KR20110035104A - High efficient gas compression system using absorption refrigeration - Google Patents

High efficient gas compression system using absorption refrigeration Download PDF

Info

Publication number
KR20110035104A
KR20110035104A KR1020090092667A KR20090092667A KR20110035104A KR 20110035104 A KR20110035104 A KR 20110035104A KR 1020090092667 A KR1020090092667 A KR 1020090092667A KR 20090092667 A KR20090092667 A KR 20090092667A KR 20110035104 A KR20110035104 A KR 20110035104A
Authority
KR
South Korea
Prior art keywords
cooling
regenerator
gas
refrigerant
compressor
Prior art date
Application number
KR1020090092667A
Other languages
Korean (ko)
Other versions
KR101071919B1 (en
Inventor
장대준
김기홍
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020090092667A priority Critical patent/KR101071919B1/en
Publication of KR20110035104A publication Critical patent/KR20110035104A/en
Application granted granted Critical
Publication of KR101071919B1 publication Critical patent/KR101071919B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/04Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being ammonia evaporated from aqueous solution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE: A high efficient gas compression system using absorptive refrigerator as a cooling source is provided to improve compression efficiency by enhancing the density of gas and to reduce the energy for compression. CONSTITUTION: A high efficient gas compression system using absorptive refrigerator as a cooling source comprises a regenerator(110), a condenser(120), an evaporator(130), and an absorber(140). The regenerator uses heat energy of cool gas(160), heated with compression, as a heating source and extracts absorbent(141) by heating the mixture(142) of a refrigerant(131) and absorbent. The condenser condenses the refrigerant, separated by the regenerator, by using cooling water(151). The evaporator evaporates the condensed liquid refrigerant and absorbs the heat energy from outside. The absorber cools the refrigerant by using the cooling water in order to maintain the proper temperature for the mixture forming reaction.

Description

흡수식 냉동기를 이용한 고효율 가스 압축 시스템{High efficient Gas Compression System using Absorption refrigeration}High efficient Gas Compression System using Absorption refrigeration

본 발명은 가스를 압축하기 위한 압축 시스템에서 흡수식 냉동기를 냉각원으로 활용하는 가스 압축 시스템에 관한 것이다.The present invention relates to a gas compression system utilizing an absorption chiller as a cooling source in a compression system for compressing gas.

도 1 은 종래의 흡수식 냉동기의 개략적인 구성을 나타낸 구조도를 나타낸다.1 is a structural diagram showing a schematic configuration of a conventional absorption chiller.

도 1 을 참조하면 종래의 일반적인 흡수식 냉동기(10)는 증발기(13)에서 냉매의 증발에 의해 발생하는 저온의 열원을 건물의 냉방 등 다양한 냉각 필요처에 사용하고, 재생기(11)에 필요한 열원은 지역 난방열이나 혹은 가스를 연소시켜 발생하는 열을 이용하였다. 또한, 흡수기(14)와 응축기(12)에서 발생하는 고온의 열을 냉각시키기 위해 냉각탑(15)에서 냉각수를 순환시키는 방식을 활용하였다.Referring to FIG. 1, a conventional general absorption type refrigerator 10 uses a low temperature heat source generated by evaporation of a refrigerant in an evaporator 13 for various cooling needs such as cooling a building. District heating heat or heat generated by burning gas was used. In addition, in order to cool the high temperature heat generated in the absorber 14 and the condenser 12, the cooling tower 15 is used to circulate the cooling water.

도 2 는 종래의 냉각탑을 이용한 가스 압축 공정을 나타내는 구조도를 나타낸다.Figure 2 shows a structural diagram showing a gas compression process using a conventional cooling tower.

도 2 를 참조하면 종래의 일반적인 냉각탑을 이용한 가스 압축 공정에서는 상온 저압의 가스를 압축기(20)로 유입시켜 압축하면 압축에 의해 가스의 밀도가 높아지면서 고온 고압의 가스가 발생한다. 고온 고압의 가스는 냉각탑(23)으로부터 순환되는 냉각수를 이용하여 냉각한 후, 상온 고압의 가스가 되어 액적 분리기(22)를 거쳐 저장된다. 고온 고압의 가스 냉각에 사용된 고온의 냉각수는 다시 상기 냉각탑(23)으로 유입되어 냉각한 후 재사용된다.Referring to FIG. 2, in a gas compression process using a conventional cooling tower, when a gas having a normal temperature and a low pressure is introduced into the compressor 20 and compressed, a gas of high temperature and high pressure is generated while the density of the gas is increased by compression. The gas of high temperature and high pressure is cooled by using the cooling water circulated from the cooling tower 23, and then the gas is stored at room temperature and high pressure through the droplet separator 22. The high temperature cooling water used for the high temperature and high pressure gas cooling flows into the cooling tower 23 again, is cooled, and then reused.

종래의 문제점을 살펴보면,Looking at the conventional problem,

첫째, 기존의 가스 압축 공정에서는 압축으로 인한 열을 냉각시키기 위해 해수(海水)를 사용하기 어려운 단점이 있었다. 해수(海水)를 냉각수로 사용할 경우, 해수(海水)에 포함된 염분이 고온(약 65 ℃ 이상)이면 열전달을 방해하는 스케일을 형성시키기 때문이다. 이에 따라, 풍부한 자원인 해수(海水)를 냉각수로 사용하지 못하고 담수를 냉각탑이나 해수로 다시 한 번 더 냉각하는 방식을 채용해 왔다.First, in the conventional gas compression process, it is difficult to use sea water to cool heat due to compression. This is because when seawater is used as cooling water, salts contained in seawater are at high temperatures (about 65 ° C. or more) to form scales that hinder heat transfer. As a result, it has been employed to cool fresh water once again with cooling towers or seawater, without using seawater, which is abundant resources, as cooling water.

둘째, 담수를 공기나 해수로 냉각하는 방식은 추가적인 비용 소모를 초래하므로 경제적이지 못하다. 예를 들어, 냉각탑을 이용한 수냉식 가스 압축 공정에서는 고온의 압축 가스를 냉각탑에서 순환되는 냉각수로 직접 냉각해야 하므로, 냉각수의 냉각을 위한 에너지 소모가 큰 문제가 있다.Second, cooling freshwater with air or seawater is not economical because it incurs additional costs. For example, in a water-cooled gas compression process using a cooling tower, since a high-temperature compressed gas must be cooled directly with cooling water circulated in the cooling tower, there is a large energy consumption for cooling the cooling water.

셋째, 도 1 에서 도시한 종래의 흡수식 냉동기(10)는 상기 재생기(11)의 열원을 별도의 연소 장치에 의해 얻게 되므로 별도의 에너지를 소모해야 하는 단점이 있다.Third, the conventional absorption chiller 10 shown in FIG. 1 has a disadvantage of consuming extra energy because the heat source of the regenerator 11 is obtained by a separate combustion device.

따라서, 가스 압축을 위한 압축기와 압축된 가스를 냉각하기 위한 냉각 장치의 과부하를 방지하고 가스 압축 공정에서 에너지를 효율적으로 소모하며 냉각원으로 해수(海水)를 활용할 수 있는 가스 압축 시스템의 개발이 요구된다.Therefore, there is a need for the development of a gas compression system capable of preventing overload of the compressor for gas compression and the cooling device for cooling the compressed gas, efficiently consuming energy in the gas compression process, and utilizing sea water as a cooling source. do.

본 발명은 흡수식 냉동기를 이용하여 가스 압축의 전 단계에서 증발기에 의해 가스를 냉각하여 밀도를 높여 압축 효율을 높이고 압축 후 고온의 가스를 재생기의 열원으로 활용하여 가스의 냉각 효율을 높인 고효율 가스 압축 시스템을 제공하고자 한다.The present invention uses an absorption chiller to cool the gas by the evaporator in all stages of gas compression to increase the density to increase the compression efficiency and to increase the cooling efficiency of the gas by utilizing the hot gas after compression as a heat source of the regenerator To provide.

본 발명은 물(H2O)이나 암모니아(NH3)와 같은 자연 냉매를 활용하여 친환경적인 흡수식 냉동기를 구비한 가스 압축 시스템을 제공하고자 한다.The present invention is to provide a gas compression system having an eco-friendly absorption chiller utilizing a natural refrigerant such as water (H 2 O) or ammonia (NH 3).

본 발명은 흡수식 냉동기와 보조 냉각기에서 해수(海水)를 냉각원으로 활용할 수 있는 경제적인 가스 압축 시스템을 제공하고자 한다.The present invention is to provide an economical gas compression system that can utilize sea water as a cooling source in the absorption chiller and the auxiliary cooler.

본 발명은 가스를 압축하기 위한 가스 압축 시스템에 있어서, 압축기(170)를 통과하며 압축에 의해 가열된 냉각 대상가스(160)가 갖는 열에너지를 열원으로 사용하고, 흡수제(141)와 냉매(131)가 혼합된 혼합물(142)을 가열하여 상기 냉매(131)와 상기 흡수제(141)를 분리시켜 추출하는 재생기(110); 상기 재생기(110)로부터 분리된 기상의 상기 냉매(131)를 냉각수(151)를 이용하여 응축시키는 응축기(120); 상기 응축기(120)에서 응축된 액상의 상기 냉매(131)를 저압에서 증발시켜 외부로부터 열에너지를 흡수하는 증발기(130); 상기 증발기(130)에서 증발된 상기 냉매(131)를 상기 흡수제(141)로 흡수하여 상기 혼합물(142)을 생성시키되, 상 기 혼합물(142)의 생성 반응에 적합한 온도를 유지하도록 상기 냉각수(151)를 이용하여 냉각하며 상기 혼합물(142)을 생성시키는 흡수기(140); 를 포함하여 이루어지되, 상기 증발기(130)는 상기 증발기(130)의 주변을 통과하는 상기 냉각 대상가스(160)로부터 열에너지를 흡수하고, 상기 증발기(130)의 주변을 통과하며 열에너지를 방출한 상기 냉각 대상가스(160)는 상기 압축기(170)로 유동시켜 압축하는 것을 특징으로 한다.In the gas compression system for compressing a gas, the heat energy of the cooling target gas 160 that passes through the compressor 170 and is heated by compression is used as a heat source, and the absorbent 141 and the refrigerant 131 are used. A regenerator 110 for heating the mixed mixture 142 to separate and extract the refrigerant 131 and the absorbent 141; A condenser (120) for condensing the refrigerant (131) in the gas phase separated from the regenerator (110) using cooling water (151); An evaporator (130) for absorbing thermal energy from the outside by evaporating the refrigerant (131) of the liquid phase condensed in the condenser (120) at low pressure; The refrigerant 131 evaporated in the evaporator 130 is absorbed into the absorbent 141 to generate the mixture 142, and the cooling water 151 is maintained at a temperature suitable for the reaction of generating the mixture 142. An absorber (140) for cooling with) to produce the mixture (142); It comprises, but the evaporator 130 absorbs the heat energy from the cooling target gas 160 passing through the periphery of the evaporator 130, passing through the periphery of the evaporator 130 to release the heat energy Cooling target gas 160 is characterized in that the compressor 170 flows and compresses.

본 발명은 상기 재생기(110)에서 상기 흡수기(140)로 이동하는 상기 흡수제(141)와 상기 흡수기(140)에서 상기 재생기(110)로 이동하는 상기 혼합물(142)이 상호 열교환 되도록 상기 흡수기(140)와 상기 재생기(110)간 유동 경로 상에 구비되는 제 1 열교환기(143)를 포함하는 것을 특징으로 한다.In the present invention, the absorber 141 moves from the regenerator 110 to the absorber 140 and the mixture 142 moving from the absorber 140 to the regenerator 110 exchanges heat with each other. ) And a first heat exchanger 143 provided on the flow path between the regenerator 110.

본 발명은 상기 재생기(110)의 주변을 통과하며 열에너지를 방출한 상기 냉각 대상가스(160)의 냉각을 보조하기 위해, 상기 재생기(110)의 주변을 통과한 상기 냉각 대상가스(160)가 이동하는 경로 상에 보조 냉각기(180)가 구비되는 것을 특징으로 한다.In the present invention, in order to assist the cooling of the cooling target gas 160 passing through the periphery of the regenerator 110 and releasing thermal energy, the cooling target gas 160 passing through the periphery of the regenerator 110 is moved. The auxiliary cooler 180 is characterized in that the path is provided.

본 발명은 상기 증발기(130)의 주변을 통과하며 열에너지를 방출한 상기 냉각 대상가스(160)가 상기 압축기(170)로 유동하는 경로에는 상기 냉각 대상가스(160)의 냉각에 의해 발생한 응축물을 제거하기 위해 응축물 제거기(190)가 구비되는 것을 특징으로 한다.In the present invention, the condensate generated by the cooling of the cooling target gas 160 flows through the periphery of the evaporator 130 and flows to the compressor 170 in which the cooling target gas 160 that has released thermal energy flows. The condensate remover 190 is provided for removal.

본 발명은 상기 재생기(110)에서 상기 혼합물(142)의 가열에 사용되는 열원을 보조하기 위해, 상기 재생기(110)에는 상기 재생기(110)로 열에너지의 공급을 보조하기 위한 보조 열교환기(111)가 구비되는 것을 특징으로 한다.The present invention, in order to assist the heat source used for heating the mixture 142 in the regenerator 110, the regenerator 110 is an auxiliary heat exchanger 111 for assisting the supply of thermal energy to the regenerator 110 Characterized in that is provided.

본 발명은 상기 보조 냉각기(180)는 상기 냉각수(151)를 이용하여 냉각하되, 상기 냉각수(151)는 해수인 것을 특징으로 한다.In the present invention, the auxiliary cooler 180 is cooled using the cooling water 151, but the cooling water 151 is characterized in that the sea water.

본 발명은 상기 냉각수(151)가 유동되는 냉각 라인(150)에는 상기 흡수기(140), 상기 응축기(120), 상기 보조 냉각기(180)에서 냉각에 사용된 상기 냉각수(151)의 열에너지를 이용하기 위한 제 2 열교환기(152)가 구비되는 것을 특징으로 한다.The present invention uses the thermal energy of the coolant 151 used for cooling in the absorber 140, the condenser 120, and the auxiliary cooler 180 in the cooling line 150 through which the coolant 151 flows. The second heat exchanger 152 is characterized in that it is provided.

본 발명은 상기 흡수제(141)와 상기 냉매(131)는 상기 흡수제(141)로 물(H2O)을 사용하고 상기 냉매(131)로 암모니아(NH3)를 사용하는 것을 특징으로 한다.The present invention is characterized in that the absorbent 141 and the refrigerant 131 use water (H 2 O) as the absorbent 141 and ammonia (NH 3) as the refrigerant 131.

본 발명은 상기 흡수제(141)와 상기 냉매(131)는 상기 흡수제(141)로 브롬화리튬(LiBr)을 사용하고 상기 냉매(131)로 물(H2O)을 사용하는 것을 특징으로 한다.The present invention is characterized in that the absorbent 141 and the refrigerant 131 use lithium bromide (LiBr) as the absorbent 141 and water (H 2 O) as the refrigerant 131.

본 발명은 상기 압축기(170)는 제 1 압축기(171), 제 2 압축기(172), 최종 압축기(179)를 포함한 다수개로 구비되며, 최초로 상기 증발기(130)의 주변을 통과하는 상기 냉각 대상가스(160)가 제 1 압축기(171)로 유입되고, 상기 제 1 압축기(171)를 통과하는 상기 냉각 대상가스(160)는 상기 재생기(110)의 주변을 통과하며 열에너지를 방출하는 제 1 압축 과정을 수행하고, 상기 제 1 압축 과정을 완료한 상기 냉각 대상가스(160)는 상기 증발기(130), 상기 제 2 압축기(172), 상기 재생기(110)를 차례로 거치는 제 2 압축 과정을 수행하며, 상기 냉각 대상가스(160)는 상기 증발기(130), 다수개의 상기 압축기(170), 상기 재생기(110)를 거치며 압 축 과정을 반복하여 순환하되, 최종 압축 과정에서 상기 냉각 대상가스(160)가 최종적으로 유입되는 상기 최종 압축기(179)를 통과한 상기 냉각 대상가스(160)는 상기 재생기(110)의 주변을 통과한 후 압축가스 탱크(165)로 저장되는 것을 특징으로 한다.According to the present invention, the compressor 170 includes a plurality of compressors including the first compressor 171, the second compressor 172, and the final compressor 179, and the first gas to be cooled passes through the periphery of the evaporator 130. A first compression process in which 160 is introduced into the first compressor 171, and the cooling target gas 160 passing through the first compressor 171 passes through the periphery of the regenerator 110 and releases thermal energy. The cooling target gas 160 that has completed the first compression process performs a second compression process that sequentially passes through the evaporator 130, the second compressor 172, and the regenerator 110. The cooling target gas 160 is circulated by repeating the compression process through the evaporator 130, the plurality of compressors 170, and the regenerator 110, in the final compression process the cooling target gas 160 is The cooling through the final compressor 179 finally introduced Shopping switch 160 is characterized in that it is stored in a compressed gas tank (165) after passing through the periphery of the player 110.

본 발명에 의한 흡수식 냉동기를 이용한 고효율 가스 압축 시스템은,The high efficiency gas compression system using the absorption chiller according to the present invention,

첫째, 압축기에서 가스를 압축하기 전에 흡수식 냉동기의 증발기에서 가스를 냉각하여 가스의 밀도를 높여주므로 압축 효율이 뛰어나고 압축을 위한 에너지 소모가 적어 경제적이다.First, since the gas is cooled in the evaporator of the absorption refrigerator before the gas is compressed in the compressor to increase the density of the gas, the compression efficiency is excellent and the energy consumption for the compression is low.

둘째, 가스를 압축한 후 고온의 가스를 냉각시키기 위해 흡수식 냉동기의 재생기에서 열원으로 활용하여 가스를 1차적으로 냉각시켜주므로 냉각 효율이 뛰어나고 보조 냉각기에서 냉각을 위한 에너지 소모가 적은 장점이 있다.Second, since the gas is primarily cooled by using the heat source in the regenerator of the absorption chiller after the gas is compressed, the cooling efficiency is excellent and the energy consumption for cooling in the auxiliary cooler is low.

셋째, 자연 친화적인 냉매를 활용할 수 있으므로 친환경적이다.Third, it is eco-friendly because it can utilize a nature-friendly refrigerant.

넷째, 응축기와 흡수기 및 보조 냉각기에서 사용한 고온의 냉각수를 열원으로 재활용할 수 있어, 에너지를 효율적으로 활용할 수 있다.Fourth, the high temperature cooling water used in the condenser, the absorber, and the auxiliary cooler can be recycled as a heat source, thereby efficiently utilizing energy.

다섯째, 종래의 냉각 방식보다는 상대적으로 저온인 가스를 냉각하므로, 냉각수로 해수(海水)를 활용하더라도 열전달면에 스케일이 발생하지 않아 경제적이다.Fifth, since it cools the gas relatively low temperature than the conventional cooling method, even if the sea water (sea water) is used as cooling water is not economically scale does not occur on the heat transfer surface.

일반적으로 흡수식 냉동기는 냉매가 증발되는 증발기, 흡수제에 의해 냉매가 흡수되는 흡수기, 흡수된 냉매를 가열하여 냉매를 재생하는 재생기, 냉매를 응축하는 응축기를 배관 접속하여 구성될 수 있다. 이러한 흡수식 냉동기는 상기 흡수기에서 흡수제가 냉매를 흡수하는 경우 발생되는 열을 제거하고, 증발된 냉매를 응축시킬 수 있도록 냉각 장치가 구비된다.Generally, the absorption chiller may be configured by connecting an evaporator in which the refrigerant is evaporated, an absorber in which the refrigerant is absorbed by the absorbent, a regenerator for heating the absorbed refrigerant to regenerate the refrigerant, and a condenser for condensing the refrigerant. The absorption chiller is provided with a cooling device to remove heat generated when the absorbent absorbs the refrigerant in the absorber and to condense the evaporated refrigerant.

또한 가스를 냉각시키는 대표적인 방법으로 공랭식과 수냉식을 들 수 있다. 가스 압축 시스템에서는 가스의 압축에 따른 가스 밀도 변화로 인해 가스의 온도가 상승하게 되므로 가스 냉각이 필수적으로 요구된다. 공랭(空冷)은 기계장치 등에서 발생된 열을 공기로 냉각하는 방법으로 공랭식은 다시 자연적으로 공기와 접촉해 열을 식히는 자연공랭식과, 팬을 사용해 냉각하는 강제공랭식으로 분류될 수 있다. 공랭식은 수냉식에 비해 비교적 간단한 구조로 형성될 수 있다는 장점이 있으나, 냉각 효율이 떨어지며 이에 따라 냉각량이 많은 경우 에너지 소모가 크다는 단점이 있다. 이에 비해 수냉식은 기계장치 등에서 발생된 열을 물 또는 액체를 활용하여 냉각하는 방법이다.Representative methods for cooling the gas include air cooling and water cooling. In the gas compression system, gas cooling is essential because the temperature of the gas increases due to the change in gas density due to the compression of the gas. Air cooling is a method of cooling heat generated by a machine or the like with air. The air-cooling method can be further classified into a natural air cooling method that naturally cools heat by contacting air, and a forced air cooling method that uses a fan to cool the heat. The air-cooled type has the advantage that it can be formed in a relatively simple structure compared to the water-cooled type, but the cooling efficiency is low, and thus has a disadvantage in that the energy consumption is large when the cooling amount is large. In comparison, water-cooling is a method of cooling heat generated by a mechanical device using water or a liquid.

종래 가스 압축 시스템에서 압축된 고온의 가스를 냉각하기 위한 방법으로 공랭식과 냉각탑을 이용한 수냉식을 많이 사용하였으나 모두 에너지 소모가 크므로 효율이 떨어지는 문제가 있다. 이하에서는 본 발명인 흡수식 냉동기를 이용한 고효율 가스 압축 시스템에 대해 도면을 참조하여 일실시예에 대하여 상세히 설명하기로 한다.In the conventional gas compression system, a large amount of air cooling and water cooling using a cooling tower have been used as a method for cooling the compressed high-temperature gas. Hereinafter, with reference to the drawings for a high-efficiency gas compression system using the absorption chiller of the present invention will be described in detail with respect to an embodiment.

도 3 은 본 발명에 의한 흡수식 냉동기를 이용한 고효율 가스 압축 시스템의 개략적인 구성을 나타내는 구조도를, 도 4 는 본 발명에 의한 압축기가 복수개로 구비된 다중 효용 흡수식 냉동기를 이용한 고효율 가스 압축 시스템의 예시적인 구성을 나타내는 구조도를 나타낸다.Figure 3 is a structural diagram showing a schematic configuration of a high efficiency gas compression system using an absorption chiller according to the present invention, Figure 4 is an exemplary high efficiency gas compression system using a multi-effect absorption chiller equipped with a plurality of compressors according to the present invention. The structural diagram which shows a structure is shown.

도 3 및 도 4 를 참조하면 흡수식 냉동기를 이용한 가스 압축 시스템(100)은 재생기(110), 응축기(120), 증발기(130), 흡수기(140), 압축기(170)를 포함할 수 있고, 보조 냉각기(180), 응축물 제거기(190), 제 1 열교환기(143), 제 2 열교환기(152)를 선택적으로 구비할 수 있다. 이하에서는 상기 흡수식 냉동기를 이용한 가스 압축 시스템(100)에서의 냉매(131)의 흐름에 따라 먼저 설명한 후, 냉각 대상가스(160)의 흐름에 따라 설명하기로 한다. 도 3 및 도 4 에서 점선은 냉각수(151)의 유동을 나타내는 냉각 라인(150)을 나타내고, 실선은 상기 냉매(131)의 유동을 나타내며, 굵은 실선은 상기 냉각 대상가스(160)의 흐름을 나타낸다.3 and 4, the gas compression system 100 using the absorption chiller may include a regenerator 110, a condenser 120, an evaporator 130, an absorber 140, and a compressor 170. The cooler 180, the condensate remover 190, the first heat exchanger 143, and the second heat exchanger 152 may be selectively provided. Hereinafter, the first description will be made according to the flow of the refrigerant 131 in the gas compression system 100 using the absorption chiller, and then the description will be made according to the flow of the cooling target gas 160. In FIG. 3 and FIG. 4, the dotted line represents the cooling line 150 representing the flow of the cooling water 151, the solid line represents the flow of the refrigerant 131, and the thick solid line represents the flow of the cooling target gas 160. .

도 3 및 도 4 를 참조하면 상기 재생기(110)는 상기 압축기(170)를 통과함에 따라 압축에 의해 가열된 고온의 상기 냉각 대상가스(160)에 포함된 열에너지를 열원으로 사용할 수 있다. 또한, 상기 재생기(110)의 열원으로 상기 압축기(170)를 통과하며 압축에 의해 가열된 고온의 상기 냉각 대상가스(160)에 포함된 열에너지만으로 부족할 경우를 대비하여, 외부로부터 공급되는 열원을 추가하여 구비할 수 있다. 따라서 상기 재생기(110)에서 상기 혼합물(142)의 가열에 사용되는 열원을 보조하기 위해, 상기 재생기(110)에는 상기 재생기(110)로 열에너지의 공급을 보조 하기 위한 보조 열교환기(111)가 선택적으로 더 구비되는 실시예를 고려할 수 있다. 상기 보조 열교환기(111)의 경우 연속적으로 동작하지 않고 상기 재생기(110)에서 상기 혼합물(142)을 가열하여 상기 냉매(131)와 상기 흡수제(141)로 분리시켜 추출하기 위한 열에너지가 부족한 경우에만 필요에 따라 선택적으로 운용할 수 있다. 상기 보조 열교환기(111)는 수냉식 또는 공랭식일 수 있으며, 다양한 형태의 열교환기일 수 있다. 상기 보조 열교환기(111)의 열에너지를 활용한 온수 또는 고온의 가스나 스팀 등이 상기 재생기(110)로 유입될 수 있도록 배관이 연결될 수 있다. 상기 재생기(110)는 상술한 열원으로 흡수제(141)와 상기 냉매(131)가 혼합된 혼합물(142)을 가열하여 상기 냉매(131)와 상기 흡수제(141)를 분리시켜 추출하는 역할을 수행한다. 즉, 상기 재생기(110)는 상기 냉매(131)를 흡수하여 농도가 묽어져 흡수 능력이 저하된 상기 혼합물(142)을 가열하여 상기 흡수제(141)를 진한 농도의 흡수제 용액으로 만드는 곳이다. 동시에 상기 압축기(170)를 통과한 고온 고압의 상기 냉각 대상가스(160)를 1차적으로 냉각시켜 후술하게 될 상기 보조 냉각기(180)의 부하를 줄이고 냉각 효율을 높이기도 한다.3 and 4, the regenerator 110 may use heat energy included in the cooling target gas 160 heated by compression as it passes through the compressor 170 as a heat source. In addition, in addition to the heat source supplied from the outside in case of insufficient heat energy included in the cooling target gas 160 of the high temperature that passes through the compressor 170 and is heated by compression as a heat source of the regenerator 110 is added. It can be provided by. Therefore, in order to assist the heat source used for heating the mixture 142 in the regenerator 110, an auxiliary heat exchanger 111 for selectively supplying heat energy to the regenerator 110 is optionally included in the regenerator 110. As an embodiment further provided may be considered. The auxiliary heat exchanger 111 does not operate continuously, but only when there is insufficient heat energy for heating the mixture 142 in the regenerator 110 to separate and extract the refrigerant 131 and the absorbent 141. It can be selectively operated as needed. The auxiliary heat exchanger 111 may be water-cooled or air-cooled, and may be various types of heat exchangers. Pipes may be connected such that hot water or high temperature gas or steam utilizing the thermal energy of the auxiliary heat exchanger 111 may be introduced into the regenerator 110. The regenerator 110 serves to separate and extract the refrigerant 131 and the absorbent 141 by heating the mixture 142 in which the absorbent 141 and the refrigerant 131 are mixed with the heat source described above. . That is, the regenerator 110 absorbs the coolant 131 and heats the mixture 142 in which the concentration is diminished and the absorption ability is lowered, thereby making the absorbent 141 a thick absorbent solution. At the same time, the cooling target gas 160 of the high temperature and high pressure passing through the compressor 170 is primarily cooled, thereby reducing the load of the auxiliary cooler 180 which will be described later and increasing the cooling efficiency.

상기 재생기(110)의 내부에는 상기 압축기(170)를 통과함에 따라 압축에 의해 가열된 고온의 상기 냉각 대상가스(160)에 포함된 열에너지를 열원으로 활용하여 상기 혼합물(142)을 가열할 수 있는 재생기 내부 열교환기(도면번호 미부여)가 구비될 수 있다. 상기 재생기 내부 열교환기(도면번호 미부여)에는 고온의 상기 냉각 대상가스(160)에 포함된 열에너지를 열원으로 활용한 온수 또는 고온의 가스나 스팀이 유입 및 유출될 수 있도록 배관이 각각 연결될 수 있다. 상기 재생기(110) 의 상부에는 상기 혼합물(142)을 가열하여 분리된 상기 냉매(131)가 유동될 수 있도록 냉매 배관(도면번호 미부여)이 연결될 수 있고, 상기 냉매 배관(도면번호 미부여)을 통해 분리된 상기 냉매(131)는 상기 응축기(120)로 이동하게 된다. 상기 재생기(110)에는 상기 혼합물(142)을 가열하여 분리된 상기 흡수제(141)를 상기 흡수제(141)로 이송시키기 위한 흡수제 배관(도면번호 미부여)이 구비될 수 있다. 또한, 상기 재생기(110)에는 상기 흡수기(140)에서 이송되는 상기 혼합물(142)이 유입될 수 있도록 혼합물 배관(도면번호 미부여)이 연결될 수 있다.In the regenerator 110, the mixture 142 may be heated by using thermal energy contained in the cooling target gas 160 heated by compression as a heat source as it passes through the compressor 170. A regenerator internal heat exchanger (not shown) may be provided. Pipes may be connected to the internal heat exchanger inside the regenerator (not shown) so that hot water or high temperature gas or steam that utilizes thermal energy included in the high temperature target gas 160 as a heat source may flow in and out. . A refrigerant pipe (not shown) may be connected to an upper portion of the regenerator 110 to allow the refrigerant 131 separated by heating the mixture 142 to flow, and the refrigerant pipe (not shown) The refrigerant 131 separated through the condenser is moved to the condenser 120. The regenerator 110 may be provided with an absorbent pipe (not given a number) for transferring the separated absorbent 141 to the absorbent 141 by heating the mixture 142. In addition, a mixture pipe (not given a number) may be connected to the regenerator 110 so that the mixture 142 transferred from the absorber 140 may be introduced.

도 3 및 도 4 를 참조하면 상기 응축기(120)는 상기 재생기(110)에서 가열에 의해 분리된 기체 상태의 상기 냉매(131)를 상기 냉각수(151)를 이용하여 응축시키는 장치이다. 상기 냉매(131)는 냉매의 종류에 따라 다르나 상기 재생기(110)에서 가열에 의해 증발시켜 분리된 것으로 고온 고압의 상태인 것이 일반적이다. 상기 응축기(120)의 하단에는 응축된 액체 상태의 상기 냉매(131)를 상기 증발기(130)로 유동시킬 수 있도록 냉매 배관(도면번호 미부여)이 구비될 수 있다. 또한, 상기 응축기(120)의 내부에는 상기 냉각수(151)가 유동할 수 있도록 응축기 내부 열교환기(도면번호 미부여)가 구비될 수 있다. 상기 응축기(120)내에서 상기 냉각수(151)의 유동에 대한 설명은 후술하기로 한다. 그 밖에 상기 응축기(120)에 대한 내용은 일반적인 흡수식 냉동기에서의 응축기와 동일하므로 생략한다.3 and 4, the condenser 120 is a device for condensing the refrigerant 131 in a gas state separated by heating from the regenerator 110 using the cooling water 151. The refrigerant 131 is different depending on the type of refrigerant, but is separated from the regenerator by heating in the regenerator 110 and is generally in a state of high temperature and high pressure. A lower end of the condenser 120 may be provided with a refrigerant pipe (not shown) to flow the refrigerant 131 in the condensed liquid state to the evaporator 130. In addition, the condenser 120 may be provided with a heat exchanger (not shown) in the condenser so that the cooling water 151 may flow. A description of the flow of the cooling water 151 in the condenser 120 will be described later. In addition, since the condenser 120 is the same as the condenser in the general absorption chiller, it will be omitted.

도 3 및 도 4 를 참조하면 상기 증발기(130)는 상기 응축기(120)에서 응축된 액체 상태의 상기 냉매(131)를 저압에서 증발시켜 외부로부터 열에너지를 흡수하는 장치이다. 상기 증발기(130)는 설계에 따라 상기 흡수기(140)와 함께 단일의 동체 내부에 구비될 수 있다. 상기 증발기(130)의 내부에는 증발기 내부 열교환기(도면번호 미부여)가 구비되는 것이 바람직하다. 상기 증발기(130)는 저압의 상태를 유지하여 상대적으로 낮은 온도에서 상기 냉매(131)가 증발하도록 유도한다. 상기 냉매(131)가 증발하면서 상기 증발기(130)의 주변을 통과하는 상기 냉각 대상가스(160)로부터 열에너지를 흡수하여 상기 냉각 대상가스(160)를 냉각시키는 역할을 한다. 상술한 바와 같이 상기 냉각 대상가스(160)가 상기 압축기(170)로 유입되어 압축되기 전에 상기 증발기(130)의 주변을 통과하여 1차적으로 냉각되며 냉각에 따라 상온일 경우보다 밀도가 높아져 상기 압축기(170)에서의 압축 효율을 높여주고 에너지 소모를 감소시킨다. 상기 증발기 내부 열교환기(도면번호 미부여)는 상기 응축기(120)를 통과한 액체 상태의 상기 냉매(131)를 계속적으로 증발시켜 냉각 작용을 하며, 증발된 기체 상태의 상기 냉매(131)는 상기 흡수기(140)로 이송된다. 상기 냉각 대상가스(160)에 대해서는 후술하기로 한다. 그 밖에 상기 증발기(130)에 대한 내용은 일반적인 흡수식 냉동기에서의 증발기와 동일하므로 생략한다.3 and 4, the evaporator 130 is a device that absorbs thermal energy from the outside by evaporating the refrigerant 131 in a liquid state condensed in the condenser 120 at low pressure. The evaporator 130 may be provided in a single body together with the absorber 140 according to a design. The evaporator 130 is preferably provided with an evaporator internal heat exchanger (not shown). The evaporator 130 maintains a low pressure to induce the refrigerant 131 to evaporate at a relatively low temperature. As the refrigerant 131 evaporates, heat energy is absorbed from the cooling target gas 160 passing through the evaporator 130, thereby cooling the cooling target gas 160. As described above, before the cooling target gas 160 is introduced into the compressor 170 and compressed, the cooling target gas 160 passes through the periphery of the evaporator 130 and is primarily cooled. Increase the compression efficiency at 170 and reduce energy consumption. The heat exchanger (not shown) inside the evaporator continuously cools the refrigerant 131 in the liquid state that has passed through the condenser 120 to cool, and the refrigerant 131 in the evaporated gas state has the Transferred to absorber 140. The cooling target gas 160 will be described later. In addition, the details of the evaporator 130 is omitted because it is the same as the evaporator in a general absorption chiller.

도 3 및 도 4 를 참조하면 상기 흡수기(140)는 상기 증발기(130)에서 증발된 상기 냉매(131)를 상기 흡수제(141)로 흡수하여 상기 혼합물(142)을 생성시키는 장치이다. 상기 흡수제(141)가 상기 냉매(131)를 흡수하는 과정은 일반적으로 발열 과정이므로, 상기 흡수제(141)가 상기 냉매(131)를 지속적으로 흡수할 수 있도록 적정 온도를 유지해야 한다. 이를 위해 상기 흡수기(140)의 내부에는 흡수기 내부 열교환기(도면번호 미부여)가 구비되는 것이 바람직하다. 상기 흡수기 내부 열교환기(도면번호 미부여)는 상기 흡수제(141)가 상기 냉매(131)를 흡수할 때 발생하는 열을 상기 냉각수(151)를 이용하여 상쇄하는 역할을 한다. 따라서 상기 흡수기(140)는 상기 혼합물(142)의 생성 반응에 적합한 온도를 유지하도록 상기 냉각수(151)를 이용하여 냉각하며 상기 혼합물(142)을 생성시킨다. 상기 흡수기(140)내를 유동하는 상기 냉각수(151)의 유동에 대한 설명은 후술하기로 한다. 상기 흡수기(140)의 상부에는 고농도의 상기 흡수제(141) 용액이 상기 재생기(110)로부터 유입될 수 있도록 상기 흡수제 배관(도면번호 미부여)이 연결될 수 있다. 상기 흡수기(140)의 하부에는 기체 상태로 증발된 상기 냉매(131)를 흡수하여 농도가 묽어진 흡수제 용액인 상기 혼합물(142)을 상기 재생기(110)로 유동시키도록 상기 혼합물 배관(도면번호 미부여)이 연결되는 것이 바람직하다. 상기 혼합물 배관(도면번호 미부여)에는 설계에 따라 상기 혼합물(142)을 상기 재생기(110)로 이송시키기 위한 펌프(도면 미도시)가 포함될 수 있다. 그 밖에 상기 흡수기(140)에 대한 내용은 일반적인 흡수식 냉동기에서의 흡수기와 동일하므로 생략한다.3 and 4, the absorber 140 is a device for absorbing the refrigerant 131 evaporated from the evaporator 130 into the absorbent 141 to generate the mixture 142. Since the absorbent 141 absorbs the refrigerant 131 in general, it is an exothermic process, so that the absorbent 141 needs to maintain a proper temperature so as to continuously absorb the refrigerant 131. To this end, the absorber 140 is preferably provided with an absorber internal heat exchanger (not shown). The heat exchanger (not shown in the drawing) of the absorber serves to offset heat generated when the absorbent 141 absorbs the refrigerant 131 using the cooling water 151. Thus, the absorber 140 cools using the cooling water 151 to generate the mixture 142 to maintain a temperature suitable for the reaction of formation of the mixture 142. A description of the flow of the cooling water 151 flowing in the absorber 140 will be described later. An absorbent pipe (not given a number) may be connected to an upper portion of the absorber 140 to allow a high concentration of the absorbent 141 solution to flow from the regenerator 110. In the lower part of the absorber 140 to absorb the refrigerant 131 evaporated in a gaseous state to flow the mixture 142, the absorbent solution of which the concentration is diluted, to the regenerator 110 (not shown) Imparted) is preferably connected. The mixture pipe (not shown) may include a pump (not shown) for transferring the mixture 142 to the regenerator 110 according to design. In addition, the contents of the absorber 140 are the same as those of the absorber in a general absorption chiller and thus will be omitted.

도 3 및 도 4 를 참조하면 상기 흡수식 냉동기를 이용한 가스 압축 시스템(100)은 상기 제 1 열교환기(143)을 선택적으로 포함할 수 있다. 상기 제 1 열교환기(143)는 상기 재생기(110)에서 분리되어 상기 흡수제(141)로 돌아가는 상기 흡수제(141)와 상기 흡수기(140)에서 상기 재생기(110)로 이송되는 상기 혼합물(142)을 상호 열교환 시키는 장치이다. 즉, 상기 재생기(110)에서 가열에 의해 분리된 상기 흡수제(141)에 포함된 열에너지를 상기 흡수기(140)에서 혼합된 상기 혼합물(142)로 전달시켜 상기 혼합물(142)을 가열하는 과정이다. 따라서, 상기 제 1 열교환기(143)는 상기 흡수기(140)와 상기 재생기(110)간 상기 흡수제(141)와 상기 혼합물(142)의 유동 경로 상에 구비되는 것이 바람직하다. 열효율 측면을 고려하면 상기 혼합물(142)이 상기 흡수기(140)로부터 상기 재생기(110)로 유동될 때, 상기 제 1 열교환기(143)에서 예비적으로 상기 혼합물(142)을 가열하면 상기 재생기(110)에서의 분리 추출이 용이해지는 장점이 있다.Referring to FIGS. 3 and 4, the gas compression system 100 using the absorption chiller may optionally include the first heat exchanger 143. The first heat exchanger 143 separates the absorbent 141 separated from the regenerator 110 and returned to the absorbent 141 and the mixture 142 transferred from the absorber 140 to the regenerator 110. It is a device for mutual heat exchange. That is, the heat energy contained in the absorbent 141 separated by heating in the regenerator 110 is transferred to the mixture 142 mixed in the absorber 140 to heat the mixture 142. Therefore, the first heat exchanger 143 is preferably provided on the flow path of the absorbent 141 and the mixture 142 between the absorber 140 and the regenerator 110. In consideration of thermal efficiency, when the mixture 142 flows from the absorber 140 to the regenerator 110, when the mixture 142 is preliminarily heated in the first heat exchanger 143, the regenerator ( There is an advantage that the separation extraction in 110) becomes easy.

도 3 및 도 4 를 참조하면 상기 흡수식 냉동기를 이용한 가스 압축 시스템(100)은 상기 보조 냉각기(180)를 선택적으로 포함할 수 있다. 상기 보조 냉각기(180)는 상기 재생기(110)를 통과하며 열에너지를 방출한 상기 냉각 대상가스(160)를 추가로 냉각하기 위한 장치이다. 따라서 상기 보조 냉각기(180)는 상기 재생기(110)의 주변을 통과하며 1차로 냉각된 상기 냉각 대상가스(160)를 추가로 냉각하기 위한 것이므로, 상기 재생기(110)의 주변을 통과한 상기 냉각 대상가스(160)가 이동하는 경로에 구비되는 것이 바람직하다. 3 and 4, the gas compression system 100 using the absorption chiller may optionally include the auxiliary cooler 180. The auxiliary cooler 180 is a device for further cooling the cooling target gas 160 passing through the regenerator 110 and dissipating heat energy. Therefore, since the auxiliary cooler 180 is to further cool the first cooling target gas 160 passing through the periphery of the regenerator 110, the cooling target passed through the periphery of the regenerator 110. It is preferable that the gas 160 is provided in a path through which the gas 160 moves.

도 3 에서는 1중 효용 흡수식 냉동기를 이용한 가스 압축 시스템을 도시하고 있고, 도 4 에서는 다중 효용 흡수식 냉동기를 이용한 가스 압축 시스템을 도시하고 있다. 도 3 에서 도시한 시스템의 경우, 상기 냉각 대상가스(160)는 상기 재생기(110)의 주변을 통과한 후 압축가스 탱크(165)로 유동되어 저장되므로, 상기 보조 냉각기(180)는 상기 냉각 대상가스(160)가 상기 재생기(110)로부터 상기 압축가스 탱크(165)로 유동되는 경로 상에 구비되는 것이 바람직하다. 도 4 에서 도시한 다중 효용 시스템의 경우, 상기 냉각 대상가스(160)는 상기 재생기(110)의 주변을 통과하며 열에너지를 방출한 후, 다시 증발기(130)의 주변을 통과하며 차회 압축 과정을 위한 준비 단계에 들어간다. 따라서 이 경우 상기 보조 냉각기(180)는 상기 냉각 대상가스(160)가 상기 재생기(110)로부터 상기 증발기(130)로 유동되는 경로 상에 구비되는 것이 바람직하다. 다만, 도 4 에 도시한 다중 효용 시스템의 경우라도 최종 압축 단계를 마친 경우에는 도 3 에 도시한 경우와 마찬가지로 상기 보조 냉각기(180)는 상기 냉각 대상가스(160)가 상기 재생기(110)로부터 상기 압축가스 탱크(165)로 유동되는 경로 상에 구비될 수 있다.3 shows a gas compression system using a single-effect absorption chiller, and FIG. 4 shows a gas compression system using a multi-effect absorption chiller. In the system illustrated in FIG. 3, since the cooling target gas 160 passes through the periphery of the regenerator 110 and flows to the compressed gas tank 165, the auxiliary cooling unit 180 is cooled. Preferably, the gas 160 is provided on a path that flows from the regenerator 110 to the compressed gas tank 165. In the multi-utility system shown in FIG. 4, the cooling target gas 160 passes through the periphery of the regenerator 110 and releases thermal energy, and then passes through the periphery of the evaporator 130 again for the next compression process. Enter the preparation phase. Therefore, in this case, the auxiliary cooler 180 is preferably provided on the path through which the cooling target gas 160 flows from the regenerator 110 to the evaporator 130. However, even in the case of the multi-utility system illustrated in FIG. 4, when the final compression step is completed, the auxiliary cooler 180 may be configured such that the cooling target gas 160 is discharged from the regenerator 110 as in the case of FIG. 3. It may be provided on a path flowing into the compressed gas tank 165.

도 3 및 도 4 를 참조하면 상기 흡수식 냉동기를 이용한 가스 압축 시스템(100)은 상기 응축물 제거기(190)를 선택적으로 포함할 수 있다. 상기 응축물 제거기(190)는 상기 냉각 대상가스(160)가 상기 증발기(130)의 주변을 통과하며 열에너지를 방출하는 경우 냉각에 의해 발생한 응축물을 제거하기 위한 장치이다. 따라서, 상기 응축물 제거기(190)는 상기 냉각 대상가스(160)가 상기 증발기(130)의 주변을 통과한 후 상기 압축기(170)로 유입되는 경로 상에 구비되는 것이 바람직하다. 도 4 에서 도시한 다중 효용 시스템의 경우, 상기 응축물 제거기(190)는 각 압축 과정마다 각각 구비되는 실시예를 고려할 수 있다.Referring to FIGS. 3 and 4, the gas compression system 100 using the absorption chiller may optionally include the condensate remover 190. The condensate remover 190 is a device for removing condensate generated by cooling when the cooling target gas 160 passes through the evaporator 130 and emits thermal energy. Therefore, the condensate remover 190 is preferably provided on the path that the cooling target gas 160 is introduced into the compressor 170 after passing through the periphery of the evaporator 130. In the case of the multi-effect system shown in FIG. 4, the condensate remover 190 may consider an embodiment provided for each compression process.

도 3 및 도 4 를 참조하면 상기 보조 냉각기(180)는 상기 냉각수(151)를 냉각원으로 활용할 수 있다. 상기 보조 냉각기(180)는 실시예에 따라 상기 냉각수(151)를 냉각원으로 이용하는 경우와 별도의 냉각원을 활용하는 경우를 고려해 볼 수 있다. 상기 냉각수(151)는 해수(海水)일 수 있다. 상기 냉각수(151)로 해수(海水)를 이용하는 경우 별도의 냉각수를 필요 없어 경제적인 장점이 있다. 다만 해수(海水)를 냉각수로 활용하는 경우, 냉각 대상물이 온도가 높으면 스케일을 발생시켜 열에너지 교환을 방해하므로 스케일을 주기적으로 세정해야 하는 불편이 있 었다. 도 2 에 도시한 종래의 냉각탑을 이용한 가스 압축 공정에서 냉각수로 해수(海水)를 사용하기 어려웠던 원인도 상술한 바와 같다. 이에 비해 본 발명에서 상기 냉각수(151)로 해수(海水)를 사용할 수 있으며, 본 발명에서 상기 냉각수(151)가 사용되는 부분을 각각 확인해보기로 한다.3 and 4, the auxiliary cooler 180 may utilize the cooling water 151 as a cooling source. According to an embodiment, the auxiliary cooler 180 may consider a case where the cooling water 151 is used as a cooling source and a case where a separate cooling source is used. The cooling water 151 may be sea water. When the sea water (sea water) is used as the cooling water 151, there is no need for a separate cooling water, so there is an economic advantage. However, in the case of utilizing sea water as cooling water, it is inconvenient to periodically clean the scale because the object to be cooled has a high temperature, which prevents heat energy exchange. The reason why it was difficult to use seawater as cooling water in the gas compression process using the conventional cooling tower shown in FIG. 2 was also described above. On the contrary, sea water may be used as the cooling water 151 in the present invention, and each of the cooling water 151 is used in the present invention.

상기 흡수기(140)에서는 상술한 바와 같이 상기 흡수제(141)가 상기 냉매(131)를 흡수하는 발열 과정을 수행하기 위해 적정 온도를 유지할 목적으로 상기 냉각수(151)가 활용될 수 있다. 따라서, 상기 냉각수(151)가 냉각해야 할 냉각 대상물은 상대적으로 온도가 높지 않아 해수(海水)를 활용하더라도 불편함이 없다. 상기 응축기(120)에서는 상술한 바와 같이 상기 재생기(110)에서 가열에 의해 분리된 상기 냉매(131)를 응축시키기 위해 상기 냉각수(151)를 활용할 수 있다. 이 경우에도 기체 상태의 상기 냉매(131)를 액체 상태로 변환하면 되므로, 상기 냉각수(151)가 냉각해야 할 냉각 대상물은 상대적으로 온도가 높지 않아 해수(海水)를 활용하더라도 불편함이 없다. 상기 보조 냉각기(180)의 경우 상술한 바와 같이 상기 재생기(110)를 통과하며 열에너지를 방출한 상기 냉각 대상가스(160)를 보조적으로 냉각하기 위한 장치이다. 따라서 이 경우에도 역시 상기 냉각수(151)가 냉각해야 할 냉각 대상물은 상대적으로 온도가 높지 않아 해수(海水)를 활용할 수 있다. 또한, 상기 냉각수(151)로 해수(海水)를 사용하여 스케일이 발생하는 경우에는 고온의 매체 냉각을 위해 담수(淡水)를 사용하고 해수(海水)로 다시 이 담수(淡水)를 냉각하는 방법을 고려할 수 있다.In the absorber 140, the cooling water 151 may be used for the purpose of maintaining an appropriate temperature in order to perform an exothermic process in which the absorbent 141 absorbs the refrigerant 131. Therefore, the cooling object to be cooled by the cooling water 151 is relatively uncomfortable even if the temperature is not high because sea water is used. As described above, the condenser 120 may utilize the cooling water 151 to condense the refrigerant 131 separated by heating in the regenerator 110. Even in this case, since the refrigerant 131 in the gaseous state needs to be converted into the liquid state, the cooling object to be cooled by the cooling water 151 is relatively uncomfortable even when utilizing sea water. As described above, the auxiliary cooler 180 is an apparatus for auxiliary cooling of the cooling target gas 160 passing through the regenerator 110 and emitting heat energy. Therefore, even in this case, the cooling object to be cooled by the cooling water 151 is relatively high in temperature, so that seawater can be utilized. In addition, when scale is generated using sea water as the cooling water 151, a method of using fresh water for cooling medium at a high temperature and cooling the fresh water again with sea water is provided. Can be considered

도 3 및 도 4 를 참조하면 상기 응축기(120), 상기 흡수기(140), 상기 보조 냉각기(180)에서는 냉각을 위한 상기 냉각수(151)가 유동하게 된다. 상기 냉각수(151)가 유동되는 상기 냉각 라인(150)을 살펴보면, 냉각수 탱크(155)에 수용된 상기 냉각수(151)는 상기 응축기(120)와 상기 흡수기(140)에 구비된 각각의 상기 응축기 내부 열교환기(도면번호 미부여)와 상기 흡수기 내부 열교환기(도면번호 미부여)로 이송되고, 상기 보조 냉각기(180)의 내부에 구비되는 냉각기 내부 열교환기(도면번호 미부여)로도 상기 냉각수(151)가 이송될 수 있다. 상기 응축기 내부 열교환기(도면번호 미부여), 상기 흡수기 내부 열교환기(도면번호 미부여), 상기 냉각기 내부 열교환기(도면번호 미부여)에서 냉각에 활용된 상기 냉각수(151)는 열에너지를 흡수한다. 이러한 상기 냉각수(151)의 열에너지를 활용하기 위해 제 2 열교환기(152)가 구비될 수 있다.3 and 4, the coolant 151 for cooling flows in the condenser 120, the absorber 140, and the auxiliary cooler 180. Looking at the cooling line 150 through which the cooling water 151 flows, the cooling water 151 accommodated in the cooling water tank 155 is the heat exchanger inside each condenser provided in the condenser 120 and the absorber 140. The coolant 151 is transferred to a heat exchanger (not shown) and an internal heat exchanger (not shown) in the absorber and is provided inside the auxiliary cooler 180. Can be transferred. The cooling water 151 utilized for cooling in the condenser internal heat exchanger (not shown), the absorber internal heat exchanger (not shown), and the cooler internal heat exchanger (not shown) absorbs thermal energy. . The second heat exchanger 152 may be provided to utilize the thermal energy of the cooling water 151.

도 3 및 도 4 를 참조하면 상기 흡수식 냉동기를 이용한 가스 압축 시스템(100)은 상기 제 2 열교환기(152)를 선택적으로 구비할 수 있다. 상기 제 2 열교환기(152)는 상기 냉각수(151)가 유동되는 상기 냉각 라인(150)에 구비되며, 상기 흡수기(140)와 상기 응축기(120) 및 상기 보조 냉각기(180)에서 냉각에 사용되며 열에너지를 흡수한 상기 냉각수(151)의 열에너지를 이용하기 위해 구비될 수 있다. 상기 제 2 열교환기(152)에서 얻은 열에너지를 열원으로 활용하여 난방을 위한 난방열 등 필요에 따라 다양한 분야에서 이를 활용할 수 있음은 물론이다.3 and 4, the gas compression system 100 using the absorption chiller may optionally include the second heat exchanger 152. The second heat exchanger 152 is provided in the cooling line 150 through which the cooling water 151 flows, and is used for cooling in the absorber 140, the condenser 120, and the auxiliary cooler 180. It may be provided to use the thermal energy of the cooling water 151 absorbing the thermal energy. By using the heat energy obtained from the second heat exchanger 152 as a heat source, it can be used in various fields as necessary, such as heating heat for heating.

상기 흡수식 냉동기를 이용한 가스 압축 시스템(100)에 사용되는 상기 냉매(131)와 상기 흡수제(141)는 다양할 수 있음은 물론이다. 또한, 상기 냉각 대상가스(160)의 종류에 따라 상기 냉매(131)와 흡수제(141)가 달라질 수 있다. 다만, 환경 친화적 요소를 고려하여 상기 흡수제(141)로 물(H20)을 사용하는 경우 상기 냉매(131)로 암모니아(NH3)를 사용할 수 있다. 또한, 상기 흡수제(141)로 브롬화리튬(LiBr)을 사용하는 경우 상기 냉매(131)로 물(H2O)을 사용할 수 있다.Of course, the refrigerant 131 and the absorbent 141 used in the gas compression system 100 using the absorption chiller may vary. In addition, the refrigerant 131 and the absorbent 141 may vary according to the type of the cooling target gas 160. However, when water (H20) is used as the absorbent 141 in consideration of environmentally friendly elements, ammonia (NH3) may be used as the refrigerant 131. In addition, when lithium bromide (LiBr) is used as the absorbent 141, water (H 2 O) may be used as the refrigerant 131.

도 4 에서 도시한 다중 효용 흡수식 냉동기를 이용한 가스 압축 시스템은 상기 냉각 대상가스(160)의 압축 과정이 반복되는 경우이다. 이 경우 상기 압축기(170)는 제 1 압축기(171), 제 2 압축기(172), 최종 압축기(179)를 포함한 다수개로 구비될 수 있다. 상기 냉각 대상가스(160)가 최초로 상기 증발기(130)의 주변을 통과하며 냉각된 후 상기 제 1 압축기(171)로 유입된다. 상기 제 1 압축기(171)를 통과하는 상기 냉각 대상가스(160)는 상기 재생기(110)의 주변을 통과하며 열에너지를 방출하는 제 1 압축 과정을 수행한다. 상기 제 1 압축 과정을 완료한 상기 냉각 대상가스(160)는 상기 증발기(130), 상기 제 2 압축기(172), 상기 재생기(110)를 차례로 거치는 제 2 압축 과정을 수행할 수 있다. 이와 같이 상기 냉각 대상가스(160)의 압축 과정이 상기 증발기(130), 다수개의 상기 압축기(170), 상기 재생기(110)를 거치며 순환하여 반복된 후, 최종 압축 과정에 이르면 상기 냉각 대상가스(160)가 최종적으로 유입되는 상기 최종 압축기(179)를 통과한다. 상기 최종 압축기(179)를 통과한 상기 냉각 대상가스(160)는 상기 재생기(110)의 주변을 통과한 후 압축가스 탱크(165)로 저장되어 압축 과정이 완료될 수 있다.The gas compression system using the multi-effect absorption chiller shown in FIG. 4 is a case where the compression process of the cooling target gas 160 is repeated. In this case, the compressor 170 may include a plurality of compressors including the first compressor 171, the second compressor 172, and the final compressor 179. The cooling target gas 160 is first cooled through the periphery of the evaporator 130 and then flows into the first compressor 171. The cooling target gas 160 passing through the first compressor 171 performs a first compression process of passing heat around the regenerator 110 and releasing thermal energy. The cooling target gas 160 that has completed the first compression process may perform a second compression process that sequentially passes through the evaporator 130, the second compressor 172, and the regenerator 110. As described above, the compression process of the cooling target gas 160 is circulated through the evaporator 130, the plurality of compressors 170, and the regenerator 110, and is repeated. When the final compression process is reached, the cooling target gas ( 160 passes through the final compressor 179 which is finally introduced. The cooling target gas 160 passing through the final compressor 179 passes through the periphery of the regenerator 110 and is then stored in the compressed gas tank 165 to complete the compression process.

본 발명에 의한 상기 흡수식 냉동기를 이용한 가스 압축 시스템(100)의 가스 압축 과정을 순차적으로 다시 정리하면 다음과 같다. 다중 효용 시스템의 경우 가스 압축 과정에 대해 상술한 바 있으므로, 도 3 에서 도시한 1중 효용 시스템을 중 심으로 설명한다.The gas compression process of the gas compression system 100 using the absorption chiller according to the present invention is rearranged sequentially as follows. In the case of the multi-utility system, since the gas compression process has been described above, the single-use system shown in FIG. 3 will be described.

(a) 저압 상태로 유지되는 상기 증발기(130)에서 상기 냉매(131)의 지속적인 증발에 의해 상기 냉각 대상가스(160)를 냉각시키고 밀도를 높인다. 냉각된 상기 냉각 대상가스(160)는 선택적으로 상기 응축물 제거기(190)를 통과하며 응축물을 제거한 후, 상기 압축기(170)로 이송된다. 증발된 기체 상태의 상기 냉매(131)는 상기 흡수기(140)로 이송된다.(a) The cooling target gas 160 is cooled and the density is increased by continuous evaporation of the refrigerant 131 in the evaporator 130 maintained at a low pressure. The cooled target gas 160 is selectively passed through the condensate remover 190 to remove condensate and then transferred to the compressor 170. The refrigerant 131 in the evaporated gas state is transferred to the absorber 140.

(b) 상기 흡수기(140)에서 상기 흡수제(141)가 상기 냉매(131)를 흡수하여 상기 혼합물(142)이 생성된다. 이러한 흡수 과정에서 적정 온도를 유지하기 위해 상기 냉각수(151)를 활용할 수 있다.(b) In the absorber 140, the absorbent 141 absorbs the refrigerant 131 to form the mixture 142. In this absorption process, the cooling water 151 may be utilized to maintain a proper temperature.

(c) 상기 흡수기(140)에서 생성된 상기 혼합물(142)은 선택적으로 상기 제 1 열교환기(143)를 거치며 가열된 후 상기 재생기(110)로 이송된다. 상기 재생기(110)에서는 상기 압축기(170)를 통과하며 압축에 의해 가열된 상기 냉각 대상가스(160)가 갖는 열에너지를 열원으로 활용하여 상기 혼합물(142)을 가열하고 상기 냉매(131)와 상기 흡수제(141)를 분리시켜 추출함과 동시에 상기 냉각 대상가스(160)를 1차적으로 냉각한다.(c) The mixture 142 produced in the absorber 140 is optionally heated through the first heat exchanger 143 and then transferred to the regenerator 110. In the regenerator 110, the mixture 142 is heated by utilizing the heat energy of the cooling target gas 160, which is heated by compression, passing through the compressor 170, and the refrigerant 131 and the absorbent. 141 is separated and extracted, and the cooling target gas 160 is primarily cooled.

(d) 상기 재생기(110)에서 분리된 고온고압의 상기 냉매(131)는 상기 응축기(120)로 이송되어 응축된다. 상기 재생기(110)에서 분리된 상기 흡수제(141)는 상기 흡수기(140)로 되돌아간다.(d) The high temperature and high pressure refrigerant 131 separated from the regenerator 110 is transferred to the condenser 120 to condense. The absorbent 141 separated from the regenerator 110 returns to the absorber 140.

(e) 상기 응축기(120)에서 응축된 상기 냉매(131)는 상기 증발기(130)로 돌아간다. 상기 냉매(131)는 이와 같이 (a) ~ (e) 과정을 순환하게 된다.(e) The refrigerant 131 condensed in the condenser 120 returns to the evaporator 130. The refrigerant 131 is circulated in the process (a) ~ (e) in this way.

(f) 상기 냉각 대상가스(160)는 상기 증발기(130)를 거쳐 1차적으로 냉각되며 냉각에 의해 밀도가 높아진다. 상기 냉각 대상가스(160)는 상기 압축기(170)를 통과하며 압축되고, 고온 고압 상태의 상기 냉각 대상가스(160)는 선택적으로 상기 보조 냉각기(180)를 거쳐 추가로 냉각된다. 냉각된 상기 냉각 대상가스(160)는 상기 압축가스 탱크(165)로 이송되어 저장된다.(f) The cooling target gas 160 is primarily cooled through the evaporator 130 and has a high density by cooling. The cooling target gas 160 is compressed while passing through the compressor 170, and the cooling target gas 160 at a high temperature and high pressure is optionally further cooled through the auxiliary cooler 180. The cooled target gas 160 is transferred to and stored in the compressed gas tank 165.

본 발명의 상기한 실시예에 한정하여 기술적 사상을 해석해서는 안 된다. 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당업자의 수준에서 다양한 변형 실시가 가능하다. 따라서 이러한 개량 및 변경은 당업자에게 자명한 것인 한 본 발명의 보호범위에 속하게 된다.The technical idea should not be interpreted as being limited to the above-described embodiment of the present invention. Various modifications may be made at the level of those skilled in the art without departing from the spirit of the invention as claimed in the claims. Therefore, such improvements and modifications fall within the protection scope of the present invention as long as it is obvious to those skilled in the art.

도 1 은 종래의 흡수식 냉동기의 개략적인 구성을 나타낸 구조도.1 is a structural diagram showing a schematic configuration of a conventional absorption chiller.

도 2 는 종래의 냉각탑을 이용한 가스 압축 공정을 나타내는 구조도.2 is a structural diagram showing a gas compression process using a conventional cooling tower.

도 3 은 본 발명에 의한 흡수식 냉동기를 이용한 고효율 가스 압축 시스템의 개략적인 구성을 나타내는 구조도.Figure 3 is a structural diagram showing a schematic configuration of a high-efficiency gas compression system using an absorption chiller according to the present invention.

도 4 는 본 발명에 의한 압축기가 복수개로 구비된 다중 효용 흡수식 냉동기를 이용한 고효율 가스 압축 시스템의 예시적인 구성을 나타내는 구조도.4 is a structural diagram showing an exemplary configuration of a high-efficiency gas compression system using a multi-effect absorption chiller having a plurality of compressors according to the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

10 : 흡수식 냉동기 11 : 재생기10: absorption chiller 11: regenerator

12 : 응축기 13 : 증발기12 condenser 13 evaporator

14 : 흡수기 15 : 냉각탑14 absorber 15 cooling tower

20 : 압축기 21 : 열교환기20: compressor 21: heat exchanger

22 : 액적 분리기 23 : 냉각탑22: droplet separator 23: cooling tower

100 : 흡수식 냉동기를 이용한 가스 압축 시스템100: gas compression system using absorption chiller

110 : 재생기 111 : 보조 열교환기110: regenerator 111: auxiliary heat exchanger

120 : 응축기 130 : 증발기120: condenser 130: evaporator

131 : 냉매 140 : 흡수기131: refrigerant 140: absorber

141 : 흡수제 142 : 혼합물141: absorbent 142: mixture

143 : 제 1 열교환기143: first heat exchanger

150 : 냉각 라인 151 : 냉각수150: cooling line 151: cooling water

152 : 제 2 열교환기 155 : 냉각수 탱크152: second heat exchanger 155: coolant tank

160 : 냉각 대상가스 165 : 압축가스 탱크160: cooling target gas 165: compressed gas tank

170 : 압축기 171 : 제 1 압축기170: compressor 171: first compressor

172 : 제 2 압축기 179 : 최종 압축기172: second compressor 179: final compressor

180 : 보조 냉각기 190 : 응축물 제거기180: auxiliary cooler 190: condensate remover

Claims (10)

가스를 압축하기 위한 가스 압축 시스템에 있어서,In a gas compression system for compressing a gas, 압축기(170)를 통과하며 압축에 의해 가열된 냉각 대상가스(160)가 갖는 열에너지를 열원으로 사용하고, 흡수제(141)와 냉매(131)가 혼합된 혼합물(142)을 가열하여 상기 냉매(131)와 상기 흡수제(141)를 분리시켜 추출하는 재생기(110);The heat energy of the cooling target gas 160 heated through the compressor 170 by compression is used as a heat source, and the refrigerant 131 is heated by heating the mixture 142 in which the absorbent 141 and the refrigerant 131 are mixed. Regenerator 110 to separate and extract the absorbent (141); 상기 재생기(110)로부터 분리된 기상의 상기 냉매(131)를 냉각수(151)를 이용하여 응축시키는 응축기(120);A condenser (120) for condensing the refrigerant (131) in the gas phase separated from the regenerator (110) using cooling water (151); 상기 응축기(120)에서 응축된 액상의 상기 냉매(131)를 저압에서 증발시켜 외부로부터 열에너지를 흡수하는 증발기(130);An evaporator (130) for absorbing thermal energy from the outside by evaporating the refrigerant (131) of the liquid phase condensed in the condenser (120) at low pressure; 상기 증발기(130)에서 증발된 상기 냉매(131)를 상기 흡수제(141)로 흡수하여 상기 혼합물(142)을 생성시키되, 상기 혼합물(142)의 생성 반응에 적합한 온도를 유지하도록 상기 냉각수(151)를 이용하여 냉각하며 상기 혼합물(142)을 생성시키는 흡수기(140);The coolant 151 absorbs the refrigerant 131 evaporated from the evaporator 130 into the absorbent 141 to generate the mixture 142, and maintains a temperature suitable for the reaction of generating the mixture 142. Absorber 140 for cooling by using to produce the mixture 142; 를 포함하여 이루어지되,, &Lt; / RTI &gt; 상기 증발기(130)는 상기 증발기(130)의 주변을 통과하는 상기 냉각 대상가스(160)로부터 열에너지를 흡수하고, 상기 증발기(130)의 주변을 통과하며 열에너지를 방출한 상기 냉각 대상가스(160)는 상기 압축기(170)로 유동시켜 압축하는 것을 특징으로 하는 흡수식 냉동기를 이용한 고효율 가스 압축 시스템.The evaporator 130 absorbs thermal energy from the cooling target gas 160 passing through the periphery of the evaporator 130, passes the periphery of the evaporator 130, and emits thermal energy. High-efficiency gas compression system using the absorption chiller, characterized in that the compression by flowing to the compressor (170). 제 1 항에 있어서,The method of claim 1, 상기 재생기(110)에서 상기 흡수기(140)로 이동하는 상기 흡수제(141)와 상기 흡수기(140)에서 상기 재생기(110)로 이동하는 상기 혼합물(142)이 상호 열교환 되도록 상기 흡수기(140)와 상기 재생기(110)간 유동 경로 상에 구비되는 제 1 열교환기(143)를 포함하는 것을 특징으로 하는 흡수식 냉동기를 이용한 고효율 가스 압축 시스템.The absorber 140 and the absorber 141 moving from the regenerator 110 to the absorber 140 and the mixture 142 moving from the absorber 140 to the regenerator 110 are mutually heat exchanged. A high efficiency gas compression system using an absorption chiller, characterized in that it comprises a first heat exchanger (143) provided on the flow path between the regenerator (110). 제 2 항에 있어서,The method of claim 2, 상기 재생기(110)의 주변을 통과하며 열에너지를 방출한 상기 냉각 대상가스(160)의 냉각을 보조하기 위해, 상기 재생기(110)의 주변을 통과한 상기 냉각 대상가스(160)가 이동하는 경로 상에 보조 냉각기(180)가 구비되는 것을 특징으로 하는 흡수식 냉동기를 이용한 고효율 가스 압축 시스템.In order to assist the cooling of the cooling target gas 160 passing through the periphery of the regenerator 110 and releasing thermal energy, the path of the cooling target gas 160 passing through the periphery of the regenerator 110 moves. A high efficiency gas compression system using an absorption chiller, characterized in that the auxiliary cooler 180 is provided in the. 제 3 항에 있어서,The method of claim 3, wherein 상기 증발기(130)의 주변을 통과하며 열에너지를 방출한 상기 냉각 대상가스(160)가 상기 압축기(170)로 유동하는 경로에는 상기 냉각 대상가스(160)의 냉각에 의해 발생한 응축물을 제거하기 위해 응축물 제거기(190)가 구비되는 것을 특징 으로 하는 흡수식 냉동기를 이용한 고효율 가스 압축 시스템.In order to remove the condensate generated by the cooling of the cooling target gas 160 in the path through which the cooling target gas 160 flowing through the periphery of the evaporator 130 and dissipating heat energy flows to the compressor 170. High efficiency gas compression system using an absorption chiller, characterized in that the condensate remover 190 is provided. 제 4 항에 있어서,The method of claim 4, wherein 상기 재생기(110)에서 상기 혼합물(142)의 가열에 사용되는 열원을 보조하기 위해, 상기 재생기(110)에는 상기 재생기(110)로 열에너지의 공급을 보조하기 위한 보조 열교환기(111)가 구비되는 것을 특징으로 하는 흡수식 냉동기를 이용한 고효율 가스 압축 시스템.In order to assist the heat source used for heating the mixture 142 in the regenerator 110, the regenerator 110 is provided with an auxiliary heat exchanger 111 for assisting the supply of thermal energy to the regenerator 110. High efficiency gas compression system using an absorption chiller, characterized in that. 제 5 항에 있어서,The method of claim 5, 상기 보조 냉각기(180)는 상기 냉각수(151)를 이용하여 냉각하되, 상기 냉각수(151)는 해수인 것을 특징으로 하는 흡수식 냉동기를 이용한 고효율 가스 압축 시스템.The auxiliary cooler (180) is cooled using the cooling water (151), the cooling water (151) is a high efficiency gas compression system using an absorption chiller, characterized in that the sea water. 제 6 항에 있어서,The method of claim 6, 상기 냉각수(151)가 유동되는 냉각 라인(150)에는 상기 흡수기(140), 상기 응축기(120), 상기 보조 냉각기(180)에서 냉각에 사용된 상기 냉각수(151)의 열에너지를 이용하기 위한 제 2 열교환기(152)가 구비되는 것을 특징으로 하는 흡수식 냉동기를 이용한 고효율 가스 압축 시스템.A second line for utilizing heat energy of the coolant 151 used for cooling in the absorber 140, the condenser 120, and the auxiliary cooler 180 in the cooling line 150 through which the coolant 151 flows. High efficiency gas compression system using an absorption chiller, characterized in that the heat exchanger 152 is provided. 제 7 항에 있어서, 상기 흡수제(141)와 상기 냉매(131)는The method of claim 7, wherein the absorbent 141 and the refrigerant 131 상기 흡수제(141)로 물(H2O)을 사용하고 상기 냉매(131)로 암모니아(NH3)를 사용하는 것을 특징으로 하는 흡수식 냉동기를 이용한 고효율 가스 압축 시스템.High efficiency gas compression system using an absorption chiller, characterized in that using the water (H 2 O) as the absorbent (141) and ammonia (NH 3) as the refrigerant (131). 제 7 항에 있어서, 상기 흡수제(141)와 상기 냉매(131)는The method of claim 7, wherein the absorbent 141 and the refrigerant 131 상기 흡수제(141)로 브롬화리튬(LiBr)을 사용하고 상기 냉매(131)로 물(H2O)을 사용하는 것을 특징으로 하는 흡수식 냉동기를 이용한 고효율 가스 압축 시스템.Lithium bromide (LiBr) is used as the absorbent (141) and water (H 2 O) is used as the refrigerant (131). 제 1 항 내지 제 9 항 중 어느 한 항에 있어서, 상기 압축기(170)는 제 1 압축기(171), 제 2 압축기(172), 최종 압축기(179)를 포함한 다수개로 구비되며,10. The compressor of claim 1, wherein the compressor 170 is provided in plural numbers including a first compressor 171, a second compressor 172, and a final compressor 179. 최초로 상기 증발기(130)의 주변을 통과하는 상기 냉각 대상가스(160)가 제 1 압축기(171)로 유입되고, 상기 제 1 압축기(171)를 통과하는 상기 냉각 대상가스(160)는 상기 재생기(110)의 주변을 통과하며 열에너지를 방출하는 제 1 압축 과정을 수행하고,First, the cooling target gas 160 passing through the periphery of the evaporator 130 flows into the first compressor 171, and the cooling target gas 160 passing through the first compressor 171 passes through the regenerator ( Perform a first compression process passing through the periphery of 110 and releasing thermal energy; 상기 제 1 압축 과정을 완료한 상기 냉각 대상가스(160)는 상기 증발기(130), 상기 제 2 압축기(172), 상기 재생기(110)를 차례로 거치는 제 2 압축 과정을 수행하며,The cooling target gas 160 that has completed the first compression process performs a second compression process that sequentially passes through the evaporator 130, the second compressor 172, and the regenerator 110. 상기 냉각 대상가스(160)는 상기 증발기(130), 다수개의 상기 압축기(170), 상기 재생기(110)를 거치며 압축 과정을 반복하여 순환하되, 최종 압축 과정에서 상기 냉각 대상가스(160)가 최종적으로 유입되는 상기 최종 압축기(179)를 통과한 상기 냉각 대상가스(160)는 상기 재생기(110)의 주변을 통과한 후 압축가스 탱크(165)로 저장되는 것을 특징으로 하는 흡수식 냉동기를 이용한 고효율 가스 압축 시스템.The cooling target gas 160 circulates through the evaporator 130, the plurality of compressors 170, and the regenerator 110 repeatedly by repeating the compression process, and the cooling target gas 160 is finally The cooling target gas 160 passing through the final compressor 179 introduced into the high-efficiency gas using the absorption chiller, characterized in that stored in the compressed gas tank 165 after passing through the periphery of the regenerator 110. Compression system.
KR1020090092667A 2009-09-29 2009-09-29 High efficient Gas Compression System using Absorption refrigeration KR101071919B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090092667A KR101071919B1 (en) 2009-09-29 2009-09-29 High efficient Gas Compression System using Absorption refrigeration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090092667A KR101071919B1 (en) 2009-09-29 2009-09-29 High efficient Gas Compression System using Absorption refrigeration

Publications (2)

Publication Number Publication Date
KR20110035104A true KR20110035104A (en) 2011-04-06
KR101071919B1 KR101071919B1 (en) 2011-10-11

Family

ID=44043489

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090092667A KR101071919B1 (en) 2009-09-29 2009-09-29 High efficient Gas Compression System using Absorption refrigeration

Country Status (1)

Country Link
KR (1) KR101071919B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108019981A (en) * 2017-03-07 2018-05-11 林振娴 A kind of computational methods of definite flue gas single-effect lithiumbromide refrigeration mechanism cold and parameter of discharging fume
CN112012802A (en) * 2020-08-07 2020-12-01 浙江华川实业集团有限公司 Cold, hot, gas and electricity four-combined supply process for power generation of steam turbine in factory
CN112165994A (en) * 2018-04-27 2021-01-01 Maxeff技术公司 Method for separation by solidification for use in an absorption heating cooling system and working in a crystallization/freezing/icing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102615680B1 (en) 2020-11-25 2023-12-19 주식회사 씨앤씨머티리얼즈 Manufacturing method of coated positive electrode materials for secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59134394A (en) 1983-01-19 1984-08-02 Shimadzu Corp Gas compressing apparatus
JP3859797B2 (en) 1997-02-25 2006-12-20 株式会社前川製作所 He liquefaction refrigerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108019981A (en) * 2017-03-07 2018-05-11 林振娴 A kind of computational methods of definite flue gas single-effect lithiumbromide refrigeration mechanism cold and parameter of discharging fume
CN112165994A (en) * 2018-04-27 2021-01-01 Maxeff技术公司 Method for separation by solidification for use in an absorption heating cooling system and working in a crystallization/freezing/icing method
CN112012802A (en) * 2020-08-07 2020-12-01 浙江华川实业集团有限公司 Cold, hot, gas and electricity four-combined supply process for power generation of steam turbine in factory

Also Published As

Publication number Publication date
KR101071919B1 (en) 2011-10-11

Similar Documents

Publication Publication Date Title
JP6441511B2 (en) Multistage plate-type evaporative absorption refrigeration apparatus and method
CA2755034C (en) Rankine cycle integrated with absorption chiller
KR101280520B1 (en) Power Generation System Using Waste Heat
JP2004251125A (en) Exhaust heat recovery system
WO2022018890A1 (en) Dual effect use chemical absorption type carbon dioxide recovery system
CN105783023A (en) Device and method for driving air heater through absorption type heat pump
KR101071919B1 (en) High efficient Gas Compression System using Absorption refrigeration
CN109519243B (en) Supercritical CO2 and ammonia water combined cycle system and power generation system
KR101208459B1 (en) Organic rankine cycle turbo generation system generating cooling air and hot water
KR101634345B1 (en) Absoption chiller using waste heat of compression type refrigerator
CN102809144B (en) Device and method for using two-stage jet absorption heat pump to improve thermal cycle efficiency
KR20120110403A (en) Hiting system using heat of condensation
JP2010106764A (en) Power generation method of electric power using exhaust heat
CN206016979U (en) Seawater cooling, the efficient combustion engine inlet gas cooling device of mixing low-temperature receiver
CN105066502A (en) Direct burning absorption refrigeration method and device for recovering phase change heat
KR100981672B1 (en) Two-stage driven hot water absorption chiller
JP2008020094A (en) Absorption type heat pump device
KR101103337B1 (en) Gas Precooling Equipment for Natural Gas Liquefaction Using Absorption Refrigeration
JP6666148B2 (en) Electrical installation having a cooled fuel cell with an absorption heat engine
KR101358309B1 (en) Rankine cycle system and ship with the same
KR101271189B1 (en) Intake air cooling system for ship
CN202648240U (en) Parallel, steam type, dual-effect and lithium bromide-absorbing refrigeration optimization system
JP3865346B2 (en) Absorption chiller / heater
KR101127521B1 (en) Single-effect, double stage generator, hot water driven absorption chiller
JP2005147447A (en) Ammonia-water non-azeotropic mixture medium circulation system

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140930

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181001

Year of fee payment: 8