JP2004251125A - Exhaust heat recovery system - Google Patents

Exhaust heat recovery system Download PDF

Info

Publication number
JP2004251125A
JP2004251125A JP2003039177A JP2003039177A JP2004251125A JP 2004251125 A JP2004251125 A JP 2004251125A JP 2003039177 A JP2003039177 A JP 2003039177A JP 2003039177 A JP2003039177 A JP 2003039177A JP 2004251125 A JP2004251125 A JP 2004251125A
Authority
JP
Japan
Prior art keywords
heat
exhaust heat
carbon dioxide
condenser
recovery system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003039177A
Other languages
Japanese (ja)
Inventor
Yasuyoshi Kato
恭義 加藤
Takeshi Nitawaki
武志 仁田脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rikogaku Shinkokai
Original Assignee
Rikogaku Shinkokai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rikogaku Shinkokai filed Critical Rikogaku Shinkokai
Priority to JP2003039177A priority Critical patent/JP2004251125A/en
Priority to US10/803,081 priority patent/US20040237527A1/en
Publication of JP2004251125A publication Critical patent/JP2004251125A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust heat recovery system effectively recovering/utilizing exhaust heat from a steam condenser that was emitted into the ocean or atmosphere in conventional steam turbine equipment. <P>SOLUTION: In the steam condenser of steam turbine equipment, heat transfer with boiling having high heat removal characteristics is employed by using liquid carbon dioxide (about 20 °C, and about 5.7 MPa) as cooling medium, in place of sea water or atmosphere used in a conventional art. Generated gaseous carbon dioxide is directly used for working heating medium of a heat pump, pressure is applied to the carbon dioxide up to around 12 MPa to rise a temperature thereof, and hot exhaust heat around 80 °C is recovered and used for heating or the like. Then, the pressure is decreased to return the carbon dioxide to the liquid carbon dioxide (about 20 °C, and about 5.7 MPa), and is used for cooling the steam condenser again. Therefore, the exhaust heat is economically recovered/utilized, and emission of the exhaust heat in external environment is kept low. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、火力発電プラントや軽水炉発電プラント等の蒸気タービン設備の復水器の排熱を、二酸化炭素を冷媒とした圧縮式ヒートポンプを運転して回収する排熱回収システムに関する。
【0002】
【従来の技術】
蒸気タービン設備である火力発電プラントや軽水炉発電プラント等においては、ボイラー(軽水炉では、沸騰水型炉の炉心又は加圧水型の蒸気発生器)で加熱・沸騰された水の熱を利用して蒸気タービンを駆動して発電しており、蒸気タービンを駆動させた後の蒸気は、海水や大気により冷却することで水に復し、ボイラーの給水として循環利用することが一般的である。
【0003】
例えば図4は従来の蒸気タービン設備を表す系統図である。この蒸気タービン設備20は、ボイラー21で水を加熱・沸騰することで得られた水蒸気を、タービン22に導入した後、復水器23において、膨張した水蒸気を、冷却媒体である海水や大気で冷却して水に復し、給液ポンプ24によって再びボイラー21の給水として戻すように水の循環経路を形成している。この復水器23において、膨張した水蒸気を冷却するために用いられた、海水や大気などの冷却媒体は、その後、海洋や大気中に放出されることとなる。
【0004】
ここで、蒸気タービン設備である、例えば発電所を考えると、発電効率は最新鋭の複合火力発電所で約53%であり、最新軽水炉では約34%である。したがって、これらの発電プラントでは、それぞれ、供給された熱の約1/2〜約2/3は温排水として海洋などに放出され、有効にエネルギーとして利用されていないため、燃料資源の有効活用の面と温排水の環境放出の面で問題があった。
また、復水器から排出される冷却媒体の例えば海水は、入り口温度に比べ7℃程度高いだけであり、排出される冷却媒体からの熱回収には設備費がかさむこともあり、現在のところ、排出される冷却媒体の熱利用の例としては、魚の養殖などへの利用が実現されているのみである。
【0005】
このような状況を鑑み、特許文献1には、蒸気タービン復水器の冷却水を利用して、吸収式冷凍機の蒸発器に前記冷却水を通水し、暖房用温水を作り出す排熱回収システムが提案されている。
【0006】
【特許文献1】
特開平05−296009号公報([請求項1]〜[請求項3])
【0007】
しかしながら、特許文献1に記載の排熱回収システムには、以下のような課題があった。
特許文献1に記載の排熱回収システムでは、吸収式冷凍機を用いて温水を発生させる方式を採っている。しかし、吸収式冷凍機は、冷媒のほかに吸収溶液という作動媒体が必要であり、また、蒸発器のほかに吸収器、再生器、更に熱効率を向上させようとすれば高温再生器など多数の要素が必要となり、どうしても大型になり易い。さらに、吸収式冷凍機の吸収器は、内部で吸収溶液と冷媒、冷却水とが、熱交換と物質交換、相変化を同時に行うために構造が複雑で小型化が困難であるという問題がある。
【0008】
また、現在用いられている吸収溶液−冷媒の組合せとしては、臭化リチウム−水の系統と、水−アンモニアの系統の2通りが良く知られている。臭化リチウム系の吸収液は鉄などを腐食し、アンモニア系の冷媒は銅を腐食させることが知られており、吸収式冷凍機では腐食対策が常に大きな技術的課題となっている。また、吸収式冷凍機は吸収溶液の物性(晶析の条件)や、冷水、冷却水、温水などの条件で運転時に制約が多く、運転管理に手間がかかるという欠点がある。
【0009】
また、特許文献1に記載の排熱回収システムでは、復水器と吸収式冷凍機の蒸発器との間に、水等による冷却水回路を介在させるため、復水器における熱交換効率が低く、復水器自体も小型化できないという問題もあった。
【0010】
【発明が解決しようとする課題】
本発明は、このような課題に鑑みなされたものであり、水蒸気によってタービンを回して動力を取り出す蒸気タービン設備の復水器において、発生する排熱を、直接圧縮式ヒートポンプによって回収して温水を生成し、それらを利用することによって、従来蒸気タービン設備で廃棄されていた熱を有効利用でき、小型でかつ運転管理の容易な排熱回収システムを提供することを目的とする。
【0011】
【課題を解決するための手段】
前記課題を解決するためになされた、請求項1に記載された排熱回収システムは、蒸気タービン発電プラントの復水器の排熱を、圧縮式ヒートポンプで直接回収することを特徴とするものである。
【0012】
請求項1に記載された発明によると、熱損失の小さい小型で、運転管理の容易な排熱回収システムを提供できる。
圧縮式ヒートポンプは、単一の冷媒のみを用いるため構造が簡単で、小型であり、エネルギー効率も良好である。特に、圧縮式の冷凍機の熱交換器は主として蒸発器と凝縮器の二つのみで、相変化しかしないためにプレート式熱交換器などを容易に採用でき、小型化が容易である。また、鉄を腐食する冷媒は少ないため、安価な鉄を容易に用いることができ、特定の金属に注意することで腐食の対策も比較的容易である。このため装置の作成が容易であり、吸収式冷凍機を用いた場合に比べ、運転管理も容易となる。
また、復水器において冷却水などの熱媒体を介さずに直接、冷媒と水に復する水蒸気との間で熱交換を行うため、熱交換に冷却水などを用いる場合に比べ、熱の損失が小さく、エネルギーのロスを最小限に抑えることができる。
【0013】
請求項2に記載された排熱回収システムは、排熱回収システムで用いる圧縮式ヒートポンプの冷媒に二酸化炭素を利用したことを特徴とするものである。
【0014】
請求項2に記載された発明によると、環境負荷が小さく、多用途に使用できる排熱回収システムを提供できるようになる。
圧縮式ヒートポンプで広く用いられているクロロフルオロカーボン等(通称フロン等)は、環境負荷が懸念されているために近年使用が困難になってきている。また、代替の冷媒として注目されているアンモニアは、有毒であり、特有の臭気があるため使用に困難が伴う。
表1には圧縮式ヒートポンプで用いられる代表的な冷媒を示したものであるが、この表の中で二酸化炭素は毒性もなく、環境負荷も他の冷媒に比べ低いため、理想的な冷媒である。また、フロンの臨界温度は約100℃と高いため、温水温度はエネルギー消費効率面から約65℃が上限であるのに対して、臨界温度が31℃の二酸化炭素では約90℃の温水が供給できる。このことより、排熱回収システムにより発生する温水を、効率の良いエネルギー輸送を行うことが可能となる。また、発生する温水が高温であることと、安定した温水供給が可能であるため、暖房用温水としての利用だけでなく、地域冷暖房用の温水としても利用することができる。
【0015】
【表1】

Figure 2004251125
【0016】
請求項3に記載された排熱回収システムは、復水器から熱回収の際に、除熱性能の高い沸騰伝熱を利用することを特徴とするものである。
【0017】
請求項3に記載された発明によると、熱交換効率が高く、かつ小型の復水器排熱回収システムを提供できるようになる。
沸騰伝熱は蒸発潜熱を利用することで、熱伝達効率が高いことが知られている。請求項3に記載の排熱回収システムは、この沸騰伝熱を利用して復水器において熱交換することにより、効率の高い熱交換が可能であり、復水器を小型化することができる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて説明する。しかしながら本発明は、この実施の形態に記載される構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載のない限り、限定されるものではなく、本発明の範囲内において修正、変更を加えることができるのは勿論である。
【0019】
例えば、図1は本実施の形態における、蒸気タービン設備の排熱回収システムの系統図である。
図1に示した排熱回収システムは、蒸気タービンを用いて発電を行う蒸気タービン発電プラント部1と、蒸気タービン発電プラント部1の復水器6の排熱を利用して温水を発生するヒートポンプ部2に大きく分けられる。
【0020】
蒸気タービン発電プラント部1は、ボイラー3と、発電機4が連結されたタービン5を備え、タービン5の出口側とボイラー3の入り口側との間に復水器6及び給液ポンプ7が介装され構成されている。
【0021】
本発明の中核をなす、ヒートポンプ部2は、圧縮機8と、冷媒と負荷側の温水とを熱交換するガスクーラ9及び膨張機10から構成され、本実施の形態では、ヒートポンプ部2の冷媒として二酸化炭素を用いるとともに、膨張機10出口側経路を復水器6の伝熱管入口側に、該伝熱管出口側を圧縮機8の吸入側に接続させている。
このため、復水器6において、タービン5から導入された水蒸気との熱交換の際に蒸発した冷媒の二酸化炭素は、圧縮機8で吸入圧縮された後、ガスクーラ9での負荷側の温水との熱交換により冷却されて膨張機10に導入されて膨張・液化された後、復水器6の冷却に再び供されて、ヒートポンプサイクルを繰り返す。以上より、復水器6において、沸騰により発生する気体の二酸化炭素(冷媒)は、直接、圧縮式ヒートポンプの熱媒体として用いられ、装置の簡素化と効率的な熱回収の達成が可能となる。
【0022】
次に図1に示す、本実施形態における排熱回収システムの動作について説明する。始めに、蒸気タービン発電プラント部1の動作について説明すると、ボイラー3で加熱された水蒸気は、タービン5へ導入されて、タービン5を回し、これによって発電機4を駆動させる。そして、タービン5において発電機を駆動した後、膨張されて排出された水蒸気(復水器圧力約96.3KPa、約33℃)は、復水器6において飽和温度(復水器圧力約96.3KPa、約33℃)の水に復する。その後、復水器6において復された水は給液ポンプ7によって、水蒸気発生用の給水として、再びボイラー3に供給される。
【0023】
この復水器6において、タービン5から導入される水蒸気を、水に復すために発生する排熱は、復水器6に接続された、圧縮式ヒートポンプを用いたヒートポンプ部2に回収される。
【0024】
続いて、ヒートポンプ部2の動作について図1と図2を参照して詳しく説明する。ここで、図2は、本実施形態の圧縮式ヒートポンプの冷凍サイクルを示す、二酸化炭素のP−h線図の例であり、縦軸と横軸がそれぞれ圧力Pとエンタルピーhを表わしている。なお、以下の説明で用いる符号のA,B,C,Dは、それぞれ圧縮式ヒートポンプの冷媒である二酸化炭素の状態(温度、圧力)を指しており、図1のヒートポンプ部2における符号A,B,C,Dは、図2の−h線図における符号A,B,C,Dに対応する状態(温度、圧力)にあることを示している。
【0025】
まず、タービン5から排出され、復水器6に導入された水蒸気は、復水器6内の熱交換器(図示せず)において、液体の二酸化炭素(例えば、A:約20℃、5.7MPa)と熱交換され、冷却されて水に復する。
【0026】
このとき、復水器6で水蒸気から熱を奪った冷媒の二酸化炭素は沸騰し、気体の二酸化炭素(B:約25℃、5.7MPa)へ状態変化する(点A→点B)。次に、気体の二酸化炭素(B:約25℃、5.7MPa)は、圧縮機8において圧縮され、約90℃の気体の二酸化炭素(点C:約90℃、12MPa)に昇温される(点B→点C)。この昇温された二酸化炭素(点C:約90℃、12MPa)はガスクーラ9に導かれ、ガスクーラ9内の熱交換器(図示せず)において、負荷側の温水と熱交換され、約30℃(点D:約30℃、約12MPa)まで冷却される(点C→点D)。
【0027】
一方、ガスクーラ9において、負荷側の温水は、冷媒の二酸化炭素との熱交換によって、入口温度約25℃から出口温度約80℃まで昇温され、昇温された温水は、家庭、オフィスビル、工場などの暖房用温水や温水プール等の熱源、そして地域冷暖房用の熱源温水として利用される。
【0028】
また、ガスクーラ9において約30℃になった冷媒の二酸化炭素(点D:約30℃、約12MPa)は、膨張機10において約12MPaから約5.7MPaまで減圧されることにより約20℃まで冷却され、液体の二酸化炭素(点A:約20℃、5.7MPa)に復する(点D→点A)。この液体の二酸化炭素(点A:約20℃、5.7MPa)は、復水器6の冷却媒体として、再び供給される。
【0029】
以上より、圧縮式ヒートポンプによる熱回収により、従来の蒸気タービン設備では復水器を通じて海洋や大気中に廃棄されていた排熱を温水として有効利用できる。
【0030】
さらにかかる実施の形態によれば、圧縮式ヒートポンプの冷媒の蒸発潜熱を利用して熱除去することにより、熱伝達性能の高い沸騰熱伝達が利用でき、復水器6を小型化することができる。例えば図3は、復水器入口冷却温度に対する伝熱面積比のグラフであるが、このグラフによると、同じ冷却温度で比較すると、液体二酸化炭素を用いて冷却する場合に必要な復水器の伝熱面積は、海水を用いて冷却する場合に必要な復水器の伝熱面積の約1/2であることがわかる。
【0031】
また、冷媒として二酸化炭素を用いるため、前記のように安全で、かつ脱フロン化ができる。また、フロンは臨界温度が約100℃と高いため、温水温度はエネルギー消費効率面から約65℃が上限であるのに対して、臨界温度が約31℃の二酸化炭素では、約80℃の温水が供給できるため、地域冷暖房の熱源として利用することも可能である。
【0032】
【発明の効果】
以上の構成と作用からなる本発明によれば、以下の効果を奏する。
従来の蒸気タービン設備では復水器を通じて海洋や大気中に放出してきた排熱を有効に利用することができ、また回収した熱量分の二酸化炭素の削減が可能であり、地球温暖化防止に貢献できる。
また、圧縮式ヒートポンプを用いることで、吸収式冷凍機を用いた場合に比べ、装置全体の小型化が実現でき、また運転管理も容易な排熱回収システムが実現できる。
また、圧縮式ヒートポンプの冷媒に二酸化炭素を用いることで、環境負荷を小さくでき、発生する温水の温度が高温であるため、発生した温水を多用途に使用できる。
また、復水器での熱交換に熱交換効率の高い、沸騰伝熱を利用することにより、熱交換効率が高く、かつ復水器自体の小型化を実現できる。
また、復水器において冷却水を用いず、直接冷媒の二酸化炭素と熱交換を行うため、海水等の従来の冷却媒体が不要となり、冷却水が調達できない内陸や、地下等においても排熱回収システムを設置することができる。
【図面の簡単な説明】
【図1】排熱回収システムの系統図である。
【図2】圧縮式ヒートポンプの冷凍サイクルを示すP−h線図である。
【図3】復水器入口冷却温度に対する伝熱面積比のグラフを表す図である。
【図4】従来の蒸気タービン設備を示す系統図である。
【符号の説明】
1 蒸気タービン発電プラント部
2 ヒートポンプ部
3 ボイラー
4 発電機
5 タービン
6 復水器
7 給液ポンプ
8 圧縮機
9 ガスクーラ
10 膨張機
20 蒸気タービン設備
21 ボイラー
22 タービン
23 復水機
24 給液ポンプ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust heat recovery system that recovers exhaust heat of a condenser of steam turbine equipment such as a thermal power plant or a light water reactor power plant by operating a compression heat pump using carbon dioxide as a refrigerant.
[0002]
[Prior art]
In thermal power plants and light water reactor power plants, which are steam turbine equipment, steam turbines use the heat of water heated and boiled in a boiler (in a light water reactor, the core of a boiling water reactor or a pressurized water steam generator). In general, the steam generated after driving the steam turbine is returned to water by cooling with seawater or the atmosphere, and is generally circulated and used as boiler water supply.
[0003]
For example, FIG. 4 is a system diagram showing a conventional steam turbine facility. The steam turbine facility 20 introduces steam obtained by heating and boiling water with a boiler 21 into a turbine 22, and then expands steam in a condenser 23 with seawater or air as a cooling medium. A water circulation path is formed so that the water is cooled and returned to water, and returned to the boiler 21 by the feed pump 24 again. In this condenser 23, the cooling medium such as seawater or the atmosphere used for cooling the expanded water vapor is then released into the ocean or the atmosphere.
[0004]
Here, considering, for example, a power plant that is a steam turbine facility, the power generation efficiency is about 53% in the state-of-the-art combined thermal power plant, and about 34% in the latest light water reactor. Therefore, in each of these power plants, about 1/2 to about 2/3 of the supplied heat is released to the ocean etc. as hot wastewater and is not effectively used as energy. There was a problem in terms of environmental discharge of the surface and warm wastewater.
In addition, for example, seawater, which is a cooling medium discharged from the condenser, is only about 7 ° C higher than the inlet temperature, and heat recovery from the discharged cooling medium may increase equipment costs. As an example of heat utilization of the discharged cooling medium, utilization for fish farming is only realized.
[0005]
In view of such a situation, Patent Document 1 discloses exhaust heat recovery that uses the cooling water of a steam turbine condenser to pass the cooling water through an evaporator of an absorption chiller to produce hot water for heating. A system has been proposed.
[0006]
[Patent Document 1]
JP 05-296209 A ([Claim 1] to [Claim 3])
[0007]
However, the exhaust heat recovery system described in Patent Document 1 has the following problems.
The exhaust heat recovery system described in Patent Document 1 employs a method of generating warm water using an absorption refrigerator. However, the absorption refrigerator requires a working medium called an absorption solution in addition to a refrigerant. In addition to an evaporator, an absorber, a regenerator, and a high-temperature regenerator can be used to improve thermal efficiency. Elements are required, and they tend to be large. Furthermore, the absorber of the absorption chiller has a problem that the absorption solution, the refrigerant, and the cooling water inside are complicated in structure and difficult to downsize because heat exchange, mass exchange, and phase change are performed simultaneously. .
[0008]
Further, two types of absorption solution-refrigerant combinations currently used are well known: a lithium bromide-water system and a water-ammonia system. It is known that lithium bromide-based absorbents corrode iron and the like, and ammonia-based refrigerants corrode copper. Corrosion countermeasures are always a major technical issue in absorption refrigerators. In addition, the absorption refrigerator has many drawbacks such as the physical properties of the absorbing solution (crystallization conditions) and many restrictions during operation due to conditions such as cold water, cooling water, and hot water, and the operation management is troublesome.
[0009]
Further, in the exhaust heat recovery system described in Patent Document 1, since a cooling water circuit using water or the like is interposed between the condenser and the evaporator of the absorption chiller, the heat exchange efficiency in the condenser is low. There was also a problem that the condenser itself could not be reduced in size.
[0010]
[Problems to be solved by the invention]
The present invention has been made in view of such a problem, and in a condenser of a steam turbine facility for extracting power by turning a turbine with steam, the exhaust heat generated is recovered by a direct compression heat pump to generate hot water. An object of the present invention is to provide a waste heat recovery system that can effectively use heat that has been conventionally discarded in steam turbine equipment by generating and using them, and that is small and easy to manage.
[0011]
[Means for Solving the Problems]
The exhaust heat recovery system according to claim 1, which has been made to solve the above-mentioned problem, directly recovers the exhaust heat of the condenser of the steam turbine power plant using a compression heat pump. is there.
[0012]
According to the first aspect of the present invention, it is possible to provide a small exhaust heat recovery system with small heat loss and easy operation management.
Since the compression heat pump uses only a single refrigerant, the structure is simple, the size is small, and the energy efficiency is good. In particular, there are mainly two heat exchangers for the compression type refrigerator, namely an evaporator and a condenser. Since there is only a phase change, a plate heat exchanger or the like can be easily adopted, and miniaturization is easy. In addition, since there are few refrigerants that corrode iron, inexpensive iron can be easily used, and the countermeasures against corrosion are relatively easy by paying attention to specific metals. For this reason, it is easy to create an apparatus, and operation management is also easier than when an absorption refrigerator is used.
In addition, since heat is exchanged directly between the refrigerant and the water vapor recovered in the water without using a heat medium such as cooling water in the condenser, the heat loss is smaller than when cooling water is used for heat exchange. Is small and energy loss can be minimized.
[0013]
The exhaust heat recovery system according to claim 2 is characterized in that carbon dioxide is used as a refrigerant of a compression heat pump used in the exhaust heat recovery system.
[0014]
According to the invention described in claim 2, it is possible to provide an exhaust heat recovery system that has a small environmental load and can be used for many purposes.
Chlorofluorocarbons and the like (commonly called chlorofluorocarbons) widely used in compression heat pumps have become difficult to use in recent years due to concerns about environmental impact. Ammonia, which is attracting attention as an alternative refrigerant, is toxic and has a unique odor, which makes it difficult to use.
Table 1 shows typical refrigerants used in compression heat pumps. In this table, carbon dioxide is not toxic and its environmental impact is lower than other refrigerants. is there. In addition, since the critical temperature of chlorofluorocarbon is as high as about 100 ° C., the hot water temperature has an upper limit of about 65 ° C. in terms of energy consumption efficiency, whereas carbon dioxide with a critical temperature of 31 ° C. supplies hot water of about 90 ° C. it can. As a result, it is possible to efficiently transport the hot water generated by the exhaust heat recovery system. Moreover, since the generated hot water is high temperature and stable hot water supply is possible, it can be used not only as warm water for heating but also as hot water for district cooling and heating.
[0015]
[Table 1]
Figure 2004251125
[0016]
The exhaust heat recovery system according to claim 3 is characterized by utilizing boiling heat transfer with high heat removal performance when recovering heat from the condenser.
[0017]
According to the invention described in claim 3, it is possible to provide a small condenser condenser heat recovery system having high heat exchange efficiency.
Boiling heat transfer is known to have high heat transfer efficiency by utilizing latent heat of vaporization. The exhaust heat recovery system according to claim 3 can perform heat exchange with high efficiency by exchanging heat in the condenser using this boiling heat transfer, and can reduce the size of the condenser. .
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, the present invention is not limited to the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment unless otherwise specified, and within the scope of the present invention. Of course, modifications and changes can be made.
[0019]
For example, FIG. 1 is a system diagram of an exhaust heat recovery system for steam turbine equipment in the present embodiment.
The exhaust heat recovery system shown in FIG. 1 includes a steam turbine power plant unit 1 that generates power using a steam turbine, and a heat pump that generates hot water using the exhaust heat of the condenser 6 of the steam turbine power plant unit 1. It is roughly divided into part 2.
[0020]
The steam turbine power plant section 1 includes a boiler 3 and a turbine 5 to which a generator 4 is connected, and a condenser 6 and a feed pump 7 are interposed between the outlet side of the turbine 5 and the inlet side of the boiler 3. Is configured.
[0021]
The heat pump unit 2, which forms the core of the present invention, is composed of a compressor 8, a gas cooler 9 that exchanges heat between the refrigerant and the hot water on the load side, and an expander 10. In this embodiment, the heat pump unit 2 is used as the refrigerant of the heat pump unit 2. While using carbon dioxide, the outlet side path of the expander 10 is connected to the heat transfer pipe inlet side of the condenser 6, and the heat transfer pipe outlet side is connected to the suction side of the compressor 8.
For this reason, in the condenser 6, the carbon dioxide of the refrigerant evaporated during the heat exchange with the steam introduced from the turbine 5 is sucked and compressed by the compressor 8 and then the hot water on the load side in the gas cooler 9. After being cooled by heat exchange and introduced into the expander 10 to be expanded and liquefied, it is again used for cooling the condenser 6 and the heat pump cycle is repeated. As described above, in the condenser 6, gaseous carbon dioxide (refrigerant) generated by boiling is directly used as a heat medium of a compression heat pump, and it is possible to simplify the apparatus and achieve efficient heat recovery. .
[0022]
Next, the operation of the exhaust heat recovery system in the present embodiment shown in FIG. 1 will be described. First, the operation of the steam turbine power plant section 1 will be described. The steam heated by the boiler 3 is introduced into the turbine 5 to rotate the turbine 5 and thereby drive the generator 4. Then, after the generator is driven in the turbine 5, the water vapor expanded and discharged (condenser pressure of about 96.3 KPa, about 33 ° C.) is saturated in the condenser 6 (condenser pressure of about 96. 3KPa, about 33 ° C). Thereafter, the water recovered in the condenser 6 is supplied again to the boiler 3 by the liquid supply pump 7 as water supply for generating steam.
[0023]
In this condenser 6, the exhaust heat generated in order to restore the water vapor introduced from the turbine 5 to water is recovered in the heat pump unit 2 using a compression heat pump connected to the condenser 6. .
[0024]
Next, the operation of the heat pump unit 2 will be described in detail with reference to FIGS. 1 and 2. Here, FIG. 2 is an example of a Ph diagram of carbon dioxide showing the refrigeration cycle of the compression heat pump of this embodiment, and the vertical axis and the horizontal axis represent the pressure P and the enthalpy h, respectively. Note that the symbols A, B, C, and D used in the following description indicate the states (temperature and pressure) of carbon dioxide that is a refrigerant of the compression heat pump, respectively, and symbols A and B in the heat pump unit 2 in FIG. B, C, D shows that in the code a, B, C, state corresponding to D (temperature, pressure) in the P -h diagram of FIG.
[0025]
First, the water vapor discharged from the turbine 5 and introduced into the condenser 6 is converted into liquid carbon dioxide (for example, A: about 20 ° C., 5.P) in a heat exchanger (not shown) in the condenser 6. 7 MPa) and is cooled and restored to water.
[0026]
At this time, the carbon dioxide of the refrigerant that has taken heat from the water vapor in the condenser 6 boils and changes state to gaseous carbon dioxide (B: about 25 ° C., 5.7 MPa) (point A → point B). Next, gaseous carbon dioxide (B: about 25 ° C., 5.7 MPa) is compressed by the compressor 8 and heated to about 90 ° C. gaseous carbon dioxide (point C: about 90 ° C., 12 MPa). (Point B → Point C). The heated carbon dioxide (point C: about 90 ° C., 12 MPa) is guided to the gas cooler 9, and is heat-exchanged with the hot water on the load side in a heat exchanger (not shown) in the gas cooler 9. It is cooled to (Point D: about 30 ° C., about 12 MPa) (Point C → Point D).
[0027]
On the other hand, in the gas cooler 9, the hot water on the load side is heated from an inlet temperature of about 25 ° C. to an outlet temperature of about 80 ° C. by heat exchange with the carbon dioxide of the refrigerant. It is used as a heat source for heating water in a factory, a hot water pool, etc., and as a heat source hot water for district cooling and heating.
[0028]
Also, the carbon dioxide (point D: about 30 ° C., about 12 MPa) of the refrigerant that has become about 30 ° C. in the gas cooler 9 is cooled to about 20 ° C. by being decompressed from about 12 MPa to about 5.7 MPa in the expander 10. Then, liquid carbon dioxide (point A: about 20 ° C., 5.7 MPa) is restored (point D → point A). This liquid carbon dioxide (point A: about 20 ° C., 5.7 MPa) is supplied again as a cooling medium for the condenser 6.
[0029]
As described above, the heat recovery by the compression heat pump can effectively use the exhaust heat discarded in the ocean or the atmosphere through the condenser in the conventional steam turbine equipment as hot water.
[0030]
Furthermore, according to this embodiment, by removing heat using the latent heat of vaporization of the refrigerant of the compression heat pump, boiling heat transfer with high heat transfer performance can be used, and the condenser 6 can be downsized. . For example, FIG. 3 is a graph of the ratio of the heat transfer area to the condenser inlet cooling temperature. According to this graph, when compared with the same cooling temperature, the condenser required for cooling with liquid carbon dioxide is shown. It can be seen that the heat transfer area is about ½ of the heat transfer area of the condenser required for cooling with seawater.
[0031]
In addition, since carbon dioxide is used as the refrigerant, it can be safely and defluorinated as described above. In addition, since the critical temperature of fluorocarbon is as high as about 100 ° C., the upper limit of the hot water temperature is about 65 ° C. from the viewpoint of energy consumption efficiency, whereas the temperature of carbon dioxide with the critical temperature of about 31 ° C. is about 80 ° C. Can be used as a heat source for district heating and cooling.
[0032]
【The invention's effect】
According to the present invention having the above configuration and operation, the following effects can be obtained.
Conventional steam turbine equipment can effectively use the exhaust heat released into the ocean and the atmosphere through a condenser, and can reduce the amount of carbon dioxide recovered, contributing to the prevention of global warming. it can.
In addition, by using a compression heat pump, it is possible to realize a waste heat recovery system that can achieve downsizing of the entire apparatus and easy operation management as compared with the case of using an absorption refrigerator.
Further, by using carbon dioxide as the refrigerant of the compression heat pump, the environmental load can be reduced, and the generated hot water can be used for many purposes because the temperature of the generated hot water is high.
In addition, by using boiling heat transfer with high heat exchange efficiency for heat exchange in the condenser, the heat exchange efficiency is high and the condenser itself can be downsized.
In addition, since the condenser does not use cooling water and directly exchanges heat with carbon dioxide, which is a refrigerant, conventional cooling media such as seawater is no longer necessary, and exhaust heat is recovered even inland and underground where cooling water cannot be procured. A system can be installed.
[Brief description of the drawings]
FIG. 1 is a system diagram of an exhaust heat recovery system.
FIG. 2 is a Ph diagram illustrating a refrigeration cycle of a compression heat pump.
FIG. 3 is a diagram illustrating a graph of a heat transfer area ratio with respect to a condenser inlet cooling temperature.
FIG. 4 is a system diagram showing conventional steam turbine equipment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steam turbine power plant part 2 Heat pump part 3 Boiler 4 Generator 5 Turbine 6 Condenser 7 Liquid feed pump 8 Compressor 9 Gas cooler 10 Expander 20 Steam turbine equipment 21 Boiler 22 Turbine 23 Condenser 24 Feed liquid pump

Claims (3)

蒸気タービン設備の復水器の排熱を回収して温水を得る排熱回収システムであって、
前記復水器の冷却媒体側回路と、圧縮式ヒートポンプの熱回路を接続し、前記蒸気タービン設備の排熱を、前記圧縮式ヒートポンプで直接回収すること、
を特徴とする排熱回収システム。
An exhaust heat recovery system that recovers exhaust heat from a condenser of a steam turbine facility to obtain hot water,
Connecting a cooling medium side circuit of the condenser and a heat circuit of a compression heat pump, and exhaust heat of the steam turbine equipment is directly recovered by the compression heat pump;
An exhaust heat recovery system characterized by
前記圧縮式ヒートポンプの冷媒に、二酸化炭素を用いたこと、
を特徴とする請求項1に記載の排熱回収システム。
Carbon dioxide was used as the refrigerant of the compression heat pump,
The exhaust heat recovery system according to claim 1.
前記復水器において、蒸気タービンから導入された蒸気と前記圧縮式ヒートポンプの冷媒との熱交換の際に、前記冷媒側の伝熱機構に沸騰伝熱を用いること、
を特徴とする請求項1もしくは請求項2に記載の排熱回収システム。
In the condenser, when heat is exchanged between the steam introduced from the steam turbine and the refrigerant of the compression heat pump, boiling heat transfer is used for the heat transfer mechanism on the refrigerant side,
The exhaust heat recovery system according to claim 1 or 2, characterized in that.
JP2003039177A 2003-02-18 2003-02-18 Exhaust heat recovery system Pending JP2004251125A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003039177A JP2004251125A (en) 2003-02-18 2003-02-18 Exhaust heat recovery system
US10/803,081 US20040237527A1 (en) 2003-02-18 2004-03-18 Exhaust heat recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003039177A JP2004251125A (en) 2003-02-18 2003-02-18 Exhaust heat recovery system

Publications (1)

Publication Number Publication Date
JP2004251125A true JP2004251125A (en) 2004-09-09

Family

ID=33023419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003039177A Pending JP2004251125A (en) 2003-02-18 2003-02-18 Exhaust heat recovery system

Country Status (2)

Country Link
US (1) US20040237527A1 (en)
JP (1) JP2004251125A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133593A (en) * 2008-12-03 2010-06-17 Sanden Corp Storage water heater
JP2012172874A (en) * 2011-02-18 2012-09-10 Kobe Steel Ltd Hot water manufacturing supply unit
CN103806964A (en) * 2012-11-06 2014-05-21 蓝瑚科技有限公司 Method and system for comprehensively utilizing steam turbine dead steam latent heat
CN104197397A (en) * 2014-09-23 2014-12-10 大连葆光节能空调设备厂 Energy-saving heat supply system for decreasing temperature of heating return water and recovering waste heat of thermal power plant
KR20150110365A (en) * 2014-03-21 2015-10-02 주식회사 엘지화학 Heat recovery apparatus
KR20150127553A (en) * 2014-05-07 2015-11-17 주식회사 엘지화학 Heat recovery apparatus

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004320390B2 (en) * 2004-06-01 2011-05-19 Noboru Masada Highly efficient heat cycle device
DE102006011319A1 (en) * 2006-03-09 2007-09-13 Karl Heinz Gast System with aggregation condition varying heat carrier e.g. heat pump, operating method, involves utilizing heat or cool or flow energy from heat carrier on differential pressure drive for heat pump or compressor of pressure drive
US20080127665A1 (en) 2006-11-30 2008-06-05 Husky Injection Molding Systems Ltd. Compressor
GB2449130B (en) * 2007-05-09 2011-11-30 Joseph Francis Brown Jr Refrigerant cooled main steam condenser binary cycle
US20090126381A1 (en) * 2007-11-15 2009-05-21 The Regents Of The University Of California Trigeneration system and method
EP2196633A1 (en) * 2008-12-15 2010-06-16 Siemens Aktiengesellschaft Power plant with a turbine unit and a generator
TWM377472U (en) * 2009-12-04 2010-04-01 Cheng-Chun Lee Steam turbine electricity generation system with features of latent heat recovery
US9645986B2 (en) 2011-02-24 2017-05-09 Google Inc. Method, medium, and system for creating an electronic book with an umbrella policy
CN102337935A (en) * 2011-08-26 2012-02-01 北京无碳绿源新能源技术有限责任公司 Multi-source thermoelectric interlocking circulating system
CN104296544B (en) * 2014-10-13 2016-07-06 中信重工机械股份有限公司 A kind of low-temperature cogeneration flash system
US20160265393A1 (en) * 2015-03-10 2016-09-15 Denso International America, Inc. Regenerative Rankine Cycle For Vehicles
CN105782994B (en) * 2016-05-03 2018-03-13 广州维港环保科技有限公司 A kind of afterheat generating system for industrial dangerous waste disposal industry
US9453665B1 (en) * 2016-05-13 2016-09-27 Cormac, LLC Heat powered refrigeration system
CN106640243A (en) * 2016-12-30 2017-05-10 翁志远 Residual heat electric generating system and technology thereof, as well as power station
CN106766362B (en) * 2017-01-24 2022-10-14 华泰永创(北京)科技股份有限公司 Coking system and waste heat recovery system thereof
CN106766363B (en) * 2017-01-24 2022-09-23 华泰永创(北京)科技股份有限公司 Coking system and waste heat recovery system thereof
CN109621480A (en) * 2019-01-07 2019-04-16 天津乐科节能科技有限公司 A kind of indirect type vacuum cooled decrease temperature crystalline system and method
CN110024922A (en) * 2019-05-10 2019-07-19 同方节能装备有限公司 The system of novel carbonated beverage production based on absorption technology
CN112229096A (en) * 2020-10-30 2021-01-15 青岛索迷尔能源科技有限公司 Dual-air-supply enthalpy-increasing type internal combustion engine driving heat pump
CN113669121B (en) * 2021-08-26 2022-06-14 江南大学 Power plant condensing system and process method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4333515A (en) * 1980-08-13 1982-06-08 Battelle Development Corp. Process and system for boosting the temperature of sensible waste heat sources
US5718122A (en) * 1996-01-12 1998-02-17 Ebara Corporation Air conditioning system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133593A (en) * 2008-12-03 2010-06-17 Sanden Corp Storage water heater
JP2012172874A (en) * 2011-02-18 2012-09-10 Kobe Steel Ltd Hot water manufacturing supply unit
CN103806964A (en) * 2012-11-06 2014-05-21 蓝瑚科技有限公司 Method and system for comprehensively utilizing steam turbine dead steam latent heat
KR20150110365A (en) * 2014-03-21 2015-10-02 주식회사 엘지화학 Heat recovery apparatus
KR101643844B1 (en) * 2014-03-21 2016-07-28 주식회사 엘지화학 Heat recovery apparatus
KR20150127553A (en) * 2014-05-07 2015-11-17 주식회사 엘지화학 Heat recovery apparatus
KR101653105B1 (en) * 2014-05-07 2016-08-31 주식회사 엘지화학 Heat recovery apparatus
CN104197397A (en) * 2014-09-23 2014-12-10 大连葆光节能空调设备厂 Energy-saving heat supply system for decreasing temperature of heating return water and recovering waste heat of thermal power plant

Also Published As

Publication number Publication date
US20040237527A1 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP2004251125A (en) Exhaust heat recovery system
CA2755034C (en) Rankine cycle integrated with absorption chiller
JP5845590B2 (en) Heat pump steam generator
JPH01131860A (en) Refrigeration system using combustion as power
JP2005248877A (en) Binary cycle power generation method and device
CN111473540A (en) Ship waste heat driven CO2Supercritical power generation coupling transcritical refrigeration cycle system
WO2016043094A1 (en) Cooling equipment, combined cycle plant comprising same, and cooling method
JPH10288047A (en) Liquefied natural gas evaporating power generating device
JP2007262909A (en) Power system
JP2010038159A (en) System and method for use in combined cycle power plant or rankine cycle power plant using air-cooled steam condenser
JP2011208569A (en) Temperature difference power generation device
JP2007263482A (en) Composite heat pump system
KR101071919B1 (en) High efficient Gas Compression System using Absorption refrigeration
JP2002266656A (en) Gas turbine cogeneration system
KR101528935B1 (en) The generating system using the waste heat of condenser
JP2003269114A (en) Power and cold heat supply combined system and its operating method
JP2014190285A (en) Binary power generation device operation method
JP2001248936A (en) Exhaust heat absorbing refrigeration system
CN206016979U (en) Seawater cooling, the efficient combustion engine inlet gas cooling device of mixing low-temperature receiver
JP2001004791A (en) Reactor heat utilization system
JP4301666B2 (en) Waste heat absorption refrigerator
KR101358309B1 (en) Rankine cycle system and ship with the same
JP2010096414A (en) Ammonia absorption refrigeration type power generating device
JPH05272837A (en) Compression absorption composite heat pump
CN106150700B (en) Seawater is cooling, mixes the efficient combustion engine inlet gas cooling device of low-temperature receiver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090512