KR101528935B1 - The generating system using the waste heat of condenser - Google Patents

The generating system using the waste heat of condenser Download PDF

Info

Publication number
KR101528935B1
KR101528935B1 KR1020090021940A KR20090021940A KR101528935B1 KR 101528935 B1 KR101528935 B1 KR 101528935B1 KR 1020090021940 A KR1020090021940 A KR 1020090021940A KR 20090021940 A KR20090021940 A KR 20090021940A KR 101528935 B1 KR101528935 B1 KR 101528935B1
Authority
KR
South Korea
Prior art keywords
refrigerant
cooling water
condenser
heat
waste heat
Prior art date
Application number
KR1020090021940A
Other languages
Korean (ko)
Other versions
KR20100103771A (en
Inventor
임효진
Original Assignee
임효진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 임효진 filed Critical 임효진
Priority to KR1020090021940A priority Critical patent/KR101528935B1/en
Publication of KR20100103771A publication Critical patent/KR20100103771A/en
Application granted granted Critical
Publication of KR101528935B1 publication Critical patent/KR101528935B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/02Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

본 발명은 증기사이클을 사용하는 설비에서 사용한 후의 배출증기를 물로 다시 복원시켜주는 복수기에서 배출되는 배출냉각수가 가지고 있는 복수기 폐열을 이용하여 전력을 생산하는 복수기 폐열 발전시스템에 관한 것이다.        The present invention relates to a condenser cogeneration system for generating electricity by using waste heat of a condenser having discharge coolant discharged from a condenser for recovering exhaust steam after use in a plant using a steam cycle.

증기사이클에 있어서 배출증기를 복수시키는 것은 증기사이클 효율과 관련된 매우 중요한 과정이다. 에너지활용 측면에서 보면 화력발전기의 경우 투입연료의 40%정도만 전기로 변환되고, 13%정도는 연소과정과 발전기에서 손실되고, 47%정도가 냉각수에 의해 손실되며 냉각수의 온도를 상승시켜 환경문제 또한 유발시키고 있다.Aeration of the exhaust vapors in the steam cycle is a very important process related to the steam cycle efficiency. In terms of energy utilization, only about 40% of the input fuel is converted to electricity, 13% is lost in the combustion process and the generator, 47% is lost by the cooling water, and the temperature of the cooling water is raised. .

공개번호 10-2004-0055256[증기터빈을 이용한 발전장치의 폐열회수시스템], 등록번호 10-0678705[증기동력플랜트의 폐열회수장치] 등에서는 주로 폐열을 발전사이클에 열의 형태로 재활용 하는 방법을제시하였고, 등록번호 10-0354787[발전소 온배수를 이용한 양어방법 및 그러한 양어방법에 이용되는 발전소 온배수의 수질개선장치]에서는 폐열을 열의 형태로 다른 목적에 사용하는 방법을 제시하였다. 특히 발전소 폐열의 경우 량이 매우 많으므로 활용시 재생시킬 수 있는 열량이 천문학적이다. 그렇지만 열의 형태로 사용하려면 열의 수송이 어려우므로 주변에 열사용처가 없으면 활용성이 떨어진다. Public No. 10-2004-0055256 [Waste heat recovery system using steam turbine], Registration No. 10-0678705 [Waste heat recovery system for steam power plant] mainly suggests a way to recycle waste heat in the form of heat in the power generation cycle No. 10-0354787, entitled "Method for the Ammonia Method Using Power Plant Power Plant and Method for Improving the Water Quality of Power Plant Thermal Power Plant Used in Such a Method", discloses a method of using waste heat for other purposes in the form of heat. In particular, the amount of waste heat in power plants is very large, so the amount of heat that can be regenerated when used is astronomical. However, it is difficult to transport heat in the form of heat.

본 발명에서는 이 폐열을 전기형태로 변환시켜 송전시키는 방안을 강구한다. 그 이론적 근거는 해양온도차발전(OTEC; Ocean Thermal Energy Conversion)으로 저온의 폐열을 회수하기 위하여 저온비등냉매를 작동유체로 하여 발전사이클을 형성 하여 전기를 생산하는 방법을 적용하였다. 냉동사이클로 배출냉각수 열을 높은 온도의 열원으로 변화시킨 다음 2단으로 온도차발전을 실행시키는 방법으로 발전효율을 더욱더 높였다.In the present invention, the waste heat is converted into an electric form to be transmitted. The theoretical basis is Oceanic Thermal Energy Conversion (OTEC), in order to recover the waste heat at low temperature, a method of generating electricity by forming a power generation cycle with low temperature boiling refrigerant as working fluid was applied. In the refrigeration cycle, the exhaust cooling water heat is converted into a high-temperature heat source, and then the temperature difference power generation is performed in two stages, thereby further enhancing the power generation efficiency.

복수기, 해양온도차발전, 폐열, 냉매, 냉동사이클, 발전사이클 Condensate, offshore thermal power generation, waste heat, refrigerant, refrigeration cycle, power generation cycle

Description

복수기 폐열 발전시스템{The generating system using the waste heat of condenser}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001]

복수기 폐열 회수시스템 분야Condensate heat recovery system

기존의 증기사이클에는 배출증기에서 열을 제거하여 물로 복원하는 복수기(11)가 사용되고 있다. 공개번호 10-2004-0055256[증기터빈을 이용한 발전장치의 폐열회수시스템], 등록번호 10-0678705[증기동력플랜트의 폐열회수장치] 등에서는 주로 폐열을 발전사이클에 열의 형태로 재활용 하는 방법을제시하였고, 등록번호 10-0354787[발전소 온배수를 이용한 양어방법 및 그러한 양어방법에 이용되는 발전소 온배수의 수질개선장치]에서는 폐열을 열의 형태로 다른 목적에 사용하는 방법을 제시하였다. 특히 발전소 폐열의 경우 량이 매우 많으므로 활용시 재생시킬 수 있는 열량이 천문학적이다. 그렇지만 열의 형태로 사용하려면 열의 수송이 어려우므로 주변에 열사용처가 없으면 활용성이 떨어진다. 아직까지 복수기의 폐열을 전기형태로 회수하고자 하는 발명은 없다.In the conventional steam cycle, a condenser 11 for recovering heat from the exhaust steam by using water is used. Public No. 10-2004-0055256 [Waste heat recovery system using steam turbine], Registration No. 10-0678705 [Waste heat recovery system for steam power plant] mainly suggests a way to recycle waste heat in the form of heat in the power generation cycle No. 10-0354787, entitled "Method for the Ammonia Method Using Power Plant Power Plant and Method for Improving the Water Quality of Power Plant Thermal Power Plant Used in Such a Method", discloses a method of using waste heat for other purposes in the form of heat. In particular, the amount of waste heat in power plants is very large, so the amount of heat that can be regenerated when used is astronomical. However, it is difficult to transport heat in the form of heat. There is no invention to recover the waste heat of the condenser in the form of electricity.

본 발명은 복수기(11)에서 배출냉각수의 온도와 대기간의 온도차이/냉각수 증발잠열을 이용하여 저온비등냉매를 작동유체로 하여 발전하는 온도차발전을 실행하도록 한다. 특히 배출냉각수의 온도가 별로 높지 않음에 착안하여 냉동사이클로 배출냉각수 열을 높은 온도의 열원으로 변화시킨 다음 2단으로 온도차발전을 실행시키는 방법으로 발전효율을 더욱더 높이도록 한다. 생산된 전력은 교류송전계통에 바로 송전하는 방식을 강구한다.In the present invention, in the condenser (11), temperature difference power generation is performed using low temperature boiling refrigerant as a working fluid by using the temperature of exhaust cooling water and the temperature difference between the atmosphere / cooling water evaporation latent heat. In particular, attention is focused on the fact that the temperature of the discharged cooling water is not very high, and the power generation efficiency is further increased by changing the discharged cooling water heat to the high temperature heat source in the refrigeration cycle and then performing the temperature difference power generation in two stages. The generated power is directly transmitted to the AC transmission system.

복수기(11)에서 배출되는 배출냉각수와 대기(냉각수 잠열포함)의 온도차이에 의한 발전장치 구현Implementation of power generation system by temperature difference between exhaust cooling water discharged from condenser 11 and atmosphere (including latent heat of cooling water)

증기사이클의 효율은 약40% 정도이고 복수기의 배출냉각수로 버려지는 에너지가 매우 크다. 따라서 이를 효율적으로 회수할 수 있으면 증기사이클의 효율을 한층 높일 수 있다. 증기사이클을 운전하기 위하여 냉각수는 공급할 수 밖에 없으므로 이미 펌핑된 배출냉각수를 활용하여 온도차발전을 한다면 발전을 위하여 온수를 펌핑을 하여야 하는 부담이 없어지므로 이것은 해양온도차발전에서 표층수를 펌핑하여야 하는 문제점을 해소시킨 것과 같다. 또한 해양온도차발전에서 심층수를 펌핑하는 부담, 바다생물에 의한 배관의 막힘, 생산된 전력의 전송 등의 측면에서 매우 유리하다. 그리고 배출냉각수에서 에너지를 회수하고 대기로 폐열을 보냄에 따라 배출냉각수의 온도상승의 문제점을 사전에 차단할 수 있어서 에너지 효율향상과 환경문제 개선의 두가지 장점을 한 번에 취할 수 있다.The efficiency of the steam cycle is about 40% and the energy discharged to the condensate discharge water is very large. Therefore, if it can be efficiently recovered, the efficiency of the steam cycle can be further increased. Since it is necessary to supply cooling water to operate the steam cycle, it is not necessary to pumped the hot water for power generation if the temperature difference is generated by utilizing the pumped exhaust cooling water. This solves the problem of pumping surface water in the ocean temperature difference power generation . In addition, it is very advantageous in terms of the burden of pumping deeper water in offshore thermal power generation, clogging of pipelines by sea creatures, and transmission of generated power. In addition, since the waste heat is recovered from the discharged cooling water and the waste heat is sent to the atmosphere, the problem of the temperature rise of the discharged cooling water can be prevented in advance, so that it is possible to take advantage of the two advantages of improved energy efficiency and environmental problem at a time.

상온에서 압력에 따라 액체와 기체로 쉽게 상태변화를 하는 액화가스는 프로판, 부탄, 암모니아, 이산화탄소, CFC, HCFC, 프레온22(HCF22), 탄화수소 등 종류가 매우 많고 계속하여 새로운 액화가스(또는 냉매)는 개발되고 있다. R141b는 비등점이 약32℃, R123은 약28℃, R245fa는 15℃, R245ca는 25℃이다. 증기사이클의 복수 폐열은 높은 온도가 아니므로 저온에서 액체와 기체로 쉽게 상태변화를 하는 저온비등냉매를 작동유체로 사용해야 하는데 본 발명에서는 이러한 저온비등냉매 중 하나를 작동유체로 채택한다.     Liquefied gas, which easily changes state to liquid and gas depending on pressure at room temperature, is very rich in propane, butane, ammonia, carbon dioxide, CFC, HCFC, Freon 22 (HCF22) Is being developed. R141b has a boiling point of about 32 占 폚, R123 of about 28 占 폚, R245fa of 15 占 폚, and R245ca of 25 占 폚. Since a plurality of waste heat of a steam cycle is not a high temperature, a low temperature boiling refrigerant which easily changes state from a low temperature to a liquid and a gas should be used as a working fluid. In the present invention, one of such low temperature boiling refrigerant is employed as a working fluid.

도 1은 기존의 발전사이클 원리 설명도이다. 원리는 다음과 같다. 작동유체는 공급수펌프(12)에 의해 보일러(13)에 공급되며 보일러에서 열을 흡수하여 액체상태에서 기체상태로 상태변화를 한다. 기체상태의 작동유체는 배관을 타고 터빈(14)을 회전시키고 복수기(11)에서 액체상태로 상태변화를 하고 공급수펌프(12)에 의해 다시 보일러(13)에 공급되면서 순환의 한 주기를 완료한다. 배관내를 흐르는 기체상태 작동유체의 흐름은 기체가 발생하는 고압인 보일러(13)와 기체가 액화되는 복수기(11) 간의 압력차이에 의해 이루어지며 이것이 크면 보일러(13)와 복수기(11) 사이에 설치된 터빈(14)에 많은 운동에너지가 가해지고 이것은 결국 발전기(15)에서 전기에너지로 변환되어 나타난다. 따라서 복수기(11)는 발전사이클에서 매우 중요한 기기이다.    FIG. 1 is an explanatory diagram of a conventional power generation cycle principle. The principle is as follows. The working fluid is supplied to the boiler (13) by the feed water pump (12) and absorbs heat from the boiler to change its state from a liquid state to a gaseous state. The working fluid in the gaseous state is supplied to the boiler 13 by the rotation of the turbine 14, the state change from the condenser 11 to the liquid state, and the supply water pump 12 by the piping to complete the cycle of the circulation do. The flow of the gaseous working fluid flowing in the piping is caused by the pressure difference between the high pressure boiler 13 in which the gas is generated and the condenser 11 in which the gas is liquefied. A large amount of kinetic energy is applied to the installed turbine 14, which is eventually transformed into electric energy from the generator 15. Therefore, the condenser 11 is a very important instrument in the power generation cycle.

도 2는 기존의 발전기 복수기 시스템 설명도이다. 보일러(13)에서 생산된 고온 고압 증기는 증기배관(22)을 통해 고압터빈(21), 저압터빈(23)을 구동시키고 복수기(11) 내부로 배출증기 상태로 유입된다. 배출증기는 복수기(11) 안에서 냉각수가 내부로 흐르는 다수의 열교환튜브(26)와 접하면서 열교환을 하여 액체로 상태변화를 일으키기 때문에 복수기(11) 내부의 압력을 낮추면서 물로 복원된다. 이렇게 복원된 복수는 공급수펌프(12)에 의해 공급수관(27)을 통하여 다시 보일러(13) 내부로 유입되어 증기사이클을 이어간다. 냉각수유입관(24)으로 들어온 냉각수는 복수기(11) 내부에 설치된 열교환튜브(26) 내부를 흐르며 배출증기와 열교환하고 냉각수유출관(25)을 통하여 배출된다. 냉각수로 물, 특히 해수를 사용하면 슬러지가 발생하여 열교환튜브(26) 구멍을 막게 하거나 열교환튜브(26)를 부식시키는 등의 문제를 유발시킬 수 있다. 그리고 복수기(11)의 폐열이 모두 냉각수에 현열로 전달되므로 냉각수의 온도를 높여서 배출냉각수 온도상승문제를 유발시킬 수 있다.        2 is an explanatory view of a conventional generator / condenser system. The high temperature high pressure steam produced in the boiler 13 drives the high pressure turbine 21 and the low pressure turbine 23 through the steam pipe 22 and flows into the condenser 11 in the exhaust steam state. The discharged steam is in contact with a plurality of heat exchange tubes 26 in which the cooling water flows in the condenser 11 and exchanges heat to cause a state change to the liquid, so that the pressure in the condenser 11 is lowered to water. The recovered condensate is introduced into the boiler 13 through the water supply pipe 27 by the feed water pump 12 and continues the steam cycle. The cooling water flowing into the cooling water inflow pipe 24 flows through the heat exchange tube 26 provided inside the condenser 11 and exchanges heat with the exhaust steam and is discharged through the cooling water outlet pipe 25. If water, particularly seawater, is used as the cooling water, sludge may be generated to cause holes in the heat exchange tubes 26 or corrodes the heat exchange tubes 26. Since all the waste heat of the condenser 11 is transferred to the cooling water as sensible heat, the temperature of the cooling water is raised, which may cause a problem of rising temperature of the exhaust cooling water.

도 3은 단일발전사이클을 적용한 복수기 폐열 발전시스템 설명도이다. 복수기(11)에서 배출냉각수가 유출되는 냉각수유출관(25)에 잠겨서 배출냉각수와 열교환하여 저온비등냉매가 기화하며 열을 흡수하는 기화기(31)를 설치한다. 기화기(31) 후단에는 냉매공급펌프(35)를 설치하고, 기화기(31) 전단에는 냉매터빈(36)과 응축기(32)를 순차적으로 설치한다. 냉매터빈(36) 축에는 냉매발전기(37)를 설치한다. 응축기(32) 후단과 냉매공급펌프(35) 후단 사이에 냉매탱크(33)를 설치하여, 기화기(31), 냉매터빈(36), 응축기(32), 냉매탱크(33), 냉매공급펌프(35) 다시 기화기(31)의 순서로 배관(34)으로 폐회로로 연결되는 냉매발전회로를 구성하고 냉 매발전회로 내부에는 배출냉각수에 증발이 가능한 저온비등 작동유체인 냉매를 채워 넣는다. 기화기(31)는 냉매발전사이클에서 일종의 보일러로 작동유체인 저온비등냉매를 끓이는 작용을 한다. 작동원리는 다음과 같다. 냉각수유출관(25)에 설치된 기화기(31)는 복수기(11)를 빠져나온 배출냉각수로부터 열을 흡수하여 내부에 채워진 냉매를 기화시킨다. 기화된 냉매는 배관(34)을 타고 냉매터빈(36)을 돌리고 응축기(32)로 유입되어 열을 버리고 액체상태로 상태변화를 하면서 응축기를 저압상태로 만들어서 기체냉매 발생으로 고압상태가 된 기화기(31)로부터 기체냉매를 흡입하여 기화기(31)에서 지속적으로 열을 흡수하도록 한다. 응축기(32)에서 액화된 액체냉매는 배관(34)을 타고 냉매탱크(33)에 보내어진다. 냉매공급펌프(35)는 냉매탱크(33)로부터 액체냉매를 기화기(31)로 다시 공급함으로써 순환의 한 주기를 완료한다. 응축기(32)에 냉각수유입관(24)과 냉각수유출관(25)을 추가하여 응축기(32)에 냉각수가 순환되도록 하며 냉각수유입관(24) 끝부분에 냉각수분사기(38)를 설치하고 인근에 응축기(32)에 접하도록 냉각팬(39)을 설치하여 냉각수를 응축기(32)에 분사시키며 냉각팬(39)으로 증발시켜 냉각수 증발잠열에 의해 응축기(32)의 냉각성능이 좋아지도록 한다. 응축기(32)를 통하여 폐열을 공기중으로 버림에 따라 배출냉각수 온도상승의 문제를 다소 완화시킬 수 있다. 응축기(32)가 높은 위치에 설치되면 응축기(32)에서 형성된 액체냉매가 중력에 의하여 냉매탱크(33)를 거쳐 기화기(31)로 유입 가능하다. 이때에는 냉매공급펌프(35)를 생략할 수 있다.         3 is an explanatory diagram of a condenser-type cogeneration system applying a single power generation cycle. A vaporizer 31 is installed which is submerged in a cooling water outlet pipe 25 through which the discharged cooling water flows out from the condenser 11 and heat-exchanges with the discharged cooling water to vaporize the low temperature boiling refrigerant and absorb heat. A refrigerant supply pump 35 is provided at a rear end of the vaporizer 31 and a refrigerant turbine 36 and a condenser 32 are sequentially installed at the front end of the vaporizer 31. A refrigerant generator (37) is installed on the shaft of the refrigerant turbine (36). A refrigerant tank 33 is provided between the rear end of the condenser 32 and the rear end of the refrigerant supply pump 35 and the evaporator 31, the refrigerant turbine 36, the condenser 32, the refrigerant tank 33, 35) A refrigerant generating circuit is connected to the piping (34) by a closed circuit in the order of the vaporizer (31). The inside of the cooling power generating circuit is filled with refrigerant as a low temperature boiling hydraulic oil capable of vaporizing the discharged cooling water. The vaporizer 31 serves to boil low temperature boiling refrigerant, which is a working oil, into a kind of boiler in a refrigerant power generation cycle. The working principle is as follows. The vaporizer 31 provided in the cooling water outlet pipe 25 absorbs heat from the discharged cooling water exiting the condenser 11 to vaporize the refrigerant filled therein. The vaporized refrigerant flows through the pipe 34, turns the refrigerant turbine 36, flows into the condenser 32, discards the heat, changes the state of the condenser into a liquid state, lowers the pressure of the condenser, 31 to suck the gas refrigerant and continuously absorb heat in the vaporizer 31. The liquid refrigerant liquefied in the condenser 32 is sent to the refrigerant tank 33 via the pipe 34. The refrigerant supply pump 35 completes one cycle of the circulation by supplying the liquid refrigerant from the refrigerant tank 33 back to the vaporizer 31. The cooling water inflow pipe 24 and the cooling water outflow pipe 25 are added to the condenser 32 so that the cooling water is circulated to the condenser 32 and the cooling water injector 38 is installed at the end of the cooling water inflow pipe 24, A cooling fan 39 is provided to contact the condenser 32 so that the cooling water is sprayed to the condenser 32 and evaporated by the cooling fan 39 so that the cooling performance of the condenser 32 is improved by the latent heat of evaporation of the cooling water. As the waste heat is blown into the air through the condenser 32, the problem of the temperature of the exhaust cooling water can be somewhat mitigated. When the condenser 32 is installed at a high position, the liquid refrigerant formed in the condenser 32 can flow into the vaporizer 31 through the refrigerant tank 33 by gravity. At this time, the refrigerant supply pump 35 may be omitted.

도 4는 냉동사이클/발전사이클 2단적용 복수기 폐열 발전시스템 설명도이다. 복수기(11)에서 배출되는 배출냉각수 온도는 약30℃ 정도로 낮은 편이다. 따라서 우선 냉동사이클을 통하여 높은 온도의 유체흐름을 만든다. 일종의 히트펌프 회로인 것이다. 그리고 높은 온도의 유체흐름을 이용하여 발전사이클을 적용하여 온도차발전을 시행한다. 우선 냉동사이클을 구성한다. 복수기(11)에서 배출냉각수가 유출되는 냉각수유출관(25)에 잠겨서 배출냉각수와 열교환하여 저온비등냉매가 기화하며 열을 흡수하는 기화기(31)를 설치한다. 기화기(31) 다음에 압축기(41), 냉동사이클의 응축기 역할을 하는 열교환기(42) 1차측, 팽창밸브(43) 다시 기화기(31)의 순서로 폐회로가 구성되도록 배관(34)으로 연결시킨다. 열교환기(42)는 1차측은 냉동사이클에서 응축기 역할을 하고 2차측은 냉매발전사이클에서 보일러 역할을 한다. 열교환기(42) 1차측은 냉동사이클의 압축기(41)에서 압축된 고온(약90℃)의 습증기 상태의 냉매가 유입되고 2차측에는 냉매발전사이클의 액체냉매가 유입되어 열이 1차측에서 2차측으로 옮겨가게 된다. 배출냉각수 온도 약30℃로부터 열을 흡수하였으나 냉동사이클을 활용하여 약90℃의 열원으로 온도를 올리는 효과를 볼 수 있다. 필요하다면 추가로 냉동사이클을 적용하여 열원의 온도를 높일 수 있다. 다음은 높아진 열원을 이용하여 2단계로 발전사이클을 형성한다. 냉동사이클과 결합되어 있는 열교환기(42) 2차측, 냉매터빈(36), 응축기(32), 냉매탱크(33), 냉매공급펌프(35) 다시 열교환기(42) 2차측의 순서로 배관(34)으로 폐회로로 연결되는 냉매발전회로를 구성하고 냉매발전회로 내부에는 열교환기(42) 1차측 냉매의 온도에서 증발이 가능한 저온비등 작동유체인 냉매를 채워 넣는다. 열교환기(42)는 냉매발전사이클에서 일종의 보일러로 작동유체인 저온비등냉매를 끓이는 작용을 한다. 작동원리는 다음과 같다. 열교환기(42) 1차측 냉매로부터 열을 흡수하여 열교환기(42) 2차측에 채워진 냉매는 기화한다. 기화된 냉매는 배관(34)을 타고 냉매터빈(36)을 돌리고 응축기(32)로 유입되어 열을 버리고 액체상태로 상태변화를 하면서 응축기를 저압상태로 만들어서 기체냉매 발생으로 고압상태가 된 열교환기(42) 2차측으로부터 기체냉매를 흡입하여 열교환기(42) 2차측에서 지속적으로 열을 흡수하도록 한다. 응축기(32)에서 액화된 액체냉매는 배관(34)을 타고 냉매탱크(33)에 보내어진다. 냉매공급펌프(35)는 냉매탱크(33)로부터 액체냉매를 열교환기(42) 2차측으로 다시 공급함으로써 순환의 한 주기를 완료한다. 응축기(32)에 냉각수유입관(24)과 냉각수유출관(25)을 추가하여 응축기(32)에 냉각수가 순환되도록 하며 냉각수유입관(24) 끝부분에 냉각수분사기(38)를 설치하고 인근에 응축기(32)에 접하도록 냉각팬(39)을 설치하여 냉각수를 응축기(32)에 분사시키며 냉각팬(39)으로 증발시켜 냉각수 증발잠열에 의해 응축기(32)의 냉각성능이 좋아지도록 한다. 응축기(32)가 높은 위치에 설치되면 응축기(32)에서 형성된 액체냉매가 중력에 의하여 냉매탱크(33)를 거쳐 기화기(31)로 유입이 가능하다. 이때에는 냉매공급펌프(35)를 생략할 수 있다.       Fig. 4 is an explanatory diagram of a cryogenic cogeneration system applied to a refrigeration cycle / power generation cycle 2 stage. The temperature of the discharged cooling water discharged from the condenser 11 is as low as about 30 占 폚. Thus, first, a high temperature fluid flow is made through the refrigeration cycle. It is a kind of heat pump circuit. Then, the power generation cycle is applied using the high temperature fluid flow to perform the temperature difference generation. First, a refrigeration cycle is constructed. A vaporizer 31 is installed which is submerged in a cooling water outlet pipe 25 through which the discharged cooling water flows out from the condenser 11 and heat-exchanges with the discharged cooling water to vaporize the low temperature boiling refrigerant and absorb heat. The evaporator 31 is connected to the pipe 34 so as to constitute a closed circuit in the order of the compressor 41, the primary side of the heat exchanger 42 serving as a condenser of the refrigeration cycle, the expansion valve 43 and the vaporizer 31 . The heat exchanger (42) serves as a condenser in the refrigeration cycle on the primary side and as a boiler in the refrigerant power generation cycle on the secondary side. In the primary side of the heat exchanger 42, a high-temperature (approximately 90 ° C) high-temperature refrigerant compressed by the compressor 41 in the refrigeration cycle flows in, a liquid refrigerant in the refrigerant power generation cycle flows into the secondary side, It will move to the car side. Although the heat absorbed from the outlet coolant temperature of about 30 ° C, the effect of raising the temperature by the heat source of about 90 ° C can be seen by utilizing the refrigeration cycle. If necessary, additional refrigeration cycles can be applied to increase the temperature of the heat source. Next, a power generation cycle is formed in two stages using an increased heat source. The refrigerant supply pipe 35 and the secondary side of the heat exchanger 42 in the order of the secondary side of the heat exchanger 42 connected to the refrigeration cycle, the refrigerant turbine 36, the condenser 32, the refrigerant tank 33, 34), and a refrigerant, which is a low temperature boiling hydraulic oil capable of evaporating at the temperature of the primary refrigerant, is filled in the refrigerant generating circuit. The heat exchanger 42 serves to boil low temperature boiling refrigerant, which is a working oil, into a kind of boiler in a refrigerant power generation cycle. The working principle is as follows. The heat exchanger (42) absorbs heat from the primary refrigerant and vaporizes the refrigerant filled in the secondary of the heat exchanger (42). The vaporized refrigerant flows through the piping 34, turns the refrigerant turbine 36, flows into the condenser 32, discards the heat, changes the state of the refrigerant to a liquid state, lowers the pressure of the condenser, (42), the gas refrigerant is sucked from the secondary side so that heat is absorbed continuously from the secondary side of the heat exchanger (42). The liquid refrigerant liquefied in the condenser 32 is sent to the refrigerant tank 33 via the pipe 34. The refrigerant supply pump 35 completes one cycle of circulation by supplying the liquid refrigerant from the refrigerant tank 33 back to the secondary side of the heat exchanger 42. [ The cooling water inflow pipe 24 and the cooling water outflow pipe 25 are added to the condenser 32 so that the cooling water is circulated to the condenser 32 and the cooling water injector 38 is installed at the end of the cooling water inflow pipe 24, A cooling fan 39 is provided to contact the condenser 32 so that the cooling water is sprayed to the condenser 32 and evaporated by the cooling fan 39 so that the cooling performance of the condenser 32 is improved by the latent heat of evaporation of the cooling water. When the condenser 32 is installed at a high position, the liquid refrigerant formed in the condenser 32 can flow into the vaporizer 31 through the refrigerant tank 33 by gravity. At this time, the refrigerant supply pump 35 may be omitted.

도 1은 기존의 발전사이클 원리 설명도이다.     FIG. 1 is an explanatory diagram of a conventional power generation cycle principle.

도 2는 기존의 발전기 복수기 시스템 설명도이다.    2 is an explanatory view of a conventional generator / condenser system.

도 3은 단일발전사이클을 적용한 복수기 폐열 발전시스템 설명도이다.    3 is an explanatory diagram of a condenser-type cogeneration system applying a single power generation cycle.

도 4는 냉동사이클/발전사이클 2단적용 복수기 폐열 발전시스템 설명도이다.    Fig. 4 is an explanatory diagram of a cryogenic cogeneration system applied to a refrigeration cycle / power generation cycle 2 stage.

<도면의 주요부분에 대한 부호의 설명>    Description of the Related Art

11 : 복수기 12 : 공급수펌프11: condenser 12: feed water pump

13 : 보일러 14 : 터빈13: Boiler 14: Turbine

15 : 발전기 21 : 고압터빈 15: Generator 21: High pressure turbine

22 : 증기배관 23 : 저압터빈 22: Steam piping 23: Low pressure turbine

24 : 냉각수유입관 25 : 냉각수유출관 24: cooling water inlet pipe 25: cooling water outlet pipe

26 : 열교환튜브 27 : 공급수관 26: Heat exchange tube 27: Feed water tube

31 : 기화기 32 : 응축기31: vaporizer 32: condenser

33 : 냉매탱크 34 : 배관33: refrigerant tank 34: piping

35 : 냉매공급펌프 36 : 냉매터빈35: Refrigerant supply pump 36: Refrigerant turbine

37 : 냉매발전기 38 : 냉각수분사기 37: Refrigerant generator 38: Cooling water injector

39 : 냉각팬 41 : 압축기39: cooling fan 41: compressor

42 : 열교환기 43 : 팽창밸브42: heat exchanger 43: expansion valve

Claims (3)

증기사이클의 복수기(11)에서 배출냉각수가 유출되는 냉각수유출관(25)에 잠기도록 설치되는 기화기(31)와; 기화기(31), 냉매터빈(36), 응축기(32), 냉매탱크(33), 냉매공급펌프(35) 다시 기화기(31)의 순서로 배관(34)으로 폐회로로 연결되는 냉매발전회로와: 냉매터빈(36) 축에 설치되는 냉매발전기(37)와; 응축기(32)에 냉각수가 순환되도록 설치되는 냉각수유입관(24) 및 냉각수유출관(25)과; 냉각수유입관(24) 끝부분에 설치되는 냉각수분사기(38)와; 응축기(32)에 접하도록 설치되는 냉각팬(39)으로 구성되는 것을 특징으로 하는 복수기 폐열 발전시스템.       A vaporizer (31) installed so as to be submerged in a cooling water outlet pipe (25) through which exhaust cooling water flows out from the condenser (11) of the steam cycle; A refrigerant generating circuit connected to the pipe 34 in a closed circuit in the order of a vaporizer 31, a refrigerant turbine 36, a condenser 32, a refrigerant tank 33, a refrigerant supply pump 35 and a vaporizer 31, A refrigerant generator (37) installed on a shaft of the refrigerant turbine (36); A cooling water inflow pipe (24) and a cooling water outflow pipe (25) installed to circulate the cooling water to the condenser (32); A cooling water injector (38) installed at the end of the cooling water inflow pipe (24); And a cooling fan (39) installed in contact with the condenser (32). 제1항에 있어서, 냉매가 R141b, R123, R245fa, R245ca 중의 하나인 것을 특징으로 하는 복수기 폐열 발전시스템.       The condensate cogeneration system according to claim 1, wherein the refrigerant is one of R141b, R123, R245fa, and R245ca. 증기사이클의 복수기(11)에서 배출냉각수가 유출되는 냉각수유출관(25)에 잠기도록 설치되는 기화기(31)와; 기화기(31), 압축기(41), 냉동사이클의 응축기 역할을 하는 열교환기(42) 1차측, 팽창밸브(43) 다시 기화기(31)의 순서로 폐회로로 연결되는 냉동사이클회로와: 냉동사이클회로와 결합되어 있는 열교환기(42) 2차측, 냉매터빈(36), 응축기(32), 냉매탱크(33), 냉매공급펌프(35) 다시 열교환기(42) 2차측의 순서로 배관(34)으로 폐회로로 연결되는 냉매발전회로와; 냉매발전회로 내부에는 채워지는 열교환기(42) 1차측 냉매의 온도에서 증발이 가능한 저온비등 작동유체인 냉매와; 냉매터빈(36) 축에 설치되는 냉매발전기(37)와; 응축기(32)에 냉각수가 순환되도록 설치되는 냉각수유입관(24) 및 냉각수유출관(25)과; 냉각수유입관(24) 끝부분에 설치되는 냉각수분사기(38)와; 응축기(32)에 접하도록 설치되는 냉각팬(39)으로 구성되는 것을 특징으로 하는 복수기 폐열 발전시스템.       A vaporizer (31) installed so as to be submerged in a cooling water outlet pipe (25) through which exhaust cooling water flows out from the condenser (11) of the steam cycle; A refrigeration cycle circuit which is connected in a closed circuit in the order of a vaporizer 31, a compressor 41, a primary side of a heat exchanger 42 serving as a condenser of a refrigeration cycle, an expansion valve 43, The refrigerant tank 33 and the refrigerant supply pump 35 and the secondary side of the heat exchanger 42 in the order of the secondary side of the heat exchanger 42, the refrigerant turbine 36, the condenser 32, the refrigerant tank 33, A refrigerant generation circuit connected to the refrigerant circuit by a closed circuit; A refrigerant which is a low-temperature boiling hydraulic oil capable of evaporating at a temperature of a primary refrigerant; A refrigerant generator (37) installed on a shaft of the refrigerant turbine (36); A cooling water inflow pipe (24) and a cooling water outflow pipe (25) installed to circulate the cooling water to the condenser (32); A cooling water injector (38) installed at the end of the cooling water inflow pipe (24); And a cooling fan (39) installed in contact with the condenser (32).
KR1020090021940A 2009-03-15 2009-03-15 The generating system using the waste heat of condenser KR101528935B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090021940A KR101528935B1 (en) 2009-03-15 2009-03-15 The generating system using the waste heat of condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090021940A KR101528935B1 (en) 2009-03-15 2009-03-15 The generating system using the waste heat of condenser

Publications (2)

Publication Number Publication Date
KR20100103771A KR20100103771A (en) 2010-09-28
KR101528935B1 true KR101528935B1 (en) 2015-06-15

Family

ID=43008202

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090021940A KR101528935B1 (en) 2009-03-15 2009-03-15 The generating system using the waste heat of condenser

Country Status (1)

Country Link
KR (1) KR101528935B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101985902A (en) * 2010-07-07 2011-03-16 贾锋胜 Steamer generating equipment capable of heating by automobile exhaust
KR101236070B1 (en) * 2011-06-24 2013-02-22 제주대학교 산학협력단 High efficiency differential temperature power system using the thermal effluents of power plant condenser
KR101391071B1 (en) * 2014-03-07 2014-04-30 한상구 Electric generating apparatus using latent heat air
CN109000385B (en) * 2018-07-04 2020-06-09 江苏科技大学 Multi-source high-temperature heat pump device and working method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09303111A (en) * 1996-05-17 1997-11-25 Hiroyuki Dan Warm drain water generating system
JP2006063816A (en) * 2004-08-25 2006-03-09 Sanden Corp Rankine system
JP2006169971A (en) * 2004-12-13 2006-06-29 Sanden Corp Rankine system
JP2008267341A (en) * 2007-04-24 2008-11-06 Toshiba Corp Exhaust heat recovering device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09303111A (en) * 1996-05-17 1997-11-25 Hiroyuki Dan Warm drain water generating system
JP2006063816A (en) * 2004-08-25 2006-03-09 Sanden Corp Rankine system
JP2006169971A (en) * 2004-12-13 2006-06-29 Sanden Corp Rankine system
JP2008267341A (en) * 2007-04-24 2008-11-06 Toshiba Corp Exhaust heat recovering device

Also Published As

Publication number Publication date
KR20100103771A (en) 2010-09-28

Similar Documents

Publication Publication Date Title
JP5875253B2 (en) Combined power generation system
KR101431133B1 (en) OTEC cycle device that contains the ejector
KR102011859B1 (en) Energy saving system for using waste heat of ship
KR101528935B1 (en) The generating system using the waste heat of condenser
KR20120124184A (en) Power Generation System of cold energy utilization
WO2012054006A1 (en) Method and device for energy production and regasification of liquefied natural gas
CN103148587A (en) Method and device for preparing domestic hot water with waste heat of power plant
KR20100057573A (en) The condensing system for steam turbine using refrigerant evaporation heat
KR20100125830A (en) Exhaust heat power generation system by low temperature refrigerants vaporization activity
KR20130117375A (en) Lng regasification apparatus having combined cycle power plant
KR20140085003A (en) Energy saving system for using waste heat of ship
CN107339822A (en) Steam condensate afterheat utilizing system and residual-heat utilization method
KR20130119162A (en) Direct organic rankine cycle power generation system using solar power
JP2010096414A (en) Ammonia absorption refrigeration type power generating device
KR20100103770A (en) The condensing system for thermal plant using refrigerant evaporation heat
RU2560502C1 (en) Heat power plant operation mode
TWM527042U (en) Geothermal moist steam power generation system
RU2552481C1 (en) Operating method of thermal power plant
RU2560505C1 (en) Heat power plant operation mode
RU2559655C1 (en) Method of operation of thermal power plant
RU140802U1 (en) HEAT ELECTRIC STATION
KR20160088681A (en) Complex power plant, waste heat recovery system and method using organic refrigerant
KR20140085002A (en) Energy saving system for using waste heat of ship
RU140385U1 (en) HEAT ELECTRIC STATION
RU2564466C2 (en) Heat power plant operation mode

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190529

Year of fee payment: 5