の出口温度を、高温の流体に相当する加熱源流体の入口温度よりも高くすることができる吸収式熱交換システムを提供することを目的とする。 In view of the above problems, the present invention provides an absorption type heat exchange system capable of making the outlet temperature of the fluid to be heated corresponding to the low temperature fluid higher than the inlet temperature of the heating source fluid corresponding to the high temperature fluid. The purpose is.

上記目的を達成するために、本発明の第1の態様に係る吸収式熱交換システムは、例えば図1に示すように、冷媒の蒸気Vgが凝縮して冷媒液Vfとなる際に放出した凝縮熱によって被加熱流体FLの温度を上昇させる凝縮部40と;凝縮部40から冷媒液Vfを導入し、導入した冷媒液Vfが蒸発して冷媒蒸気Veとなる際に必要な蒸発潜熱を加熱源流体FHから奪うことで加熱源流体FHの温度を低下させる蒸発部20と;蒸発部20から冷媒蒸気Veを導入すると共に凝縮部40において温度が上昇した被加熱流体FLを導入し、導入した冷媒蒸気Veを吸収液Saが吸収して濃度が低下した希溶液Swとなる際に放出した吸収熱によって導入した被加熱流体FLの温度を上昇させる吸収部10と;吸収部10から希溶液Swを導入し、導入した希溶液Swを加熱し希溶液Swから冷媒Vgを離脱させて濃度が上昇した濃溶液Saとするのに必要な熱を加熱源流体FHから奪うことで加熱源流体FHの温度を低下させる再生部30と;吸収部10において温度が上昇する前の被加熱流体FLと、吸収部10において温度が上昇する前の被加熱流体FLの温度を上昇させる昇温流体FHと、の間で熱交換を行わせる熱交換部80とを備え;吸収液Sa、Swと冷媒Ve、Vf、Vgとの吸収ヒートポンプサイクルによって、吸収部10は再生部30よりも内部の圧力及び温度が高くなり、蒸発部20は凝縮部40よりも内部の圧力及び温度が高くなるように構成されている。 In order to achieve the above object, in the absorption type heat exchange system according to the first aspect of the present invention, for example, as shown in FIG. 1, the condensation released when the vapor Vg of the refrigerant condenses into the refrigerant liquid Vf. Condensing unit 40 that raises the temperature of the fluid FL to be heated by heat; the refrigerant liquid Vf is introduced from the condensing unit 40, and the latent heat of evaporation required when the introduced refrigerant liquid Vf evaporates to become the refrigerant steam Ve is used as a heating source. Evaporating part 20 that lowers the temperature of the heating source fluid FH by depriving it from the fluid FH; introduced refrigerant steam Ve from the evaporating part 20 and introduced the heated fluid FL whose temperature has risen in the condensing part 40. The absorption unit 10 that raises the temperature of the fluid FL to be heated introduced by the absorbed heat released when the absorption liquid Sa absorbs the steam Ve and becomes a dilute solution Sw whose concentration has decreased; and the rare solution Sw from the absorption unit 10. The temperature of the heating source fluid FH by removing the heat required to heat the introduced dilute solution Sw and remove the refrigerant Vg from the dilute solution Sw to obtain a concentrated solution Sa having an increased concentration from the heating source fluid FH. The regenerating section 30; the heated fluid FL before the temperature rises in the absorbing section 10 and the heating fluid FH which raises the temperature of the heated fluid FL before the temperature rises in the absorbing section 10. It is provided with a heat exchange unit 80 for exchanging heat between the heat exchange units; the absorption heat pump cycle of the absorption liquids Sa and Sw and the refrigerants Ve, Vf and Vg causes the absorption unit 10 to have a higher internal pressure and temperature than the regeneration unit 30. Therefore, the evaporating unit 20 is configured so that the internal pressure and temperature are higher than those of the condensing unit 40.

このように構成すると、吸収部から流出する被加熱流体の温度を、蒸発部に流入する加熱源流体の温度よりも高くすることができる。 With this configuration, the temperature of the fluid to be heated flowing out of the absorption unit can be made higher than the temperature of the heating source fluid flowing into the evaporation unit.

また、本発明の第2の態様に係る吸収式熱交換システムは、例えば図1に示すように、上記本発明の第1の態様に係る吸収式熱交換システム1において、蒸発部20において温度が低下した後の加熱源流体FHを、再生部30内の希溶液Swを加熱するために再生部30に導入するように構成されている。 Further, in the absorption heat exchange system according to the second aspect of the present invention, for example, as shown in FIG. 1, in the absorption heat exchange system 1 according to the first aspect of the present invention, the temperature at the evaporation unit 20 is set. The reduced heating source fluid FH is configured to be introduced into the regeneration unit 30 in order to heat the dilute solution Sw in the regeneration unit 30.

このように構成すると、再生部において吸収液が過度に濃縮してしまうことを抑制することができる。 With such a configuration, it is possible to prevent the absorbing liquid from being excessively concentrated in the regenerated portion.

また、本発明の第3の態様に係る吸収式熱交換システムは、例えば図1に示すように、上記本発明の第2の態様に係る吸収式熱交換システム1において、熱交換部80は、再生部30において温度が低下した後の加熱源流体FHを昇温流体として導入する第1の熱交換部81を含んで構成されている。 Further, in the absorption heat exchange system according to the third aspect of the present invention, for example, as shown in FIG. 1, in the absorption heat exchange system 1 according to the second aspect of the present invention, the heat exchange unit 80 is The regeneration unit 30 includes a first heat exchange unit 81 that introduces the heating source fluid FH after the temperature has dropped as a heating fluid.

このように構成すると、加熱源流体の全量を蒸発部及び再生部に導入することが可能となって蒸発部及び再生部に投入する熱量を最大化することができる。 With this configuration, the entire amount of the heating source fluid can be introduced into the evaporation section and the regeneration section, and the amount of heat input to the evaporation section and the regeneration section can be maximized.

また、本発明の第4の態様に係る吸収式熱交換システムは、例えば図2に示すように、上記本発明の第2の態様又は第3の態様に係る吸収式熱交換システム2において、熱交換部80は、蒸発部20に導入される前の加熱源流体FHから分岐された一部の加熱源流体FHsを昇温流体として導入する第2の熱交換部82を含んで構成されている。 Further, the absorption type heat exchange system according to the fourth aspect of the present invention is, for example, as shown in FIG. 2, in the absorption type heat exchange system 2 according to the second aspect or the third aspect of the present invention. The exchange unit 80 includes a second heat exchange unit 82 that introduces a part of the heat source fluids FHs branched from the heat source fluid FH before being introduced into the evaporation unit 20 as a heating fluid. ..

このように構成すると、加熱源流体の分岐比に応じて、吸収部に導入される被加熱流体の温度を調節することができる。 With this configuration, the temperature of the fluid to be heated introduced into the absorption unit can be adjusted according to the branching ratio of the heating source fluid.

また、本発明の第5の態様に係る吸収式熱交換システムは、例えば図2を参照して示すと、上記本発明の第4の態様に係る吸収式熱交換システム2において、吸収部10に導入される被加熱流体FLの温度が所定の温度になるように、蒸発部20に流入する加熱源流体FHの流量と第2の熱交換部82に流入する加熱源流体FHの流量との比が設定されている。 Further, the absorption type heat exchange system according to the fifth aspect of the present invention is shown in reference to FIG. 2, for example, in the absorption type heat exchange system 2 according to the fourth aspect of the present invention, in the absorption unit 10. The ratio of the flow rate of the heating source fluid FH flowing into the evaporation unit 20 to the flow rate of the heating source fluid FH flowing into the second heat exchange unit 82 so that the temperature of the fluid to be heated FL to be introduced becomes a predetermined temperature. Is set.

このように構成すると、吸収部に導入される被加熱流体の温度を所定の温度に設定することができる。 With this configuration, the temperature of the fluid to be heated introduced into the absorption unit can be set to a predetermined temperature.

また、本発明の第6の態様に係る吸収式熱交換システムは、例えば図1を参照して示すと、上記本発明の第2の態様乃至第5の態様のいずれか1つの態様に係る吸収式熱交換システム1において、凝縮部40に導入される被加熱流体FLの温度が再生部30から流出した加熱源流体FHの温度よりも低く、吸収部10から流出する被加熱流体FLの温度が蒸発部20に流入する加熱源流体FHの温度よりも高くなるように、被加熱流体FLの流量と加熱源流体FHの流量との比が設定されている。 Further, the absorption type heat exchange system according to the sixth aspect of the present invention, for example, as shown with reference to FIG. 1, the absorption according to any one of the second to fifth aspects of the present invention. In the formula heat exchange system 1, the temperature of the heated fluid FL introduced into the condensing unit 40 is lower than the temperature of the heating source fluid FH flowing out from the regenerating unit 30, and the temperature of the heated fluid FL flowing out from the absorbing unit 10 is lower. The ratio of the flow rate of the fluid to be heated FL to the flow rate of the heat source fluid FH is set so as to be higher than the temperature of the heat source fluid FH flowing into the evaporation unit 20.

このように構成すると、吸収液と冷媒との吸収ヒートポンプサイクルを介して、加熱源流体が保有する熱のより多くを被加熱流体に移動させることができる。 With this configuration, more heat held by the heating source fluid can be transferred to the fluid to be heated via the absorption heat pump cycle of the absorbing liquid and the refrigerant.

また、本発明の第7の態様に係る吸収式熱交換システムは、例えば図5を参照して示すと、上記本発明の第1の態様に係る吸収式熱交換システム1Aにおいて、再生部30において温度が低下した後の加熱源流体FHを、蒸発部20内の冷媒液Vfを加熱するために蒸発部20に導入するように構成されている。 Further, the absorption heat exchange system according to the seventh aspect of the present invention is shown in, for example, with reference to FIG. 5, in the absorption heat exchange system 1A according to the first aspect of the present invention, in the regeneration unit 30. The heating source fluid FH after the temperature has dropped is configured to be introduced into the evaporation unit 20 in order to heat the refrigerant liquid Vf in the evaporation unit 20.

このように構成すると、蒸発部において温度が低下した後の加熱源流体を再生部に導入する場合に比べて、被加熱流体が得る熱量を増大させることができる。 With this configuration, the amount of heat obtained by the fluid to be heated can be increased as compared with the case where the heating source fluid after the temperature has dropped in the evaporation section is introduced into the regeneration section.

また、本発明の第8の態様に係る吸収式熱交換システムは、例えば図5を参照して示すと、上記本発明の第7の態様に係る吸収式熱交換システム1Aにおいて、熱交換部80は、蒸発部20において温度が低下した後の加熱源流体FHを昇温流体として導入する第3の熱交換部81を含んで構成されている。 Further, the absorption heat exchange system according to the eighth aspect of the present invention is shown by referring to FIG. 5, for example, in the absorption heat exchange system 1A according to the seventh aspect of the present invention, the heat exchange unit 80. Is configured to include a third heat exchange section 81 that introduces the heating source fluid FH after the temperature has dropped in the evaporation section 20 as a heating fluid.

このように構成すると、加熱源流体の全量を蒸発部及び再生部に導入することが可能となって蒸発部及び再生部に投入する熱量を最大化することができる。 With this configuration, the entire amount of the heating source fluid can be introduced into the evaporation section and the regeneration section, and the amount of heat input to the evaporation section and the regeneration section can be maximized.

また、本発明の第9の態様に係る吸収式熱交換システムは、例えば図6を参照して示すと、上記本発明の第7の態様又は第8の態様に係る吸収式熱交換システム2Aにおいて、熱交換部80は、再生部30に導入される前の加熱源流体FHから分岐された一部の加熱源流体FHsを昇温流体として導入する第4の熱交換部82を含んで構成されている。 Further, the absorption type heat exchange system according to the ninth aspect of the present invention is shown in, for example, with reference to FIG. 6, in the absorption type heat exchange system 2A according to the seventh aspect or the eighth aspect of the present invention. The heat exchange unit 80 includes a fourth heat exchange unit 82 that introduces a part of the heat source fluids FHs branched from the heat source fluid FH before being introduced into the regeneration unit 30 as a heating fluid. ing.

このように構成すると、加熱源流体の分岐比に応じて、吸収部に導入される被加熱流体の温度を調節することができる。 With this configuration, the temperature of the fluid to be heated introduced into the absorption unit can be adjusted according to the branching ratio of the heating source fluid.

また、本発明の第10の態様に係る吸収式熱交換システムは、例えば図6を参照して示すと、上記本発明の第9の態様に係る吸収式熱交換システム2Aにおいて、吸収部10に導入される被加熱流体FLの温度が所定の温度になるように、再生部30に流入する加熱源流体FHの流量と第4の熱交換部82に流入する加熱源流体FHの流量との比が設定されている。 Further, the absorption type heat exchange system according to the tenth aspect of the present invention is shown in, for example, with reference to FIG. 6, in the absorption type heat exchange system 2A according to the ninth aspect of the present invention, the absorption unit 10 is used. The ratio of the flow rate of the heating source fluid FH flowing into the regeneration unit 30 to the flow rate of the heating source fluid FH flowing into the fourth heat exchange unit 82 so that the temperature of the fluid to be heated FL to be introduced becomes a predetermined temperature. Is set.

このように構成すると、吸収部に導入される被加熱流体の温度を所定の温度に設定することができる。 With this configuration, the temperature of the fluid to be heated introduced into the absorption unit can be set to a predetermined temperature.

また、本発明の第11の態様に係る吸収式熱交換システムは、例えば図5を参照して示すと、上記本発明の第7の態様乃至第10の態様のいずれか1つの態様に係る吸収式熱交換システム1Aにおいて、凝縮部40に導入される被加熱流体FLの温度が蒸発部20から流出した加熱源流体FHの温度よりも低く、吸収部10から流出する被加熱流体FLの温度が再生部30に流入する加熱源流体FHの温度よりも高くなるように、被加熱流体FLの流量と加熱源流体FHの流量との比が設定されている。 Further, the absorption type heat exchange system according to the eleventh aspect of the present invention, for example, with reference to FIG. 5, absorbs according to any one of the seventh to tenth aspects of the present invention. In the formula heat exchange system 1A, the temperature of the heated fluid FL introduced into the condensing unit 40 is lower than the temperature of the heating source fluid FH flowing out from the evaporating unit 20, and the temperature of the heated fluid FL flowing out from the absorbing unit 10 is lower. The ratio of the flow rate of the fluid to be heated FL to the flow rate of the heating source fluid FH is set so as to be higher than the temperature of the heating source fluid FH flowing into the regeneration unit 30.

このように構成すると、吸収液と冷媒との吸収ヒートポンプサイクルを介して、加熱源流体が保有する熱のより多くを被加熱流体に移動させることができる。 With this configuration, more heat held by the heating source fluid can be transferred to the fluid to be heated via the absorption heat pump cycle of the absorbing liquid and the refrigerant.

また、本発明の第12の態様に係る吸収式熱交換システムは、例えば図9を参照して示すと、上記本発明の第1の態様に係る吸収式熱交換システム1Bにおいて、蒸発部20に導入される加熱源流体FHと、再生部30に導入される加熱源流体FHとが、並列に導入されるように構成されている。 Further, the absorption heat exchange system according to the twelfth aspect of the present invention is shown in, for example, with reference to FIG. 9, in the absorption heat exchange system 1B according to the first aspect of the present invention, in the evaporation unit 20. The heat source fluid FH to be introduced and the heat source fluid FH to be introduced into the regeneration unit 30 are configured to be introduced in parallel.

このように構成すると、蒸発部における加熱源流体からの抜熱量と再生部における加熱源流体からの抜熱量とを同程度にすることができる。さらに、被加熱流体が得る熱量を増大させつつ、再生部において吸収液が過度に濃縮することを抑制することができる。 With this configuration, the amount of heat removed from the heating source fluid in the evaporation section and the amount of heat removed from the heating source fluid in the regeneration section can be made about the same. Further, it is possible to suppress excessive concentration of the absorbing liquid in the regenerated portion while increasing the amount of heat obtained by the fluid to be heated.

また、本発明の第13の態様に係る吸収式熱交換システムは、例えば図10を参照して示すと、上記本発明の第12の態様に係る吸収式熱交換システム2Bにおいて、熱交換部80は、蒸発部20及び再生部30に導入される前の加熱源流体FHから分岐された一部の加熱源流体FHsを昇温流体として導入する第5の熱交換部82を含んで構成されている。 Further, the absorption type heat exchange system according to the thirteenth aspect of the present invention is shown by referring to FIG. 10, for example, in the absorption type heat exchange system 2B according to the twelfth aspect of the present invention, the heat exchange unit 80. Contains a fifth heat exchange unit 82 that introduces a part of the heat source fluids FHs branched from the heat source fluid FH before being introduced into the evaporation unit 20 and the regeneration unit 30 as a heating fluid. There is.

このように構成すると、加熱源流体の分岐比に応じて、吸収部に導入される被加熱流体の温度を調節することができる。 With this configuration, the temperature of the fluid to be heated introduced into the absorption unit can be adjusted according to the branching ratio of the heating source fluid.

また、本発明の第14の態様に係る吸収式熱交換システムは、例えば図10を参照して示すと、上記本発明の第13の態様に係る吸収式熱交換システム2Bにおいて、吸収部10に導入される被加熱流体FLの温度が所定の温度になるように、蒸発部20及び再生部30に流入する加熱源流体FHの流量と第5の熱交換部82に流入する加熱源流体FHsの流量との比が設定されている。 Further, the absorption type heat exchange system according to the fourteenth aspect of the present invention is shown in, for example, with reference to FIG. 10, in the absorption type heat exchange system 2B according to the thirteenth aspect of the present invention, the absorption unit 10 is used. The flow rate of the heating source fluid FH flowing into the evaporating section 20 and the regenerating section 30 and the heating source fluid FHs flowing into the fifth heat exchange section 82 so that the temperature of the fluid to be heated FL to be introduced becomes a predetermined temperature. The ratio with the flow rate is set.

このように構成すると、吸収部に導入される被加熱流体の温度を所定の温度に設定することができる。 With this configuration, the temperature of the fluid to be heated introduced into the absorption unit can be set to a predetermined temperature.

また、本発明の第15の態様に係る吸収式熱交換システムは、例えば図11を参照して示すと、上記本発明の第12の態様乃至第14の態様のいずれか1つの態様に係る吸収式熱交換システム3Bにおいて、熱交換部80は、再生部30において温度が低下した後の加熱源流体FH及び蒸発部20において温度が低下した後の加熱源流体FHの少なくとも一方を昇温流体として導入する第6の熱交換部81を含んで構成されている。 Further, the absorption heat exchange system according to the fifteenth aspect of the present invention, for example, with reference to FIG. 11, absorbs according to any one of the twelfth to fourteenth aspects of the present invention. In the heat exchange system 3B, the heat exchange unit 80 uses at least one of the heating source fluid FH after the temperature has dropped in the regenerating section 30 and the heating source fluid FH after the temperature has dropped in the evaporating section 20 as the heating fluid. It is configured to include a sixth heat exchange unit 81 to be introduced.

このように構成すると、蒸発部において熱を奪われた加熱源流体及び再生部において熱を奪われた加熱源流体の少なくとも一方が保有している熱を有効利用することができ、熱利用効率を向上させることができる。 With this configuration, the heat possessed by at least one of the heat source fluid from which heat has been deprived in the evaporation unit and the heat source fluid from which heat has been deprived from the regeneration unit can be effectively utilized, and the heat utilization efficiency can be improved. Can be improved.

また、本発明の第16の態様に係る吸収式熱交換システムは、例えば図11を参照して示すと、上記本発明の第13の態様又は第14の態様に係る吸収式熱交換システム3Bにおいて、熱交換部80は、再生部30において温度が低下した後の加熱源流体FH及び蒸発部20において温度が低下した後の加熱源流体FHの少なくとも一方を昇温流体として導入する第6の熱交換部81を含んで構成され;第6の熱交換部81で温度が上昇した被加熱流体FLが第5の熱交換部82に導入され、第5の熱交換部82で温度が低下した加熱源流体FHsが第6の熱交換部81に導入されるように構成されている。 Further, the absorption type heat exchange system according to the sixteenth aspect of the present invention is shown in, for example, with reference to FIG. 11, in the absorption type heat exchange system 3B according to the thirteenth aspect or the fourteenth aspect of the present invention. The heat exchange unit 80 introduces at least one of the heat source fluid FH after the temperature has dropped in the regeneration unit 30 and the heat source fluid FH after the temperature has dropped in the evaporation unit 20 as the heating fluid. It is configured to include the exchange section 81; the heated fluid FL whose temperature has risen in the sixth heat exchange section 81 is introduced into the fifth heat exchange section 82, and the temperature is lowered in the fifth heat exchange section 82. The source fluids FHs are configured to be introduced into the sixth heat exchange section 81.

このように構成すると、被加熱流体と加熱源流体との熱交換を効率よく行わせることができる。 With this configuration, heat exchange between the fluid to be heated and the fluid to be heated can be efficiently performed.

また、本発明の第17の態様に係る吸収式熱交換システムは、例えば図9を参照して示すと、上記本発明の第12の態様乃至第16の態様のいずれか1つの態様に係る吸収式熱交換システム1Bにおいて、凝縮部40に導入される被加熱流体FLの温度が蒸発部20及び再生部30から流出した加熱源流体FHの温度よりも低く、吸収部10から流出する被加熱流体FLの温度が蒸発部20及び再生部30に流入する加熱源流体FHの温度よりも高くなるように、被加熱流体FLの流量と加熱源流体FHの流量との比が設定されている。 Further, the absorption type heat exchange system according to the 17th aspect of the present invention, for example, with reference to FIG. 9, absorption according to any one of the 12th to 16th aspects of the present invention. In the formula heat exchange system 1B, the temperature of the heated fluid FL introduced into the condensing unit 40 is lower than the temperature of the heating source fluid FH flowing out from the evaporating unit 20 and the regenerating unit 30, and the heated fluid flowing out from the absorbing unit 10. The ratio of the flow rate of the fluid to be heated to the flow rate of the heating source fluid FH is set so that the temperature of the FL becomes higher than the temperature of the heating source fluid FH flowing into the evaporating section 20 and the regenerating section 30.

このように構成すると、吸収液と冷媒との吸収ヒートポンプサイクルを介して、加熱源流体が保有する熱のより多くを被加熱流体に移動させることができる。 With this configuration, more heat held by the heating source fluid can be transferred to the fluid to be heated via the absorption heat pump cycle of the absorbing liquid and the refrigerant.

また、本発明の第18の態様に係る吸収式熱交換システムは、例えば図4に示すように、上記本発明の第1の態様乃至第17の態様のいずれか1つの態様に係る吸収式熱交換システム4において、凝縮部40から蒸発部20に搬送される冷媒液Vfと、熱交換部80から流出した昇温流体FHと、の間で熱交換を行わせる冷媒熱交換器99を備える。 Further, the absorption heat exchange system according to the eighteenth aspect of the present invention is, for example, as shown in FIG. 4, the absorption heat according to any one of the first to seventeenth aspects of the present invention. The exchange system 4 includes a refrigerant heat exchanger 99 that exchanges heat between the refrigerant liquid Vf conveyed from the condensing unit 40 to the evaporating unit 20 and the heating fluid FH flowing out of the heat exchange unit 80.

このように構成すると、吸収式熱交換システムから流出する加熱源流体の温度を下げることができ、吸収式熱交換システムにおいて加熱源流体から回収する熱量を増加させることができる。 With this configuration, the temperature of the heat source fluid flowing out of the absorption heat exchange system can be lowered, and the amount of heat recovered from the heat source fluid in the absorption heat exchange system can be increased.

本発明によれば、吸収部から流出する被加熱流体の温度を、蒸発部に流入する加熱源流体の温度よりも高くすることができる。 According to the present invention, the temperature of the fluid to be heated flowing out from the absorbing portion can be made higher than the temperature of the heating source fluid flowing into the evaporating portion.

本発明の第1の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a schematic system diagram of the absorption type heat exchange system which concerns on 1st Embodiment of this invention. 本発明の第2の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a schematic system diagram of the absorption type heat exchange system which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a schematic system diagram of the absorption type heat exchange system which concerns on 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a schematic system diagram of the absorption type heat exchange system which concerns on 4th Embodiment of this invention. 本発明の第1の実施の形態の第1の変形例に係る吸収式熱交換システムの模式的系統図である。It is a schematic system diagram of the absorption type heat exchange system which concerns on 1st modification of 1st Embodiment of this invention. 本発明の第2の実施の形態の第1の変形例に係る吸収式熱交換システムの模式的系統図である。It is a schematic system diagram of the absorption type heat exchange system which concerns on 1st modification of 2nd Embodiment of this invention. 本発明の第3の実施の形態の第1の変形例に係る吸収式熱交換システムの模式的系統図である。It is a schematic system diagram of the absorption type heat exchange system which concerns on 1st modification of 3rd Embodiment of this invention. 本発明の第4の実施の形態の第1の変形例に係る吸収式熱交換システムの模式的系統図である。It is a schematic system diagram of the absorption type heat exchange system which concerns on 1st modification of 4th Embodiment of this invention. 本発明の第1の実施の形態の第2の変形例に係る吸収式熱交換システムの模式的系統図である。It is a schematic system diagram of the absorption type heat exchange system which concerns on the 2nd modification of 1st Embodiment of this invention. 本発明の第2の実施の形態の第2の変形例に係る吸収式熱交換システムの模式的系統図である。It is a schematic system diagram of the absorption type heat exchange system which concerns on the 2nd modification of the 2nd Embodiment of this invention. 本発明の第3の実施の形態の第2の変形例に係る吸収式熱交換システムの模式的系統図である。It is a schematic system diagram of the absorption type heat exchange system which concerns on the 2nd modification of the 3rd Embodiment of this invention. 本発明の第4の実施の形態の第2の変形例に係る吸収式熱交換システムの模式的系統図である。It is a schematic system diagram of the absorption type heat exchange system which concerns on the 2nd modification of the 4th Embodiment of this invention.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each figure, members that are the same or correspond to each other are designated by the same or similar reference numerals, and duplicate description will be omitted.

まず図1を参照して、本発明の第1の実施の形態に係る吸収式熱交換システム1を説明する。図1は、吸収式熱交換システム1の模式的系統図である。吸収式熱交換システム1は、吸収液と冷媒との吸収ヒートポンプサイクルを利用して、低温流体FLの出口温度が高温流体FHの入口温度よりも高くなるように、低温流体FLと高温流体FHとの熱交換を行わせるシステムである。ここで、低温流体FLは、吸収式熱交換システム1において温度を上昇させる対象となる流体であり、被加熱流体に相当する。高温流体FHは、吸収式熱交換システム1において温度が低下する流体であり、加熱源流体に相当する。吸収式熱交換システム1は、吸収液S(Sa、Sw)と冷媒V(Ve、Vg、Vf)との吸収ヒートポンプサイクルが行われる主要機器を構成する吸収器10、蒸発器20、再生器30、及び凝縮器40を備え、さらに、第1熱交換部81を備えている。吸収器10、蒸発器20、再生器30、凝縮器40は、それぞれ、吸収部、蒸発部、再生部、凝縮部に相当する。 First, the absorption heat exchange system 1 according to the first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic system diagram of the absorption heat exchange system 1. The absorption heat exchange system 1 utilizes the absorption heat pump cycle of the absorption liquid and the refrigerant to form the low temperature fluid FL and the high temperature fluid FH so that the outlet temperature of the low temperature fluid FL is higher than the inlet temperature of the high temperature fluid FH. It is a system that exchanges heat. Here, the low-temperature fluid FL is a fluid that is a target for raising the temperature in the absorption heat exchange system 1, and corresponds to a fluid to be heated. The high-temperature fluid FH is a fluid whose temperature drops in the absorption heat exchange system 1, and corresponds to a heating source fluid. The absorption heat exchange system 1 comprises an absorber 10, an evaporator 20, and a regenerator 30 that constitute a main device in which an absorption heat pump cycle of an absorption liquid S (Sa, Sw) and a refrigerant V (Ve, Vg, Vf) is performed. , And a condenser 40, and further includes a first heat exchange unit 81. The absorber 10, the evaporator 20, the regenerator 30, and the condenser 40 correspond to an absorption unit, an evaporation unit, a regeneration unit, and a condensing unit, respectively.

本明細書においては、吸収液に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「希溶液Sw」や「濃溶液Sa」等と呼称するが、性状等を不問にするときは総称して「吸収液S」ということとする。同様に、冷媒に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「蒸発器冷媒蒸気Ve」、「再生器冷媒蒸気Vg」、「冷媒液Vf」等と呼称するが、性状等を不問にするときは総称して「冷媒V」ということとする。本実施の形態では、吸収液S(吸収剤と冷媒Vとの混合物)としてLiBr水溶液が用いられており、冷媒Vとして水(HO)が用いられている。 In the present specification, in order to facilitate the distinction of the absorbent liquid on the heat pump cycle, it is referred to as "rare solution Sw" or "concentrated solution Sa" depending on the properties and the position on the heat pump cycle. Etc. are collectively referred to as "absorbent solution S". Similarly, regarding the refrigerant, in order to facilitate the distinction on the heat pump cycle, "evaporator refrigerant vapor Ve", "regenerator refrigerant vapor Vg", "refrigerant liquid Vf", etc., depending on the properties and the position on the heat pump cycle. However, when the properties and the like are unquestioned, they are collectively referred to as "refrigerant V". In the present embodiment, a LiBr aqueous solution is used as the absorbing liquid S (mixture of the absorbing agent and the refrigerant V), and water (H 2 O) is used as the refrigerant V.

吸収器10は、低温流体FLの流路を構成する伝熱管12と、濃溶液Saを伝熱管12の表面に供給する濃溶液供給装置13とを内部に有している。吸収器10は、濃溶液供給装置13から濃溶液Saが伝熱管12の表面に供給され、濃溶液Saが蒸発器冷媒蒸気Veを吸収して希溶液Swとなる際に吸収熱を発生させる。この吸収熱を、伝熱管12を流れる低温流体FLが受熱して、低温流体FLが加熱されるように構成されている。 The absorber 10 has a heat transfer tube 12 that constitutes a flow path of the low-temperature fluid FL, and a concentrated solution supply device 13 that supplies the concentrated solution Sa to the surface of the heat transfer tube 12. The absorber 10 generates heat of absorption when the concentrated solution Sa is supplied from the concentrated solution supply device 13 to the surface of the heat transfer tube 12 and the concentrated solution Sa absorbs the evaporator refrigerant vapor Ve to become a dilute solution Sw. The low-temperature fluid FL flowing through the heat transfer tube 12 receives the absorbed heat, and the low-temperature fluid FL is heated.

蒸発器20は、高温流体FHの流路を構成する熱源管22を、蒸発器缶胴21の内部に有している。蒸発器20は、蒸発器缶胴21の内部に冷媒液Vfを散布するノズルを有していない。このため、熱源管22は、蒸発器缶胴21内に貯留された冷媒液Vfに浸かるように配設されている(満液式蒸発器)。蒸発器20は、熱源管22周辺の冷媒液Vfが熱源管22内を流れる高温流体FHの熱で蒸発して蒸発器冷媒蒸気Veが発生するように構成されている。蒸発器缶胴21には、蒸発器缶胴21内に冷媒液Vfを供給する冷媒液管45が接続されている。 The evaporator 20 has a heat source tube 22 that constitutes a flow path of the high-temperature fluid FH inside the evaporator can body 21. The evaporator 20 does not have a nozzle for spraying the refrigerant liquid Vf inside the evaporator can body 21. Therefore, the heat source pipe 22 is arranged so as to be immersed in the refrigerant liquid Vf stored in the evaporator can body 21 (full-liquid evaporator). The evaporator 20 is configured so that the refrigerant liquid Vf around the heat source pipe 22 evaporates with the heat of the high-temperature fluid FH flowing in the heat source pipe 22 to generate the evaporator refrigerant vapor Ve. A refrigerant liquid pipe 45 for supplying the refrigerant liquid Vf is connected to the evaporator can body 21 in the evaporator can body 21.

吸収器10と蒸発器20とは、相互に連通している。吸収器10と蒸発器20とが連通することにより、蒸発器20で発生した蒸発器冷媒蒸気Veを吸収器10に供給することができるように構成されている。 The absorber 10 and the evaporator 20 communicate with each other. By communicating the absorber 10 and the evaporator 20, the evaporator refrigerant vapor Ve generated in the evaporator 20 can be supplied to the absorber 10.

再生器30は、希溶液Swを加熱する高温流体FHを内部に流す熱源管32と、希溶液Swを熱源管32の表面に供給する希溶液供給装置33とを有している。熱源管32内を流れる高温流体FHは、蒸発器20の熱源管22内を流れた後の高温流体FHとなっている。蒸発器20の熱源管22と再生器30の熱源管32とは、高温流体FHを流す高温流体連絡管25で接続されている。再生器30の熱源管32の高温流体連絡管25が接続された端部とは反対側の端部には、高温流体排出管39が接続されている。高温流体排出管39は、高温流体FHを系外へ導く流路を構成する管である。再生器30は、希溶液供給装置33から供給された希溶液Swが高温流体FHに加熱されることにより、希溶液Swから冷媒Vが蒸発して濃度が上昇した濃溶液Saが生成されるように構成されている。希溶液Swから蒸発した冷媒Vは再生器冷媒蒸気Vgとして凝縮器40に移動するように構成されている。 The regenerator 30 has a heat source tube 32 for flowing a high-temperature fluid FH for heating the dilute solution Sw inside, and a dilute solution supply device 33 for supplying the dilute solution Sw to the surface of the heat source tube 32. The high-temperature fluid FH flowing in the heat source pipe 32 is the high-temperature fluid FH after flowing in the heat source pipe 22 of the evaporator 20. The heat source pipe 22 of the evaporator 20 and the heat source pipe 32 of the regenerator 30 are connected by a high temperature fluid connecting pipe 25 through which the high temperature fluid FH flows. A high-temperature fluid discharge pipe 39 is connected to an end of the heat source pipe 32 of the regenerator 30 opposite to the end to which the high-temperature fluid connecting pipe 25 is connected. The high temperature fluid discharge pipe 39 is a pipe constituting a flow path for guiding the high temperature fluid FH to the outside of the system. In the regenerator 30, the dilute solution Sw supplied from the dilute solution supply device 33 is heated by the high-temperature fluid FH, so that the refrigerant V evaporates from the dilute solution Sw to generate a concentrated solution Sa having an increased concentration. It is configured in. The refrigerant V evaporated from the dilute solution Sw is configured to move to the condenser 40 as the regenerator refrigerant vapor Vg.

凝縮器40は、低温流体FLが流れる伝熱管42を凝縮器缶胴41の内部に有している。伝熱管42内を流れる低温流体FLは、その後で吸収器10の伝熱管12内を流れる。凝縮器40の伝熱管42と吸収器10の伝熱管12とは、低温流体FLを流す低温流体連絡管15で接続されている。凝縮器40は、再生器30で発生した再生器冷媒蒸気Vgを導入し、これが凝縮して冷媒液Vfとなる際に放出した凝縮熱を、伝熱管42内を流れる低温流体FLが受熱して、低温流体FLが加熱されるように構成されている。再生器30と凝縮器40とは、相互に連通するように、再生器30の缶胴と凝縮器缶胴41とが一体に形成されている。再生器30と凝縮器40とが連通することにより、再生器30で発生した再生器冷媒蒸気Vgを凝縮器40に供給することができるように構成されている。 The condenser 40 has a heat transfer tube 42 through which the low-temperature fluid FL flows inside the condenser can body 41. The low-temperature fluid FL flowing in the heat transfer tube 42 then flows in the heat transfer tube 12 of the absorber 10. The heat transfer tube 42 of the condenser 40 and the heat transfer tube 12 of the absorber 10 are connected by a low temperature fluid connecting tube 15 through which the low temperature fluid FL flows. The condenser 40 introduces the regenerator refrigerant vapor Vg generated in the regenerator 30, and the low-temperature fluid FL flowing in the heat transfer tube 42 receives the heat of condensation released when this is condensed into the refrigerant liquid Vf. , The low temperature fluid FL is configured to be heated. The regenerator 30 and the condenser 40 are integrally formed with the can body of the regenerator 30 and the condenser can body 41 so as to communicate with each other. By communicating the regenerator 30 and the condenser 40, the regenerator refrigerant vapor Vg generated in the regenerator 30 can be supplied to the condenser 40.

再生器30の濃溶液Saが貯留される部分と吸収器10の濃溶液供給装置13とは、濃溶液Saを流す濃溶液管35で接続されている。濃溶液管35には、濃溶液Saを圧送する溶液ポンプ35pが配設されている。吸収器10の希溶液Swが貯留される部分と希溶液供給装置33とは、希溶液Swを流す希溶液管36で接続されている。濃溶液管35及び希溶液管36には、濃溶液Saと希溶液Swとの間で熱交換を行わせる溶液熱交換器38が配設されている。凝縮器40の冷媒液Vfが貯留される部分と蒸発器缶胴21とは、冷媒液Vfを流す冷媒液管45で接続されている。冷媒液管45には、冷媒液Vfを圧送する冷媒ポンプ46が配設されている。 The portion of the regenerator 30 in which the concentrated solution Sa is stored and the concentrated solution supply device 13 of the absorber 10 are connected by a concentrated solution tube 35 through which the concentrated solution Sa flows. A solution pump 35p for pumping the concentrated solution Sa is provided in the concentrated solution tube 35. The portion of the absorber 10 in which the dilute solution Sw is stored and the dilute solution supply device 33 are connected by a dilute solution tube 36 through which the dilute solution Sw flows. A solution heat exchanger 38 for exchanging heat between the concentrated solution Sa and the dilute solution Sw is provided in the concentrated solution tube 35 and the dilute solution tube 36. The portion of the condenser 40 in which the refrigerant liquid Vf is stored and the evaporator can body 21 are connected by a refrigerant liquid pipe 45 through which the refrigerant liquid Vf flows. The refrigerant liquid pipe 45 is provided with a refrigerant pump 46 that pumps the refrigerant liquid Vf.

第1熱交換部81は、低温流体連絡管15及び高温流体排出管39に配設されており、低温流体連絡管15を流れる低温流体FLと高温流体排出管39を流れる高温流体FHとで熱交換を行わせるように構成されている。第1熱交換部81は、熱交換部80の一形態であり、第1の熱交換部に相当する。第1熱交換部81は、典型的にはシェルアンドチューブ型熱交換器で構成されているが、プレート型熱交換器等の、2つの流体の間で熱交換させる機器であってもよい。 The first heat exchange unit 81 is arranged in the low-temperature fluid connecting pipe 15 and the high-temperature fluid discharge pipe 39, and heat is generated by the low-temperature fluid FL flowing through the low-temperature fluid connecting pipe 15 and the high-temperature fluid FH flowing through the high-temperature fluid discharge pipe 39. It is configured to allow replacement. The first heat exchange unit 81 is a form of the heat exchange unit 80 and corresponds to the first heat exchange unit. The first heat exchanger 81 is typically composed of a shell-and-tube heat exchanger, but may be a device such as a plate heat exchanger that exchanges heat between two fluids.

吸収式熱交換システム1は、定常運転中、吸収器10の内部の圧力及び温度は再生器30の内部の圧力及び温度よりも高くなり、蒸発器20の内部の圧力及び温度は凝縮器40の内部の圧力及び温度よりも高くなる。吸収式熱交換システム1は、吸収器10、蒸発器20、再生器30、凝縮器40が、第2種吸収ヒートポンプの構成となっている。 In the absorption type heat exchange system 1, during steady operation, the pressure and temperature inside the absorber 10 are higher than the pressure and temperature inside the regenerator 30, and the pressure and temperature inside the evaporator 20 are higher than those inside the condenser 40. It will be higher than the internal pressure and temperature. In the absorption heat exchange system 1, the absorber 10, the evaporator 20, the regenerator 30, and the condenser 40 are configured as a second-class absorption heat pump.

引き続き図1を参照して、吸収式熱交換システム1の作用を説明する。まず、冷媒側の吸収ヒートポンプサイクルを説明する。凝縮器40では、再生器30で蒸発した再生器冷媒蒸気Vgを受け入れて、伝熱管42を流れる低温流体FLによって再生器冷媒蒸気Vgが冷却されて凝縮し、冷媒液Vfとなる。このとき、低温流体FLは、再生器冷媒蒸気Vgが凝縮する際に放出した凝縮熱によって温度が上昇する。凝縮した冷媒液Vfは、冷媒ポンプ46で蒸発器缶胴21に送られる。蒸発器缶胴21に送られた冷媒液Vfは、熱源管22内を流れる高温流体FHによって加熱され、蒸発して蒸発器冷媒蒸気Veとなる。このとき、高温流体FHは、冷媒液Vfに熱を奪われて温度が低下する。蒸発器20で発生した蒸発器冷媒蒸気Veは、蒸発器20と連通する吸収器10へと移動する。 Subsequently, with reference to FIG. 1, the operation of the absorption heat exchange system 1 will be described. First, the absorption heat pump cycle on the refrigerant side will be described. The condenser 40 receives the regenerator refrigerant vapor Vg evaporated by the regenerator 30, and the regenerator refrigerant vapor Vg is cooled and condensed by the low-temperature fluid FL flowing through the heat transfer tube 42 to become the refrigerant liquid Vf. At this time, the temperature of the low-temperature fluid FL rises due to the heat of condensation released when the regenerator refrigerant vapor Vg condenses. The condensed refrigerant liquid Vf is sent to the evaporator can body 21 by the refrigerant pump 46. The refrigerant liquid Vf sent to the evaporator can body 21 is heated by the high-temperature fluid FH flowing in the heat source pipe 22 and evaporates to become the evaporator refrigerant steam Ve. At this time, the temperature of the high-temperature fluid FH is lowered by being deprived of heat by the refrigerant liquid Vf. The evaporator refrigerant vapor Ve generated in the evaporator 20 moves to the absorber 10 communicating with the evaporator 20.

次に溶液側の吸収ヒートポンプサイクルを説明する。吸収器10では、濃溶液Saが濃溶液供給装置13から供給され、この供給された濃溶液Saが蒸発器20から移動してきた蒸発器冷媒蒸気Veを吸収する。蒸発器冷媒蒸気Veを吸収した濃溶液Saは、濃度が低下して希溶液Swとなる。吸収器10では、濃溶液Saが蒸発器冷媒蒸気Veを吸収する際に吸収熱が発生する。この吸収熱により、伝熱管12を流れる低温流体FLが加熱され、低温流体FLの温度が上昇する。伝熱管12を流れる低温流体FLは、凝縮器40の伝熱管42及び第1熱交換部81を通過してきたものである。吸収器10で蒸発器冷媒蒸気Veを吸収した濃溶液Saは、濃度が低下して希溶液Swとなり、吸収器10の下部に貯留される。貯留された希溶液Swは、吸収器10と再生器30との内圧の差により再生器30に向かって希溶液管36を流れ、溶液熱交換器38で濃溶液Saと熱交換して温度が低下して、再生器30に至る。 Next, the absorption heat pump cycle on the solution side will be described. In the absorber 10, the concentrated solution Sa is supplied from the concentrated solution supply device 13, and the supplied concentrated solution Sa absorbs the evaporator refrigerant vapor Ve that has moved from the evaporator 20. The concentration of the concentrated solution Sa that has absorbed the evaporator refrigerant vapor Ve decreases to become a dilute solution Sw. In the absorber 10, absorption heat is generated when the concentrated solution Sa absorbs the evaporator refrigerant vapor Ve. The absorbed heat heats the low-temperature fluid FL flowing through the heat transfer tube 12, and the temperature of the low-temperature fluid FL rises. The low-temperature fluid FL flowing through the heat transfer tube 12 has passed through the heat transfer tube 42 of the condenser 40 and the first heat exchange section 81. The concentration of the concentrated solution Sa that has absorbed the evaporator refrigerant vapor Ve in the absorber 10 decreases to become a dilute solution Sw, which is stored in the lower part of the absorber 10. The stored dilute solution Sw flows through the dilute solution tube 36 toward the regenerator 30 due to the difference in internal pressure between the absorber 10 and the regenerator 30, and heats with the concentrated solution Sa in the solution heat exchanger 38 to raise the temperature. It drops to reach the regenerator 30.

再生器30に送られた希溶液Swは、希溶液供給装置33から供給され、熱源管32を流れる高温流体FHによって加熱され、供給された希溶液Sw中の冷媒が蒸発して濃溶液Saとなり、再生器30の下部に貯留される。このとき、高温流体FHは、希溶液Swに熱を奪われて温度が低下する。熱源管32を流れる高温流体FHは、蒸発器20の熱源管22を通過してきたものである。希溶液Swから蒸発した冷媒Vは、再生器冷媒蒸気Vgとして凝縮器40へと移動する。再生器30の下部に貯留された濃溶液Saは、溶液ポンプ35pにより、濃溶液管35を介して吸収器10の濃溶液供給装置13に圧送される。濃溶液管35を流れる濃溶液Saは、溶液熱交換器38で希溶液Swと熱交換して温度が上昇してから吸収器10に流入し、濃溶液供給装置13から供給され、以降、同様のサイクルを繰り返す。 The dilute solution Sw sent to the regenerator 30 is supplied from the dilute solution supply device 33, heated by the high-temperature fluid FH flowing through the heat source tube 32, and the refrigerant in the supplied dilute solution Sw evaporates to become a concentrated solution Sa. , Stored in the lower part of the regenerator 30. At this time, the temperature of the high-temperature fluid FH is lowered by being deprived of heat by the dilute solution Sw. The high-temperature fluid FH flowing through the heat source pipe 32 has passed through the heat source pipe 22 of the evaporator 20. The refrigerant V evaporated from the dilute solution Sw moves to the condenser 40 as the regenerator refrigerant vapor Vg. The concentrated solution Sa stored in the lower part of the regenerator 30 is pumped by the solution pump 35p to the concentrated solution supply device 13 of the absorber 10 via the concentrated solution pipe 35. The concentrated solution Sa flowing through the concentrated solution tube 35 exchanges heat with the dilute solution Sw in the solution heat exchanger 38, flows into the absorber 10 after the temperature rises, is supplied from the concentrated solution supply device 13, and so on. Repeat the cycle of.

吸収液S及び冷媒Vが上記のような吸収ヒートポンプサイクルを行う過程における、高温流体FH及び低温流体FLの温度の変化を、具体例を挙げて説明する。95℃で蒸発器20の熱源管22に流入した高温流体FHは、冷媒液Vfに熱を奪われて90℃に温度が低下する。蒸発器20から流出した高温流体FHは、高温流体連絡管25を流れた後、90℃で再生器30の熱源管32に流入する。熱源管32に流入した高温流体FHは、希溶液Swに熱を奪われて85℃に温度が低下する。再生器30で温度が低下した高温流体FHは、85℃で再生器30を流出し、高温流体排出管39を流れて第1熱交換部81に流入する。 Changes in temperature of the high-temperature fluid FH and the low-temperature fluid FL in the process in which the absorption liquid S and the refrigerant V perform the absorption heat pump cycle as described above will be described with reference to specific examples. The high-temperature fluid FH that has flowed into the heat source pipe 22 of the evaporator 20 at 95 ° C. is deprived of heat by the refrigerant liquid Vf, and the temperature drops to 90 ° C. The high-temperature fluid FH flowing out of the evaporator 20 flows through the high-temperature fluid connecting pipe 25 and then flows into the heat source pipe 32 of the regenerator 30 at 90 ° C. The temperature of the high-temperature fluid FH flowing into the heat source tube 32 drops to 85 ° C. due to the heat being taken away by the dilute solution Sw. The high-temperature fluid FH whose temperature has dropped in the regenerator 30 flows out of the regenerator 30 at 85 ° C., flows through the high-temperature fluid discharge pipe 39, and flows into the first heat exchange section 81.

他方、32℃で凝縮器40の伝熱管42に流入した低温流体FLは、再生器冷媒蒸気Vgが凝縮する際に放出した凝縮熱を得て、57℃に温度が上昇する。凝縮器40から流出した低温流体FLは、低温流体連絡管15を流れて第1熱交換部81に流入する。第1熱交換部81では、高温流体排出管39を流れる高温流体FHと低温流体連絡管15を流れる低温流体FLとの間で熱交換が行われ、85℃の高温流体FHは80℃に温度が低下し、57℃の低温流体FLは82℃に温度が上昇する。80℃に温度が低下した高温流体FHは、引き続き高温流体排出管39を流れて吸収式熱交換システム1から排出される。82℃に温度が上昇した低温流体FLは、吸収器10の伝熱管12に流入する。伝熱管12に流入した低温流体FLは、濃溶液Saが蒸発器冷媒蒸気Veを吸収する際に発生した吸収熱を得て107℃に温度が上昇する。吸収器10で温度が上昇した低温流体FLは、107℃で吸収器10を流出し、利用場所に供給される。 On the other hand, the low temperature fluid FL flowing into the heat transfer tube 42 of the condenser 40 at 32 ° C. obtains the heat of condensation released when the regenerator refrigerant vapor Vg condenses, and the temperature rises to 57 ° C. The low-temperature fluid FL flowing out of the condenser 40 flows through the low-temperature fluid connecting pipe 15 and flows into the first heat exchange section 81. In the first heat exchange section 81, heat exchange is performed between the high temperature fluid FH flowing through the high temperature fluid discharge pipe 39 and the low temperature fluid FL flowing through the low temperature fluid connecting pipe 15, and the high temperature fluid FH at 85 ° C. is heated to 80 ° C. The temperature of the low temperature fluid FL at 57 ° C. rises to 82 ° C. The high-temperature fluid FH whose temperature has dropped to 80 ° C. continues to flow through the high-temperature fluid discharge pipe 39 and is discharged from the absorption heat exchange system 1. The low-temperature fluid FL whose temperature has risen to 82 ° C. flows into the heat transfer tube 12 of the absorber 10. The temperature of the low-temperature fluid FL flowing into the heat transfer tube 12 rises to 107 ° C. by obtaining the absorbed heat generated when the concentrated solution Sa absorbs the evaporator refrigerant vapor Ve. The low-temperature fluid FL whose temperature has risen in the absorber 10 flows out of the absorber 10 at 107 ° C. and is supplied to the place of use.

吸収式熱交換システム1では、上述のような温度関係を成り立たせるために、高温流体FHの流量に対する低温流体FLの流量の比を決定している。本実施の形態では、低温流体FLの流量を、高温流体FHの流量の約1/5としている。換言すれば、低温流体FLと高温流体FHとの流量比を約1:5としている。この流量比は、あらかじめ決められた値にしたがって採用したサイズの配管やオリフィス等を用いることで固定してもよく、バルブ等を用いて自動又は手動で調節可能に構成してもよい。このようにして、吸収式熱交換システム1から流出する低温流体FLの温度(107℃)を、吸収式熱交換システム1に流入する高温流体FHの温度(95℃)よりも高くすることができる。ここで、吸収式熱交換システム1は、高温流体FHと低温流体FLとの間で熱交換を行わせる一つの熱交換器とみることができる。従来の熱交換器では、低温の流体の流量を高温の流体の流量よりも少なくすれば、低温の流体の出口温度を、高温の流体の入口温度に近づけることはできたが、高温の流体の入口温度よりも高くすることができなかった。この点、本実施の形態に係る吸収式熱交換システム1では、上述のように、吸収式熱交換システム1から流出する低温流体FLの温度を、吸収式熱交換システム1に流入する高温流体FHの温度よりも高くすることができる。 In the absorption heat exchange system 1, the ratio of the flow rate of the low temperature fluid FL to the flow rate of the high temperature fluid FH is determined in order to establish the above-mentioned temperature relationship. In the present embodiment, the flow rate of the low temperature fluid FL is set to about 1/5 of the flow rate of the high temperature fluid FH. In other words, the flow rate ratio of the low temperature fluid FL and the high temperature fluid FH is about 1: 5. This flow rate ratio may be fixed by using a pipe, an orifice, or the like of a size adopted according to a predetermined value, or may be configured to be automatically or manually adjustable by using a valve or the like. In this way, the temperature of the low temperature fluid FL flowing out of the absorption heat exchange system 1 (107 ° C.) can be made higher than the temperature of the high temperature fluid FH flowing into the absorption heat exchange system 1 (95 ° C.). .. Here, the absorption heat exchange system 1 can be regarded as one heat exchanger that exchanges heat between the high temperature fluid FH and the low temperature fluid FL. In a conventional heat exchanger, if the flow rate of a low-temperature fluid is made smaller than the flow rate of a high-temperature fluid, the outlet temperature of the low-temperature fluid can be brought close to the inlet temperature of the high-temperature fluid. It could not be higher than the inlet temperature. In this regard, in the absorption heat exchange system 1 according to the present embodiment, as described above, the temperature of the low temperature fluid FL flowing out of the absorption heat exchange system 1 is transferred to the high temperature fluid FH flowing into the absorption heat exchange system 1. Can be higher than the temperature of.

以上で説明したように、本実施の形態に係る吸収式熱交換システム1によれば、第2種吸収ヒートポンプの機能を発揮する吸収器10、蒸発器20、再生器30、凝縮器40における吸収液Sと冷媒Vとの吸収ヒートポンプサイクルを介して間接的に高温流体FHと低温流体FLとの熱交換を行わせると共に、第1熱交換部81において直接的に高温流体FHと低温流体FLとの熱交換を行わせることで、低温流体FLが高温流体FHから熱を奪った上で、吸収式熱交換システム1から流出する低温流体FLの温度を、流入する高温流体FHの温度よりも高くすることができる。また、吸収式熱交換システム1では、凝縮器40を通過した低温流体FLを吸収器10に導入して低温流体FLの温度を上昇させているため、第2種吸収ヒートポンプでは必要となる冷却水が不要となり、これに伴う付帯設備(冷却水ポンプ、冷却塔等)が不要になる。また、吸収式熱交換システム1では、第2種吸収ヒートポンプのように冷却水に捨てる熱がなく、凝縮器40における凝縮熱を低温流体FLの加熱に利用しているため、効率(COP)が第2種吸収ヒートポンプよりも高く(概ね2倍程度)大型の熱交換器と同等にすることができる。また、吸収式熱交換システム1では、再生器30に流入する高温流体FHの温度が蒸発器20で熱を消費した分だけ低い温度になるので、再生器30における吸収液Sの濃度の上昇を抑制して吸収液Sが過度に濃縮してしまうことを回避することができる。 As described above, according to the absorption type heat exchange system 1 according to the present embodiment, absorption in the absorber 10, the evaporator 20, the regenerator 30, and the condenser 40 exhibiting the functions of the type 2 absorption heat pump. The heat exchange between the high temperature fluid FH and the low temperature fluid FL is indirectly performed via the absorption heat pump cycle between the liquid S and the refrigerant V, and the high temperature fluid FH and the low temperature fluid FL are directly exchanged with each other in the first heat exchange section 81. The temperature of the low-temperature fluid FL flowing out of the absorption-type heat exchange system 1 is higher than the temperature of the inflowing high-temperature fluid FH after the low-temperature fluid FL takes heat from the high-temperature fluid FH by performing heat exchange. can do. Further, in the absorption heat exchange system 1, the low-temperature fluid FL that has passed through the condenser 40 is introduced into the absorber 10 to raise the temperature of the low-temperature fluid FL, so that the cooling water required for the second-class absorption heat pump is used. Is no longer required, and incidental equipment (cooling water pump, cooling tower, etc.) is no longer required. Further, in the absorption heat exchange system 1, unlike the type 2 absorption heat pump, there is no heat to be discarded in the cooling water, and the heat of condensation in the condenser 40 is used for heating the low temperature fluid FL, so that the efficiency (COP) is high. It is higher than the Type 2 absorption heat pump (about twice as large) and can be made equivalent to a large heat exchanger. Further, in the absorption heat exchange system 1, the temperature of the high-temperature fluid FH flowing into the regenerator 30 becomes lower by the amount of heat consumed by the evaporator 20, so that the concentration of the absorption liquid S in the regenerator 30 increases. It is possible to prevent the absorption liquid S from being excessively concentrated by suppressing it.

次に図2を参照して、本発明の第2の実施の形態に係る吸収式熱交換システム2を説明する。図2は、吸収式熱交換システム2の模式的系統図である。吸収式熱交換システム2は、主として以下の点で吸収式熱交換システム1(図1参照)と異なっている。吸収式熱交換システム2は、蒸発器20に導入される前の高温流体FHの一部を分岐した部分高温流体FHsを、再生器30から流出した高温流体FHに合流させる高温流体迂回管29が設けられている。高温流体迂回管29の一端は、高温流体FHを熱源管22に導入する高温流体導入管24に接続されている。高温流体迂回管29の他端は、高温流体排出管39に接続されている。本実施の形態では、高温流体排出管39を流れる高温流体FHは、熱交換部80を介さずに系外に排出される。また、吸収式熱交換システム2は、第1熱交換部81(図1参照)に代えて、第2熱交換部82が設けられている。第2熱交換部82は、低温流体連絡管15を流れる低温流体FLと、高温流体迂回管29を流れる部分高温流体FHsとの間で熱交換を行わせる機器である。第2熱交換部82は、低温流体連絡管15及び高温流体迂回管29に配設されている。第2熱交換部82は、熱交換部80の一形態であり、第2の熱交換部に相当する。第2熱交換部82は、典型的にはシェルアンドチューブ型熱交換器で構成されているが、プレート型熱交換器等の、2つの流体の間で熱交換させる機器であってもよい。吸収式熱交換システム2の上記以外の構成は、吸収式熱交換システム1(図1参照)と同様である。 Next, the absorption heat exchange system 2 according to the second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a schematic system diagram of the absorption heat exchange system 2. The absorption heat exchange system 2 differs from the absorption heat exchange system 1 (see FIG. 1) mainly in the following points. In the absorption heat exchange system 2, a high-temperature fluid detour pipe 29 that joins the partial high-temperature fluid FHs obtained by branching a part of the high-temperature fluid FH before being introduced into the evaporator 20 into the high-temperature fluid FH flowing out of the regenerator 30 is provided. It is provided. One end of the high temperature fluid detour pipe 29 is connected to a high temperature fluid introduction pipe 24 that introduces the high temperature fluid FH into the heat source pipe 22. The other end of the high temperature fluid detour pipe 29 is connected to the high temperature fluid discharge pipe 39. In the present embodiment, the high temperature fluid FH flowing through the high temperature fluid discharge pipe 39 is discharged to the outside of the system without passing through the heat exchange unit 80. Further, the absorption heat exchange system 2 is provided with a second heat exchange unit 82 in place of the first heat exchange unit 81 (see FIG. 1). The second heat exchange unit 82 is a device that exchanges heat between the low-temperature fluid FL flowing through the low-temperature fluid connecting pipe 15 and the partial high-temperature fluid FHs flowing through the high-temperature fluid bypass pipe 29. The second heat exchange section 82 is arranged in the low temperature fluid connecting pipe 15 and the high temperature fluid detour pipe 29. The second heat exchange unit 82 is a form of the heat exchange unit 80 and corresponds to the second heat exchange unit. The second heat exchanger 82 is typically composed of a shell-and-tube heat exchanger, but may be a device such as a plate heat exchanger that exchanges heat between two fluids. The configuration of the absorption heat exchange system 2 other than the above is the same as that of the absorption heat exchange system 1 (see FIG. 1).

上述のように構成された吸収式熱交換システム2の作用は以下の通りである。吸収器10、蒸発器20、再生器30、凝縮器40における吸収液Sと冷媒Vとの吸収ヒートポンプサイクルは、吸収式熱交換システム1(図1参照)と同様に作用する。蒸発器20に向かって高温流体導入管24を流れる高温流体FHは、一部が分岐して部分高温流体FHsとして高温流体迂回管29に流入し、残りの高温流体FHが熱源管22に流入する。熱源管22に流入した高温流体FHは、冷媒液Vfに熱を奪われて温度が低下し、蒸発器20から流出して高温流体連絡管25を流れた後に再生器30の熱源管32に流入し、再生器30において希溶液Swに熱を奪われて温度が低下して再生器30を流出する。高温流体導入管24から高温流体迂回管29に流入した高温流体FHは、第2熱交換部82に流入する。他方、凝縮器40の伝熱管42に流入した低温流体FLは、再生器冷媒蒸気Vgが凝縮する際に放出した凝縮熱を得て温度が上昇し、凝縮器40から流出して第2熱交換部82に流入する。第2熱交換部82では、高温流体迂回管29を流れる部分高温流体FHsと低温流体連絡管15を流れる低温流体FLとの間で熱交換が行われ、部分高温流体FHsは温度が低下し、低温流体FLは温度が上昇する。第2熱交換部82において温度が低下した部分高温流体FHsは、高温流体迂回管29を介して高温流体排出管39を流れる高温流体FHと合流し、吸収式熱交換システム2から排出される。第2熱交換部82において温度が上昇した低温流体FLは、吸収器10の伝熱管12に流入し、吸収器10において濃溶液Saが蒸発器冷媒蒸気Veを吸収する際に発生した吸収熱を得て温度が上昇して吸収器10を流出し、利用場所に供給される。以上で説明したように、吸収式熱交換システム2によれば、高温流体導入管24を流れる高温流体FHの、熱源管22に流入する流量と高温流体迂回管29に流入する流量との比率に応じて、吸収器10の伝熱管12に導入される低温流体FLの温度を調節することができるため、吸収器10から流出する低温流体FLの温度を高くすることができる。換言すれば、吸収器10の伝熱管12に導入される低温流体FLの温度が所定の温度になるように、熱源管22に流入する高温流体FHの流量と高温流体迂回管29に流入する高温流体FHの流量との比を設定することができる。なお、この場合における流量比は、熱源管22及び高温流体迂回管29の各々についてあらかじめ決められた値にしたがって採用したサイズの配管やオリフィス等を用いることで固定してもよく、各々の管22、29のいずれかの位置に配置したバルブ等を用いて自動又は手動で調節可能に構成してもよい。 The operation of the absorption heat exchange system 2 configured as described above is as follows. The absorption heat pump cycle of the absorption liquid S and the refrigerant V in the absorber 10, the evaporator 20, the regenerator 30, and the condenser 40 operates in the same manner as in the absorption heat exchange system 1 (see FIG. 1). The high-temperature fluid FH flowing through the high-temperature fluid introduction pipe 24 toward the evaporator 20 is partially branched and flows into the high-temperature fluid bypass pipe 29 as partial high-temperature fluid FHs, and the remaining high-temperature fluid FH flows into the heat source pipe 22. .. The high-temperature fluid FH that has flowed into the heat source pipe 22 is deprived of heat by the refrigerant liquid Vf, the temperature drops, flows out of the evaporator 20, flows through the high-temperature fluid connecting pipe 25, and then flows into the heat source pipe 32 of the regenerator 30. Then, in the regenerator 30, heat is taken by the dilute solution Sw, the temperature drops, and the regenerator 30 flows out. The high-temperature fluid FH that has flowed from the high-temperature fluid introduction pipe 24 into the high-temperature fluid bypass pipe 29 flows into the second heat exchange section 82. On the other hand, the low-temperature fluid FL that has flowed into the heat transfer tube 42 of the condenser 40 obtains the heat of condensation released when the regenerator refrigerant vapor Vg condenses, and the temperature rises. It flows into the part 82. In the second heat exchange section 82, heat exchange is performed between the partial high-temperature fluid FHs flowing through the high-temperature fluid bypass pipe 29 and the low-temperature fluid FL flowing through the low-temperature fluid connecting pipe 15, and the temperature of the partial high-temperature fluid FHs drops. The temperature of the low temperature fluid FL rises. The partial high-temperature fluid FHs whose temperature has dropped in the second heat exchange section 82 merge with the high-temperature fluid FH flowing through the high-temperature fluid discharge pipe 39 via the high-temperature fluid detour pipe 29, and are discharged from the absorption heat exchange system 2. The low-temperature fluid FL whose temperature has risen in the second heat exchange section 82 flows into the heat transfer tube 12 of the absorber 10, and absorbs heat generated when the concentrated solution Sa absorbs the evaporator refrigerant vapor Ve in the absorber 10. As a result, the temperature rises and the absorber 10 flows out and is supplied to the place of use. As described above, according to the absorption heat exchange system 2, the ratio of the flow rate of the high temperature fluid FH flowing through the high temperature fluid introduction pipe 24 to the flow rate flowing into the heat source pipe 22 and the flow rate flowing into the high temperature fluid bypass pipe 29 Accordingly, the temperature of the low-temperature fluid FL introduced into the heat transfer tube 12 of the absorber 10 can be adjusted, so that the temperature of the low-temperature fluid FL flowing out of the absorber 10 can be increased. In other words, the flow rate of the high temperature fluid FH flowing into the heat source pipe 22 and the high temperature flowing into the high temperature fluid bypass pipe 29 so that the temperature of the low temperature fluid FL introduced into the heat transfer tube 12 of the absorber 10 becomes a predetermined temperature. The ratio of the fluid FH to the flow rate can be set. The flow rate ratio in this case may be fixed by using a pipe, an orifice, or the like of a size adopted in accordance with a predetermined value for each of the heat source pipe 22 and the high temperature fluid detour pipe 29, and each pipe 22 may be fixed. , 29 may be configured to be adjustable automatically or manually by using a valve or the like arranged at any position.

次に図3を参照して、本発明の第3の実施の形態に係る吸収式熱交換システム3を説明する。図3は、吸収式熱交換システム3の模式的系統図である。吸収式熱交換システム3は、吸収式熱交換システム1(図1参照)の構成に加えて、吸収式熱交換システム2(図2参照)が備える高温流体迂回管29及び第2熱交換部82が設けられている。高温流体迂回管29は、一端が高温流体導入管24に接続され、他端が第1熱交換部81よりも上流側の高温流体排出管39に接続されている。第2熱交換部82は、高温流体迂回管29と、第1熱交換部81よりも下流側の低温流体連絡管15とに配設されており、高温流体迂回管29を流れる部分高温流体FHsと第1熱交換部81を流出して低温流体連絡管15を流れる低温流体FLとの間で熱交換を行わせるように構成されている。吸収式熱交換システム3の上記以外の構成は、吸収式熱交換システム1(図1参照)と同様である。 Next, the absorption heat exchange system 3 according to the third embodiment of the present invention will be described with reference to FIG. FIG. 3 is a schematic system diagram of the absorption heat exchange system 3. In the absorption heat exchange system 3, in addition to the configuration of the absorption heat exchange system 1 (see FIG. 1), the high temperature fluid detour pipe 29 and the second heat exchange unit 82 included in the absorption heat exchange system 2 (see FIG. 2) are provided. Is provided. One end of the high temperature fluid detour pipe 29 is connected to the high temperature fluid introduction pipe 24, and the other end is connected to the high temperature fluid discharge pipe 39 on the upstream side of the first heat exchange section 81. The second heat exchange section 82 is arranged in the high temperature fluid bypass pipe 29 and the low temperature fluid connecting pipe 15 on the downstream side of the first heat exchange section 81, and the partial high temperature fluid FHs flowing through the high temperature fluid bypass pipe 29. It is configured to allow heat exchange between the first heat exchange unit 81 and the low temperature fluid FL flowing through the low temperature fluid connecting pipe 15. The configuration of the absorption heat exchange system 3 other than the above is the same as that of the absorption heat exchange system 1 (see FIG. 1).

上述のように構成された吸収式熱交換システム3の作用は以下の通りである。吸収器10、蒸発器20、再生器30、凝縮器40における吸収液Sと冷媒Vとの吸収ヒートポンプサイクルは、吸収式熱交換システム1(図1参照)と同様に作用する。蒸発器20に向かって高温流体導入管24を流れる高温流体FHは、一部が分岐して高温流体迂回管29に流入し、残りが熱源管22に流入する。熱源管22に流入した高温流体FHは、冷媒液Vfに熱を奪われて温度が低下し、蒸発器20から流出して高温流体連絡管25を流れた後に再生器30の熱源管32に流入し、再生器30において希溶液Swに熱を奪われて温度が低下して再生器30を流出する。他方、凝縮器40の伝熱管42に流入した低温流体FLは、再生器冷媒蒸気Vgが凝縮する際に放出した凝縮熱を得て温度が上昇し、凝縮器40を出てから流入した第1熱交換部81において高温流体FHとの熱交換で温度が上昇し、第1熱交換部81を出てから流入した第2熱交換部82において部分高温流体FHsとの熱交換で温度が上昇し、その後に第2熱交換部82から流出し吸収器10の伝熱管12に流入して、吸収器10において濃溶液Saが蒸発器冷媒蒸気Veを吸収する際に発生した吸収熱を得て温度が上昇して吸収器10を流出し、利用場所に供給される。高温流体導入管24から高温流体迂回管29に流入した部分高温流体FHsは、第2熱交換部82に流入して低温流体FLとの間で熱交換が行われて温度が低下し、その後に高温流体排出管39を流れる高温流体FHと合流して第1熱交換部81に流入し、第1熱交換部81において低温流体FLとの間で熱交換が行われて温度が低下し、第1熱交換部81から流出して吸収式熱交換システム3から排出される。以上で説明したように、吸収式熱交換システム3によれば、吸収式熱交換システム1(図1参照)に比べて吸収器10の伝熱管12に流入する低温流体FLの温度を高くすることができるため、吸収器10から流出する低温流体FLの温度を高くすることができる。 The operation of the absorption heat exchange system 3 configured as described above is as follows. The absorption heat pump cycle of the absorption liquid S and the refrigerant V in the absorber 10, the evaporator 20, the regenerator 30, and the condenser 40 operates in the same manner as in the absorption heat exchange system 1 (see FIG. 1). A part of the high temperature fluid FH flowing through the high temperature fluid introduction pipe 24 toward the evaporator 20 branches and flows into the high temperature fluid bypass pipe 29, and the rest flows into the heat source pipe 22. The high-temperature fluid FH that has flowed into the heat source pipe 22 is deprived of heat by the refrigerant liquid Vf, the temperature drops, flows out of the evaporator 20, flows through the high-temperature fluid connecting pipe 25, and then flows into the heat source pipe 32 of the regenerator 30. Then, in the regenerator 30, heat is taken by the dilute solution Sw, the temperature drops, and the regenerator 30 flows out. On the other hand, the temperature of the low-temperature fluid FL flowing into the heat transfer tube 42 of the condenser 40 rises due to the heat of condensation released when the regenerator refrigerant vapor Vg condenses, and the first flow flows out after exiting the condenser 40. The temperature rises due to heat exchange with the high temperature fluid FH in the heat exchange unit 81, and the temperature rises due to heat exchange with the partial high temperature fluid FHs in the second heat exchange unit 82 that flows in after exiting the first heat exchange unit 81. After that, it flows out from the second heat exchange section 82 and flows into the heat transfer tube 12 of the absorber 10, and obtains the absorbed heat generated when the concentrated solution Sa absorbs the evaporator refrigerant steam Ve in the absorber 10 and obtains the temperature. Ascends and flows out of the absorber 10 and is supplied to the place of use. The partial high-temperature fluids FHs that have flowed from the high-temperature fluid introduction pipe 24 into the high-temperature fluid bypass pipe 29 flow into the second heat exchange section 82 and exchange heat with the low-temperature fluid FL to lower the temperature, and then the temperature drops. It merges with the high-temperature fluid FH flowing through the high-temperature fluid discharge pipe 39 and flows into the first heat exchange section 81, and heat exchange is performed with the low-temperature fluid FL in the first heat exchange section 81 to lower the temperature. 1 It flows out from the heat exchange unit 81 and is discharged from the absorption type heat exchange system 3. As described above, according to the absorption heat exchange system 3, the temperature of the low temperature fluid FL flowing into the heat transfer tube 12 of the absorber 10 is higher than that of the absorption heat exchange system 1 (see FIG. 1). Therefore, the temperature of the low-temperature fluid FL flowing out of the absorber 10 can be raised.

次に図4を参照して、本発明の第4の実施の形態に係る吸収式熱交換システム4を説明する。図4は、吸収式熱交換システム4の模式的系統図である。吸収式熱交換システム4は、主として以下の点で吸収式熱交換システム1(図1参照)と異なっている。吸収式熱交換システム4は、吸収式熱交換システム1(図1参照)の構成に加えて、冷媒熱交換器99を備えている。冷媒熱交換器99は、凝縮器40から蒸発器20に向かう冷媒液Vfと、第1熱交換部81から流出した高温流体FHとの間で熱交換を行わせる機器である。冷媒熱交換器99は、冷媒ポンプ46よりも下流側の冷媒液管45及び第1熱交換部81よりも下流側の高温流体排出管39に配設されている。冷媒熱交換器99には、シェルアンドチューブ型やプレート型の熱交換器が用いられる。吸収式熱交換システム4の上記以外の構成は、吸収式熱交換システム1(図1参照)と同様である。 Next, the absorption heat exchange system 4 according to the fourth embodiment of the present invention will be described with reference to FIG. FIG. 4 is a schematic system diagram of the absorption heat exchange system 4. The absorption heat exchange system 4 differs from the absorption heat exchange system 1 (see FIG. 1) mainly in the following points. The absorption heat exchange system 4 includes a refrigerant heat exchanger 99 in addition to the configuration of the absorption heat exchange system 1 (see FIG. 1). The refrigerant heat exchanger 99 is a device that exchanges heat between the refrigerant liquid Vf heading from the condenser 40 to the evaporator 20 and the high-temperature fluid FH flowing out of the first heat exchange unit 81. The refrigerant heat exchanger 99 is arranged in the refrigerant liquid pipe 45 on the downstream side of the refrigerant pump 46 and the high temperature fluid discharge pipe 39 on the downstream side of the first heat exchange section 81. A shell-and-tube type or plate type heat exchanger is used as the refrigerant heat exchanger 99. The configuration of the absorption heat exchange system 4 other than the above is the same as that of the absorption heat exchange system 1 (see FIG. 1).

上述のように構成された吸収式熱交換システム4の作用は以下の通りである。吸収器10、蒸発器20、再生器30、凝縮器40における吸収液Sと冷媒Vとの吸収ヒートポンプサイクルは、凝縮器40から蒸発器20に向かう冷媒液Vfの温度変化を除き、吸収式熱交換システム1(図1参照)と同様に作用する。高温流体FHの流路及び温度変化は、第1熱交換部81から流出するまでは、吸収式熱交換システム1(図1参照)と同様に作用する。低温流体FLの流路及び温度変化は、吸収式熱交換システム1(図1参照)と同様に作用する。そして、冷媒熱交換器99を備える吸収式熱交換システム4においては、凝縮器40から蒸発器20に向かう冷媒液Vfと、第1熱交換部81から流出した高温流体FHとの間で熱交換が行われ、冷媒液Vfの温度が上昇し、高温流体FHの温度が低下する。冷媒熱交換器99から流出した冷媒液Vfは、温度が上昇して蒸発器20に流入するので、蒸発器20において蒸発するのに必要な熱量を抑制することができ、これに伴って温度低下が抑制された高温流体FHが保有する熱量を第1熱交換部81における熱交換に利用することができて、吸収器10に流入する低温流体FLの温度を上昇させることができる。他方、冷媒熱交換器99から流出した高温流体FHは、温度が低下して吸収式熱交換システム4から排出されることとなり、吸収式熱交換システム4における高温流体FHの回収熱量を増やすことができる。 The operation of the absorption heat exchange system 4 configured as described above is as follows. The absorption heat pump cycle between the absorber S and the refrigerant V in the absorber 10, the evaporator 20, the regenerator 30, and the condenser 40 is an absorption heat pump cycle except for the temperature change of the refrigerant liquid Vf from the condenser 40 to the evaporator 20. It operates in the same manner as the exchange system 1 (see FIG. 1). The flow path and temperature change of the high temperature fluid FH operate in the same manner as the absorption heat exchange system 1 (see FIG. 1) until they flow out from the first heat exchange unit 81. The flow path and temperature change of the low temperature fluid FL operate in the same manner as in the absorption heat exchange system 1 (see FIG. 1). Then, in the absorption type heat exchange system 4 including the refrigerant heat exchanger 99, heat is exchanged between the refrigerant liquid Vf heading from the condenser 40 to the evaporator 20 and the high temperature fluid FH flowing out from the first heat exchange section 81. Is performed, the temperature of the refrigerant liquid Vf rises, and the temperature of the high-temperature fluid FH decreases. Since the temperature of the refrigerant liquid Vf flowing out of the refrigerant heat exchanger 99 rises and flows into the evaporator 20, the amount of heat required for evaporation in the evaporator 20 can be suppressed, and the temperature drops accordingly. The amount of heat possessed by the high-temperature fluid FH in which the amount of heat is suppressed can be used for heat exchange in the first heat exchange unit 81, and the temperature of the low-temperature fluid FL flowing into the absorber 10 can be raised. On the other hand, the temperature of the high-temperature fluid FH flowing out of the refrigerant heat exchanger 99 drops and is discharged from the absorption-type heat exchange system 4, so that the amount of heat recovered by the high-temperature fluid FH in the absorption-type heat exchange system 4 can be increased. it can.

なお、冷媒熱交換器99は、吸収式熱交換システム2(図2参照)あるいは吸収式熱交換システム3(図3参照)に設置することもできる。 The refrigerant heat exchanger 99 can also be installed in the absorption heat exchange system 2 (see FIG. 2) or the absorption heat exchange system 3 (see FIG. 3).

次に図5を参照して、本発明の第1の実施の形態の第1の変形例に係る吸収式熱交換システム1Aを説明する。図5は、吸収式熱交換システム1Aの模式的系統図である。吸収式熱交換システム1Aは、主として以下の点で吸収式熱交換システム1(図1参照)と異なっている。主要な相違点は、高温流体FHの流れ方向が、吸収式熱交換システム1(図1参照)では蒸発器20を流れた後に再生器30を流れていたのに対し、本変形例に係る吸収式熱交換システム1Aでは再生器30を流れた後に蒸発器20を流れるようになっている。この相違に伴って、高温流体導入管24が再生器30の熱源管32の高温流体連絡管25が接続された端部とは反対側の端部に接続されており、高温流体排出管39が蒸発器20の熱源管22の高温流体連絡管25が接続された端部とは反対側の端部に接続されている。なお、吸収式熱交換システム1Aでは、第1熱交換部81が第3の熱交換部に相当する。吸収式熱交換システム1Aの上記以外の構成は、吸収式熱交換システム1(図1参照)と同様である。 Next, with reference to FIG. 5, the absorption heat exchange system 1A according to the first modification of the first embodiment of the present invention will be described. FIG. 5 is a schematic system diagram of the absorption heat exchange system 1A. The absorption heat exchange system 1A differs from the absorption heat exchange system 1 (see FIG. 1) mainly in the following points. The main difference is that the flow direction of the high temperature fluid FH flows through the regenerator 30 after flowing through the evaporator 20 in the absorption heat exchange system 1 (see FIG. 1), whereas the absorption according to this modification. In the type heat exchange system 1A, after flowing through the regenerator 30, it flows through the evaporator 20. Along with this difference, the high temperature fluid introduction pipe 24 is connected to the end opposite to the end to which the high temperature fluid connecting pipe 25 of the heat source pipe 32 of the regenerator 30 is connected, and the high temperature fluid discharge pipe 39 is connected. The high temperature fluid connecting pipe 25 of the heat source pipe 22 of the evaporator 20 is connected to the end opposite to the connected end. In the absorption heat exchange system 1A, the first heat exchange unit 81 corresponds to the third heat exchange unit. The configuration of the absorption heat exchange system 1A other than the above is the same as that of the absorption heat exchange system 1 (see FIG. 1).

上述のように構成された吸収式熱交換システム1Aでは、吸収器10、蒸発器20、再生器30、凝縮器40における吸収液Sと冷媒Vとの吸収ヒートポンプサイクルは、吸収式熱交換システム1(図1参照)と同様に作用する。高温流体FHの流路及び温度変化は以下の通りである。高温流体FHは、まず、再生器30の熱源管32に流入する。熱源管32に流入した高温流体FHは、希溶液Swに熱を奪われて温度が低下する。再生器30から流出した高温流体FHは、高温流体連絡管25を流れた後、蒸発器20の熱源管22に流入する。熱源管22に流入した高温流体FHは、冷媒液Vfに熱を奪われて温度が低下する。蒸発器で温度が低下した高温流体FHは、蒸発器20を流出し、高温流体排出管39を流れて第1熱交換部81に流入する。以降は、吸収式熱交換システム1(図1参照)と同様に作用する。低温流体FLの流路及び温度変化は、吸収式熱交換システム1(図1参照)と同様に作用する。吸収式熱交換システム1Aにおいては、凝縮器40に導入される低温流体FLの温度が蒸発器20から流出した高温流体FHの温度よりも低く、吸収器10から流出する低温流体FLの温度が再生器30に流入する高温流体FHの温度よりも高くなるように、低温流体FLの流量に対する高温流体FHの流量の比を決定しており、例えば低温流体FLの流量を高温流体FHの流量の約1/5とすることができる。吸収式熱交換システム1Aでは、再生器30に流入する高温流体FHの温度が、吸収式熱交換システム1(図1参照)のように蒸発器20を通過した後に再生器30に流入する場合よりも高くなるので、再生器30における吸収液Sの濃度を高くすることができ、出力を増大させることができる。また、吸収式熱交換システム1Aでは、吸収式熱交換システム1(図1参照)の場合よりも、蒸発器20に流入する高温流体FHの温度が低くなるので、蒸発器20及び吸収器10に作用する内圧を低くすることができる。蒸発器20及び吸収器10に作用する内圧が大気圧を超える場合には、当該内圧を低くすることにより蒸発器20及び吸収器10を構成する缶胴の耐圧力を低く構成できてよい。 In the absorption heat exchange system 1A configured as described above, the absorption heat pump cycle between the absorption liquid S and the refrigerant V in the absorber 10, the evaporator 20, the regenerator 30, and the condenser 40 is the absorption heat exchange system 1. It works in the same manner as (see FIG. 1). The flow path and temperature change of the high temperature fluid FH are as follows. The high temperature fluid FH first flows into the heat source pipe 32 of the regenerator 30. The temperature of the high-temperature fluid FH flowing into the heat source tube 32 drops due to the heat being taken away by the dilute solution Sw. The high-temperature fluid FH flowing out of the regenerator 30 flows through the high-temperature fluid connecting pipe 25 and then flows into the heat source pipe 22 of the evaporator 20. The high-temperature fluid FH that has flowed into the heat source pipe 22 loses heat to the refrigerant liquid Vf, and the temperature drops. The high-temperature fluid FH whose temperature has dropped in the evaporator flows out of the evaporator 20, flows through the high-temperature fluid discharge pipe 39, and flows into the first heat exchange section 81. After that, it operates in the same manner as the absorption heat exchange system 1 (see FIG. 1). The flow path and temperature change of the low temperature fluid FL operate in the same manner as in the absorption heat exchange system 1 (see FIG. 1). In the absorption type heat exchange system 1A, the temperature of the low temperature fluid FL introduced into the condenser 40 is lower than the temperature of the high temperature fluid FH flowing out from the evaporator 20, and the temperature of the low temperature fluid FL flowing out from the absorber 10 is regenerated. The ratio of the flow rate of the high temperature fluid FH to the flow rate of the low temperature fluid FL is determined so as to be higher than the temperature of the high temperature fluid FH flowing into the vessel 30, for example, the flow rate of the low temperature fluid FL is about the flow rate of the high temperature fluid FH. It can be 1/5. In the absorption heat exchange system 1A, the temperature of the high temperature fluid FH flowing into the regenerator 30 flows into the regenerator 30 after passing through the evaporator 20 as in the absorption heat exchange system 1 (see FIG. 1). Therefore, the concentration of the absorption fluid S in the regenerator 30 can be increased, and the output can be increased. Further, in the absorption heat exchange system 1A, the temperature of the high temperature fluid FH flowing into the evaporator 20 is lower than that in the case of the absorption heat exchange system 1 (see FIG. 1). The acting internal pressure can be lowered. When the internal pressure acting on the evaporator 20 and the absorber 10 exceeds the atmospheric pressure, the withstand pressure of the can body constituting the evaporator 20 and the absorber 10 may be lowered by lowering the internal pressure.

次に図6及び図7を参照して、本発明の第2の実施の形態及び第3の実施の形態のそれぞれの第1の変形例に係る吸収式熱交換システム2A、3Aを説明する。図6は、吸収式熱交換システム2Aの模式的系統図である。図7は、吸収式熱交換システム3Aの模式的系統図である。吸収式熱交換システム2A、3Aの要点は、吸収式熱交換システム2(図2参照)、3(図3参照)の構成において、高温流体FHの流れ方向が吸収式熱交換システム1A(図5参照)のように再生器30を流れた後に蒸発器20を流れるようになっていることである。これに伴い、吸収式熱交換システム2A、3Aでは、それぞれ、吸収式熱交換システム1A(図5参照)と同様、高温流体導入管24が再生器30の熱源管32の高温流体連絡管25が接続された端部とは反対側の端部に接続されており、高温流体排出管39が蒸発器20の熱源管22の高温流体連絡管25が接続された端部とは反対側の端部に接続されている。吸収式熱交換システム2A、3Aでは、第2熱交換部82が第4の熱交換部に相当する。さらに、吸収式熱交換システム3Aでは、第1熱交換部81が第3の熱交換部に相当する。吸収式熱交換システム2Aの上記以外の構成は、吸収式熱交換システム2(図2参照)と同様である。吸収式熱交換システム3Aの上記以外の構成は、吸収式熱交換システム3(図3参照)と同様である。 Next, the absorption heat exchange systems 2A and 3A according to the first modification of the second embodiment and the third embodiment of the present invention will be described with reference to FIGS. 6 and 7. FIG. 6 is a schematic system diagram of the absorption heat exchange system 2A. FIG. 7 is a schematic system diagram of the absorption heat exchange system 3A. The main points of the absorption heat exchange systems 2A and 3A are that in the configuration of the absorption heat exchange system 2 (see FIG. 2) and 3 (see FIG. 3), the flow direction of the high temperature fluid FH is the absorption heat exchange system 1A (see FIG. 5). (See), after flowing through the regenerator 30, it flows through the evaporator 20. Along with this, in the absorption type heat exchange systems 2A and 3A, as in the absorption type heat exchange system 1A (see FIG. 5), the high temperature fluid introduction pipe 24 is the high temperature fluid connecting pipe 25 of the heat source pipe 32 of the regenerator 30. It is connected to the end opposite to the connected end, and the high temperature fluid discharge pipe 39 is the end opposite to the end to which the high temperature fluid connecting pipe 25 of the heat source pipe 22 of the evaporator 20 is connected. It is connected to the. In the absorption heat exchange systems 2A and 3A, the second heat exchange unit 82 corresponds to the fourth heat exchange unit. Further, in the absorption heat exchange system 3A, the first heat exchange unit 81 corresponds to the third heat exchange unit. The configuration of the absorption heat exchange system 2A other than the above is the same as that of the absorption heat exchange system 2 (see FIG. 2). The configuration of the absorption heat exchange system 3A other than the above is the same as that of the absorption heat exchange system 3 (see FIG. 3).

このように構成された吸収式熱交換システム2A、3Aでは、それぞれ、高温流体FHが再生器30を流れた後に蒸発器20を流れる点を除き、吸収式熱交換システム2(図2参照)、3(図3参照)と同様に作用する。吸収式熱交換システム2A、3Aによれば、高温流体導入管24を流れる高温流体FHの、熱源管32に流入する流量と高温流体迂回管29に流入する流量との比率に応じて、吸収器10の伝熱管12に導入される低温流体FLの温度を調節することができるため、吸収器10から流出する低温流体FLの温度を高くすることができる。換言すれば、吸収器10の伝熱管12に導入される低温流体FLの温度が所定の温度になるように、熱源管32に流入する高温流体FHの流量と高温流体迂回管29に流入する部分高温流体FHsの流量との比を設定することができる。なお、この場合における流量比は、熱源管32及び高温流体迂回管29の各々についてあらかじめ決められた値にしたがって採用したサイズの配管やオリフィス等を用いることで固定してもよく、各々の管32、29のいずれかの位置に配置したバルブ等を用いて自動又は手動で調節可能に構成してもよい。 In the absorption heat exchange systems 2A and 3A configured in this manner, the absorption heat exchange system 2 (see FIG. 2), except that the high temperature fluid FH flows through the evaporator 20 after flowing through the regenerator 30, respectively. It works in the same manner as in 3 (see FIG. 3). According to the absorption type heat exchange systems 2A and 3A, the absorber corresponds to the ratio of the flow rate of the high temperature fluid FH flowing through the high temperature fluid introduction pipe 24 to the flow rate flowing into the heat source pipe 32 and the flow rate flowing into the high temperature fluid bypass pipe 29. Since the temperature of the low-temperature fluid FL introduced into the heat transfer tube 12 of 10 can be adjusted, the temperature of the low-temperature fluid FL flowing out of the absorber 10 can be increased. In other words, the flow rate of the high temperature fluid FH flowing into the heat source tube 32 and the portion flowing into the high temperature fluid bypass pipe 29 so that the temperature of the low temperature fluid FL introduced into the heat transfer tube 12 of the absorber 10 becomes a predetermined temperature. The ratio with the flow rate of the high temperature fluid FHs can be set. The flow rate ratio in this case may be fixed by using a pipe, an orifice, or the like of a size adopted in accordance with a predetermined value for each of the heat source pipe 32 and the high temperature fluid detour pipe 29, and each pipe 32 may be fixed. , 29 may be configured to be adjustable automatically or manually by using a valve or the like arranged at any position.

次に図8を参照して、本発明の第4の実施の形態の第1の変形例に係る吸収式熱交換システム4Aを説明する。図8は、吸収式熱交換システム4Aの模式的系統図である。吸収式熱交換システム4Aの要点は、吸収式熱交換システム4(図4参照)の構成において、高温流体FHの流れ方向が吸収式熱交換システム1A(図5参照)のように再生器30を流れた後に蒸発器20を流れるようになっていることである。これに伴い、吸収式熱交換システム4Aでは、吸収式熱交換システム1A(図5参照)と同様、高温流体導入管24が再生器30の熱源管32の高温流体連絡管25が接続された端部とは反対側の端部に接続されており、高温流体排出管39が蒸発器20の熱源管22の高温流体連絡管25が接続された端部とは反対側の端部に接続されている。吸収式熱交換システム4Aでは、第1熱交換部81が第3の熱交換部に相当する。吸収式熱交換システム4Aの上記以外の構成は、吸収式熱交換システム4(図4参照)と同様である。 Next, with reference to FIG. 8, the absorption heat exchange system 4A according to the first modification of the fourth embodiment of the present invention will be described. FIG. 8 is a schematic system diagram of the absorption heat exchange system 4A. The main point of the absorption heat exchange system 4A is that in the configuration of the absorption heat exchange system 4 (see FIG. 4), the flow direction of the high temperature fluid FH is the regenerator 30 as in the absorption heat exchange system 1A (see FIG. 5). It is designed to flow through the evaporator 20 after flowing. Along with this, in the absorption type heat exchange system 4A, as in the absorption type heat exchange system 1A (see FIG. 5), the high temperature fluid introduction pipe 24 is connected to the high temperature fluid connecting pipe 25 of the heat source pipe 32 of the regenerator 30. It is connected to the end on the opposite side to the end, and the high temperature fluid discharge pipe 39 is connected to the end on the opposite side to the end to which the high temperature fluid connecting pipe 25 of the heat source pipe 22 of the evaporator 20 is connected. There is. In the absorption heat exchange system 4A, the first heat exchange unit 81 corresponds to the third heat exchange unit. The configuration of the absorption heat exchange system 4A other than the above is the same as that of the absorption heat exchange system 4 (see FIG. 4).

このように構成された吸収式熱交換システム4Aでは、高温流体FHが再生器30を流れた後に蒸発器20を流れる点を除き、吸収式熱交換システム4(図4参照)と同様に作用する。吸収式熱交換システム4Aによれば、冷媒熱交換器99から流出した冷媒液Vfは、温度が上昇して蒸発器20に流入するので、蒸発器20において蒸発するのに必要な熱量を抑制することができ、これに伴って温度低下が抑制された高温流体FHが保有する熱量を第1熱交換部81における熱交換に利用することができて、吸収器10に流入する低温流体FLの温度を上昇させることができる一方、冷媒熱交換器99から流出した高温流体FHは、温度が低下して吸収式熱交換システム4Aから排出されることとなり、吸収式熱交換システム4Aにおける高温流体FHの回収熱量を増やすことができる。なお、冷媒熱交換器99は、吸収式熱交換システム2A(図6参照)あるいは吸収式熱交換システム3A(図7参照)に設置することもできる。 The absorption heat exchange system 4A configured in this way operates in the same manner as the absorption heat exchange system 4 (see FIG. 4) except that the high temperature fluid FH flows through the regenerator 30 and then through the evaporator 20. .. According to the absorption type heat exchange system 4A, the temperature of the refrigerant liquid Vf flowing out from the refrigerant heat exchanger 99 rises and flows into the evaporator 20, so that the amount of heat required for evaporation in the evaporator 20 is suppressed. The amount of heat possessed by the high-temperature fluid FH whose temperature drop is suppressed accordingly can be used for heat exchange in the first heat exchange section 81, and the temperature of the low-temperature fluid FL flowing into the absorber 10 can be used. However, the high temperature fluid FH flowing out of the refrigerant heat exchanger 99 is discharged from the absorption heat exchange system 4A due to a decrease in temperature, and the high temperature fluid FH in the absorption heat exchange system 4A is discharged. The amount of heat recovered can be increased. The refrigerant heat exchanger 99 can also be installed in the absorption heat exchange system 2A (see FIG. 6) or the absorption heat exchange system 3A (see FIG. 7).

次に図9を参照して、本発明の第1の実施の形態の第2の変形例に係る吸収式熱交換システム1Bを説明する。図9は、吸収式熱交換システム1Bの模式的系統図である。吸収式熱交換システム1Bは、主として以下の点で吸収式熱交換システム1(図1参照)と異なっている。主要な相違点は、高温流体FHの流れが、吸収式熱交換システム1(図1参照)では蒸発器20を流れた後に再生器30を流れていたのに対し、本変形例に係る吸収式熱交換システム1Bでは蒸発器20と再生器30とに並列に流れるようになっている。高温流体FHが蒸発器20と再生器30とに並列に流れるようにすることで、高温流体FHが蒸気の場合に、蒸発器20の熱源管22内における蒸気の凝縮状況と、再生器30の熱源管32内における蒸気の凝縮状況とを同じ状態に近づけることができ、吸収ヒートポンプサイクルを安定的に作動させることができる。 Next, with reference to FIG. 9, the absorption heat exchange system 1B according to the second modification of the first embodiment of the present invention will be described. FIG. 9 is a schematic system diagram of the absorption heat exchange system 1B. The absorption heat exchange system 1B differs from the absorption heat exchange system 1 (see FIG. 1) mainly in the following points. The main difference is that the flow of the high temperature fluid FH flows through the regenerator 30 after flowing through the evaporator 20 in the absorption heat exchange system 1 (see FIG. 1), whereas it flows through the regenerator 30 in the absorption type heat exchange system 1 (see FIG. 1). In the heat exchange system 1B, the evaporator 20 and the regenerator 30 flow in parallel. By allowing the high-temperature fluid FH to flow in parallel with the evaporator 20 and the regenerator 30, when the high-temperature fluid FH is steam, the state of condensation of steam in the heat source tube 22 of the evaporator 20 and the state of condensation of steam in the regenerator 30 and the regenerator 30 The state of condensation of steam in the heat source tube 32 can be brought close to the same state, and the absorption heat pump cycle can be operated stably.

吸収式熱交換システム1Bでは、高温流体導入管24から再生器高温流体導入管34が分岐しており、再生器高温流体導入管34の他端は再生器30の熱源管32に接続されている。蒸発器20の熱源管22の、高温流体導入管24が接続された端部とは反対側の端部には、蒸発器高温流体排出管28の一端が接続されている。蒸発器高温流体排出管28の他端は、高温流体排出管39に接続されている。吸収式熱交換システム1Bでは、高温流体連絡管25(図1参照)は設けられていない。また、高温流体排出管39は、第1熱交換部81(図1参照)に導かれておらず、高温流体排出管39を流れる高温流体FHは吸収式熱交換システム1Bの外に排出されるようになっている。本変形例では、凝縮器40から流出した低温流体FLと熱交換を行うのは、高温流体FH由来の流体ではなく、外部から導入した外部熱源流体FEとなっている。このようにすると、高温流体FHが蒸気の場合に蒸発器20及び再生器30から流出した高温流体FHの凝縮液を低温流体FLとの熱交換に利用したときに生じ得る熱量不足を回避することができる。本変形例では、第1熱交換部81(図1参照)に代えて、外部熱交換部88が設けられている。外部熱交換部88は、凝縮器40から流出した低温流体FLと外部熱源流体FEとで熱交換を行わせるように構成されており、熱交換部80の一形態である。外部熱交換部88は、低温流体連絡管15及び外部熱源流体管89に配設されている。外部熱源流体管89は、外部熱源流体FEを流す流路を構成する管である。吸収式熱交換システム1Bの上記以外の構成は、吸収式熱交換システム1(図1参照)と同様である。 In the absorption heat exchange system 1B, the regenerator high-temperature fluid introduction pipe 34 is branched from the high-temperature fluid introduction pipe 24, and the other end of the regenerator high-temperature fluid introduction pipe 34 is connected to the heat source pipe 32 of the regenerator 30. .. One end of the evaporator high temperature fluid discharge pipe 28 is connected to the end of the heat source pipe 22 of the evaporator 20 opposite to the end to which the high temperature fluid introduction pipe 24 is connected. The other end of the evaporator high temperature fluid discharge pipe 28 is connected to the high temperature fluid discharge pipe 39. In the absorption heat exchange system 1B, the high temperature fluid connecting pipe 25 (see FIG. 1) is not provided. Further, the high temperature fluid discharge pipe 39 is not guided to the first heat exchange section 81 (see FIG. 1), and the high temperature fluid FH flowing through the high temperature fluid discharge pipe 39 is discharged to the outside of the absorption heat exchange system 1B. It has become like. In this modification, it is not the fluid derived from the high temperature fluid FH but the external heat source fluid FE introduced from the outside that exchanges heat with the low temperature fluid FL flowing out from the condenser 40. In this way, when the high-temperature fluid FH is steam, it is possible to avoid a heat shortage that may occur when the condensate of the high-temperature fluid FH flowing out of the evaporator 20 and the regenerator 30 is used for heat exchange with the low-temperature fluid FL. Can be done. In this modification, an external heat exchange unit 88 is provided in place of the first heat exchange unit 81 (see FIG. 1). The external heat exchange unit 88 is configured to exchange heat between the low-temperature fluid FL flowing out of the condenser 40 and the external heat source fluid FE, and is a form of the heat exchange unit 80. The external heat exchange unit 88 is arranged in the low temperature fluid connecting pipe 15 and the external heat source fluid pipe 89. The external heat source fluid pipe 89 is a pipe that constitutes a flow path through which the external heat source fluid FE flows. The configuration of the absorption heat exchange system 1B other than the above is the same as that of the absorption heat exchange system 1 (see FIG. 1).

上述のように構成された吸収式熱交換システム1Bでは、吸収器10、蒸発器20、再生器30、凝縮器40における吸収液Sと冷媒Vとの吸収ヒートポンプサイクルは、吸収式熱交換システム1(図1参照)と同様に作用する。高温流体FHは、高温流体導入管24を介して蒸発器20の熱源管22に流入すると共に、再生器高温流体導入管34を介して再生器30の熱源管32に流入する。熱源管22に流入した高温流体FHは、冷媒液Vfに熱を奪われて温度が低下して、蒸発器20を流出する。他方、熱源管32に流入した高温流体FHは、希溶液Swに熱を奪われて温度が低下して、再生器30を流出する。蒸発器20から流出した高温流体FHは蒸発器高温流体排出管28を流れ、再生器30から流出した高温流体FHは高温流体排出管39を流れ、両者は合流して吸収式熱交換システム1Bの外に排出される。外部熱交換部88においては、凝縮器40から流出した低温流体FLが、外部熱源流体FEと熱交換して温度が上昇した後に、吸収器10の伝熱管12に流入する。吸収式熱交換システム1Bでは、高温流体FHを蒸気とした場合に、高温流体FHの潜熱が大きくなり、この潜熱のすべてを熱源として利用すると、熱源の温度を蒸気の温度に維持したまま高温流体FHから大きな熱量を取り出すことができるため、高温流体FHを温水とした場合(例えば低温流体FLの流量が高温流体FHの流量の約1/5)よりも、大きな流量の低温流体FLを取り出すことができる。本変形例では、このような低温流体FLと高温流体FHとの流量比で、凝縮器40に導入される低温流体FLの温度が蒸発器20及び再生器30から流出した高温流体FHの温度よりも低く、吸収器10から流出する低温流体FLの温度が蒸発器20及び再生器30に流入する高温流体FHの温度よりも高くなるようにすることができる。また、吸収式熱交換システム1Bでは、高温流体FHを蒸気とした場合に、高温流体FHの流量を低温流体FLの流量よりも小さくすることができるので(例えば高温流体FHの流量が低温流体FLの流量の約1/5乃至1/10)、高温流体FHの流路を構成する管の径を小さくすることができると共に、高温流体FHを搬送するためのポンプを省略することができる。また、吸収式熱交換システム1Bでは、再生器30に流入する高温流体FHの温度と蒸発器20に流入する高温流体FHの温度とが同じになるので、高温流体FHが蒸発器20を通過した後に再生器30に流入する吸収式熱交換システム1(図1参照)の場合よりも低温流体FLが得る熱量を増大させつつ、高温流体FHが再生器30を通過した後に蒸発器20に流入する吸収式熱交換システム1A(図5参照)の場合よりも再生器30における吸収液Sの濃度の上昇を抑制することができる。以上の吸収式熱交換システム1Bの説明では、凝縮器40から流出した低温流体FLを外部熱交換部88において外部熱源流体EFと熱交換させることとしたが、外部熱交換部88及び外部熱源流体管89に代えて、吸収式熱交換システム1(図1参照)と同様に高温流体排出管39が通る第1熱交換部81を設け、蒸発器20及び再生器30それぞれから流出して合流した高温流体FHを第1熱交換部81に導くように高温流体排出管39を配置して、蒸発器20及び再生器30から流出して合流した高温流体FHを、凝縮器40から流出した低温流体FLとの熱交換に利用してもよい。このようにすると外部熱源流体FEが不要になる。 In the absorption heat exchange system 1B configured as described above, the absorption heat pump cycle between the absorption liquid S and the refrigerant V in the absorber 10, the evaporator 20, the regenerator 30, and the condenser 40 is the absorption heat exchange system 1. It works in the same manner as (see FIG. 1). The high-temperature fluid FH flows into the heat source pipe 22 of the evaporator 20 via the high-temperature fluid introduction pipe 24, and also flows into the heat source pipe 32 of the regenerator 30 through the regenerator high-temperature fluid introduction pipe 34. The high-temperature fluid FH that has flowed into the heat source pipe 22 loses heat to the refrigerant liquid Vf, the temperature drops, and the high-temperature fluid FH flows out of the evaporator 20. On the other hand, the high-temperature fluid FH that has flowed into the heat source tube 32 loses heat to the dilute solution Sw, the temperature drops, and the regenerator 30 flows out. The high-temperature fluid FH flowing out of the evaporator 20 flows through the evaporator high-temperature fluid discharge pipe 28, the high-temperature fluid FH flowing out of the regenerator 30 flows through the high-temperature fluid discharge pipe 39, and both merge to form the absorption heat exchange system 1B. It is discharged to the outside. In the external heat exchange unit 88, the low-temperature fluid FL flowing out of the condenser 40 exchanges heat with the external heat source fluid FE to raise the temperature, and then flows into the heat transfer tube 12 of the absorber 10. In the absorption type heat exchange system 1B, when the high temperature fluid FH is used as steam, the latent heat of the high temperature fluid FH becomes large, and when all of this latent heat is used as a heat source, the high temperature fluid keeps the temperature of the heat source at the steam temperature. Since a large amount of heat can be extracted from the FH, a larger flow rate of the low temperature fluid FL than when the high temperature fluid FH is used as hot water (for example, the flow rate of the low temperature fluid FL is about 1/5 of the flow rate of the high temperature fluid FH) is taken out. Can be done. In this modification, the temperature of the low-temperature fluid FL introduced into the condenser 40 is higher than the temperature of the high-temperature fluid FH flowing out of the evaporator 20 and the regenerator 30 at the flow ratio of the low-temperature fluid FL to the high-temperature fluid FH. The temperature of the low temperature fluid FL flowing out of the absorber 10 can be made higher than the temperature of the high temperature fluid FH flowing out of the evaporator 20 and the regenerator 30. Further, in the absorption type heat exchange system 1B, when the high temperature fluid FH is used as steam, the flow rate of the high temperature fluid FH can be made smaller than the flow rate of the low temperature fluid FL (for example, the flow rate of the high temperature fluid FH is the low temperature fluid FL). The diameter of the pipe constituting the flow path of the high temperature fluid FH can be reduced, and the pump for conveying the high temperature fluid FH can be omitted. Further, in the absorption type heat exchange system 1B, the temperature of the high temperature fluid FH flowing into the regenerator 30 and the temperature of the high temperature fluid FH flowing into the evaporator 20 are the same, so that the high temperature fluid FH has passed through the evaporator 20. The high-temperature fluid FH flows into the evaporator 20 after passing through the regenerator 30 while increasing the amount of heat obtained by the low-temperature fluid FL as compared with the case of the absorption-type heat exchange system 1 (see FIG. 1) that later flows into the regenerator 30. It is possible to suppress an increase in the concentration of the absorbing fluid S in the regenerator 30 as compared with the case of the absorption type heat exchange system 1A (see FIG. 5). In the above description of the absorption type heat exchange system 1B, the low temperature fluid FL flowing out from the condenser 40 is heat-exchanged with the external heat source fluid EF in the external heat exchange unit 88, but the external heat exchange unit 88 and the external heat source fluid are exchanged. Instead of the pipe 89, a first heat exchange section 81 through which the high temperature fluid discharge pipe 39 passes was provided as in the absorption type heat exchange system 1 (see FIG. 1), and flowed out from each of the evaporator 20 and the regenerator 30 and merged. A high-temperature fluid discharge pipe 39 is arranged so as to guide the high-temperature fluid FH to the first heat exchange section 81, and the high-temperature fluid FH that flows out from the evaporator 20 and the regenerator 30 and merges with the high-temperature fluid FH that flows out from the condenser 40. It may be used for heat exchange with FL. In this way, the external heat source fluid FE becomes unnecessary.

次に図10及び図11を参照して、本発明の第2の実施の形態及び第3の実施の形態のそれぞれの第2の変形例に係る吸収式熱交換システム2B、3Bを説明する。図10は、吸収式熱交換システム2Bの模式的系統図である。図11は、吸収式熱交換システム3Bの模式的系統図である。吸収式熱交換システム2B、3Bの要点は、吸収式熱交換システム2(図2参照)、3(図3参照)の構成において、高温流体FHが吸収式熱交換システム1B(図9参照)のように蒸発器20と再生器30とに並列に流れるようになっていることである。これに伴い、吸収式熱交換システム2B、3Bでは、それぞれ、吸収式熱交換システム1B(図9参照)と同様、高温流体導入管24から再生器高温流体導入管34が分岐しており、再生器高温流体導入管34の他端は再生器30の熱源管32に接続されている。蒸発器20の熱源管22の、高温流体導入管24が接続された端部とは反対側の端部には、蒸発器高温流体排出管28の一端が接続されている。蒸発器高温流体排出管28の他端は、高温流体排出管39に接続されている。なお、吸収式熱交換システム2B、3Bでは、外部熱交換部88(図9参照)が設けられていない。吸収式熱交換システム2Bは、吸収式熱交換システム2(図2参照)と同様に、第2熱交換部82が設けられており、第2熱交換部82が第5の熱交換部に相当する。ただし、吸収式熱交換システム2Bでは、蒸発器高温流体排出管28が接続された後の高温流体排出管39の他端が第2熱交換部82に接続され、蒸発器高温流体排出管28を流れる高温流体FHと高温流体排出管39を流れる高温流体FHとが合流したものが、高温流体迂回管29から第2熱交換部82に流入した部分高温流体FHsと合流するように構成されている点で、吸収式熱交換システム2(図2参照)と異なっている。他方、吸収式熱交換システム3Bは、吸収式熱交換システム3(図3参照)と同様に、第1熱交換部81及び第2熱交換部82が設けられており、第1熱交換部81が第6の熱交換部に相当し、第2熱交換部82が第5の熱交換部に相当する。吸収式熱交換システム2Bの上記以外の構成は、吸収式熱交換システム2(図2参照)と同様である。吸収式熱交換システム3Bの上記以外の構成は、吸収式熱交換システム3(図3参照)と同様である。 Next, the absorption heat exchange systems 2B and 3B according to the second modification of the second embodiment and the third embodiment of the present invention will be described with reference to FIGS. 10 and 11. FIG. 10 is a schematic system diagram of the absorption heat exchange system 2B. FIG. 11 is a schematic system diagram of the absorption heat exchange system 3B. The main points of the absorption heat exchange systems 2B and 3B are that in the configuration of the absorption heat exchange system 2 (see FIG. 2) and 3 (see FIG. 3), the high temperature fluid FH is the absorption heat exchange system 1B (see FIG. 9). As described above, the evaporator 20 and the regenerator 30 flow in parallel. Along with this, in the absorption type heat exchange systems 2B and 3B, as in the absorption type heat exchange system 1B (see FIG. 9), the regenerator high temperature fluid introduction pipe 34 is branched from the high temperature fluid introduction pipe 24, and the regenerator high temperature fluid introduction pipe 34 is regenerated. The other end of the vessel high temperature fluid introduction pipe 34 is connected to the heat source pipe 32 of the regenerator 30. One end of the evaporator high temperature fluid discharge pipe 28 is connected to the end of the heat source pipe 22 of the evaporator 20 opposite to the end to which the high temperature fluid introduction pipe 24 is connected. The other end of the evaporator high temperature fluid discharge pipe 28 is connected to the high temperature fluid discharge pipe 39. The absorption heat exchange systems 2B and 3B are not provided with the external heat exchange unit 88 (see FIG. 9). Similar to the absorption heat exchange system 2 (see FIG. 2), the absorption heat exchange system 2B is provided with a second heat exchange unit 82, and the second heat exchange unit 82 corresponds to the fifth heat exchange unit. To do. However, in the absorption type heat exchange system 2B, the other end of the high temperature fluid discharge pipe 39 after the evaporator high temperature fluid discharge pipe 28 is connected is connected to the second heat exchange portion 82, and the evaporator high temperature fluid discharge pipe 28 is connected. The confluence of the flowing high-temperature fluid FH and the high-temperature fluid FH flowing through the high-temperature fluid discharge pipe 39 is configured to merge with the partial high-temperature fluid FHs that have flowed into the second heat exchange section 82 from the high-temperature fluid detour pipe 29. In that respect, it differs from the absorption type heat exchange system 2 (see FIG. 2). On the other hand, the absorption heat exchange system 3B is provided with a first heat exchange unit 81 and a second heat exchange unit 82, similarly to the absorption heat exchange system 3 (see FIG. 3), and the first heat exchange unit 81. Corresponds to the sixth heat exchange unit, and the second heat exchange unit 82 corresponds to the fifth heat exchange unit. The configuration of the absorption heat exchange system 2B other than the above is the same as that of the absorption heat exchange system 2 (see FIG. 2). The configuration of the absorption heat exchange system 3B other than the above is the same as that of the absorption heat exchange system 3 (see FIG. 3).

このように構成された吸収式熱交換システム2B、3Bでは、それぞれ、高温流体FHが蒸発器20と再生器30とに並列に流れる点を除き、吸収式熱交換システム2(図2参照)、3(図3参照)と同様に作用する。吸収式熱交換システム2B、3Bによれば、高温流体導入管24を流れる高温流体FHの、熱源管22及び熱源管32に流入する流量と高温流体迂回管29に流入する流量との比率に応じて、吸収器10の伝熱管12に導入される低温流体FLの温度を調節することができるため、吸収器10の伝熱管12に導入される低温流体FLの温度が所定の温度になるように、熱源管22及び熱源管32に流入する高温流体FHの流量と高温流体迂回管29に流入する高温流体FHの流量との比を設定することができる。なお、この場合における流量比は、熱源管22及び熱源管32並びに高温流体迂回管29の各々についてあらかじめ決められた値にしたがって採用したサイズの配管やオリフィス等を用いることで固定してもよく、各々の管22、32、29のいずれかの位置に配置したバルブ等を用いて自動又は手動で調節可能に構成してもよい。 In the absorption heat exchange systems 2B and 3B configured in this way, the absorption heat exchange system 2 (see FIG. 2), except that the high temperature fluid FH flows in parallel with the evaporator 20 and the regenerator 30, respectively. It works in the same manner as in 3 (see FIG. 3). According to the absorption type heat exchange systems 2B and 3B, according to the ratio of the flow rate of the high temperature fluid FH flowing through the high temperature fluid introduction pipe 24 to the flow rate flowing into the heat source pipe 22 and the heat source pipe 32 and the flow rate flowing into the high temperature fluid bypass pipe 29. Since the temperature of the low-temperature fluid FL introduced into the heat transfer tube 12 of the absorber 10 can be adjusted, the temperature of the low-temperature fluid FL introduced into the heat transfer tube 12 of the absorber 10 can be adjusted to a predetermined temperature. , The ratio of the flow rate of the high temperature fluid FH flowing into the heat source pipe 22 and the heat source pipe 32 to the flow rate of the high temperature fluid FH flowing into the high temperature fluid detour pipe 29 can be set. The flow rate ratio in this case may be fixed by using pipes, orifices, or the like of a size adopted in accordance with predetermined values for each of the heat source pipe 22, the heat source pipe 32, and the high temperature fluid bypass pipe 29. It may be configured to be adjustable automatically or manually by using a valve or the like arranged at any position of each pipe 22, 32, 29.

また、吸収式熱交換システム2Bでは、高温流体FHを蒸気とした場合には、蒸気である部分高温流体FHsの温度と、蒸発器20及び再生器30を流れて熱を奪われて少なくとも一部が凝縮して凝縮水となった後に高温流体排出管39を流れる高温流体FHの温度とは近い温度にある。第2熱交換部82においては、互いに近い温度にある部分高温流体FHsと凝縮水を含む高温流体FHとが合流したものを、低温流体FLを加熱するための熱源としているので、部分高温流体FHsの蒸気だけでなく高温流体FHに含まれる凝縮水も加熱源として利用できて熱効率がよい。なお、ここで挙げた例にかかわらず、蒸発器20及び再生器30を流れてから高温流体排出管39を流れた高温流体FHを、第2熱交換部82に導入せず、低温流体FLを加熱するための熱源として利用しない簡単な構成としてもよい。 Further, in the absorption type heat exchange system 2B, when the high temperature fluid FH is steam, the temperature of the partial high temperature fluid FHs which is steam and the heat flowing through the evaporator 20 and the regenerator 30 are taken away and at least a part of the temperature is taken. Is close to the temperature of the high temperature fluid FH flowing through the high temperature fluid discharge pipe 39 after being condensed into condensed water. In the second heat exchange unit 82, the confluence of the partial high-temperature fluid FHs at temperatures close to each other and the high-temperature fluid FH containing condensed water is used as a heat source for heating the low-temperature fluid FL, so that the partial high-temperature fluid FHs Not only the steam of the above, but also the condensed water contained in the high temperature fluid FH can be used as a heating source, and the heat efficiency is good. Regardless of the example given here, the high-temperature fluid FH that has flowed through the evaporator 20 and the regenerator 30 and then through the high-temperature fluid discharge pipe 39 is not introduced into the second heat exchange section 82, and the low-temperature fluid FL is used. It may have a simple configuration that is not used as a heat source for heating.

吸収式熱交換システム3Bは、吸収式熱交換システム2Bにおいて部分高温流体FHs及び高温流体FHの両流体を熱源として導入する第2熱交換部82を、部分高温流体FHsだけを熱源とする第2熱交換部82と、部分高温流体FHs及び高温流体FHが合流した流体を熱源とする第1熱交換部81と、に分けたものである。高温流体FHを蒸気とした場合、第2熱交換部82において少なくとも一部が凝縮して凝縮水となった部分高温流体FHsの温度と、蒸発器20及び再生器30を流れて熱を奪われて少なくとも一部が凝縮して凝縮水となって高温流体排出管39を流れる高温流体FHの温度とは近い温度にある。第1熱交換部81においては、互いに近い温度にある凝縮水を含む部分高温流体FHsと凝縮水を含む高温流体FHとが合流したものを、低温流体FLを加熱するための熱源としているので、部分高温流体FHsに含まれる凝縮水及び高温流体FHに含まれる凝縮水も低温流体FLを加熱するための加熱源として利用することができて熱効率がよい。さらに、第2熱交換部82を流出した部分高温流体FHsと高温流体排出管39を流れた高温流体FHとが共に蒸気が凝縮した凝縮水となっている場合には、第2熱交換部82は蒸気を熱源とした熱交換器となり、第1熱交換部81は凝縮水を熱源とした熱交換器となる。すると、第2熱交換部82と第1熱交換部81とを、熱源の流体種類に応じて、各々最適に構成できて熱効率を向上させることができる。なお、ここで挙げた例にかかわらず、蒸発器20及び再生器30を流れてから高温流体排出管39を流れる高温流体FHを、第2熱交換部82より下流の高温流体迂回管29に導入せず、低温流体FLを加熱するための熱源として利用しない簡単な構成としてもよい。 In the absorption heat exchange system 3B, the second heat exchange unit 82 that introduces both the partial high temperature fluid FHs and the high temperature fluid FH as heat sources in the absorption type heat exchange system 2B is a second heat exchange unit 82 that uses only the partial high temperature fluid FHs as a heat source. It is divided into a heat exchange unit 82 and a first heat exchange unit 81 whose heat source is a fluid in which the partial high-temperature fluid FHs and the high-temperature fluid FH are merged. When the high-temperature fluid FH is used as steam, the temperature of the partial high-temperature fluid FHs, which is at least partially condensed into condensed water in the second heat exchange section 82, and the heat are taken away by flowing through the evaporator 20 and the regenerator 30. At least a part of it is condensed into condensed water, which is close to the temperature of the high temperature fluid FH flowing through the high temperature fluid discharge pipe 39. In the first heat exchange unit 81, the confluence of the partial high-temperature fluid FHs containing condensed water and the high-temperature fluid FH containing condensed water at temperatures close to each other is used as a heat source for heating the low-temperature fluid FL. The condensed water contained in the partial high-temperature fluid FHs and the condensed water contained in the high-temperature fluid FH can also be used as a heating source for heating the low-temperature fluid FL, and have good thermal efficiency. Further, when the partial high-temperature fluid FHs flowing out of the second heat exchange unit 82 and the high-temperature fluid FH flowing through the high-temperature fluid discharge pipe 39 are both condensed water in which steam is condensed, the second heat exchange unit 82 Is a heat exchanger using steam as a heat source, and the first heat exchange unit 81 is a heat exchanger using condensed water as a heat source. Then, the second heat exchange unit 82 and the first heat exchange unit 81 can be optimally configured according to the type of fluid of the heat source, and the thermal efficiency can be improved. Regardless of the example given here, the high-temperature fluid FH that flows through the evaporator 20 and the regenerator 30 and then flows through the high-temperature fluid discharge pipe 39 is introduced into the high-temperature fluid detour pipe 29 downstream of the second heat exchange section 82. Instead, it may have a simple configuration that is not used as a heat source for heating the low temperature fluid FL.

次に図12を参照して、本発明の第4の実施の形態の第2の変形例に係る吸収式熱交換システム4Bを説明する。図12は、吸収式熱交換システム4Bの模式的系統図である。吸収式熱交換システム4Bの要点は、吸収式熱交換システム4(図4参照)の構成において、高温流体FHが吸収式熱交換システム3B(図11参照)のように蒸発器20と再生器30とに並列に流れるようになっていることである。これに伴い、吸収式熱交換システム4Bでは、吸収式熱交換システム3B(図11参照)と同様、高温流体導入管24から再生器高温流体導入管34が分岐しており、再生器高温流体導入管34の他端は再生器30の熱源管32に接続されている。蒸発器20の熱源管22の、高温流体導入管24が接続された端部とは反対側の端部には、蒸発器高温流体排出管28の一端が接続されている。蒸発器高温流体排出管28の他端は、高温流体排出管39に接続されている。吸収式熱交換システム4Bは、吸収式熱交換システム4(図4参照)で設けられていた第1熱交換部81に代えて、低温流体FLと部分高温流体FHsとで熱交換する第2熱交換部82が設けられており、第2熱交換部82が第5の熱交換部に相当する。吸収式熱交換システム4Bでは、蒸発器高温流体排出管28が接続された後の高温流体排出管39の他端が第2熱交換部82に接続され、蒸発器高温流体排出管28を流れる高温流体FHと高温流体排出管39を流れる高温流体FHとが合流したものが、高温流体迂回管29から第2熱交換部82に流入した部分高温流体FHsと合流するように構成されている。吸収式熱交換システム4Bの上記以外の構成は、吸収式熱交換システム4(図4参照)と同様である。 Next, with reference to FIG. 12, the absorption heat exchange system 4B according to the second modification of the fourth embodiment of the present invention will be described. FIG. 12 is a schematic system diagram of the absorption heat exchange system 4B. The main point of the absorption heat exchange system 4B is that in the configuration of the absorption heat exchange system 4 (see FIG. 4), the high temperature fluid FH is the evaporator 20 and the regenerator 30 like the absorption heat exchange system 3B (see FIG. 11). It is designed to flow in parallel with and. Along with this, in the absorption type heat exchange system 4B, as in the absorption type heat exchange system 3B (see FIG. 11), the regenerator high temperature fluid introduction pipe 34 is branched from the high temperature fluid introduction pipe 24, and the regenerator high temperature fluid introduction. The other end of the tube 34 is connected to the heat source tube 32 of the regenerator 30. One end of the evaporator high temperature fluid discharge pipe 28 is connected to the end of the heat source pipe 22 of the evaporator 20 opposite to the end to which the high temperature fluid introduction pipe 24 is connected. The other end of the evaporator high temperature fluid discharge pipe 28 is connected to the high temperature fluid discharge pipe 39. In the absorption heat exchange system 4B, the second heat exchanges heat between the low temperature fluid FL and the partial high temperature fluid FHs instead of the first heat exchange unit 81 provided in the absorption heat exchange system 4 (see FIG. 4). An exchange unit 82 is provided, and the second heat exchange unit 82 corresponds to the fifth heat exchange unit. In the absorption type heat exchange system 4B, the other end of the high temperature fluid discharge pipe 39 after the evaporator high temperature fluid discharge pipe 28 is connected is connected to the second heat exchange portion 82, and the high temperature flowing through the evaporator high temperature fluid discharge pipe 28. The confluence of the fluid FH and the high-temperature fluid FH flowing through the high-temperature fluid discharge pipe 39 is configured to merge with the partial high-temperature fluid FHs that have flowed into the second heat exchange section 82 from the high-temperature fluid detour pipe 29. The configuration of the absorption heat exchange system 4B other than the above is the same as that of the absorption heat exchange system 4 (see FIG. 4).

このように構成された吸収式熱交換システム4Bでは、高温流体FHが蒸発器20と再生器30とに並列に流れる点、並びに蒸発器20及び再生器30に導入される前の高温流体FHから分岐された一部の高温流体FHsが第2熱交換部82に導入される点を除き、吸収式熱交換システム4(図4参照)と同様に作用する。吸収式熱交換システム4Bにおいても、吸収式熱交換システム2B(図10参照)と同様に、高温流体FHを蒸気とした場合には、蒸気である高温流体FHは蒸発器20及び再生器30を流れて熱を奪われて少なくとも一部が凝縮して凝縮水となる。第2熱交換部82においては、高温流体FHに含まれる凝縮水も低温流体FLを加熱する加熱源として利用できるので熱効率がよい。吸収式熱交換システム4Bによれば、冷媒熱交換器99から流出した冷媒液Vfは、温度が上昇して蒸発器20に流入するので、蒸発器20において蒸発するのに必要な熱量を抑制することができ、これに伴って増加した高温流体迂回管29を流れる高温流体FHが保有する熱量を第2熱交換部82における熱交換に利用することができて、吸収器10に流入する低温流体FLの温度を上昇させることができる一方、冷媒熱交換器99から流出した高温流体FHは、温度が低下して吸収式熱交換システム4Bから排出されることとなり、吸収式熱交換システム4Bにおける高温流体FHの回収熱量を増やすことができる。なお、ここで挙げた例にかかわらず、蒸発器20及び再生器30を並列に流れてから高温流体排出管39を流れる高温流体FHを、第2熱交換部82に導入せず、低温流体FLを加熱するための熱源として利用しない簡単な構成としてもよい。また、冷媒熱交換器99は、吸収式熱交換システム2B(図10参照)あるいは吸収式熱交換システム3B(図11参照)に設置することもできる。 In the absorption heat exchange system 4B configured in this way, from the point where the high temperature fluid FH flows in parallel with the evaporator 20 and the regenerator 30, and from the high temperature fluid FH before being introduced into the evaporator 20 and the regenerator 30. It operates in the same manner as the absorption heat exchange system 4 (see FIG. 4) except that some of the branched high temperature fluids FHs are introduced into the second heat exchange section 82. Similarly to the absorption heat exchange system 2B (see FIG. 10), in the absorption heat exchange system 4B, when the high temperature fluid FH is steam, the high temperature fluid FH which is steam uses the evaporator 20 and the regenerator 30. It flows and loses heat, and at least part of it condenses into condensed water. In the second heat exchange unit 82, the condensed water contained in the high temperature fluid FH can also be used as a heating source for heating the low temperature fluid FL, so that the heat efficiency is high. According to the absorption type heat exchange system 4B, the temperature of the refrigerant liquid Vf flowing out from the refrigerant heat exchanger 99 rises and flows into the evaporator 20, so that the amount of heat required for evaporation in the evaporator 20 is suppressed. The amount of heat possessed by the high-temperature fluid FH flowing through the high-temperature fluid detour pipe 29, which has increased accordingly, can be used for heat exchange in the second heat exchange section 82, and the low-temperature fluid flowing into the absorber 10 can be used. While the temperature of the FL can be raised, the high temperature fluid FH flowing out of the refrigerant heat exchanger 99 is discharged from the absorption heat exchange system 4B due to a decrease in temperature, and the high temperature in the absorption heat exchange system 4B. The amount of heat recovered from the fluid FH can be increased. Regardless of the example given here, the high-temperature fluid FH that flows through the evaporator 20 and the regenerator 30 in parallel and then flows through the high-temperature fluid discharge pipe 39 is not introduced into the second heat exchange section 82, and the low-temperature fluid FL is not introduced. It may be a simple configuration that is not used as a heat source for heating. Further, the refrigerant heat exchanger 99 can be installed in the absorption heat exchange system 2B (see FIG. 10) or the absorption heat exchange system 3B (see FIG. 11).

以上で説明した吸収式熱交換システム1、2、3、4、1A、2A、3A、4A、1B、2B、3B、4Bにおいて、高温流体FHは液体(典型的には温水)及び蒸気のいずれでも可能であるが、蒸気とする場合は、蒸発器20及び再生器30に並列に導入する吸収式熱交換システム1B、2B、3B、4Bに適用することが好ましい。 In the absorption heat exchange systems 1, 2, 3, 4, 1A, 2A, 3A, 4A, 1B, 2B, 3B, and 4B described above, the high temperature fluid FH is either liquid (typically hot water) or steam. However, when steam is used, it is preferably applied to the absorption heat exchange systems 1B, 2B, 3B and 4B which are introduced in parallel with the evaporator 20 and the regenerator 30.

以上の説明では、蒸発器20が満液式であるとしたが、流下液膜式であってもよい。蒸発器を流下液膜式とする場合は、蒸発器缶胴21内の上部に冷媒液Vfを供給する冷媒液供給装置を設け、満液式の場合に蒸発器缶胴21に接続することとしていた冷媒液管45の端部を、冷媒液供給装置に接続すればよい。また、蒸発器缶胴21の下部の冷媒液Vfを冷媒液供給装置に供給する配管及びポンプを設けてもよい。 In the above description, the evaporator 20 is a full-liquid type, but it may be a flowing liquid film type. When the evaporator is of the flow-down liquid film type, a refrigerant liquid supply device for supplying the refrigerant liquid Vf is provided in the upper part of the evaporator can body 21, and in the case of the full liquid type, it is connected to the evaporator can body 21. The end of the refrigerant liquid pipe 45 may be connected to the refrigerant liquid supply device. Further, a pipe and a pump for supplying the refrigerant liquid Vf at the lower part of the evaporator can body 21 to the refrigerant liquid supply device may be provided.

以上の説明では、吸収ヒートポンプサイクルが行われる吸収器10、蒸発器20、再生器30、凝縮器40が単段で構成されている例を説明したが、これらを多段で構成してもよい。例えば、吸収ヒートポンプサイクルを二段昇温型とする場合、吸収器10及び蒸発器20を、高温側の高温吸収器(以下、説明の便宜上、符号「10」に「H」を添えて表す。)及び高温蒸発器(以下、説明の便宜上、符号「20」に「H」を添えて表す。)と、低温側の低温吸収器(以下、説明の便宜上、符号「10」に「L」を添えて表す。)及び低温蒸発器(以下、説明の便宜上、符号「20」に「L」を添えて表す。)とに分ければよい。高温吸収器10Hは低温吸収器10Lよりも内圧が高く、高温蒸発器20Hは低温蒸発器20Lよりも内圧が高い。高温吸収器10Hと高温蒸発器20Hとは、典型的には、高温蒸発器20Hの冷媒Vの蒸気を高温吸収器10Hに移動させることができるように上部で連通している。低温吸収器10Lと低温蒸発器20Lとは、典型的には、低温蒸発器20Lの冷媒Vの蒸気を低温吸収器10Lに移動させることができるように上部で連通している。凝縮器40の伝熱管42から流出した低温流体FLは、低温吸収器10Lには流入せずに高温吸収器10Hに流入して高温吸収器10Hで加熱される。高温流体FHは、高温蒸発器20Hには導入されずに低温蒸発器20Lに導入される。低温吸収器10Lは低温蒸発器20Lから移動してきた冷媒Vの蒸気を吸収液Sが吸収する際の吸収熱で高温蒸発器20H内の冷媒液Vfを加熱して高温蒸発器20H内に冷媒Vの蒸気を発生させ、発生した高温蒸発器20H内の冷媒Vの蒸気は高温吸収器10Hに移動して高温吸収器10H内の吸収液Sに吸収される際の吸収熱で低温流体FLを加熱するように構成される。 In the above description, an example in which the absorber 10, the evaporator 20, the regenerator 30, and the condenser 40 in which the absorption heat pump cycle is performed is configured in a single stage has been described, but these may be configured in multiple stages. For example, when the absorption heat pump cycle is a two-stage temperature rise type, the absorber 10 and the evaporator 20 are represented by a high temperature absorber on the high temperature side (hereinafter, for convenience of explanation, the reference numeral “10” is added with “H”. ) And the high temperature evaporator (hereinafter, represented by adding "H" to the reference numeral "20" for convenience of explanation) and the low temperature absorber on the low temperature side (hereinafter, for convenience of explanation, the reference numeral "10" is represented by "L"). It may be divided into a low temperature evaporator (hereinafter, for convenience of explanation, it is represented by adding “L” to the reference numeral “20”). The high temperature absorber 10H has a higher internal pressure than the low temperature absorber 10L, and the high temperature evaporator 20H has a higher internal pressure than the low temperature evaporator 20L. The high temperature absorber 10H and the high temperature evaporator 20H typically communicate with each other at the upper part so that the vapor of the refrigerant V of the high temperature evaporator 20H can be moved to the high temperature absorber 10H. The low temperature absorber 10L and the low temperature evaporator 20L are typically communicated at the top so that the vapor of the refrigerant V of the low temperature evaporator 20L can be transferred to the low temperature absorber 10L. The low-temperature fluid FL flowing out of the heat transfer tube 42 of the condenser 40 does not flow into the low-temperature absorber 10L, but flows into the high-temperature absorber 10H and is heated by the high-temperature absorber 10H. The high temperature fluid FH is not introduced into the high temperature evaporator 20H, but is introduced into the low temperature evaporator 20L. The low temperature absorber 10L heats the refrigerant liquid Vf in the high temperature evaporator 20H with the absorbed heat when the absorbing liquid S absorbs the vapor of the refrigerant V moved from the low temperature evaporator 20L, and the refrigerant V in the high temperature evaporator 20H. The steam of the refrigerant V in the high temperature evaporator 20H moves to the high temperature absorber 10H and is absorbed by the absorption liquid S in the high temperature absorber 10H to heat the low temperature fluid FL. It is configured to.

1 吸収式熱交換システム
10 吸収器
20 蒸発器
30 再生器
40 凝縮器
80 熱交換部
81 第1熱交換部
82 第2熱交換部
99 冷媒熱交換器
FH 高温流体
FHs 部分高温流体
FL 低温流体
Sa 濃溶液
Sw 希溶液
Ve 蒸発器冷媒蒸気
Vf 冷媒液
Vg 再生器冷媒蒸気
1 Absorption type heat exchange system 10 Absorber 20 Evaporator 30 Regenerator 40 Condenser 80 Heat exchange part 81 1st heat exchange part 82 2nd heat exchange part 99 Refrigerant heat exchanger FH High temperature fluid FHs Partial high temperature fluid FL Low temperature fluid Sa Concentrated solution Sw Rare solution Ve Evaporator Refrigerant steam Vf Refrigerant liquid Vg Regenerator Refrigerant steam

Claims (18)

冷媒の蒸気が凝縮して冷媒液となる際に放出した凝縮熱によって被加熱流体の温度を上昇させる凝縮部と;
前記凝縮部から前記冷媒液を導入し、導入した前記冷媒液が蒸発して冷媒蒸気となる際に必要な蒸発潜熱を加熱源流体から奪うことで前記加熱源流体の温度を低下させる蒸発部と;
前記蒸発部から前記冷媒蒸気を導入すると共に前記凝縮部において温度が上昇した前記被加熱流体を導入し、導入した前記冷媒蒸気を吸収液が吸収して濃度が低下した希溶液となる際に放出した吸収熱によって導入した前記被加熱流体の温度を上昇させる吸収部と;
前記吸収部から前記希溶液を導入し、導入した前記希溶液を加熱し前記希溶液から冷媒を離脱させて濃度が上昇した濃溶液とするのに必要な熱を加熱源流体から奪うことで前記加熱源流体の温度を低下させる再生部と;
前記凝縮部において温度が上昇した後かつ前記吸収部において温度が上昇する前の前記被加熱流体と、前記吸収部において温度が上昇する前の前記被加熱流体の温度を上昇させる昇温流体と、の間で熱交換を行わせる熱交換部とを備え;
前記吸収液と前記冷媒との吸収ヒートポンプサイクルによって、前記吸収部は前記再生部よりも内部の圧力及び温度が高くなり、前記蒸発部は前記凝縮部よりも内部の圧力及び温度が高くなるように構成された;
吸収式熱交換システム。
A condensing part that raises the temperature of the fluid to be heated by the heat of condensation released when the vapor of the refrigerant condenses into a refrigerant liquid;
An evaporating unit that lowers the temperature of the heating source fluid by introducing the refrigerant liquid from the condensing unit and removing the latent heat of vaporization required when the introduced refrigerant liquid evaporates to become refrigerant vapor from the heating source fluid. ;
The refrigerant vapor is introduced from the evaporating portion, and the heated fluid whose temperature has risen in the condensing portion is introduced, and the introduced refrigerant vapor is absorbed by the absorbing liquid and released when it becomes a dilute solution having a reduced concentration. With an absorbing part that raises the temperature of the fluid to be heated introduced by the absorbed heat.
The dilute solution is introduced from the absorption unit, and the heat required for heating the introduced dilute solution to separate the refrigerant from the dilute solution to obtain a concentrated solution having an increased concentration is taken from the heating source fluid. With a regenerator that lowers the temperature of the heating source fluid;
The heated fluid after the temperature rises in the condensing portion and before the temperature rises in the absorbing portion, and the heating fluid that raises the temperature of the heated fluid before the temperature rises in the absorbing portion. It is equipped with a heat exchange unit that allows heat exchange between the two.
Due to the absorption heat pump cycle of the absorption liquid and the refrigerant, the internal pressure and temperature of the absorption unit are higher than those of the regeneration unit, and the internal pressure and temperature of the evaporation unit are higher than those of the condensing unit. Constructed;
Absorption heat exchange system.
前記蒸発部において温度が低下した後の前記加熱源流体を、前記再生部内の前記希溶液を加熱するために前記再生部に導入するように構成された;
請求項1に記載の吸収式熱交換システム。
The heating source fluid after the temperature has dropped in the evaporation section is configured to be introduced into the regeneration section to heat the dilute solution in the regeneration section;
The absorption heat exchange system according to claim 1.
冷媒の蒸気が凝縮して冷媒液となる際に放出した凝縮熱によって被加熱流体の温度を上昇させる凝縮部と;
前記凝縮部から前記冷媒液を導入し、導入した前記冷媒液が蒸発して冷媒蒸気となる際に必要な蒸発潜熱を加熱源流体から奪うことで前記加熱源流体の温度を低下させる蒸発部と;
前記蒸発部から前記冷媒蒸気を導入すると共に前記凝縮部において温度が上昇した前記被加熱流体を導入し、導入した前記冷媒蒸気を吸収液が吸収して濃度が低下した希溶液となる際に放出した吸収熱によって導入した前記被加熱流体の温度を上昇させる吸収部と;
前記吸収部から前記希溶液を導入し、導入した前記希溶液を加熱し前記希溶液から冷媒を離脱させて濃度が上昇した濃溶液とするのに必要な熱を加熱源流体から奪うことで前記加熱源流体の温度を低下させる再生部と;
前記吸収部において温度が上昇する前の前記被加熱流体と、前記吸収部において温度が上昇する前の前記被加熱流体の温度を上昇させる昇温流体と、の間で熱交換を行わせる熱交換部とを備え;
前記吸収液と前記冷媒との吸収ヒートポンプサイクルによって、前記吸収部は前記再生部よりも内部の圧力及び温度が高くなり、前記蒸発部は前記凝縮部よりも内部の圧力及び温度が高くなるように構成され;
前記蒸発部において温度が低下した後の前記加熱源流体を、前記再生部内の前記希溶液を加熱するために前記再生部に導入するように構成され;
前記熱交換部は、前記蒸発部に導入される前の前記加熱源流体から分岐された一部の前記加熱源流体を前記昇温流体として導入する第2の熱交換部を含んで構成された;
吸収式熱交換システム。
A condensing part that raises the temperature of the fluid to be heated by the heat of condensation released when the vapor of the refrigerant condenses into a refrigerant liquid;
An evaporating unit that lowers the temperature of the heating source fluid by introducing the refrigerant liquid from the condensing unit and removing the latent heat of vaporization required when the introduced refrigerant liquid evaporates to become refrigerant vapor from the heating source fluid. ;
The refrigerant vapor is introduced from the evaporating portion, and the heated fluid whose temperature has risen in the condensing portion is introduced, and the introduced refrigerant vapor is absorbed by the absorbing liquid and released when it becomes a dilute solution having a reduced concentration. With an absorbing part that raises the temperature of the fluid to be heated introduced by the absorbed heat.
The dilute solution is introduced from the absorption unit, and the heat required to heat the introduced dilute solution to separate the refrigerant from the dilute solution to obtain a concentrated solution having an increased concentration is taken from the heating source fluid. With a regenerator that lowers the temperature of the heating source fluid;
Heat exchange for heat exchange between the fluid to be heated before the temperature rises in the absorption unit and the heating fluid that raises the temperature of the fluid to be heated before the temperature rises in the absorption unit. With a department;
Due to the absorption heat pump cycle of the absorption liquid and the refrigerant, the internal pressure and temperature of the absorption unit are higher than those of the regeneration unit, and the internal pressure and temperature of the evaporation unit are higher than those of the condensing unit. Consists of ;
The heating source fluid after the temperature has dropped in the evaporation section is configured to be introduced into the regeneration section to heat the dilute solution in the regeneration section;
The heat exchange unit includes a second heat exchange unit that introduces a part of the heat source fluid branched from the heat source fluid before being introduced into the evaporation unit as the heating fluid. ;
Absorption heat exchange system.
前記吸収部に導入される前記被加熱流体の温度が所定の温度になるように、前記蒸発部に流入する前記加熱源流体の流量と前記第2の熱交換部に流入する前記加熱源流体の流量との比が設定された;
請求項に記載の吸収式熱交換システム。
The flow rate of the heating source fluid flowing into the evaporating section and the heating source fluid flowing into the second heat exchange section so that the temperature of the heated fluid introduced into the absorbing section becomes a predetermined temperature. The ratio to the flow rate was set;
The absorption heat exchange system according to claim 3.
前記熱交換部は、前記再生部において温度が低下した後の前記加熱源流体を前記昇温流体として導入する第1の熱交換部を含んで構成された;
請求項2乃至請求項4のいずれか1項に記載の吸収式熱交換システム。
The heat exchange unit includes a first heat exchange unit that introduces the heat source fluid after the temperature has dropped in the regeneration unit as the temperature rising fluid;
The absorption heat exchange system according to any one of claims 2 to 4.
前記凝縮部に導入される前記被加熱流体の温度が前記再生部から流出した前記加熱源流体の温度よりも低く、前記吸収部から流出する前記被加熱流体の温度が前記蒸発部に流入する前記加熱源流体の温度よりも高くなるように、前記被加熱流体の流量と前記加熱源流体の流量との比が設定された;
請求項2乃至請求項5のいずれか1項に記載の吸収式熱交換システム。
The temperature of the heated fluid introduced into the condensing portion is lower than the temperature of the heating source fluid flowing out of the regenerating portion, and the temperature of the heated fluid flowing out of the absorbing portion flows into the evaporating portion. The ratio of the flow rate of the heated fluid to the flow rate of the heating source fluid was set so as to be higher than the temperature of the heating source fluid;
The absorption heat exchange system according to any one of claims 2 to 5.
前記再生部において温度が低下した後の前記加熱源流体を、前記蒸発部内の前記冷媒液を加熱するために前記蒸発部に導入するように構成された;
請求項1に記載の吸収式熱交換システム。
The heating source fluid after the temperature has dropped in the regenerating section is configured to be introduced into the evaporating section in order to heat the refrigerant liquid in the evaporating section;
The absorption heat exchange system according to claim 1.
冷媒の蒸気が凝縮して冷媒液となる際に放出した凝縮熱によって被加熱流体の温度を上昇させる凝縮部と;
前記凝縮部から前記冷媒液を導入し、導入した前記冷媒液が蒸発して冷媒蒸気となる際に必要な蒸発潜熱を加熱源流体から奪うことで前記加熱源流体の温度を低下させる蒸発部と;
前記蒸発部から前記冷媒蒸気を導入すると共に前記凝縮部において温度が上昇した前記被加熱流体を導入し、導入した前記冷媒蒸気を吸収液が吸収して濃度が低下した希溶液となる際に放出した吸収熱によって導入した前記被加熱流体の温度を上昇させる吸収部と;
前記吸収部から前記希溶液を導入し、導入した前記希溶液を加熱し前記希溶液から冷媒を離脱させて濃度が上昇した濃溶液とするのに必要な熱を加熱源流体から奪うことで前記加熱源流体の温度を低下させる再生部と;
前記吸収部において温度が上昇する前の前記被加熱流体と、前記吸収部において温度が上昇する前の前記被加熱流体の温度を上昇させる昇温流体と、の間で熱交換を行わせる熱交換部とを備え;
前記吸収液と前記冷媒との吸収ヒートポンプサイクルによって、前記吸収部は前記再生部よりも内部の圧力及び温度が高くなり、前記蒸発部は前記凝縮部よりも内部の圧力及び温度が高くなるように構成され;
前記再生部において温度が低下した後の前記加熱源流体を、前記蒸発部内の前記冷媒液を加熱するために前記蒸発部に導入するように構成され;
前記熱交換部は、前記再生部に導入される前の前記加熱源流体から分岐された一部の前記加熱源流体を前記昇温流体として導入する第4の熱交換部を含んで構成された;
吸収式熱交換システム。
A condensing part that raises the temperature of the fluid to be heated by the heat of condensation released when the vapor of the refrigerant condenses into a refrigerant liquid;
An evaporating unit that lowers the temperature of the heating source fluid by introducing the refrigerant liquid from the condensing unit and removing the latent heat of vaporization required when the introduced refrigerant liquid evaporates to become refrigerant vapor from the heating source fluid. ;
The refrigerant vapor is introduced from the evaporating portion, and the heated fluid whose temperature has risen in the condensing portion is introduced, and the introduced refrigerant vapor is absorbed by the absorbing liquid and released when it becomes a dilute solution having a reduced concentration. With an absorbing part that raises the temperature of the fluid to be heated introduced by the absorbed heat.
The dilute solution is introduced from the absorption unit, and the heat required for heating the introduced dilute solution to separate the refrigerant from the dilute solution to obtain a concentrated solution having an increased concentration is taken from the heating source fluid. With a regenerator that lowers the temperature of the heating source fluid;
Heat exchange for heat exchange between the fluid to be heated before the temperature rises in the absorption unit and the heating fluid that raises the temperature of the fluid to be heated before the temperature rises in the absorption unit. With a department;
Due to the absorption heat pump cycle of the absorption liquid and the refrigerant, the internal pressure and temperature of the absorption unit are higher than those of the regeneration unit, and the internal pressure and temperature of the evaporation unit are higher than those of the condensing unit. Consists of ;
The heating source fluid after the temperature has dropped in the regenerating section is configured to be introduced into the evaporating section in order to heat the refrigerant liquid in the evaporating section;
The heat exchange unit includes a fourth heat exchange unit that introduces a part of the heat source fluid branched from the heat source fluid before being introduced into the regeneration unit as the heating fluid. ;
Absorption heat exchange system.
前記吸収部に導入される前記被加熱流体の温度が所定の温度になるように、前記再生部に流入する前記加熱源流体の流量と前記第4の熱交換部に流入する前記加熱源流体の流量との比が設定された;
請求項に記載の吸収式熱交換システム。
The flow rate of the heating source fluid flowing into the regenerating section and the heating source fluid flowing into the fourth heat exchange section so that the temperature of the heated fluid introduced into the absorbing section becomes a predetermined temperature. The ratio to the flow rate was set;
The absorption heat exchange system according to claim 8.
前記熱交換部は、前記蒸発部において温度が低下した後の前記加熱源流体を前記昇温流体として導入する第3の熱交換部を含んで構成された;
請求項7乃至請求項9のいずれか1項に記載の吸収式熱交換システム。
The heat exchange unit includes a third heat exchange unit that introduces the heat source fluid after the temperature has dropped in the evaporation unit as the temperature rise fluid;
The absorption heat exchange system according to any one of claims 7 to 9.
前記凝縮部に導入される前記被加熱流体の温度が前記蒸発部から流出した前記加熱源流体の温度よりも低く、前記吸収部から流出する前記被加熱流体の温度が前記再生部に流入する前記加熱源流体の温度よりも高くなるように、前記被加熱流体の流量と前記加熱源流体の流量との比が設定された;
請求項7乃至請求項10のいずれか1項に記載の吸収式熱交換システム。
The temperature of the heated fluid introduced into the condensing portion is lower than the temperature of the heating source fluid flowing out of the evaporating portion, and the temperature of the heated fluid flowing out of the absorbing portion flows into the regenerating portion. The ratio of the flow rate of the heated fluid to the flow rate of the heating source fluid was set so as to be higher than the temperature of the heating source fluid;
The absorption heat exchange system according to any one of claims 7 to 10.
前記蒸発部に導入される前記加熱源流体と、前記再生部に導入される前記加熱源流体とが、並列に導入されるように構成された;
請求項1に記載の吸収式熱交換システム。
The heating source fluid introduced into the evaporation unit and the heating source fluid introduced into the regeneration unit are configured to be introduced in parallel;
The absorption heat exchange system according to claim 1.
冷媒の蒸気が凝縮して冷媒液となる際に放出した凝縮熱によって被加熱流体の温度を上昇させる凝縮部と;
前記凝縮部から前記冷媒液を導入し、導入した前記冷媒液が蒸発して冷媒蒸気となる際に必要な蒸発潜熱を加熱源流体から奪うことで前記加熱源流体の温度を低下させる蒸発部と;
前記蒸発部から前記冷媒蒸気を導入すると共に前記凝縮部において温度が上昇した前記被加熱流体を導入し、導入した前記冷媒蒸気を吸収液が吸収して濃度が低下した希溶液となる際に放出した吸収熱によって導入した前記被加熱流体の温度を上昇させる吸収部と;
前記吸収部から前記希溶液を導入し、導入した前記希溶液を加熱し前記希溶液から冷媒を離脱させて濃度が上昇した濃溶液とするのに必要な熱を加熱源流体から奪うことで前記加熱源流体の温度を低下させる再生部と;
前記吸収部において温度が上昇する前の前記被加熱流体と、前記吸収部において温度が上昇する前の前記被加熱流体の温度を上昇させる昇温流体と、の間で熱交換を行わせる熱交換部とを備え;
前記吸収液と前記冷媒との吸収ヒートポンプサイクルによって、前記吸収部は前記再生部よりも内部の圧力及び温度が高くなり、前記蒸発部は前記凝縮部よりも内部の圧力及び温度が高くなるように構成され;
前記蒸発部に導入される前記加熱源流体と、前記再生部に導入される前記加熱源流体とが、並列に導入されるように構成され;
前記熱交換部は、前記蒸発部及び前記再生部に導入される前の前記加熱源流体から分岐された一部の前記加熱源流体を前記昇温流体として導入する第5の熱交換部を含んで構成された;
吸収式熱交換システム。
A condensing part that raises the temperature of the fluid to be heated by the heat of condensation released when the vapor of the refrigerant condenses into a refrigerant liquid;
An evaporating unit that lowers the temperature of the heating source fluid by introducing the refrigerant liquid from the condensing unit and removing the latent heat of vaporization required when the introduced refrigerant liquid evaporates to become refrigerant vapor from the heating source fluid. ;
The refrigerant vapor is introduced from the evaporating portion, and the heated fluid whose temperature has risen in the condensing portion is introduced, and the introduced refrigerant vapor is absorbed by the absorbing liquid and released when it becomes a dilute solution having a reduced concentration. With an absorbing part that raises the temperature of the fluid to be heated introduced by the absorbed heat.
The dilute solution is introduced from the absorption unit, and the heat required for heating the introduced dilute solution to separate the refrigerant from the dilute solution to obtain a concentrated solution having an increased concentration is taken from the heating source fluid. With a regenerator that lowers the temperature of the heating source fluid;
Heat exchange for heat exchange between the fluid to be heated before the temperature rises in the absorption unit and the heating fluid that raises the temperature of the fluid to be heated before the temperature rises in the absorption unit. With a department;
Due to the absorption heat pump cycle of the absorption liquid and the refrigerant, the internal pressure and temperature of the absorption unit are higher than those of the regeneration unit, and the internal pressure and temperature of the evaporation unit are higher than those of the condensing unit. Consists of ;
The heating source fluid introduced into the evaporation unit and the heating source fluid introduced into the regeneration unit are configured to be introduced in parallel ;
The heat exchange unit includes a fifth heat exchange unit that introduces a part of the heat source fluid branched from the heat source fluid before being introduced into the evaporation unit and the regeneration unit as the heating fluid. Consists of;
Absorption heat exchange system.
前記吸収部に導入される前記被加熱流体の温度が所定の温度になるように、前記蒸発部及び前記再生部に流入する前記加熱源流体の流量と前記第5の熱交換部に流入する前記加熱源流体の流量との比が設定された;
請求項13に記載の吸収式熱交換システム。
The flow rate of the heating source fluid flowing into the evaporating part and the regenerating part and the flow rate of the heating source fluid flowing into the fifth heat exchange part so that the temperature of the fluid to be heated introduced into the absorbing part becomes a predetermined temperature. The ratio to the flow rate of the heating source fluid was set;
The absorption heat exchange system according to claim 13.
前記熱交換部は、前記再生部において温度が低下した後の前記加熱源流体及び前記蒸発部において温度が低下した後の前記加熱源流体の少なくとも一方を前記昇温流体として導入する第6の熱交換部を含んで構成された;
請求項12乃至請求項14のいずれか1項に記載の吸収式熱交換システム。
The heat exchange unit introduces at least one of the heating source fluid after the temperature has dropped in the regenerating section and the heating source fluid after the temperature has dropped in the evaporating section as the heating fluid. Consists of an exchange;
The absorption heat exchange system according to any one of claims 12 to 14.
前記熱交換部は、前記再生部において温度が低下した後の前記加熱源流体及び前記蒸発部において温度が低下した後の前記加熱源流体の少なくとも一方を前記昇温流体として導入する第6の熱交換部を含んで構成され;
前記第6の熱交換部で温度が上昇した前記被加熱流体が前記第5の熱交換部に導入され、前記第5の熱交換部で温度が低下した前記加熱源流体が前記第6の熱交換部に導入されるように構成された;
請求項13又は請求項14に記載の吸収式熱交換システム。
The heat exchange section introduces at least one of the heating source fluid after the temperature has dropped in the regeneration section and the heating source fluid after the temperature has dropped in the evaporating section as the heating fluid. Consists of an exchange;
The heated fluid whose temperature has risen in the sixth heat exchange section is introduced into the fifth heat exchange section, and the heating source fluid whose temperature has dropped in the fifth heat exchange section is the sixth heat. It was configured to be introduced in the exchange;
The absorption heat exchange system according to claim 13 or 14.
前記凝縮部に導入される前記被加熱流体の温度が前記蒸発部及び前記再生部から流出した前記加熱源流体の温度よりも低く、前記吸収部から流出する前記被加熱流体の温度が前記蒸発部及び前記再生部に流入する前記加熱源流体の温度よりも高くなるように、前記被加熱流体の流量と前記加熱源流体の流量との比が設定された;
請求項12乃至請求項16のいずれか1項に記載の吸収式熱交換システム。
The temperature of the fluid to be heated introduced into the condensing section is lower than the temperature of the heating source fluid flowing out from the evaporating section and the regenerating section, and the temperature of the heated fluid flowing out from the absorbing section is the temperature of the evaporating section. And the ratio of the flow rate of the heated fluid to the flow rate of the heating source fluid was set so as to be higher than the temperature of the heating source fluid flowing into the regeneration unit;
The absorption heat exchange system according to any one of claims 12 to 16.
前記凝縮部から前記蒸発部に搬送される前記冷媒液と、前記熱交換部から流出した前記昇温流体と、の間で熱交換を行わせる冷媒熱交換器を備える;
請求項1乃至請求項17のいずれか1項に記載の吸収式熱交換システム。
A refrigerant heat exchanger that exchanges heat between the refrigerant liquid conveyed from the condensing section to the evaporation section and the heating fluid flowing out of the heat exchange section is provided;
The absorption heat exchange system according to any one of claims 1 to 17.
JP2017182961A 2016-12-08 2017-09-22 Absorption heat exchange system Active JP6903852B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201721633121.5U CN207662009U (en) 2016-12-08 2017-11-29 Absorption type heat exchange system
CN201711224394.9A CN108180670B (en) 2016-12-08 2017-11-29 Absorption heat exchange system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016238644 2016-12-08
JP2016238644 2016-12-08

Publications (2)

Publication Number Publication Date
JP2018096673A JP2018096673A (en) 2018-06-21
JP6903852B2 true JP6903852B2 (en) 2021-07-14

Family

ID=62632791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017182961A Active JP6903852B2 (en) 2016-12-08 2017-09-22 Absorption heat exchange system

Country Status (2)

Country Link
JP (1) JP6903852B2 (en)
CN (1) CN207662009U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108180670B (en) * 2016-12-08 2021-02-12 荏原冷热系统株式会社 Absorption heat exchange system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59109753A (en) * 1982-12-13 1984-06-25 三洋電機株式会社 Absorption heat pump
JP3083360B2 (en) * 1991-08-20 2000-09-04 東京瓦斯株式会社 Absorption heat pump
JP4588425B2 (en) * 2004-10-13 2010-12-01 株式会社荏原製作所 Absorption heat pump
JP5086947B2 (en) * 2008-09-08 2012-11-28 大阪瓦斯株式会社 Type 2 absorption heat pump system
JP6297377B2 (en) * 2014-03-25 2018-03-20 荏原冷熱システム株式会社 Absorption heat pump

Also Published As

Publication number Publication date
JP2018096673A (en) 2018-06-21
CN207662009U (en) 2018-07-27

Similar Documents

Publication Publication Date Title
JP2014190680A (en) Absorption heat pump
JP2010276304A (en) Steam generation system
CN107144042A (en) A kind of second-kind absorption-type heat pump
JP2006177570A (en) Absorption heat pump
CN108180670B (en) Absorption heat exchange system
JP6903852B2 (en) Absorption heat exchange system
JP7015671B2 (en) Absorption heat exchange system
JP4542985B2 (en) Absorption heat pump
JP6896968B2 (en) Absorption heat exchange system
CN107328132A (en) A kind of second-kind absorption-type heat pump
KR102165443B1 (en) Absoption chiller
WO2004102085A1 (en) Absorption chiller
CN105865083A (en) Trigeneration system capable of recovering heat
JP2012202589A (en) Absorption heat pump apparatus
CN104180555A (en) Cool double-effect lithium bromide spray absorption type refrigeration cycle system
CN107388617A (en) Fume hot-water compound type lithium bromide absorption type refrigeration unit
JP4148830B2 (en) Single double effect absorption refrigerator
CN210751315U (en) Air source multiple-effect vacuum evaporation system applied to cutting fluid concentration
JP6907438B2 (en) Absorption heat exchange system
CN206847115U (en) A kind of second-kind absorption-type heat pump
CN207856340U (en) A kind of small reduction ratio thermo-compression evaporation enrichment facility of action of forced stirring
CN207035553U (en) A kind of second-kind absorption-type heat pump
JP2006112686A (en) Two stage temperature rising type absorption heat pump
CN110220303A (en) A kind of low * damage heat exchanger
CN107477907A (en) Fume hot-water compound type lithium bromide absorption type handpiece Water Chilling Units

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210531

R150 Certificate of patent or registration of utility model

Ref document number: 6903852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250