JP5086947B2 - Type 2 absorption heat pump system - Google Patents

Type 2 absorption heat pump system Download PDF

Info

Publication number
JP5086947B2
JP5086947B2 JP2008230115A JP2008230115A JP5086947B2 JP 5086947 B2 JP5086947 B2 JP 5086947B2 JP 2008230115 A JP2008230115 A JP 2008230115A JP 2008230115 A JP2008230115 A JP 2008230115A JP 5086947 B2 JP5086947 B2 JP 5086947B2
Authority
JP
Japan
Prior art keywords
temperature
regenerator
cooling medium
heat exchanger
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008230115A
Other languages
Japanese (ja)
Other versions
JP2010065862A (en
Inventor
洋 藤本
努 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2008230115A priority Critical patent/JP5086947B2/en
Publication of JP2010065862A publication Critical patent/JP2010065862A/en
Application granted granted Critical
Publication of JP5086947B2 publication Critical patent/JP5086947B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Description

本発明は、排熱ヒートポンプによる蒸気発生技術に関し、さらに、詳細には、冷媒液を加熱して冷媒蒸気を発生させる蒸発器と、吸収溶液が前記蒸発器で発生した冷媒蒸気を吸収する際の吸収熱で被加熱媒体を加熱する吸収器と、前記蒸発器で発生した冷媒蒸気を吸収して濃度が低くなった希溶液を導入し、当該希溶液を加熱することで、前記希溶液中の冷媒を蒸発させて前記希溶液よりも高濃度の濃溶液を生成する再生器と、前記再生器で蒸発した冷媒蒸気が導入され凝縮させて前記蒸発器に供給する冷媒液を生成する凝縮器とを備えて構成され、前記被加熱媒体の温度が、前記再生器において濃溶液を得るための加熱熱源の温度より高い熱出力を得ることができる第二種吸収ヒートポンプシステムに関する。   The present invention relates to a steam generation technique using an exhaust heat pump, and more specifically, an evaporator that heats a refrigerant liquid to generate refrigerant vapor, and an absorption solution that absorbs the refrigerant vapor generated in the evaporator. An absorber that heats the medium to be heated with absorption heat, a diluted solution that has absorbed the refrigerant vapor generated in the evaporator and has a reduced concentration, and the diluted solution is heated. A regenerator for evaporating a refrigerant to produce a concentrated solution having a higher concentration than the dilute solution; a condenser for introducing a refrigerant vapor evaporated in the regenerator and condensing to produce a refrigerant liquid to be supplied to the evaporator; And a second type absorption heat pump system in which the temperature of the medium to be heated is higher than the temperature of a heating heat source for obtaining a concentrated solution in the regenerator.

ガスエンジンやディーゼルエンジン等の原動機で発電し、その排熱で蒸気を得ることは、従来から広く行われてきた。このような排熱の利用形態としては、従来、原動機から発生する排気ガスを蒸気ボイラに導き、蒸気を得て排熱を利用してきた。最近、排熱源であるジャケット水(加熱熱源である加熱媒体の一例)をそのまま、あるいは、排気ガスと熱交換した後に、第二種吸収ヒートポンプに通じて蒸気を得ようとする研究が盛んである(非特許文献1)。   It has been widely practiced to generate electricity with a prime mover such as a gas engine or a diesel engine and obtain steam by the exhaust heat. As a utilization form of such exhaust heat, conventionally, exhaust gas generated from a prime mover has been guided to a steam boiler to obtain steam and utilize the exhaust heat. Recently, there is a lot of research to obtain steam by using a second-type absorption heat pump as it is or after exchanging heat with exhaust gas as jacket water (an example of a heating medium as a heating heat source). (Non-Patent Document 1).

図3に、第二種吸収ヒートポンプの構成を、図4に臭化リチウム−水系のデューリング線図を示す。
図4のデューリング線図上の丸付き番号は、図3のシステム上の番号に対応している。
図3に示すように、第二種ヒートポンプは、冷媒液を加熱して冷媒蒸気を発生させる蒸発器1と、吸収溶液が前記蒸発器1で発生した冷媒蒸気を吸収する際の吸収熱で被加熱媒体を加熱する吸収器2と、前記蒸発器1で発生した冷媒蒸気を吸収して濃度が低くなった希溶液を導入し、当該希溶液を加熱することで、前記希溶液中の冷媒を蒸発させて前記希溶液よりも高濃度の濃溶液を生成する再生器3と、前記再生器3で蒸発した冷媒蒸気が導入され凝縮させて前記蒸発器1に供給する冷媒液を生成する凝縮器4とを備えて構成されている。
FIG. 3 shows the configuration of the second-type absorption heat pump, and FIG. 4 shows a lithium bromide-water Duling diagram.
The circled numbers on the Dueling diagram of FIG. 4 correspond to the numbers on the system of FIG.
As shown in FIG. 3, the second type heat pump includes an evaporator 1 that heats the refrigerant liquid and generates refrigerant vapor, and an absorption solution that absorbs the refrigerant vapor generated in the evaporator 1 by the absorbing solution. An absorber 2 for heating the heating medium and a diluted solution having a reduced concentration by absorbing the refrigerant vapor generated in the evaporator 1 are introduced, and the diluted solution is heated so that the refrigerant in the diluted solution is reduced. A regenerator 3 that generates a concentrated solution having a higher concentration than the dilute solution by evaporation, and a condenser that generates a refrigerant liquid that is introduced and condensed by the refrigerant vapor evaporated in the regenerator 3 to be supplied to the evaporator 1 4.

図3において、蒸発器1と吸収器2の圧力P´Hは再生器3と凝縮器4の圧力P´Lより高くなっている。これは、吸収冷凍機の場合と反対である。原理を簡単に説明すると、再生器3で、加熱熱源であるジャケット水によって冷媒である水を分離し、凝縮器4で凝縮させる。凝縮した水は加圧して蒸発器1に送り、再生器3で熱利用した後のジャケット水で蒸発させる。蒸発させた水は吸収器2において再生器3から送られた溶液であるLIBr濃溶液に吸収され、その吸収熱によって温度が上昇する。吸収器2からその熱を被加熱媒体に回収すれば、ジャケット水よりも高い温度の熱出力が得られ、これで蒸気を得ることができる。吸収器2で蒸気を吸収した溶液は、減圧後に再生器3に返されサイクルを繰り返す。   In FIG. 3, the pressure P′H of the evaporator 1 and the absorber 2 is higher than the pressure P′L of the regenerator 3 and the condenser 4. This is the opposite of the absorption refrigerator. The principle will be briefly described. In the regenerator 3, water as a refrigerant is separated by jacket water as a heating heat source and condensed in the condenser 4. The condensed water is pressurized and sent to the evaporator 1, and is evaporated with the jacket water after heat is used in the regenerator 3. The evaporated water is absorbed in the LIBr concentrated solution, which is the solution sent from the regenerator 3 in the absorber 2, and the temperature rises due to the heat of absorption. If the heat is recovered from the absorber 2 to the medium to be heated, a heat output at a temperature higher than that of the jacket water can be obtained, whereby steam can be obtained. The solution that has absorbed the vapor by the absorber 2 is returned to the regenerator 3 after decompression and the cycle is repeated.

さて、図4に示すデューリング線図上に各部の大まかな温度を示したが、再生器3と蒸発器1の温度はジャケット水温度Tjによって決まり、凝縮器4の温度は冷却水Tcの温度によって決まる。
再生器3と蒸発器1の温度が85℃、凝縮器4の温度が35℃であれば、図4に示すように吸収器2で得られる最高温度Tdは142℃程度であり、これによって絶対圧0.3MPa(飽和温度133.54℃)程度の蒸気を取り出せる。
Now, the rough temperature of each part is shown on the Dueling diagram shown in FIG. 4. The temperature of the regenerator 3 and the evaporator 1 is determined by the jacket water temperature Tj, and the temperature of the condenser 4 is the temperature of the cooling water Tc. It depends on.
If the temperature of the regenerator 3 and the evaporator 1 is 85 ° C. and the temperature of the condenser 4 is 35 ° C., the maximum temperature Td obtained by the absorber 2 is about 142 ° C. as shown in FIG. Steam with a pressure of about 0.3 MPa (saturation temperature of 133.54 ° C.) can be taken out.

日立評論 2007.03 vol.89 NO.03 290−291 炭酸ガス削減への日立の取り組みと今後のエネルギーサービス事業展開Hitachi review 2007.03 vol. 89 NO. 03 290-291 Hitachi's efforts to reduce carbon dioxide and future energy service business development

しかしながら、需要の多い0.4MPa(飽和温度143.62℃)以上の蒸気を取り出すことは困難である。
このレベルの蒸気を取り出すには吸収器2の温度を150℃以上にしなければならない。
このための手法として、ジャケット水温度を上げる(図5に示す例では90℃まで上げている)方法がある。また、吸収ヒートポンプを二重連結し、第一の吸収ヒートポンプで昇温した熱で、第二の吸収ヒートポンプを加熱する方法もある。しかし、前者はエンジン側の設計条件で制約される場合が多く、後者ではCOPが個々のサイクルのCOPの乗算になり、著しく低下する。
However, it is difficult to take out steam having a demand of 0.4 MPa (saturation temperature 143.62 ° C.) or more.
In order to take out this level of vapor, the temperature of the absorber 2 must be 150 ° C. or higher.
As a technique for this purpose, there is a method of increasing the jacket water temperature (in the example shown in FIG. 5, the temperature is increased to 90 ° C.). There is also a method in which the absorption heat pump is double connected and the second absorption heat pump is heated with the heat raised by the first absorption heat pump. However, the former is often constrained by the design conditions on the engine side, and in the latter, COP is multiplied by COP of each cycle, and is significantly reduced.

一方、これらが困難な場合、冷却水温度を下げて、凝縮圧力を下げてもよい。この場合、凝縮器温度は30℃程度まで下げる必要がある。このためには、凝縮器4の温度と冷却水の温度との温度差Δtを5℃とすれば、25℃程度の冷却水が必要となる。しかしながら、大気と熱交換を行うクーリングタワーを用いる場合は、夏の最盛期に、この温度を超えることが多い。例えば、大阪府の8月の月平均日中最高温度は32℃、平均温度は26℃、月平均日中最低温度は22℃程度である。従って、クーリングタワーにより得られる冷却水を、第二種吸収ヒートポンプの冷却水(低温の冷却媒体)とする技術には、通年の運転を考慮すると無理がある。
本発明は、上記の課題に鑑みてなされたものであり、その目的は、通年に亘って、安定した運転状態を確保できる第二種吸収ヒートポンプシステムを得ることにある。
On the other hand, if these are difficult, the cooling water temperature may be lowered to lower the condensation pressure. In this case, the condenser temperature needs to be lowered to about 30 ° C. For this purpose, if the temperature difference Δt between the temperature of the condenser 4 and the temperature of the cooling water is 5 ° C., cooling water of about 25 ° C. is required. However, when using a cooling tower that exchanges heat with the atmosphere, this temperature is often exceeded during the summer peak. For example, the month average daytime maximum temperature in August in Osaka Prefecture is 32 ° C., the average temperature is 26 ° C., and the month average daytime minimum temperature is about 22 ° C. Therefore, it is impossible to use the cooling water obtained by the cooling tower as the cooling water (low-temperature cooling medium) of the second type absorption heat pump in consideration of the year-round operation.
This invention is made | formed in view of said subject, The objective is to obtain the 2nd type absorption heat pump system which can ensure the stable driving | running state over the whole year.

上記目的を達成するための本発明に係る冷媒液を加熱して冷媒蒸気を発生させる蒸発器と、
吸収溶液が前記蒸発器で発生した冷媒蒸気を吸収する際の吸収熱で被加熱媒体を加熱する吸収器と、
前記蒸発器で発生した冷媒蒸気を吸収して濃度が低くなった希溶液を導入し、当該希溶液を加熱することで、前記希溶液中の冷媒を蒸発させて前記希溶液よりも高濃度の濃溶液を生成する再生器と、
前記再生器で蒸発した冷媒蒸気が導入され凝縮させて前記蒸発器に供給する冷媒液を生成する凝縮器とを備えて構成され、
前記被加熱媒体の温度が、前記再生器において濃溶液を得るための加熱熱源の温度より高い熱出力を得る第二種吸収ヒートポンプシステムの第1特徴構成は、
前記凝縮器の冷却媒体が循環して、大気と熱交換可能な大気側熱交換器と、地中と熱交換可能な地中側熱交換器とを備え、
前記被加熱媒体に求められる温度に従って決まる前記冷却媒体の温度である所要冷却媒体温度より大気温度が低い場合に、前記大気温度より温度の低い地中に、前記冷却媒体を前記大気側熱交換器を介して放熱させ、前記所要冷却媒体温度より大気温度が高い場合に、前記冷却媒体を前記地中側熱交換器を介して放熱させる第1冷却媒体循環制御手段を備えたことにある。
An evaporator that heats the refrigerant liquid according to the present invention to achieve the above object and generates refrigerant vapor;
An absorber that heats the medium to be heated with absorption heat when the absorbing solution absorbs the refrigerant vapor generated in the evaporator;
By introducing a dilute solution having a low concentration by absorbing the refrigerant vapor generated in the evaporator, and heating the dilute solution, the refrigerant in the dilute solution is evaporated to have a higher concentration than the dilute solution. A regenerator for producing a concentrated solution;
A refrigerant vapor that is introduced and condensed in the regenerator to generate a refrigerant liquid to be supplied to the evaporator,
The first characteristic configuration of the second type absorption heat pump system in which the temperature of the heated medium obtains a heat output higher than the temperature of a heating heat source for obtaining a concentrated solution in the regenerator,
The cooling medium of the condenser circulates, and includes an atmosphere side heat exchanger that can exchange heat with the atmosphere, and a ground side heat exchanger that can exchange heat with the ground,
When the atmospheric temperature is lower than the required cooling medium temperature, which is the temperature of the cooling medium determined according to the temperature required for the heated medium, the cooling medium is transferred to the atmosphere-side heat exchanger in the ground at a temperature lower than the atmospheric temperature. And a first coolant circulation control means for radiating the cooling medium via the underground heat exchanger when the atmospheric temperature is higher than the required cooling medium temperature.

まず、ヒートポンプ側の作動状態を図2に示すデューリング線図従って説明すると、凝縮器4に導入される冷却媒体温度を低下させることにより、凝縮器4、再生器3の圧力PLを低下させることが可能となり(図示する例にあっては、凝縮器での冷媒の凝縮温度Tcを35℃から30℃に低下させた例を示している)、吸収器2で得ることができる熱出力の温度Tdを上昇でき(図示する例にあっては142℃から154℃に上昇させた例を示している)、結果的に、目的とする140℃近辺の蒸気を被加熱媒体を使用して得ることができる。この場合、凝縮器に導入される冷却媒体の温度としては、25℃以下となっていることが必要となる。   First, the operation state on the heat pump side will be described with reference to the Dueling diagram shown in FIG. 2. By reducing the temperature of the cooling medium introduced into the condenser 4, the pressure PL of the condenser 4 and the regenerator 3 is reduced. (In the example shown in the figure, an example in which the condensation temperature Tc of the refrigerant in the condenser is lowered from 35 ° C. to 30 ° C. is shown), and the temperature of the heat output that can be obtained by the absorber 2 Td can be increased (in the example shown, an example in which the temperature is increased from 142 ° C. to 154 ° C. is shown), and as a result, the target steam around 140 ° C. is obtained by using a heated medium. Can do. In this case, the temperature of the cooling medium introduced into the condenser needs to be 25 ° C. or lower.

さて、このような冷却媒体温度(最大25℃)を得るための本願に係る手法であるが、本願にあっては、第1冷却媒体循環制御手段を設け、被加熱媒体に求められる温度に従って決まる冷却媒体の温度である所要冷却媒体温度(上記説明した例では25℃)より大気温度が低い状況では、前記冷却媒体を前記大気側熱交換器を介して放熱させ、前記所要冷却媒体温度より大気温度が高い状況では、前記冷却媒体を前記地中側熱交換器を介して放熱させる。   Now, it is a technique according to the present application for obtaining such a cooling medium temperature (maximum 25 ° C.). In the present application, the first cooling medium circulation control means is provided, and is determined according to the temperature required for the heated medium. In a situation where the atmospheric temperature is lower than the required cooling medium temperature (25 ° C. in the example described above), which is the temperature of the cooling medium, the cooling medium is radiated through the atmosphere-side heat exchanger, and the atmospheric temperature is increased from the required cooling medium temperature. In a situation where the temperature is high, the cooling medium is dissipated through the underground heat exchanger.

よく知られているように、地中の温度は年間の平均温度に近く、概ね15〜20℃程度である。これに対して大気温は真夏日以外は25℃以下のことが多いが、真夏日には、25℃より高くなることもある。   As is well known, the underground temperature is close to the annual average temperature, and is generally about 15 to 20 ° C. On the other hand, the atmospheric temperature is often 25 ° C. or lower except on summer days, but may be higher than 25 ° C. on summer days.

そこで、本願においては、通常状態においては、大気側熱交換器を介して冷却媒体の熱を大気中に放熱させ、大気温度が所要冷却媒体温度より高くなった場合に、この温度より低く維持されている地中に冷却媒体の熱を放出させる。
結果、通用の大気側熱交換器を設備するとともに、例えば、真夏日といった高温日のみ地中へ放熱する構成を採用することで、比較的小型の地中側熱交換器を採用しても、通年に亘って、安定した運転状態を確保できる。
Therefore, in the present application, in a normal state, the heat of the cooling medium is radiated to the atmosphere via the atmosphere-side heat exchanger, and when the atmospheric temperature becomes higher than the required cooling medium temperature, the temperature is maintained below this temperature. The heat of the cooling medium is released into the ground.
As a result, while installing a common atmosphere side heat exchanger, for example, by adopting a configuration that radiates heat to the ground only on high temperature days such as midsummer days, even if a relatively small underground heat exchanger is adopted, A stable operation state can be secured throughout the year.

そして、本願にあっては、主には大気側を冷熱を得るのに利用し、大気側では良好に運転できない場合にのみ地中側を利用するため、基本的には従来型の設備構成を利用しながら、通年に亘って良好に運転できるシステムを容易に得ることができる。
本発明に係る第二種吸収ヒートポンプシステムの第2特徴構成は、上記第1特徴構成に加えて、前記大気側熱交換器と前記地中側熱交換器との間に、前記冷却媒体が循環可能に構成され、前記大気温度が地中温度より低下し、前記大気側熱交換器と前記地中側熱交換器との間を前記冷却媒体が循環して、大気側から地中側へ冷熱搬送が可能な地中冷却可能状態において、前記冷却媒体を前記大気側熱交換器と前記地中側熱交換器との間で循環させる第2冷却媒体循環制御手段を備えた点にある。
And, in this application, the air side is mainly used for obtaining cold heat, and the ground side is used only when the air side cannot be operated satisfactorily. A system that can be operated satisfactorily throughout the year while being used can be easily obtained.
In the second feature configuration of the second type absorption heat pump system according to the present invention, in addition to the first feature configuration, the cooling medium circulates between the atmosphere side heat exchanger and the underground side heat exchanger. The atmospheric temperature is lower than the underground temperature, the cooling medium circulates between the atmospheric heat exchanger and the underground heat exchanger, and cools from the atmosphere side to the underground side. A second cooling medium circulation control unit that circulates the cooling medium between the atmosphere-side heat exchanger and the underground-side heat exchanger in a state where the underground cooling is possible.

上記第2特徴構成によれば、第2冷却媒体循環制御手段の働きにより、前記大気温度が地中温度より低下し、前記大気側熱交換器と前記地中側熱交換器との間を前記冷却媒体が循環して、大気側から地中側へ冷熱搬送が可能な地中冷却可能状態において、前記冷却媒体を前記大気側熱交換器と前記地中側熱交換器との間で循環させる。
即ち、第2冷却媒体循環手段は、大気温度(大気の湿球温度)が地中温度よりも低下した場合は、上昇した地中温度を低下させて回復するようにしておくことで、さらに、小規模の地中熱交換器を効果的に利用でき、更なるコストダウンに繋がる。
According to the second characteristic configuration, the atmospheric temperature is lower than the underground temperature by the action of the second coolant circulation control means, and the gap between the atmospheric heat exchanger and the underground heat exchanger is The cooling medium is circulated between the atmosphere-side heat exchanger and the underground-side heat exchanger in a ground-coolable state in which the cooling medium circulates and can transfer cold heat from the atmosphere side to the underground side. .
That is, the second cooling medium circulating means, when the atmospheric temperature (atmospheric wet bulb temperature) is lower than the underground temperature, by reducing the increased underground temperature to recover, A small-scale underground heat exchanger can be used effectively, leading to further cost reduction.

本発明に係る第二種吸収ヒートポンプシステムの第3特徴構成は、上記第1又は第2特徴構成に加えて、前記再生器内の溶液が、溶液に結晶が発生する結晶発生状態となるのを抑制する結晶発生状態抑制手段を備えた点にある。   In the third characteristic configuration of the second type absorption heat pump system according to the present invention, in addition to the first or second characteristic configuration, the solution in the regenerator is in a crystal generation state in which crystals are generated in the solution. It is in the point provided with the crystal generation state suppression means to suppress.

上記第3特徴構成によれば、再生器における結晶の発生を抑制でき、良好な運転状態を維持できる。
さらに具体的には、本願の第5特徴構成のように、
前記冷媒が水で、前記吸収溶液が臭化リチウム水溶液である場合、
前記結晶発生状態抑制手段が、
前記再生器の圧力を計測し、あるいは前記凝縮器の温度を計測して再生器の圧力である凝縮圧力を計算し、
当該再生器の圧力の関数として決まる結晶開始温度未満に再生器温度を維持するように制御する。
According to the third characteristic configuration, the generation of crystals in the regenerator can be suppressed, and a good operation state can be maintained.
More specifically, like the fifth feature configuration of the present application,
When the refrigerant is water and the absorbing solution is an aqueous lithium bromide solution,
The crystal generation state suppressing means is
Measure the pressure of the regenerator or measure the temperature of the condenser to calculate the condensing pressure that is the pressure of the regenerator,
Control is made to maintain the regenerator temperature below the crystal onset temperature determined as a function of the regenerator pressure.

本願のように、温度の低い冷却媒体を使用し凝縮器を冷却する場合、注意しなければならないのは、冷却しすぎると、LiBr結晶線(図2参照)に到達してしまい、溶液が結晶化してしまうことである。
そこで、先に説明した図2に示すサイクル(図上、太い実線で示す)の右下位置(番号丸付き数字3で示す)が常に結晶線(図上、太い一点鎖線で示す)の左上に来るように制御する。この制御は、再生器3の圧力が判れば、結晶線の温度が判るので、サイクル上丸付き番号3で示す位置の温度が、その圧力における結晶線の温度より高くなりそうなら、温度の上昇を抑制するのである。この抑制に関しては、例えば、凝縮器に供給する冷却媒体の温度を上げるか、冷却媒体の量を減少させて、凝縮器及び再生器の圧力を上昇させて、再生器温度の上昇を抑制することができる。このようにして、良好な運転状態を維持できる。
ここで、再生器の圧力は直接計測してもよいが、再生器の圧力は凝縮器の凝縮圧力に等しいので凝縮器の温度を計測して間接的に求めることもでき、容易に結晶発生状態抑制手段を実現できる。
When cooling the condenser using a low-temperature cooling medium as in the present application, it should be noted that if the cooling is excessive, the LiBr crystal line (see FIG. 2) is reached, and the solution is crystallized. It is to become.
Therefore, the lower right position (indicated by the number 3 with a numbered circle) of the cycle shown in FIG. 2 described above (indicated by a thick solid line in the figure) is always at the upper left of the crystal line (indicated by a thick one-dot chain line in the figure). Control to come. In this control, if the pressure of the regenerator 3 is known, the temperature of the crystal line is known. Therefore, if the temperature at the position indicated by the circled number 3 is likely to be higher than the temperature of the crystal line at that pressure, the temperature rises. Is suppressed. Regarding this suppression, for example, the temperature of the cooling medium supplied to the condenser is increased or the amount of the cooling medium is decreased to increase the pressure of the condenser and the regenerator, thereby suppressing the increase in the regenerator temperature. Can do. In this way, a good operating state can be maintained.
Here, the pressure of the regenerator may be measured directly, but since the pressure of the regenerator is equal to the condensing pressure of the condenser, it can be obtained indirectly by measuring the temperature of the condenser. A suppression means can be realized.

さて、本発明に係る第二種吸収ヒートポンプシステムの第4特徴構成は、上記第1〜第3特徴構成に加えて、前記再生器の加熱媒体を前記再生器における前記希溶液の加熱後、前記蒸発器に送り、前記蒸発器において前記冷媒の蒸発の加熱に使用する構成で、再生器導入前の前記加熱媒体が80℃〜95℃の範囲にある温水であることにある。   The fourth characteristic configuration of the second type absorption heat pump system according to the present invention includes, in addition to the first to third characteristic configurations, the heating medium of the regenerator after the heating of the dilute solution in the regenerator, The heating medium before being introduced into the regenerator is warm water in the range of 80 ° C. to 95 ° C., which is sent to the evaporator and used to heat the evaporation of the refrigerant in the evaporator.

一度、熱回収を経て、従来、利用されず、捨てられることが多かった、80℃〜95℃の範囲にある温水の保有する熱を、効率的に回収して利用することができる。
以上より、コストを抑えつつ、80〜95℃の温水駆動の第二種吸収ヒートポンプで0.4MPa程度の蒸気を、良好に取り出せる。
Once the heat is recovered, the heat stored in the hot water in the range of 80 ° C. to 95 ° C., which has not been conventionally used and often discarded, can be efficiently recovered and used.
From the above, it is possible to satisfactorily extract about 0.4 MPa of steam with a hot water driven second type absorption heat pump at 80 to 95 ° C. while suppressing costs.

以下、本願の第二種吸収ヒートポンプシステム100を、図面に基づいて説明する。図1は、本願に係る第二種吸収ヒートポンプシステム100の構成を示す図であり、図2は、当該第二種吸収ヒートポンプシステム100の作動状態に対応するデューリング線図である。   Hereinafter, the second kind absorption heat pump system 100 of this application is explained based on a drawing. FIG. 1 is a diagram illustrating a configuration of a second type absorption heat pump system 100 according to the present application, and FIG. 2 is a Düring diagram corresponding to an operating state of the second type absorption heat pump system 100.

本願に係る第二種吸収ヒートポンプシステム100は、蒸発器1、吸収器2、再生器3及び凝縮器4からなる吸収ヒートポンプ5と、前記凝縮器4で回収された凝縮熱を冷却媒体(具体的には冷却水)c0を介して大気に放出するための大気側熱交換器6aを備えたクーリングタワー6と、凝縮熱を冷却媒体c0を介して地中7に放出するための地中側熱交換器7aと、前記冷却媒体c0の循環経路L(L1,L2)を決定する制御装置8とを主要機器として備えている。
以下、順に説明する。
The second type absorption heat pump system 100 according to the present application includes an absorption heat pump 5 including an evaporator 1, an absorber 2, a regenerator 3, and a condenser 4, and a condensing heat recovered by the condenser 4 as a cooling medium (specifically Is a cooling tower 6 having an atmosphere side heat exchanger 6a for releasing to the atmosphere via the cooling water c0, and a ground side heat exchange for releasing the condensation heat to the ground 7 via the cooling medium c0. And a control device 8 for determining the circulation path L (L1, L2) of the cooling medium c0 as main equipment.
Hereinafter, it demonstrates in order.

第二種吸収ヒートポンプ
この第二種吸収ヒートポンプ5は、冷媒液w(液状態にある冷媒c)を加熱して冷媒蒸気vを発生させる蒸発器1と、吸収溶液dが前記蒸発器1で発生した冷媒蒸気vを吸収する際の吸収熱で被加熱媒体hを加熱する吸収器2と、前記蒸発器1で発生した冷媒蒸気vを吸収して濃度が低くなった希溶液d1を導入し、当該希溶液d1を加熱することで、前記希溶液中の冷媒を蒸発させて前記希溶液よりも高濃度の濃溶液d2を生成する再生器3と、前記再生器3で蒸発した冷媒蒸気vが導入され凝縮させて蒸発器1に供給する冷媒液wを生成する凝縮器4とを備えて構成されている。ここで、具体的には、前記冷媒cは水であり、吸収溶液dが臭化リチウム水溶液である。
Second-type absorption heat pump This second-type absorption heat pump 5 includes an evaporator 1 that heats a refrigerant liquid w (a refrigerant c in a liquid state) to generate refrigerant vapor v, and an absorption solution d that is generated in the evaporator 1. An absorber 2 that heats the medium h to be heated with absorption heat when absorbing the generated refrigerant vapor v, and a dilute solution d1 that has absorbed the refrigerant vapor v generated in the evaporator 1 and has a reduced concentration, By heating the diluted solution d1, the refrigerant in the diluted solution is evaporated to generate a concentrated solution d2 having a higher concentration than the diluted solution, and the refrigerant vapor v evaporated in the regenerator 3 is And a condenser 4 that generates a refrigerant liquid w that is introduced, condensed, and supplied to the evaporator 1. Specifically, the refrigerant c is water, and the absorbing solution d is a lithium bromide aqueous solution.

本願に係る第二種ヒートポンプ5の熱源及び熱出力に関して説明すると、図1に示すように、エンジン9等のジャケット水である加熱熱源(低温熱源と呼ぶことがある)としての温水が流れる、温水流路10が、再生器3から蒸発器1に渡って設けられている。従って、温水が保有する熱は、再生器3における吸収溶液dの再生(希溶液から濃溶液への再生)に使用されるとともに、蒸発器1における冷媒cの蒸発に使用される。結果、低温熱源である温水から低温温熱が回収される。具体的には、ジャケット水は高温側(95℃より高温)の熱回収を経ており、本願に係る再生器3へ導入される段階で80℃〜95℃となっている。   The heat source and heat output of the second type heat pump 5 according to the present application will be described. As shown in FIG. 1, hot water as a heating heat source (sometimes referred to as a low temperature heat source) that is jacket water for the engine 9 or the like flows. A flow path 10 is provided from the regenerator 3 to the evaporator 1. Therefore, the heat retained by the hot water is used for regeneration of the absorbing solution d in the regenerator 3 (regeneration from a dilute solution to a concentrated solution) and for the evaporation of the refrigerant c in the evaporator 1. As a result, the low temperature heat is recovered from the hot water that is the low temperature heat source. Specifically, the jacket water undergoes heat recovery on the high temperature side (higher than 95 ° C.), and is 80 ° C. to 95 ° C. when introduced into the regenerator 3 according to the present application.

一方、凝縮器4には、クーリングタワー6において冷却された、又は地中において冷却された冷却媒体c0としての冷却水が導入される凝縮熱交換器4aが設けられている。従って、冷却水が保有する冷熱により、凝縮器4に導かれた冷媒蒸気vが凝縮する。換言すると、冷媒蒸気vの温熱は凝縮器4において回収され、クーリングタワー6に送られた場合は大気側熱交換器6aを介して大気に放出され、地中7に送られた場合は地中側熱交換器7aを介して地中に放出される。ここで、地中側熱交換機7aは図示する例では、地中に埋めたU字管である。但し、地中熱交換器にはスリンキー等他の形態のものでも構わない。   On the other hand, the condenser 4 is provided with a condensation heat exchanger 4a into which cooling water as the cooling medium c0 cooled in the cooling tower 6 or cooled in the ground is introduced. Therefore, the refrigerant vapor v led to the condenser 4 is condensed by the cold heat held by the cooling water. In other words, the temperature of the refrigerant vapor v is recovered in the condenser 4, and when it is sent to the cooling tower 6, it is discharged to the atmosphere via the atmosphere-side heat exchanger 6 a, and when it is sent to the ground 7, It is discharged into the ground through the heat exchanger 7a. Here, the underground heat exchanger 7a is a U-shaped tube buried in the ground in the illustrated example. However, the underground heat exchanger may have other forms such as a slinky.

そして、吸収溶液dは再生器3(低温熱源から得た熱により再生されて希溶液d1から濃溶液d2となる)と吸収器2(冷媒を吸収して濃溶液d2ら希溶液d1となる)との間を循環して、冷媒cは相変化を伴って再生器3、凝縮器4、蒸発器1及び吸収器2を循環して作動する。   Then, the absorbing solution d is regenerated by the regenerator 3 (regenerated by the heat obtained from the low-temperature heat source to become the concentrated solution d2 from the dilute solution d1) and the absorber 2 (absorbs the refrigerant and becomes the diluted solution d1 from the concentrated solution d2). The refrigerant c is circulated through the regenerator 3, the condenser 4, the evaporator 1 and the absorber 2 with a phase change.

従って、吸収器2においては、再生器3から送られてくる濃溶液d2は、別途、蒸発器1において蒸発し、当該吸収器2に送られてくる冷媒蒸気vを吸収する。この吸収時に発生する温熱は、吸収器2に備えられる熱交換器2aを介して、被加熱媒体hにより回収して、熱出力を得ることができる。この被加熱媒体hの温度は、低温熱源の温度より高温とすることができる。   Therefore, in the absorber 2, the concentrated solution d <b> 2 sent from the regenerator 3 is separately evaporated in the evaporator 1 and absorbs the refrigerant vapor v sent to the absorber 2. The heat generated at the time of absorption can be recovered by the medium to be heated h through the heat exchanger 2a provided in the absorber 2 to obtain a heat output. The temperature of the heated medium h can be higher than the temperature of the low-temperature heat source.

以上は、第二種吸収ヒートポンプ5の構成及び作動に関する説明であるが、以下、凝縮器4での凝縮熱の回収に使用する冷却水の循環冷却に関して説明する。
先にも説明したように、凝縮器4内に設けられた凝縮熱交換器4aとクーリングタワー6に設けられた大気側熱交換器6a、又は、凝縮熱交換器4aと地中7の地中側熱交換器7aとの間には、冷却水が循環するように構成されている。
The above is the description regarding the configuration and operation of the second type absorption heat pump 5, but hereinafter, the cooling and cooling of the cooling water used to recover the condensation heat in the condenser 4 will be described.
As described above, the condensation heat exchanger 4a provided in the condenser 4 and the atmospheric heat exchanger 6a provided in the cooling tower 6 or the ground side of the condensation heat exchanger 4a and the underground 7 Cooling water is circulated between the heat exchanger 7a.

図1にL1で示す第1循環路が凝縮熱を大気側に放出する大気側放出循環状態で使用する循環路(破線矢印で示す)であり、図1にL2で示す第2循環路が凝縮熱を地中側に放出する地中側放出循環状態で使用する循環路(実線矢印で示す)である。
さらに、本願に係る第二種吸収ヒートポンプシステム100は、図示は省略するが、大気側熱交換器6aと地中側熱交換器7aとを循環する第3循環路を形成可能とされており、この第3循環路を形成した状態では、大気温が地中温より低い状態で、クーリングタワー6で生成される冷却水を地中に循環させることで、地中温度を低下させることができる。この大気側熱交換器6aと地中側熱交換器7aとの冷却水の循環については、ヒートポンプ停止時に図1の回路をそのまま利用してもよいし、地中側熱交換器7aの近傍に冷却用のチューブ(たとえばダブルUチューブ)を併設することで対処してもよい。
The first circulation path indicated by L1 in FIG. 1 is a circulation path (indicated by a broken line arrow) that is used in an atmosphere-side release circulation state that releases condensation heat to the atmosphere side, and the second circulation path indicated by L2 in FIG. 1 is condensed. It is a circulation path (indicated by a solid line arrow) used in a ground side discharge circulation state for releasing heat to the ground side.
Furthermore, the second type absorption heat pump system 100 according to the present application is capable of forming a third circulation path that circulates between the atmosphere-side heat exchanger 6a and the underground-side heat exchanger 7a, although illustration is omitted. In the state where this third circulation path is formed, the underground temperature can be lowered by circulating the cooling water generated in the cooling tower 6 in the ground while the atmospheric temperature is lower than the underground temperature. As for the circulation of the cooling water between the atmosphere side heat exchanger 6a and the underground side heat exchanger 7a, the circuit of FIG. 1 may be used as it is when the heat pump is stopped, or in the vicinity of the underground side heat exchanger 7a. You may cope with it by providing the tube for cooling (for example, double U tube).

以上が、凝縮器4の冷却水の循環系統の説明であるが、以下、これら循環路の使用形態に関して説明する。
図1に示すように、この第二種吸収ヒートポンプシステム100には制御装置8が備えられており、この制御装置8が、第1冷却媒体循環制御手段8a、第2冷却媒体循環制御手段8b及び結晶発生状態抑制手段8cを成すように構成されている。
第1冷却媒体循環制御手段8aは、被加熱媒体に求められる温度に従って決まる冷却媒体の温度である所要冷却媒体温度より大気温度が低い場合に、冷却媒体を大気側熱交換器6aを介して放熱させ、所要冷却媒体温度より大気温度が高い場合に、冷却媒体を地中側熱交換器7aを介して放熱させる。
The above is the description of the cooling water circulation system of the condenser 4. Hereinafter, the usage mode of these circulation paths will be described.
As shown in FIG. 1, the second type absorption heat pump system 100 includes a control device 8, and the control device 8 includes a first cooling medium circulation control unit 8 a, a second cooling medium circulation control unit 8 b, and It is comprised so that the crystal generation state suppression means 8c may be comprised.
The first cooling medium circulation control means 8a radiates the cooling medium via the atmosphere-side heat exchanger 6a when the atmospheric temperature is lower than the required cooling medium temperature, which is the temperature of the cooling medium determined according to the temperature required for the heated medium. When the atmospheric temperature is higher than the required cooling medium temperature, the cooling medium is radiated through the underground heat exchanger 7a.

ここで、所要冷却媒体温度とは、被加熱媒体hに求められる温度に従って決まる冷却媒体c0の温度であり、図2に示すように、例えば、被加熱媒体hに求められる温度Tdが154℃である場合に、凝縮器温度Tcは30℃程度となり、冷却媒体に求められる温度は25℃となる。
そして、第1冷却媒体循環制御手段8aは、所要冷却媒体温度より大気温度が低い場合に、前記第1循環路L1を冷却媒体c0を循環させ、凝縮熱を大気側熱交換器6aを介して放熱させる。一方、所要冷却媒体温度より大気温度が高い場合には、前記第2循環路L2を冷却媒体c0を循環させ、凝縮熱を地中側熱交換器7aを介して放熱させる。
結果、冷却媒体c0の温度を所要冷却媒体温度以下に維持しながら、第二種吸収ヒートポンプシステムを良好に作動させることができる。
Here, the required cooling medium temperature is the temperature of the cooling medium c0 determined according to the temperature required for the heated medium h. For example, as shown in FIG. 2, the temperature Td required for the heated medium h is 154 ° C. In some cases, the condenser temperature Tc is about 30 ° C., and the temperature required for the cooling medium is 25 ° C.
Then, the first cooling medium circulation control means 8a circulates the cooling medium c0 through the first circulation path L1 when the atmospheric temperature is lower than the required cooling medium temperature, and the condensation heat passes through the atmospheric heat exchanger 6a. Dissipate heat. On the other hand, when the atmospheric temperature is higher than the required cooling medium temperature, the cooling medium c0 is circulated through the second circulation path L2, and the condensed heat is dissipated through the underground heat exchanger 7a.
As a result, the second type absorption heat pump system can be operated satisfactorily while maintaining the temperature of the cooling medium c0 below the required cooling medium temperature.

さらに、第2冷却媒体循環制御手段8bは、大気温度が地中温度より低下し、大気側熱交換器6aと地中側熱交換器7aとの間を前記冷却媒体が循環して、大気側から地中側へ冷熱搬送が可能な地中冷却可能状態において、冷却媒体を大気側熱交換器6aと地中側熱交換器7aとの間で循環させる。即ち、第3循環路を形成して、両熱交換器6a,7a間を冷却媒体を循環させ、地中を大気が有する冷熱で冷却する。ここで、大気の温度は、具体的には、クーリングタワー6に備えられる大気側熱交換器6aを使用することから、大気の湿球温度となる。このように、大気側から地中を冷却することが可能な状況では、地中を冷却しておくことで、地中側熱交換器7aの小型化を図ることができる。   Further, the second cooling medium circulation control means 8b is configured to cause the atmospheric temperature to fall below the ground temperature and to circulate the cooling medium between the atmospheric heat exchanger 6a and the underground heat exchanger 7a. In the ground-coolable state where cold heat can be transferred from the ground to the ground side, the cooling medium is circulated between the atmosphere-side heat exchanger 6a and the ground-side heat exchanger 7a. That is, a 3rd circulation path is formed, a cooling medium is circulated between both the heat exchangers 6a and 7a, and the inside is cooled with the cold heat which air | atmosphere has. Here, the atmospheric temperature is specifically the atmospheric wet bulb temperature because the atmospheric heat exchanger 6a provided in the cooling tower 6 is used. Thus, in the situation where the underground can be cooled from the atmosphere side, the underground side heat exchanger 7a can be downsized by cooling the underground.

結晶発生状態抑制手段8cは、再生器3における溶液の状態を、溶液に結晶が発生する結晶発生状態となるのを抑制する機能を果たす。さらに具体的には、この結晶発生抑制手段8cは、再生器3の圧力を計測する計測機構、あるいは凝縮器4の温度を計測する計測機構の計測結果から再生器圧力に等しい凝縮圧力を求める凝縮圧力導出手段8dを備え、求まる再生器圧力から当該再生器圧力の関数として決まる結晶開始温度未満に再生器温度を維持するように、前記凝縮器4に供給する冷却水の温度又は流量を制御する。このとき、再生器温度を予めモニターしておき、例えば、再生器温度が、温度上昇状態で、結晶開始温度に近づきつつある状態で、凝縮器4に供給する冷却水の温度を上昇させる、又は同温のまま水量を低減し、再生器圧力を上昇させることで、再生器温度を結晶開始温度未満に維持することができる。
このように再生器温度を管理することで、結晶を起こすことなく、システムを良好に運転維持できる。
The crystal generation state suppressing means 8c functions to suppress the state of the solution in the regenerator 3 from becoming a crystal generation state in which crystals are generated in the solution. More specifically, the crystal generation suppressing means 8c is a condenser that obtains a condensation pressure equal to the regenerator pressure from the measurement result of the measurement mechanism that measures the pressure of the regenerator 3 or the measurement mechanism that measures the temperature of the condenser 4. Pressure deriving means 8d is provided, and the temperature or flow rate of the cooling water supplied to the condenser 4 is controlled so as to maintain the regenerator temperature from the obtained regenerator pressure below the crystal start temperature determined as a function of the regenerator pressure. . At this time, the regenerator temperature is monitored in advance and, for example, the temperature of the cooling water supplied to the condenser 4 is increased while the regenerator temperature is approaching the crystal start temperature in the temperature rising state, or By reducing the amount of water while maintaining the same temperature and increasing the regenerator pressure, the regenerator temperature can be maintained below the crystal start temperature.
By managing the regenerator temperature in this way, the system can be operated and maintained satisfactorily without causing crystallization.

通年に亘って、安定した運転状態を確保できる第二種吸収ヒートポンプシステムを得ることができた。   Throughout the year, a second type absorption heat pump system capable of ensuring a stable operation state could be obtained.

本願に係る第二種吸収ヒートポンプシステムの構成を示す図The figure which shows the structure of the 2nd kind absorption heat pump system which concerns on this application 本願に係る第二種吸収シートポンプの作動状態におけるデューリング線図Dueling diagram in the operating state of the second type absorption sheet pump according to the present application 従来の第二種吸収ヒートポンプの構成を示す図The figure which shows the structure of the conventional 2nd type absorption heat pump 従来の第二種吸収シートポンプの作動状態におけるデューリング線図Dueling diagram in the operating state of the conventional second type absorption sheet pump 高温の熱出力を得るために熱源温度を上昇させた場合のデューリング線図Dueling diagram when the heat source temperature is increased to obtain a high heat output.

符号の説明Explanation of symbols

1:蒸発器
2:吸収器
3:再生器
4:凝縮器
4a:凝縮器熱交換器
6:クーリングタワー
6a:大気側熱交換器
7:地中
7a:地中側熱交換器
8:制御装置
8a:第1冷却媒体循環制御手段
8b:第2冷却媒体循環制御手段
8c:結晶発生状態抑制手段
1: Evaporator 2: Absorber 3: Regenerator 4: Condenser 4a: Condenser heat exchanger 6: Cooling tower 6a: Atmospheric heat exchanger 7: Underground 7a: Underground heat exchanger 8: Controller 8a : First cooling medium circulation control means 8b: second cooling medium circulation control means 8c: crystal generation state suppression means

Claims (5)

冷媒液を加熱して冷媒蒸気を発生させる蒸発器と、
吸収溶液が前記蒸発器で発生した冷媒蒸気を吸収する際の吸収熱で被加熱媒体を加熱する吸収器と、
前記蒸発器で発生した冷媒蒸気を吸収して濃度が低くなった希溶液を導入し、当該希溶液を加熱することで、前記希溶液中の冷媒を蒸発させて前記希溶液よりも高濃度の濃溶液を生成する再生器と、
前記再生器で蒸発した冷媒蒸気が導入され凝縮させて前記蒸発器に供給する冷媒液を生成する凝縮器とを備えて構成され、
前記被加熱媒体の温度が、前記再生器において濃溶液を得るための加熱熱源の温度より高い熱出力を得る第二種吸収ヒートポンプシステムであって、
前記凝縮器の冷却媒体が循環して、大気と熱交換可能な大気側熱交換器と、地中と熱交換可能な地中側熱交換器とを備え、
前記被加熱媒体に求められる温度に従って決まる前記冷却媒体の温度である所要冷却媒体温度より大気温度が低い場合に、前記冷却媒体を前記大気側熱交換器を介して放熱させ、前記所要冷却媒体温度より大気温度が高い場合に、前記大気温度より温度の低い地中に、前記冷却媒体を前記地中側熱交換器を介して放熱させる第1冷却媒体循環制御手段を備えた第二種吸収ヒートポンプシステム。
An evaporator that heats the refrigerant liquid to generate refrigerant vapor;
An absorber that heats the medium to be heated with absorption heat when the absorbing solution absorbs the refrigerant vapor generated in the evaporator;
By introducing a dilute solution having a low concentration by absorbing the refrigerant vapor generated in the evaporator, and heating the dilute solution, the refrigerant in the dilute solution is evaporated to have a higher concentration than the dilute solution. A regenerator for producing a concentrated solution;
A refrigerant vapor that is introduced and condensed in the regenerator to generate a refrigerant liquid to be supplied to the evaporator,
A second type absorption heat pump system in which a temperature of the medium to be heated is higher than a temperature of a heating heat source for obtaining a concentrated solution in the regenerator,
The cooling medium of the condenser circulates, and includes an atmosphere side heat exchanger that can exchange heat with the atmosphere, and a ground side heat exchanger that can exchange heat with the ground,
When the atmospheric temperature is lower than the required cooling medium temperature, which is the temperature of the cooling medium determined according to the temperature required for the heated medium, the cooling medium is radiated through the atmospheric heat exchanger, and the required cooling medium temperature A second type absorption heat pump comprising first cooling medium circulation control means for radiating the cooling medium through the underground heat exchanger in the ground at a lower temperature than the atmospheric temperature when the atmospheric temperature is higher system.
前記大気側熱交換器と前記地中側熱交換器との間に、前記冷却媒体が循環可能に構成され、前記大気温度が地中温度より低下し、前記大気側熱交換器と前記地中側熱交換器との間を前記冷却媒体が循環して、大気側から地中側へ冷熱搬送が可能な地中冷却可能状態において、前記冷却媒体を前記大気側熱交換器と前記地中側熱交換器との間で循環させる第2冷却媒体循環制御手段を備えた請求項1記載の第二種吸収ヒートポンプシステム。   Between the atmosphere side heat exchanger and the underground heat exchanger, the cooling medium is configured to be circulated, and the atmospheric temperature is lower than the underground temperature, and the atmosphere side heat exchanger and the underground are The cooling medium is circulated between the side heat exchanger and the cooling medium can be cooled from the atmosphere side to the ground side. The second kind absorption heat pump system according to claim 1 provided with the 2nd cooling medium circulation control means circulated between heat exchangers. 前記再生器内の溶液が、溶液に結晶が発生する結晶発生状態となるのを抑制する結晶発生状態抑制手段を備えた請求項1又は2記載の第二種吸収ヒートポンプシステム。   3. The second type absorption heat pump system according to claim 1, further comprising a crystal generation state suppressing unit that suppresses the solution in the regenerator from entering a crystal generation state where crystals are generated in the solution. 前記再生器における前記希溶液の加熱後、前記再生器の加熱媒体を前記蒸発器に送り、前記蒸発器において前記冷媒蒸発の発生に使用する構成で、
再生器導入前の前記加熱媒体が80℃〜95℃の範囲にある温水である請求項1〜3のいずれか一項に記載の第二種吸収ヒートポンプシステム。
After heating the dilute solution in the regenerator, the heating medium of the regenerator is sent to the evaporator, and used in the evaporator to generate the refrigerant evaporation.
The second type absorption heat pump system according to any one of claims 1 to 3, wherein the heating medium before introduction of the regenerator is warm water in a range of 80C to 95C.
前記冷媒が水で、前記吸収溶液が臭化リチウム水溶液であり、
前記結晶発生状態抑制手段が、
前記再生器の圧力を計測し、あるいは前記凝縮器の温度を計測して凝縮圧力である再生器の圧力を求め、
当該再生器の圧力の関数として決まる結晶開始温度未満に再生器温度を維持する請求項3記載の第二種吸収ヒートポンプシステム。
The refrigerant is water and the absorbing solution is an aqueous lithium bromide solution;
The crystal generation state suppressing means is
Measure the pressure of the regenerator, or measure the temperature of the condenser to obtain the pressure of the regenerator which is the condensation pressure,
The second type absorption heat pump system of claim 3, wherein the regenerator temperature is maintained below a crystal start temperature determined as a function of the pressure of the regenerator.
JP2008230115A 2008-09-08 2008-09-08 Type 2 absorption heat pump system Expired - Fee Related JP5086947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008230115A JP5086947B2 (en) 2008-09-08 2008-09-08 Type 2 absorption heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008230115A JP5086947B2 (en) 2008-09-08 2008-09-08 Type 2 absorption heat pump system

Publications (2)

Publication Number Publication Date
JP2010065862A JP2010065862A (en) 2010-03-25
JP5086947B2 true JP5086947B2 (en) 2012-11-28

Family

ID=42191595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008230115A Expired - Fee Related JP5086947B2 (en) 2008-09-08 2008-09-08 Type 2 absorption heat pump system

Country Status (1)

Country Link
JP (1) JP5086947B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103697616A (en) * 2013-12-26 2014-04-02 李华玉 Branch circulation type II absorption heat pump

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101146557B1 (en) 2010-04-08 2012-05-25 한국과학기술연구원 Co? collecting apparatus
JP2014062691A (en) * 2012-09-21 2014-04-10 Yanmar Co Ltd Second type absorption heat pump, and agriculture facility and heating method using second type absorption heat pump
JP2014062689A (en) * 2012-09-21 2014-04-10 Yanmar Co Ltd Second type absorption heat pump
KR101495305B1 (en) 2013-07-25 2015-02-25 한국에너지기술연구원 Hybrid cooling and heating system using solar heat and geothermal heat
CN103604248B (en) * 2013-11-12 2016-01-13 清华大学 A kind of three use type earth source absorption type heat pump and operation method
JP6297377B2 (en) * 2014-03-25 2018-03-20 荏原冷熱システム株式会社 Absorption heat pump
JP6903852B2 (en) * 2016-12-08 2021-07-14 荏原冷熱システム株式会社 Absorption heat exchange system
CN106839501A (en) * 2017-02-22 2017-06-13 查都(上海)科技有限公司 One kind utilizes second-kind absorption-type heat pump recovery waste heat system
JP7015671B2 (en) * 2017-10-17 2022-02-03 荏原冷熱システム株式会社 Absorption heat exchange system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108371A (en) * 1981-12-22 1983-06-28 松下電器産業株式会社 Air conditioner
JPS59101172U (en) * 1982-12-23 1984-07-07 大阪瓦斯株式会社 Type 2 absorption heat pump
JPS61125563A (en) * 1984-11-24 1986-06-13 日立造船株式会社 Absorption type heat pump system
JPH05312429A (en) * 1992-05-06 1993-11-22 Hitachi Ltd Absorption water cooling/heating apparatus
JP2000292082A (en) * 1999-04-07 2000-10-20 Hitachi Plant Eng & Constr Co Ltd Underground heat storage system
JP2003130494A (en) * 2001-10-19 2003-05-08 Ohbayashi Corp Air conditioning system utilizing underground heat exchanger, and operating method for the same
JP4852331B2 (en) * 2006-03-17 2012-01-11 株式会社荏原製作所 Absorption heat pump device and operation method thereof
JP4953433B2 (en) * 2007-02-20 2012-06-13 大阪瓦斯株式会社 Absorption heat pump system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103697616A (en) * 2013-12-26 2014-04-02 李华玉 Branch circulation type II absorption heat pump
CN103697616B (en) * 2013-12-26 2016-05-04 李华玉 Second-kind absorption-type heat pump along separate routes circulates

Also Published As

Publication number Publication date
JP2010065862A (en) 2010-03-25

Similar Documents

Publication Publication Date Title
JP5086947B2 (en) Type 2 absorption heat pump system
JP4953433B2 (en) Absorption heat pump system
JP5249709B2 (en) Water source heat circulation system
JP2011112272A (en) Method and device for heating and cooling
JP2011089722A (en) Method and device for refrigeration/air conditioning
KR101069886B1 (en) Air conditon apparatus for ship
JP4815247B2 (en) Combined heat pump system
KR101208459B1 (en) Organic rankine cycle turbo generation system generating cooling air and hot water
KR200445537Y1 (en) Hybrid Absoption Cooling System
JP2005077037A (en) Hybrid absorption heat pump system
JP6232251B2 (en) Absorption type hot and cold water system
JP5261111B2 (en) Absorption refrigerator
KR20110035104A (en) High efficient gas compression system using absorption refrigeration
JP2009243706A (en) Absorption heat pump
KR20150007131A (en) Absoption chiller
JP3859566B2 (en) Hybrid air conditioner
JP5490841B2 (en) Water refrigerant heater and water refrigerant water heater using the same
JP2008020094A (en) Absorption type heat pump device
JP5583435B2 (en) Refrigeration and air conditioning method and apparatus
JPH0237262A (en) Device for utilizing waste heat of fuel battery
JP4315854B2 (en) Absorption refrigerator
JP2005147447A (en) Ammonia-water non-azeotropic mixture medium circulation system
JP4282818B2 (en) Combined cooling system and combined cooling method
JP2002364944A (en) Device for utilizing waste heat of hot air valve
JP2016057004A (en) Absorption type refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees