KR20120110403A - Hiting system using heat of condensation - Google Patents

Hiting system using heat of condensation Download PDF

Info

Publication number
KR20120110403A
KR20120110403A KR1020110028229A KR20110028229A KR20120110403A KR 20120110403 A KR20120110403 A KR 20120110403A KR 1020110028229 A KR1020110028229 A KR 1020110028229A KR 20110028229 A KR20110028229 A KR 20110028229A KR 20120110403 A KR20120110403 A KR 20120110403A
Authority
KR
South Korea
Prior art keywords
hot water
waste heat
heat recovery
heat
condensation
Prior art date
Application number
KR1020110028229A
Other languages
Korean (ko)
Other versions
KR101214209B1 (en
Inventor
김용진
Original Assignee
국제냉동(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국제냉동(주) filed Critical 국제냉동(주)
Priority to KR1020110028229A priority Critical patent/KR101214209B1/en
Publication of KR20120110403A publication Critical patent/KR20120110403A/en
Application granted granted Critical
Publication of KR101214209B1 publication Critical patent/KR101214209B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1892Systems therefor not provided for in F22B1/1807 - F22B1/1861
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/007Control systems for waste heat boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/18Domestic hot-water supply systems using recuperated or waste heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Abstract

PURPOSE: A heating system using condensation heat is provided to improve heat energy efficiency by supplying hot water heat exchanged from a first waste heat recovery device to a second waste heat recovery device. CONSTITUTION: A heating system using condensation heat composed of first and second waste heat recovery device(21, 50), a hot water connection line(561), and a heating unit(60). The second waste heat recovery device collects the condensed sensible heat of coolant discharged from a compressor(10) and installed between a condenser(20) and the compressor. The hot water connection line connects the first and the second waste heat recovery device by supplying hot water in a first waste heat recovery device to the second waste heat recovery device for heat exchange. The heating unit produces steam by heating the hot water discharged from the second waste heat recovery device. Tap water is supplied to the first waste heat recovery device and the second waste heat recovery device receives hot water discharged from the first waste heat recovery device and the hot water outlet(571) of the second waste heat recovery device is connected to the heating unit. [Reference numerals] (10) Compressor; (20) Condenser; (21) First waste heat collector; (40) Evaporator; (50) Second waste heat collector; (60) Heating unit; (AA) Object; (BB) Steam; (CC) Refrigerant; (DD) Water; (EE) Hot water; (FF) Condensed water

Description

응축열을 이용한 가열 시스템{HITING SYSTEM USING HEAT OF CONDENSATION}Heating system using condensation heat {HITING SYSTEM USING HEAT OF CONDENSATION}

본 발명은 응축열을 이용한 가열 시스템에 관한 것으로, 보다 상세하게는 응축기 내부의 응축잠열과, 압축기에서 토출시 버려지는 응축현열을 회수하여 피대상물을 가열할 수 있는 열원으로 사용할 수 있도록 구성된 응축열을 이용한 가열 시스템에 관한 것이다.The present invention relates to a heating system using the heat of condensation, and more particularly, using a condensation heat configured to be used as a heat source for heating the object by recovering the latent heat of condensation in the condenser and the condensed sensible heat discarded when discharged from the compressor. Relates to a heating system.

일반적으로 냉동사이클은 압축기, 응축기, 팽창변, 증발기로 구성된다.Generally, a refrigeration cycle is composed of a compressor, a condenser, an expansion valve, and an evaporator.

냉동사이클 구성부의 각 기능은, 증발기에서 증발을 일으키고 증발기를 통과하여 열을 흡수한 냉매가스는 압축기로 유입되고 압축된 고온, 고압의 냉매가스는응축기로 유입되며, 응축기로 유입된 냉매가스는 응축기를 통하는 응축매체(물 또는 공기)로부터 열을 흡수하여 고온, 고압가스를 액화시키며, 액화된 냉매는 팽창변를 통과하면서 응축기압력에서 증발기 압력으로 급강하되고 증발기 내에서 냉매가 증발을 일으키면서 피냉각매체를 냉각 또는 냉동시킨다. 이와 같은 냉동사이클 과정은 계속 반복하게 된다.Each function of the refrigeration cycle component is that the refrigerant gas that evaporates in the evaporator and absorbs heat through the evaporator flows into the compressor, and the compressed high-temperature, high-pressure refrigerant gas flows into the condenser, and the refrigerant gas flows into the condenser. It absorbs heat from the condensation medium (water or air) through liquefied high-temperature, high-pressure gas, and the liquefied refrigerant drops from the condenser pressure to the evaporator pressure as it passes through the expansion valve, and the refrigerant evaporates in the evaporator, causing the refrigerant to evaporate. Cool or freeze. This refrigeration cycle process is repeated repeatedly.

상기에서 응축기는 냉동사이클에서 필수적인 것으로써, 응축기를 통하여 제거되어야 될 열을 공냉식 또는 수냉식 응축으로 구별된다.The condenser is essential in the refrigeration cycle, and the heat to be removed through the condenser is classified as air-cooled or water-cooled condensation.

그러나 통상 응축기로부터 배출되는 응축열은 에너지 또는 열로 재사용됨이 없이 대기로 방출하여 버리는 것이 일반적이다.However, the heat of condensation from the condenser is usually discharged to the atmosphere without being reused as energy or heat.

근래에 들어 수냉식 응축기로부터 발생하는 폐열을 재활용하고자 하는 기술이 개발되었다.Recently, techniques have been developed to recycle waste heat from water-cooled condensers.

하지만 이러한 응축기의 폐열을 이용한 기술은 포화상태의 응축잠열을 이용한 것으로 냉매측 효율은 70%정도이고, 냉매와 열교환된 온수의 전환 효율을 80%정도이다.However, the technology using the waste heat of the condenser uses the latent condensation heat of the saturated state, and the efficiency of the refrigerant is about 70%, and the conversion efficiency of the hot water exchanged with the refrigerant is about 80%.

즉, 압축기에서 응축기로 토출되는 과정 중에 고온의 냉매에 포함된 응축현열이 대기중에 30% 정도 소실되는 문제점이 있었다.That is, there is a problem in that about 30% of the condensed sensible heat contained in the high temperature refrigerant is lost in the air during the discharge from the compressor to the condenser.

따라서 응축기 내부의 응축잠열과, 압축기에서 토출시 버려지는 응축현열을 회수할 수 있는 기술이 요구되고 있는 실정이다.Therefore, there is a demand for a technology capable of recovering the latent heat of condensation inside the condenser and the condensation sensitized heat discharged from the compressor.

본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 목적은 응축기 내부의 응축잠열과, 압축기에서 토출되는 응축현열을 회수할 수 있도록 응축기와 연결된 제 1폐열회수기에서 열교환된 온수를 압축기와 응축기의 사이에 배치된 제 2폐열회수기로 공급시켜 열에너지 효율을 높일 수 있는 구조의 응축열을 이용한 가열 시스템을 제공하는데 있다.The present invention has been made in view of the above problems, an object of the present invention is to compress the hot water heat exchanged in the first waste heat recovery unit connected to the condenser so as to recover the latent heat of condensation in the condenser and the condensed sensible heat discharged from the compressor It is to provide a heating system using the condensation heat of the structure that can be supplied to the second waste heat recovery device disposed between and the condenser to increase the thermal energy efficiency.

본 발명은 상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 제 1발명은 응축열을 이용한 가열 시스템에 관한 것으로, 압축기, 응축기, 팽창변, 증발기로 구성되어 일련의 폐회로를 구성하고, 냉매의 응축잠열과 열교환되어 상수를 온수로 전환시킬 수 있도록 상기 응축기의 방열관을 내입시켜 구성되는 제 1폐열회수기를 포함하는 냉동사이클에 있어서, 상기 압축기에서 토출되는 냉매의 응축현열을 회수할 수 있도록 응축기와 압축기의 사이에 배치되는 제 2폐열회수기;와, 상기 제 1폐열회수기의 온수가 제 2폐열회수기의 내부로 공급되어 응축현열과 열교환 될 수 있도록 상기 제 1폐열회수기와 제 2폐열회수기를 연결하는 온수연결라인; 및 상기 제 2폐열회수기에서 배출되는 온수를 공급받아 가열하여 스팀화시키는 가열수단;을 포함하여 이루어지되, 상기 제 1폐열회수기는 상수공급라인을 통해 상수가 공급되고, 상기 제 2폐열회수기는 온수연결라인을 통해 제 1폐열회수기의 온수를 공급받아 온수배출라인을 통해 상기 가열수단에 연결되는 것을 특징으로 한다.
According to a feature of the present invention for achieving the object as described above, the first invention relates to a heating system using the heat of condensation, consisting of a compressor, condenser, expansion valve, evaporator constitutes a series of closed circuit, the refrigerant In a refrigeration cycle comprising a first waste heat recovery device configured by injecting a heat dissipation tube of the condenser to exchange heat with the latent heat of condensation of the condenser, so as to recover the condensation sensation of the refrigerant discharged from the compressor A second waste heat recovery unit disposed between the condenser and the compressor; and the first waste heat recovery unit and the second waste heat recovery unit so that the hot water of the first waste heat recovery unit is supplied into the second waste heat recovery unit and exchanges heat with condensation sensation. Hot water connection line for connecting; And heating means for receiving the hot water discharged from the second waste heat recovery unit and heating and steaming the first waste heat recovery unit, wherein the first waste heat recovery unit is supplied with a constant water through a water supply line, and the second waste heat recovery unit is connected to hot water. The hot water of the first waste heat recovery machine is supplied through a line and is connected to the heating means through a hot water discharge line.

제 2발명은, 제 1발명에서, 상기 제 2폐열회수기는 압축기와 상통하는 냉매관이 연결되는 열회수탱크와, 상기 냉매관과 연결되되 상기 열회수탱크에 내부에 일측상단에 배치되는 제 1분배관와, 상기 제 1분배관의 길이방향을 따라 일정간격을 두고 배치되고 각각 냉매의 순환경로를 증대시켜 열교환이 용이하도록 지그재그 형태로 배치되는 다수의 방열관과, 상기 각 방열관이 연결되되 상기 열회수탱크의 내부 타측하단에 배치되는 제 2분배관과, 상기 열회수탱크의 양측 내벽 높이방향을 따라 상기 각 방열관의 사이 사이 마다 교차되도록 층상 배치되는 구획격판과, 온수가 구획격판을 따라 유출입될 수 있도록 상기 제 1분배관 및 제 2분배관과 대향되게 상기 열회수탱크의 전방하단 및 후방상단에 배치되는 온수유입구 및 온수출입구로 구성되되, 상기 온수유입구는 온수연결라인과 연결되고, 상기 온수유출구는 온수배출라인과 연결되는 것을 특징으로 한다.
The second invention, in the first invention, the second waste heat recovery unit is a heat recovery tank connected to the refrigerant pipe in communication with the compressor, the first distribution pipe connected to the refrigerant pipe and disposed inside one side in the heat recovery tank; And a plurality of heat dissipation tubes disposed at regular intervals along the longitudinal direction of the first distribution pipe and arranged in a zigzag form to facilitate heat exchange by increasing the circulation path of the refrigerant, and the heat recovery tanks being connected to each of the heat dissipation tubes. A second distribution pipe disposed at the other inner lower end of the inner space, a partition plate arranged in a layer so as to intersect between the heat dissipation pipes along an inner wall height direction of both sides of the heat recovery tank, and hot water to flow in and out along the partition plate; The hot water inlet and the hot water inlet are disposed at the front lower and rear upper ends of the heat recovery tank so as to face the first distribution pipe and the second distribution pipe. Hot water inlet is connected with the hot water connection line, the hot water outlet is characterized in that the connection and the hot water discharge line.

제 3발명은, 제 1발명에서, 상기 가열수단은 스팀공급라인을 통해 피대상물을 가열한 후 냉각된 응결수를 재공급받을 수 있도록 응결수수거라인을 더 포함하는 것을 특징으로 한다.
The third invention, in the first invention, the heating means is characterized in that it further comprises a condensation collection line to be re-supply of the cooled condensed water after heating the object through the steam supply line.

제 4발명은, 제 1발명에서, 상기 압축기와 상기 제 2폐열회수기와 연결되는 냉매관에는 초기 운용시 압축기에서 토출되는 고온의 가스냉매를 응축기로 직접 토출할 수 있도록 바이패스냉매관을 더 포함하되, 상기 냉매관과 바이패스냉매관의 연결지점에는 제 3방향밸브가 구비되어 제 1폐열회수기를 통해 온수가 토출되면, 상기 3방향밸브는 바이패스냉매관을 차단하여 냉매가 제 1폐열회수기로 경유하여 응축기로 토출될 수 있도록 구성되는 것을 특징으로 한다.The fourth invention, in the first invention, the refrigerant pipe connected to the compressor and the second waste heat recovery device further includes a bypass refrigerant pipe to directly discharge the high-temperature gas refrigerant discharged from the compressor during the initial operation to the condenser However, when the hot water is discharged through the first waste heat recoverer at the connection point between the refrigerant pipe and the bypass refrigerant pipe, the three-way valve blocks the bypass refrigerant pipe so that the refrigerant is the first waste heat recoverer. It is characterized in that it is configured to be discharged to the condenser via.

본 발명에 따른 응축열을 이용한 가열 시스템에 따르면, 응축기 내부의 응축잠열과, 압축기에서 토출되는 응축현열을 회수할 수 있도록 응축기와 연결된 제 1폐열회수기에서 열교환된 온수를 압축기와 응축기의 사이에 배치된 제 2폐열회수기로 공급시켜 별도의 열에너지로써의 효율을 높일 수 있는 효과가 있다.According to the heating system using the condensation heat according to the present invention, the hot water heat exchanged in the first waste heat recovery device connected to the condenser so as to recover the latent heat of condensation inside the condenser and the condensed sensible heat discharged from the compressor is disposed between the compressor and the condenser. Supply to the second waste heat recovery device has the effect of increasing the efficiency as a separate heat energy.

또한 응축기의 폐열을 가열에너지로 전환하여 난방온수 또는 식품 살균 등의 용도로 사용할 수 있어 에너지를 절약할 수 있는 효과가 있다.In addition, by converting the waste heat of the condenser to heating energy can be used for heating hot water or food sterilization, there is an effect that can save energy.

도 1은 본 발명에 따른 응축열을 이용한 가열 시스템의 구성도,
도 2는 도 1에서 발췌된 제 1폐열회수기의 구성도,
도 3는 본 발명의 따른 응축열을 이용한 가열 시스템의 냉매와 온수의 열교환을 나타내는 개념도이다.
1 is a configuration diagram of a heating system using heat of condensation according to the present invention;
2 is a block diagram of the first waste heat recovery unit extracted from FIG.
3 is a conceptual diagram illustrating heat exchange between a refrigerant and hot water in a heating system using condensation heat according to the present invention.

이하에서는 본 발명에 따른 응축열을 이용한 가열 시스템에 관하여 첨부되어진 도면과 함께 더불어 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings with respect to the heating system using the heat of condensation according to the present invention will be described in detail.

도 1은 본 발명에 따른 응축열을 이용한 가열 시스템의 구성도이고, 도 2는 도 1에서 발췌된 제 1폐열회수기의 구성도이다. 1 is a block diagram of a heating system using a heat of condensation according to the present invention, Figure 2 is a block diagram of a first waste heat recoverer extracted from FIG.

먼저 도 1에 도시된 바와 같이, 본 발명은 응축기(20) 내부의 응축잠열과, 압축기(10)에서 토출되는 응축현열을 회수하여 피대상물을 가열할 수 있는 열원으로 사용할 수 있도록 구성된 응축열을 이용한 가열 시스템에 관한 것이다.First, as shown in FIG. 1, the present invention utilizes the latent heat of condensation inside the condenser 20 and the heat of condensation configured to be used as a heat source for heating the object by recovering the condensed sensible heat discharged from the compressor 10. Relates to a heating system.

이러한 본 발명은 응축기(20)의 방열관을 내입시켜 구성되는 제 1폐열회수기(21)를 포함하는 냉동사이클에 있어서, 제 1폐열회수기(21)에서 열교환된 온수를 압축기(10)와 응축기(20)의 사이에 배치된 제 2폐열회수기(50)로 공급시켜 열에너지 효율을 높일 수 있도록 구성된다. The present invention is a refrigeration cycle comprising a first waste heat recovery unit 21 is formed by injecting the heat dissipation tube of the condenser 20, the hot water heat exchanged in the first waste heat recovery unit 21 to the compressor 10 and the condenser ( It is configured to increase the thermal energy efficiency by supplying the second waste heat recovery device 50 disposed between the 20.

본 발명은 크게 4부분으로 구성되는데, 이는 제 1폐열회수기(21)와, 제 2폐열회수기(50)와, 온수연결라인(561) 및 가열수단(60)으로 구성된다.The present invention is largely composed of four parts, which is composed of a first waste heat recovery unit 21, a second waste heat recovery unit 50, a hot water connection line 561 and a heating means (60).

먼저 일련의 제 1폐열회수기(21)는 실시간으로 상수를 공급받을 수 있도록 상수공급라인(211)이 연결되며, 상기 상수는 제 1폐열회수기(21)의 내부에 내입된 냉매관을 통해 응축잠열과 열교환됨에 따라 온수로 전환되어 배출된다.First, a series of first waste heat recoverers 21 are connected to a constant supply line 211 to receive constant water in real time, and the constant is condensed by heat condensed through a refrigerant pipe embedded in the first waste heat recoverer 21. As it is heat exchanged with, it is converted into hot water and discharged.

여기서 상기 온수연결라인(561)은 상기 제 1폐열회수기(21)의 온수가 제 2폐열회수기(50)의 내부로 공급될 수 있도록 상기 제 1폐열회수기(21)와 제 2폐열회수기(50)를 연결하는 기능을 한다.Here, the hot water connection line 561 is the first waste heat recovery unit 21 and the second waste heat recovery unit 50 so that the hot water of the first waste heat recovery unit 21 can be supplied into the second waste heat recovery unit 50. It functions to connect.

그리고 상기 제 2폐열회수기(50)는 상기 압축기(10)에서 토출되는 냉매의 응축현열을 회수할 수 있도록 응축기(20)와 압축기(10)의 사이에 배치된다.The second waste heat recovery unit 50 is disposed between the condenser 20 and the compressor 10 to recover the condensed sensible heat of the refrigerant discharged from the compressor 10.

따라서 상기 제 2폐열회수기(50)는 상기 온수연결라인(561)을 통해 제 1폐열회수기(21)에서 열교환된 온수를 공급받아 압축기(10)에서 토출되는 고온의 기상냉매와 2차로 열교환시켜 냉매의 응축현열을 회수할 수 있도록 구성된다.Therefore, the second waste heat recoverer 50 receives the hot water heat exchanged from the first waste heat recoverer 21 through the hot water connection line 561 and heat-exchanges the secondary gas with the high temperature gaseous refrigerant discharged from the compressor 10. It is configured to recover the condensation sensation of.

한편 상기 제 2폐열회수기(50) 내의 온수는 온수배출라인(571)을 통해 최종적으로 가열수단(60)에 공급되며, 상기 가열수단(60)은 작은 열량으로 온수를 가열하여 스팀상태로 피대상물을 가열할 수 있도록 구성된다.Meanwhile, the hot water in the second waste heat recovery unit 50 is finally supplied to the heating means 60 through the hot water discharge line 571, and the heating means 60 heats the hot water with a small amount of heat to be in a steam state. It is configured to be able to heat.

여기서 상기 피대상물은 보일러 난방 또는 식품 살균 등 다양한 용도로 사용될 수 있음은 물론이다.Here, the object may be used for various purposes such as heating a boiler or sterilizing food.

한편 상기 가열수단(60)은 스팀공급라인(62)을 통해 피대상물을 가열한 후 냉각된 응결수를 재공급받을 수 있도록 응결수수거라인(61)을 더 포함구조이다.Meanwhile, the heating means 60 further includes a condensation collection line 61 to heat the object through the steam supply line 62 and to receive the cooled condensed water again.

이 때 상기 응결수수거라인(61)은 온수배출라인(571)과 연결되어 가열수단(60)으로 재공급될 수 있도록 구성되며, 이는 버려지는 응결수의 열원을 재사용하여 회수할 수 있도록 한 구성이다.At this time, the condensation collection line 61 is connected to the hot water discharge line 571 is configured to be supplied back to the heating means 60, which is configured to reuse and recover the heat source of the condensed water is discarded to be.

한편 상기 제 2폐열회수기(50)의 세부 구성은 도 2와 같다.On the other hand, the detailed configuration of the second waste heat recovery unit 50 is as shown in FIG.

이러한 제 2폐열회수기(50)는 열회수탱크(51)와, 제 1분배관(52)과, 방열관(53)과, 제 2분배관(54)과, 구획격판(55)과, 온수유입구(56)와, 온수유출구(57)로 구성된다.The second waste heat recoverer 50 includes a heat recovery tank 51, a first distribution pipe 52, a heat dissipation pipe 53, a second distribution pipe 54, a partition plate 55, and a hot water inlet. And a hot water outlet 57.

여기서 열회수탱크(51)는 압축기(10)와 상통하는 냉매관과 연결되어 구성된다.Here, the heat recovery tank 51 is connected to the refrigerant pipe in communication with the compressor 10 is configured.

그리고 상기 제 1분배관(52)은 냉매관과 연결되되 상기 열회수탱크(51)에 내부에 일측상단에 설치된다.In addition, the first distribution pipe 52 is connected to the refrigerant pipe, but is installed at one upper end inside the heat recovery tank 51.

그리고 상기 방열관(53)은 상기 제 1분배관(52)의 길이방향을 따라 일정간격을 두고 배치되고 각각 냉매의 순환경로를 증대시켜 열교환이 용이하도록 지그재그 형태로 배치된다.(도 2의 (b)에 도시)In addition, the heat dissipation pipes 53 are disposed at regular intervals along the longitudinal direction of the first distribution pipe 52 and are arranged in a zigzag form to facilitate heat exchange by increasing the circulation path of the refrigerant. b) to

상기 제 2분배관(54)은 상기 각 방열관(53)과 연결되되 상기 열회수탱크(51)의 내부 타측하단에 배치되는 구조이다. The second distribution pipe (54) is connected to each of the heat dissipation pipes (53), and has a structure disposed at the other inner lower end of the heat recovery tank (51).

상기에서 제 1분배관(52)과 제 2분배관(54)과 방열관(53)은 상호 일체로 연결되는 구조이다.(도 2의 (b)에 도시) 이 때 압축기(10)와 연결되는 냉매관은 제 1분배관(52)과 연결되고, 상기 응축기(20)와 연결되는 냉매관은 제 2분배관(54)과 연결된다.In the above, the first distribution pipe 52, the second distribution pipe 54 and the heat dissipation pipe 53 are connected to each other integrally (shown in Figure 2 (b)) at this time connected to the compressor 10 The refrigerant pipe to be connected is connected to the first distribution pipe 52, and the refrigerant pipe connected to the condenser 20 is connected to the second distribution pipe 54.

그리고 상기 구획격판(55)은 상기 열회수탱크(51)의 양측 내벽 높이방향을 따라 상기 각 방열관(53)의 사이 사이 마다 교차되도록 층상 배치된다.(도 2의 (C)에 도시)The partition plates 55 are arranged in layers so as to intersect between the heat dissipation pipes 53 along the inner wall height direction of both sides of the heat recovery tank 51 (shown in FIG. 2C).

아울러 온수가 유입되는 온수유입구(56)와, 온수가 배출되는 온수유출구(57)는 상기 제 1분배관(52) 및 제 2분배관(54)과 대향되게 상기 열회수탱크(51)의 전방하단 및 후방상단에 배치된다.(도 2의 (a)에 도시) In addition, the hot water inlet (56) for introducing hot water and the hot water outlet (57) for discharging hot water are front lower ends of the heat recovery tank (51) to face the first and second distribution pipes (52) and (54). And a rear upper end. (As shown in Fig. 2A).

따라서 압축기(10)를 통해 배출되는 고온의 가스냉매는 제 1분배관(52)을 통해 유입되고, 방열관(53)을 거쳐 제 2분배관(54)으로 토출되고, 반대로 제 1폐열회수기(21)의 온수는 온수연결라인(561)을 통해 상기 열회수탱크(51)의 온수유입구(56)로 유입되어 각 구획격판(55)을 순환하면서 상기 방열관(53)과 열교환되어 온수유출구(57)와 연결된 온수배출라인(571)을 통해 고온수로 변환되어 배출된다.Therefore, the high temperature gas refrigerant discharged through the compressor 10 flows in through the first distribution pipe 52 and is discharged through the heat dissipation pipe 53 to the second distribution pipe 54, and conversely, the first waste heat recovery device ( The hot water of 21 is introduced into the hot water inlet 56 of the heat recovery tank 51 through the hot water connection line 561 and circulates with each partition plate 55 to exchange heat with the heat dissipation pipe 53 to provide a hot water outlet 57 The hot water discharge line 571 is connected to the high temperature water is discharged.

여기서 상기 제 2폐열회수기(50)는 압축기(10)에서 토출되는 고온의 가스냉매를 응축시켜 액화시키지 않고, 다만 응축현열만을 회수하기 위한 것이다. 때문에 제 2폐열회수기(50)를 통과한 기상냉매는 현혈온도만 하강한 상태에서 포화가스 상태로 응축기(20)로 토출된다.Here, the second waste heat recoverer 50 is for recovering only condensed sensible heat without condensing and liquefying the hot gas refrigerant discharged from the compressor 10. Therefore, the gaseous refrigerant having passed through the second waste heat recovery unit 50 is discharged to the condenser 20 in a saturated gas state while only the bleeding temperature is lowered.

아울러 상기 제 2폐열회수기(50)는 고온의 가스냉매의 응축현열만을 회수하기 위한 크기로 한정하는 것이 바람직하다.In addition, the second waste heat recovery unit 50 is preferably limited to the size for recovering only the condensation sensible heat of the high-temperature gas refrigerant.

한편 본 발명은 압축기(10)와 상기 제 2폐열회수기(50)와 연결되는 냉매관에는 초기 운용시 압축기(10)에서 토출되는 고온의 가스냉매를 응축기(20)로 직접 토출할 수 있도록 바이패스냉매관(70)을 더 포함는 구조이다.Meanwhile, the present invention bypasses the refrigerant pipe connected to the compressor 10 and the second waste heat recovery unit 50 to directly discharge the hot gas refrigerant discharged from the compressor 10 to the condenser 20 during initial operation. The refrigerant pipe 70 further includes a structure.

또한 상기 냉매관(P)과 바이패스냉매관(70)의 연결지점에는 제 3방향밸브(71)가 구비되어 제 1폐열회수기(21)를 통해 온수가 토출되면, 상기 3방향밸브(71)는 바이패스냉매관(70)을 차단하여 냉매가 제 1폐열회수기(21)로 경유하여 응축기(20)로 토출될 수 있도록 구성된다.
In addition, a third directional valve 71 is provided at a connection point between the refrigerant pipe P and the bypass refrigerant pipe 70 so that hot water is discharged through the first waste heat recovery machine 21. Block the bypass refrigerant pipe 70 is configured to allow the refrigerant to be discharged to the condenser 20 via the first waste heat recovery unit (21).

이하에서는 본 발명에 따른 응축열을 이용한 가열 시스템에 작동에 관하여 간단히 도 1를 참조하고 도 3를 첨부하여 부연 설명하기로 하며, 설명되는 온수 및 냉매의 온도를 이에 한정하지 아니하고 실시예로 이해하기 쉽게 설명하기로 한다.Hereinafter, the operation of the heating system using the condensation heat according to the present invention will be briefly described with reference to FIG. 1 and with reference to FIG. 3, and the temperature of the hot water and the refrigerant described will not be limited thereto. Let's explain.

도 3는 본 발명의 따른 응축열을 이용한 가열 시스템의 냉매와 온수의 열교환을 나타내는 개념도이다.3 is a conceptual diagram illustrating heat exchange between a refrigerant and hot water in a heating system using condensation heat according to the present invention.

먼저 도 1와 같이, 초기 운용시 압축기(10)를 통과한 110℃ 정도의 기상냉매는 바이패스냉매관(70)를 따라 응축기(20)로 토출된다. 이 때 3방향밸브(71)는 바이패스냉매관(70)만을 개방한 상태이다.First, as shown in FIG. 1, about 110 ° C. of gaseous refrigerant that has passed through the compressor 10 during initial operation is discharged to the condenser 20 along the bypass refrigerant pipe 70. At this time, the three-way valve 71 is a state in which only the bypass refrigerant pipe 70 is opened.

따라서 응축기(20)로 토출되는 냉매는 바이패스냉매관(70)를 통해 현혈온도만 하강한 상태에서 70℃ 정도의 포화가스 상태로 응축기(20)로 유입된다.Therefore, the refrigerant discharged to the condenser 20 is introduced into the condenser 20 in a saturated gas state of about 70 ° C. in the state where only the blood pressure is lowered through the bypass refrigerant pipe 70.

응축기(20)로 유입된 포화가스 상태의 기상냉매는 제 1폐열회수기(21)를 통해 액상으로써의 상태변화에 의한 응축잠열과 열교환되어 30℃로 하강하여 액상냉매로 전환되어 팽창변(30)로 토출된다.The gaseous refrigerant in the state of saturated gas introduced into the condenser 20 is exchanged with the latent heat of condensation due to the change of state as a liquid state through the first waste heat recovery unit 21, and then lowered to 30 ° C. to be converted into a liquid refrigerant to the expansion valve 30. Discharged.

이 때 상기 제 1폐열회수기(21)는 상수공급라인(211)을 통해 20℃ 정도의 상수가 공급되며, 상기 상수는 70℃ 정도의 포화가스에 포함된 기상냉매의 응축잠열과 열교환되어 60℃ 정도의 온수로 전환되어 온수연결라인(561)을 통해 제 2폐열회수기(50)로 공급된다.At this time, the first waste heat recovery unit 21 is supplied with a constant of about 20 ℃ through the constant supply line 211, the constant is heat exchanged with the latent heat of condensation of the gas phase refrigerant contained in the saturated gas of about 70 60 ℃ It is converted into hot water of a degree and is supplied to the second waste heat recoverer 50 through the hot water connection line 561.

그리고 상기 액상의 저온냉매는 팽창변(30)과 증발기(40) 및 압축기(10)를 거쳐 다시 110℃ 정도의 기상냉매로 변환된다.The low temperature refrigerant in the liquid phase is converted into a gas phase refrigerant of about 110 ° C. again through the expansion valve 30, the evaporator 40, and the compressor 10.

이 후 110℃ 정도의 기상냉매는 제 2폐열회수기(50)로 토출되는데, 이는 3방향밸브(71)가 바이패스냉매관(70)를 차단하고, 제 2폐열회수기(50)로 연결되는 냉매관(P)을 개방하여 가능하다.(본 발명에서 제 1폐열회수기 내부 온수의 온도를 측정하는 온도센서 및 상기 온도센서에 따라 제 3방향밸브를 제어하는 제어부가 구비될 수 있는데, 이는 일반적인 구성이므로 생략하여 설명하기로 한다)Thereafter, the gaseous refrigerant of about 110 ° C. is discharged to the second waste heat recovery unit 50, which is a three-way valve 71 blocking the bypass refrigerant pipe 70, and is connected to the second waste heat recovery unit 50. It is possible by opening the pipe (P). (In the present invention, a temperature sensor for measuring the temperature of the hot water inside the first waste heat recoverer and a control unit for controlling the third directional valve according to the temperature sensor may be provided, which is a general configuration. Will be omitted.

아울러 상기 제 2폐열회수기(50)로 공급되는 110℃ 정도의 기상냉매는 초기 운용시 소실되는 현열온도를 제 1폐열회수기(21)의 온수와 열교환되게 함으로써, 60℃ 정도의 온수와 재차 열교환되어 제 2폐열회수기(50)에서 70℃ 정도의 온수로 가열하게 된다.In addition, the gas phase refrigerant of about 110 ° C. supplied to the second waste heat recovery unit 50 exchanges sensible heat temperature lost during initial operation with the hot water of the first waste heat recovery unit 21, thereby exchanging heat with the hot water of about 60 ° C. again. The second waste heat recoverer 50 is heated with hot water of about 70 ℃.

이 후 냉매는 제 2폐열회수기(50)를 통해 현혈온도만 하강한 상태에서 70℃ 정도의 포화가스 상태로 응축기(20)로 유입되어 일련을 과정을 거쳐 순환된다.Thereafter, the refrigerant is introduced into the condenser 20 in a saturated gas state of about 70 ° C. in the state where only the bleeding temperature is lowered through the second waste heat recovery unit 50 and circulated through a series of processes.

그리고 70℃ 정도의 제 2폐열회수기(50) 내의 온수는 온수배출라인(571)을 통해 최종적으로 가열수단(60)에 공급되며, 상기 가열수단(60)은 작은 열량으로 온수를 가열하여 스팀상태로 피대상물을 가열할 수 있도록 구성된다.And the hot water in the second waste heat recovery device 50 of about 70 ℃ is finally supplied to the heating means 60 through the hot water discharge line 571, the heating means 60 heats the hot water with a small amount of heat to steam And to heat the object.

아울러 상기 가열수단(60)은 스팀공급라인(62)을 통해 피대상물을 가열한 후 냉각된 응결수를 응결수수거라인(61)을 재공급받는다.In addition, the heating means 60 receives the condensed water collection line 61 again after cooling the condensed water after heating the object through the steam supply line 62.

이 때 상기 응결수수거라인(61)은 온수배출라인(571)과 연결되어 가열수단(60)으로 재공급될 수 있도록 구성되며, 이는 버려지는 응결수의 열원을 재사용하여 회수할 수 있도록 구성된다.At this time, the condensation collection line 61 is connected to the hot water discharge line 571 is configured to be supplied to the heating means 60, which is configured to reuse by recovering the heat source of the condensed water is discarded. .

이상에서와 같이 본 발명은 응축기 내부의 응축잠열과, 압축기에서 토출되는 응축현열을 모두 회수하여 피대상물을 가열할 수 있는 열원으로 재사용할 수 있어 에너지를 절약할 수 있다.
As described above, the present invention can recover the latent heat of condensation inside the condenser and the condensed sensible heat discharged from the compressor, and can reuse the heat source to heat the object, thereby saving energy.

비록 본 발명이 상기에서 언급한 바람직한 실시예와 관련하여 설명되어졌지만, 본 발명의 요지와 범위로부터 벗어남이 없이 다른 다양한 수정 및 변형이 가능할 것이다. 따라서, 첨부된 청구의 범위는 본 발명의 진정한 범위내에 속하는 그러한 수정 및 변형을 포함할 것이라고 여겨진다.Although the present invention has been described in connection with the preferred embodiments mentioned above, various other modifications and variations will be possible without departing from the spirit and scope of the invention. It is, therefore, to be understood that the appended claims are intended to cover such modifications and changes as fall within the true scope of the invention.

10: 압축기
20: 응축기 21: 제 1폐열회수기 211: 상수공급라인
30: 팽창변
40: 증발기
50: 제 2폐열회수기 51: 열회수탱크 52: 제 1분배관
53: 방열관 54: 제 2분배관
55: 구획격판 56: 온수유입구
561: 온수연결라인
57: 온수유출구 571: 온수배출라인
60: 가열수단 61: 응결수수거라인 62: 스팀공급라인
70: 바이패스냉매관 71: 3방향밸브
P: 냉매관
10: Compressor
20: condenser 21: first waste heat recovery unit 211: water supply line
30: expansion valve
40: evaporator
50: second waste heat recovery machine 51: heat recovery tank 52: first distribution pipe
53: heat dissipation pipe 54: second distribution pipe
55: partition plate 56: hot water inlet
561: hot water connection line
57: hot water outlet 571: hot water discharge line
60: heating means 61: condensation collection line 62: steam supply line
70: bypass refrigerant pipe 71: 3-way valve
P: refrigerant pipe

Claims (4)

압축기, 응축기, 팽창변, 증발기로 구성되어 일련의 폐회로를 구성하고, 냉매의 응축잠열과 열교환되어 상수를 온수로 전환시킬 수 있도록 상기 응축기의 방열관을 내입시켜 구성되는 제 1폐열회수기를 포함하는 냉동사이클에 있어서,
상기 압축기에서 토출되는 냉매의 응축현열을 회수할 수 있도록 응축기와 압축기의 사이에 배치되는 제 2폐열회수기;
상기 제 1폐열회수기의 온수가 제 2폐열회수기의 내부로 공급되어 응축현열과 열교환 될 수 있도록 상기 제 1폐열회수기와 제 2폐열회수기를 연결하는 온수연결라인; 및
상기 제 2폐열회수기에서 배출되는 온수를 공급받아 가열하여 스팀화시키는 가열수단;을 포함하여 이루어지되,
상기 제 1폐열회수기는 상수공급라인을 통해 상수가 공급되고,
상기 제 2폐열회수기는 온수연결라인을 통해 제 1폐열회수기의 온수를 공급받아 온수배출라인을 통해 상기 가열수단에 연결되는 것을 특징으로 하는 응축열을 이용한 가열 시스템
Refrigerator comprising a first waste heat recovery device composed of a compressor, a condenser, an expansion valve, and an evaporator to form a series of closed circuits, and a heat dissipation tube of the condenser is inserted to exchange water with hot water condensation to convert water into hot water. In the cycle,
A second waste heat recoverer disposed between the condenser and the compressor to recover the condensed sensible heat of the refrigerant discharged from the compressor;
A hot water connection line connecting the first waste heat recovery unit and the second waste heat recovery unit to supply the hot water of the first waste heat recovery unit to the inside of the second waste heat recovery unit to exchange heat with the condensation sensation heat; And
It comprises a; heating means for receiving the hot water discharged from the second waste heat recovery machine to heat and steam;
The first waste heat recovery unit is supplied with constant water through a constant supply line,
The second waste heat recoverer is supplied with hot water from the first waste heat recoverer through a hot water connection line, and is connected to the heating means through a hot water discharge line.
제 1항에 있어서,
상기 제 2폐열회수기는 압축기와 상통하는 냉매관이 연결되는 열회수탱크와, 상기 냉매관과 연결되되 상기 열회수탱크에 내부에 일측상단에 배치되는 제 1분배관와, 상기 제 1분배관의 길이방향을 따라 일정간격을 두고 배치되고 각각 냉매의 순환경로를 증대시켜 열교환이 용이하도록 지그재그 형태로 배치되는 다수의 방열관과, 상기 각 방열관이 연결되되 상기 열회수탱크의 내부 타측하단에 배치되는 제 2분배관과, 상기 열회수탱크의 양측 내벽 높이방향을 따라 상기 각 방열관의 사이 사이 마다 교차되도록 층상 배치되는 구획격판과, 온수가 구획격판을 따라 유출입될 수 있도록 상기 제 1분배관 및 제 2분배관과 대향되게 상기 열회수탱크의 전방하단 및 후방상단에 배치되는 온수유입구 및 온수출입구로 구성되되,
상기 온수유입구는 온수연결라인과 연결되고, 상기 온수유출구는 온수배출라인과 연결되는 것을 특징으로 하는 응축열을 이용한 가열 시스템.
The method of claim 1,
The second waste heat recovery unit includes a heat recovery tank to which a refrigerant pipe communicating with the compressor is connected, a first distribution pipe connected to the refrigerant pipe and disposed at an upper side inside the heat recovery tank, and a longitudinal direction of the first distribution pipe. According to the present invention, a plurality of heat dissipation tubes arranged at regular intervals and arranged in a zigzag form to facilitate heat exchange by increasing a circulation path of the refrigerant, respectively, and a second portion connected to each of the heat dissipation tubes and disposed at an inner lower end of the heat recovery tank. A partition plate arranged in a layer so as to intersect between each of the heat dissipating pipes along the inner wall height directions of both sides of the heat recovery tank, and the first distribution pipe and the second distribution pipe so that hot water flows in and out along the partition partition plate. Consisting of the hot water inlet and hot water inlet is disposed in the front lower and rear upper end of the heat recovery tank,
The hot water inlet is connected to the hot water connection line, the hot water outlet is a heating system using condensation heat, characterized in that connected to the hot water discharge line.
제 1항에 있어서,
상기 가열수단은 스팀공급라인을 통해 피대상물을 가열한 후 냉각된 응결수를 재공급받을 수 있도록 응결수수거라인을 더 포함하는 것을 특징으로 하는 응축열을 이용한 가열 시스템.
The method of claim 1,
The heating means is a heating system using a condensation heat characterized in that it further comprises a condensation collection line to be re-supplied after cooling the condensed water after heating the object through the steam supply line.
제 1항에 있어서,
상기 압축기와 상기 제 2폐열회수기와 연결되는 냉매관에는 초기 운용시 압축기에서 토출되는 고온의 가스냉매를 응축기로 직접 토출할 수 있도록 바이패스냉매관을 더 포함하되,
상기 냉매관과 바이패스냉매관의 연결지점에는 제 3방향밸브가 구비되어 제 1폐열회수기를 통해 온수가 토출되면, 상기 3방향밸브는 바이패스냉매관을 차단하여 냉매가 제 1폐열회수기로 경유하여 응축기로 토출될 수 있도록 구성되는 것을 특징으로 하는 응축열을 이용한 가열 시스템.
The method of claim 1,
The refrigerant pipe connected to the compressor and the second waste heat recovery device further includes a bypass refrigerant pipe so as to directly discharge the hot gas refrigerant discharged from the compressor during the initial operation to the condenser.
A third directional valve is provided at the connection point between the refrigerant pipe and the bypass refrigerant pipe. When hot water is discharged through the first waste heat recovery machine, the three-way valve blocks the bypass refrigerant pipe so that the refrigerant passes through the first waste heat recovery device. Heating system using a heat of condensation, characterized in that configured to be discharged to the condenser.
KR1020110028229A 2011-03-29 2011-03-29 Hiting system using heat of condensation KR101214209B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110028229A KR101214209B1 (en) 2011-03-29 2011-03-29 Hiting system using heat of condensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110028229A KR101214209B1 (en) 2011-03-29 2011-03-29 Hiting system using heat of condensation

Publications (2)

Publication Number Publication Date
KR20120110403A true KR20120110403A (en) 2012-10-10
KR101214209B1 KR101214209B1 (en) 2012-12-20

Family

ID=47281237

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110028229A KR101214209B1 (en) 2011-03-29 2011-03-29 Hiting system using heat of condensation

Country Status (1)

Country Link
KR (1) KR101214209B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2538117A (en) * 2015-05-07 2016-11-09 Turner David An improved temperature control system
CN107062272A (en) * 2017-05-06 2017-08-18 江西德运实业有限责任公司 Solid state fermentation, recuperation of heat and the internal heat cleaning system of glue production
KR20180116930A (en) * 2017-04-18 2018-10-26 한국에너지기술연구원 A muti­stage fluidized bed heat exchanger for waste water heat recovery from multi­type heat sources
CN109405348A (en) * 2018-12-05 2019-03-01 江苏天舒电器有限公司 A kind of bathroom utilizes heat pump system with Multi-stage heat

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101878234B1 (en) * 2016-12-05 2018-07-16 한국에너지기술연구원 Vapor injection applied heat pump system for making highly dried hot steam

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100574275B1 (en) 2004-08-19 2006-04-26 정방균 Apparatus for collecting heat of waste water using refrigerating machine
JP5325431B2 (en) 2008-02-29 2013-10-23 パナソニック株式会社 Waste heat recovery equipment for refrigeration equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2538117A (en) * 2015-05-07 2016-11-09 Turner David An improved temperature control system
WO2016178025A1 (en) * 2015-05-07 2016-11-10 David Turner An improved temperature control system
CN107787434A (en) * 2015-05-07 2018-03-09 大卫·特纳 improved temperature control system
KR20180116930A (en) * 2017-04-18 2018-10-26 한국에너지기술연구원 A muti­stage fluidized bed heat exchanger for waste water heat recovery from multi­type heat sources
CN107062272A (en) * 2017-05-06 2017-08-18 江西德运实业有限责任公司 Solid state fermentation, recuperation of heat and the internal heat cleaning system of glue production
CN109405348A (en) * 2018-12-05 2019-03-01 江苏天舒电器有限公司 A kind of bathroom utilizes heat pump system with Multi-stage heat
CN109405348B (en) * 2018-12-05 2023-05-09 江苏天舒电器有限公司 Multistage heat utilization heat pump system for bathroom

Also Published As

Publication number Publication date
KR101214209B1 (en) 2012-12-20

Similar Documents

Publication Publication Date Title
JP6441511B2 (en) Multistage plate-type evaporative absorption refrigeration apparatus and method
CN103591721B (en) A kind of air-conditioning system
CN103003531A (en) Thermoelectric energy storage system and method for storing thermoelectric energy
KR101214209B1 (en) Hiting system using heat of condensation
CN102032706B (en) Absorbing type refrigerator
JP2011112272A (en) Method and device for heating and cooling
CN202928179U (en) High-efficiency heat exchange refrigeration system
KR20090081586A (en) Hot and cool watered producing system combined cooling and heating
KR101208459B1 (en) Organic rankine cycle turbo generation system generating cooling air and hot water
KR101138970B1 (en) Defrosting system using air cooling refrigerant evaporator and condenser
CN106482384B (en) Superposition type solution and serial double-effect lithium bromide absorption type refrigeration heat pump unit
CN206160547U (en) Utilize high heat density computer lab of CPU waste heat to synthesize cooling system
KR100991843B1 (en) Air Compressor Waste Heat Recovery Device
KR101093431B1 (en) Cooling/heating system for generating hot water using heat pump
CN105972673B (en) A kind of relaying energy site type great temperature difference heat supply system and method
KR100814615B1 (en) Cogeneration system using compression type cycle and absorption type cycle
CN108105907A (en) A kind of hot water, air-conditioning, heating combined supply system
CN207081238U (en) Fume hot-water compound type lithium bromide absorption type handpiece Water Chilling Units
CN207113282U (en) Fume hot-water single-double effect compound type lithium bromide absorption type refrigeration unit
JP5785800B2 (en) Vapor absorption refrigerator
KR100661676B1 (en) Heat recycling system using heatpump
KR200414655Y1 (en) Heat pump for condensing heat of room cooler, which is capable of using heating and hot water
JP2008020094A (en) Absorption type heat pump device
KR20090021807A (en) Fuel cell system having air conditioning function
CN200986289Y (en) Heat capillary power cycle type hot pipe type heat reclamation cold water device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161212

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171211

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181213

Year of fee payment: 7