JPH09303111A - Warm drain water generating system - Google Patents

Warm drain water generating system

Info

Publication number
JPH09303111A
JPH09303111A JP12316596A JP12316596A JPH09303111A JP H09303111 A JPH09303111 A JP H09303111A JP 12316596 A JP12316596 A JP 12316596A JP 12316596 A JP12316596 A JP 12316596A JP H09303111 A JPH09303111 A JP H09303111A
Authority
JP
Japan
Prior art keywords
turbine
pump
heater
power generation
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12316596A
Other languages
Japanese (ja)
Inventor
Hiroyuki Dan
弘行 団
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12316596A priority Critical patent/JPH09303111A/en
Publication of JPH09303111A publication Critical patent/JPH09303111A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To make energy efficiently utilizable by providing a heater absorbing waste heat to vaporize a refrigerant expanded, pump cooling refrigerant vapor coming out of a turbine liquefied thereafter returned to a pump, etc., in generating by utilizing waste heat discharged from a generating cycle. SOLUTION: In a thermal power plant 20, water heated in a boiler 21 comes to be superheated steam of high temperature high pressure, by this pressure, a turbine 22 is rotated, its output low temperature low pressure steam is cooled and condensed in a condenser 23, this condensed water is returned to the boiler 21 by a pump 24. On the other hand, warm drain water obtained in the condenser 23 is fed to a heater 1 of warm drain water generating system by a pump 9, ammonia as a refrigerant is heated, ammonia gas of high temperature high pressure is produced, in this way, a turbine 2 is rotated, generation is performed by a generator 5. Ammonia gas passing through the turbine 2 is pressurized by a pump 4, cooled by a cooler 3, so as to be returned to liquid ammonia, to be again guided to the heater 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、火力発電所や原子
力発電所等,熱せられた水蒸気を用いてタービンを回し
発電する発電所から排出される温排水(冷却水)を利用
して発電するシステムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generates electric power by using warm waste water (cooling water) discharged from a power plant such as a thermal power plant or a nuclear power plant, which uses a heated steam to rotate a turbine to generate electric power. It is about the system.

【0002】[0002]

【従来の技術】1992年の時点で、わが国の年間総需
要電力量はおよそ8000億キロワット時、発電設備は
およそ2億キロワットに達している。このように多くの
電力を供給している電力会社は、発電量の80パーセン
トを占める火力発電所や原子力発電所の発電効率を上げ
るための様々な方法を、従来より数多く研究してきた。
例えば、火力発電所の発電効率は、50年ほど前には2
0パーセント以下であったが、発電機のタービンを回転
させた後の過熱蒸気を復水器を通さず再熱器で再熱して
ボイラーに戻したり、煙突から排出されるガスの保有熱
でボイラーへの供給空気を予熱したりして、各部の熱効
率の改善を図った結果、現在では40パーセント近くに
まで改善されている。
2. Description of the Related Art As of 1992, the total annual electric power demand of Japan is about 800 billion kilowatt hours, and the power generation equipment reaches about 200 million kilowatts. Electric power companies that supply a large amount of electric power in this way have conventionally studied many different methods for increasing the power generation efficiency of thermal power plants and nuclear power plants, which account for 80% of the power generation.
For example, the power generation efficiency of a thermal power plant is 2
Although it was 0% or less, the superheated steam after rotating the turbine of the generator was reheated by the reheater without returning to the condenser and returned to the boiler, or the heat of the gas discharged from the chimney caused the boiler to be retained. As a result of improving the thermal efficiency of each part by preheating the air supplied to it, it is now improved to nearly 40%.

【0003】上記発電効率とは、燃料が持っている熱エ
ネルギーが、最終的にどれだけ電気エネルギーに変換さ
れたかの割合をいう。
The above-mentioned power generation efficiency means the ratio of how much the thermal energy of the fuel is finally converted into electric energy.

【0004】[0004]

【発明が解決しようとする課題】しかし、発電に使われ
た約40パーセントのエネルギー以外の約60パーセン
トのエネルギーは、自然界に形を変えてすべて無駄に捨
てられていた。その内訳は例えば、約40パーセントが
復水器を冷却した後の温排水(多くは海水が使われ
る),約10パーセントが煙突から空気中に拡散される
排気ガス,約10パーセントがその他のエネルギーであ
った。
However, about 60% of the energy other than about 40% of the energy used for power generation was transformed into nature and wasted in vain. For example, about 40% is hot waste water after cooling the condenser (mostly seawater is used), about 10% is exhaust gas diffused from the chimney into the air, and about 10% is other energy. Met.

【0005】ここで、温排水について詳しく述べると、
たとえば、60万キロワット級の火力発電所において
は、海水温より6〜7℃高い温排水が毎秒25〜26キ
ロリットル排出されていた。この温排水が持つ莫大な熱
量は、海に放出されて海水の温度上昇を招き、沿岸にす
む生物の生息環境に深刻な影響を与え、自然環境をこわ
すという問題点があった。また、石油や石炭や原子力等
の貴重なエネルギーを使って得た熱量を、そのまま自然
界に放出してしまうのは無駄で、この結果、更に地球環
境の温暖化を招くという問題点もあった。
The hot drainage will be described in detail below.
For example, in a 600,000 kilowatt class thermal power plant, 25 to 26 kiloliters of hot wastewater, which is 6 to 7 ° C higher than the seawater temperature, is discharged every second. The enormous amount of heat that this warm wastewater has is released to the sea, causing the temperature of seawater to rise, which seriously affects the habitat of living creatures living along the coast and destroys the natural environment. Further, it is wasteful to directly release the amount of heat obtained by using valuable energy such as oil, coal, and nuclear power to the natural world, and as a result, there is a problem that the global environment is further warmed.

【0006】本発明は、上記の問題点にかんがみて提案
されたもので、貴重なエネルギーを効率よく使うと共
に、地球全体の温度上昇を低く抑える温排水発電システ
ムを提供することを目的としている。
The present invention has been proposed in view of the above problems, and an object of the present invention is to provide a hot drainage power generation system that efficiently uses valuable energy and suppresses the temperature rise of the entire earth.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、加熱水蒸気を用いる発電サイクルから排
出される廃熱を利用して発電をする温排水発電システム
であって、前記廃熱を吸収して冷媒を気化し膨張させる
加熱器と、気化された冷媒蒸気の圧力で回転し発電機を
駆動するタービンと、タービンから排出された冷媒蒸気
を冷却し液化する冷却器と、液化した冷媒を加熱器に戻
すポンプとから構成されているという手段を用いた。
In order to solve the above-mentioned problems, the present invention is a hot drainage power generation system for generating electric power by utilizing waste heat discharged from a power generation cycle using heated steam. A heater that absorbs heat and vaporizes and expands the refrigerant, a turbine that drives the generator by rotating at the pressure of the vaporized refrigerant vapor, a cooler that cools and liquefies the refrigerant vapor discharged from the turbine, and liquefies And a pump for returning the refrigerant to the heater.

【0008】上記温排水発電システムに用いる冷媒とし
ては、アンモニアが好ましいが、水やプロパン,フロン
等を用いても構わない。
Ammonia is preferable as the refrigerant used in the above hot drainage power generation system, but water, propane, chlorofluorocarbon or the like may be used.

【0009】[0009]

【発明の実施の形態】以下に本発明にかかる温排水発電
システムの実施の形態について、図面に基づいて詳細に
説明する。図1は本発明に係る温排水発電システムの説
明図である。図1に示された温排水発電システムは、熱
を伝える物質(冷媒)として、アンモニア蒸気(以下、
アンモニアガスという)を用いたものである。この温排
水発電システムは、後述する復水器からの温排水の廃熱
を吸収して液体アンモニアをアンモニアガスに変える加
熱器1と、このアンモニアガスの圧力によって回転する
タービン2と、タービン2を通過したアンモニアガスを
加圧するポンプ4と、加圧されたアンモニアガスを冷や
して元の液体アンモニアに戻す冷却器3と、タービン2
に連結されてその回転力で発電する発電機5とを備えて
いる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a hot drainage power generation system according to the present invention will be described in detail below with reference to the drawings. FIG. 1 is an explanatory diagram of a hot drainage power generation system according to the present invention. The hot drainage power generation system shown in FIG. 1 uses ammonia vapor (hereinafter,
Ammonia gas) is used. This hot drainage power generation system includes a heater 1 that absorbs waste heat of hot drainage from a condenser described later to convert liquid ammonia into ammonia gas, a turbine 2 that rotates by the pressure of this ammonia gas, and a turbine 2. A pump 4 that pressurizes the passed ammonia gas, a cooler 3 that cools the pressurized ammonia gas to return it to the original liquid ammonia, and a turbine 2
And a power generator 5 that is connected to the power generator 5 to generate electric power by its rotational force.

【0010】一方、火力発電所20は、燃料を焚いて水
を沸騰させ水蒸気を発生させるボイラー21と、発生し
た水蒸気の圧力によって回転させられるタービン22
と、タービン22を通過した水蒸気を冷やして元の水に
戻す復水器(冷却器)23と、復水器23の水をボイラ
ー21まで戻すポンプ24と、タービン22に連結され
てその回転力で発電する発電機25とを備えている。
On the other hand, the thermal power plant 20 includes a boiler 21 that burns fuel to boil water to generate steam, and a turbine 22 that is rotated by the pressure of the generated steam.
And a condenser (cooler) 23 that cools the steam that has passed through the turbine 22 to return it to the original water, a pump 24 that returns the water in the condenser 23 to the boiler 21, and a rotational force that is connected to the turbine 22. And a power generator 25 for generating electricity.

【0011】次に、本発明にかかる温排水発電システム
の動作について説明する。まず、火力発電所20の動作
について説明すると、ボイラー21で加熱された水は、
摂氏500度を越える高温高圧の過熱水蒸気となり、そ
の圧力でタービン22を回転させる。タービン22を回
した水蒸気の温度は、摂氏100度近くまで下がり、そ
のため圧力も小さくなる。この低温低圧の水蒸気は、復
水器23で更に冷却されて水に戻る。このようにして液
体の状態に戻った水が、ポンプ24によってボイラー2
1に戻される。
Next, the operation of the hot drainage power generation system according to the present invention will be described. First, explaining the operation of the thermal power plant 20, the water heated by the boiler 21 is
High-temperature and high-pressure superheated steam exceeding 500 degrees Celsius is generated, and the turbine 22 is rotated by the pressure. The temperature of the water vapor that has rotated the turbine 22 drops to near 100 degrees Celsius, which reduces the pressure. The low-temperature low-pressure steam is further cooled in the condenser 23 and returns to water. The water thus returned to the liquid state is pumped by the pump 24 to the boiler 2
Returned to 1.

【0012】上記復水器23で水蒸気を冷却して得られ
た温排水は、ポンプ9によって温排水発電システムの加
熱器1まで送られる。加熱器1内は復水器23からの温
排水によって、摂氏100度以上に熱せられる。図1の
温排水発電システムにおいて、加熱器1を通過した液体
のアンモニアは摂氏100度以上に熱せられ、体積比で
800倍以上の高温高圧のアンモニアガスとなり、蒸気
管部7aに入る。そして、このアンモニアガスの圧力に
よってタービン2が回転する。すると、タービン2の回
転軸に連結された発電機5が回転し、発電機5が発電を
開始する。タービン2を通過した高温高圧のアンモニア
ガスは、蒸気管部7b内で低温低圧となる。低温低圧の
アンモニアガスはポンプ4で加圧され、冷却器3で冷や
される。アンモニアガスはポンプ4によって高圧になっ
ているので、冷却器3で冷やされると低温でも簡単に、
例えば8気圧では摂氏20度程度で、元の液体アンモニ
アに戻って体積が激減し、液体管部8に入る。冷却器3
は冷却管6によって常時冷却されている。冷却管6には
海や川からくみ上げられた水が流れている。海や川の水
は無尽蔵で、水面近くでも摂氏20度程度の低温なの
で、高温のアンモニアガスを効率よく冷やすことが出来
る。高圧の液体アンモニアは加熱器1で加熱され、気化
して再び高温高圧のアンモニアガスとなり、発電に使わ
れる。
The hot waste water obtained by cooling the steam in the condenser 23 is sent to the heater 1 of the hot waste water power generation system by the pump 9. The inside of the heater 1 is heated to 100 degrees Celsius or higher by the hot drainage water from the condenser 23. In the warm waste water power generation system of FIG. 1, the liquid ammonia that has passed through the heater 1 is heated to 100 degrees Celsius or higher, becomes high-temperature and high-pressure ammonia gas with a volume ratio of 800 times or higher, and enters the steam pipe section 7a. The turbine 2 is rotated by the pressure of this ammonia gas. Then, the generator 5 connected to the rotating shaft of the turbine 2 rotates, and the generator 5 starts power generation. The high-temperature and high-pressure ammonia gas that has passed through the turbine 2 becomes low-temperature and low-pressure inside the steam pipe portion 7b. The low-temperature low-pressure ammonia gas is pressurized by the pump 4 and cooled by the cooler 3. Ammonia gas has a high pressure due to the pump 4, so if it is cooled by the cooler 3, it will be easy even at low temperatures.
For example, at 8 atm, at about 20 degrees Celsius, it returns to the original liquid ammonia and the volume is drastically reduced and enters the liquid pipe section 8. Cooler 3
Are constantly cooled by the cooling pipe 6. Water pumped from the sea or river flows through the cooling pipe 6. The water in the sea and rivers is inexhaustible, and even at temperatures near the surface of the water, the temperature is as low as about 20 degrees Celsius, so high-temperature ammonia gas can be cooled efficiently. The high-pressure liquid ammonia is heated by the heater 1 and vaporized into high-temperature and high-pressure ammonia gas again, which is used for power generation.

【0013】図2は別実施の形態の一例の説明図である
が、ここでは相違点について簡単に説明する。図に示し
た温排水発電システムにおいて、火力発電所の復水器2
3は、冷却管16から供給される海水によって冷却され
ている。復水器23を冷却した後の温排水は、温排水管
19を通って加熱器11を温める。加熱器11の加熱温
度は、先の加熱器1の温度に比べて若干低くなる。加熱
器11によって液体アンモニアは気化され、高温高圧の
アンモニアガスとなってタービン12を回転させる。タ
ービン12を回転させたアンモニアガスは、冷却器13
で冷やされて液体アンモニアとなり、この液体アンモニ
アがポンプ14で再び加熱器11に送られる。この相変
化のサイクルが繰り返され、タービン12に連結された
発電機15が発電する。
FIG. 2 is an explanatory view of an example of another embodiment, but the difference will be briefly described here. In the hot drainage power generation system shown in the figure, the condenser 2 of the thermal power plant
3 is cooled by seawater supplied from the cooling pipe 16. The hot drainage after cooling the condenser 23 warms the heater 11 through the hot drainage pipe 19. The heating temperature of the heater 11 is slightly lower than the temperature of the previous heater 1. Liquid ammonia is vaporized by the heater 11 and becomes high-temperature and high-pressure ammonia gas to rotate the turbine 12. The ammonia gas that has rotated the turbine 12 is cooled by the cooler 13
Is cooled to become liquid ammonia, and this liquid ammonia is sent to the heater 11 again by the pump 14. This cycle of phase change is repeated, and the generator 15 connected to the turbine 12 generates electricity.

【0014】通常の温度差発電においては、温度差が小
さいために発電効率は小さくなるが、上記温排水発電シ
ステムにおいては、高温部が例えば摂氏100度,低温
部が摂氏20度というように大きな温度差があるので、
効率よく発電することができる。
In a normal temperature difference power generation, the power generation efficiency is small because the temperature difference is small, but in the above-mentioned hot drainage power generation system, the high temperature portion is large, for example, 100 degrees Celsius, and the low temperature portion is 20 degrees Celsius. Since there is a temperature difference,
Power can be generated efficiently.

【0015】[0015]

【発明の効果】本発明に係る温排水発電システムによれ
ば、火力発電所又は原子力発電所において発生し、本来
は捨てられるはずの温排水を熱源として、液体冷媒を気
化して相を変化させ、その圧力でタービン,発電機を回
して発電するので、貴重なエネルギーを効率よく使うこ
とができる。このことは、海水や地球全体の温度上昇を
低く抑えることができるという大きな効果もある。
EFFECTS OF THE INVENTION According to the hot drainage power generation system of the present invention, the liquid coolant is vaporized to change the phase by using the hot drainage which is generated in a thermal power plant or a nuclear power plant and should be originally discarded as a heat source. Since the turbine and generator are rotated by the pressure to generate electricity, valuable energy can be used efficiently. This also has the great effect that the temperature rise of seawater and the entire earth can be suppressed to a low level.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る温排水発電システムの実施の形態
の説明図である。
FIG. 1 is an explanatory diagram of an embodiment of a hot drainage power generation system according to the present invention.

【図2】本発明に係る温排水発電システムの別実施の形
態の説明図である。
FIG. 2 is an explanatory diagram of another embodiment of the hot drainage power generation system according to the present invention.

【符号の説明】[Explanation of symbols]

1,11 加熱器 2,12 タービン 3,13 冷却器 4,9,14 ポンプ 5,15 発電機 6,16 冷却管 19 温排水管 1,11 Heater 2,12 Turbine 3,13 Cooler 4,9,14 Pump 5,15 Generator 6,16 Cooling pipe 19 Hot drainage pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】加熱蒸気を用いる発電サイクルから排出さ
れる廃熱を利用して発電をする温排水発電システムであ
って、 前記廃熱を吸収して冷媒を気化し膨張させる加熱器と、
気化された冷媒蒸気の圧力で回転し発電機を駆動するタ
ービンと、タービンから排出された冷媒蒸気を冷却し液
化する冷却器と、液化した冷媒を加熱器に戻すポンプと
から構成されていることを特徴とする温排水発電システ
ム。
1. A hot drainage power generation system for generating power using waste heat discharged from a power generation cycle using heated steam, comprising a heater for absorbing the waste heat to vaporize and expand a refrigerant.
It consists of a turbine that drives the generator by rotating with the pressure of vaporized refrigerant vapor, a cooler that cools and liquefies the refrigerant vapor discharged from the turbine, and a pump that returns the liquefied refrigerant to the heater. A hot drainage power generation system characterized by.
JP12316596A 1996-05-17 1996-05-17 Warm drain water generating system Pending JPH09303111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12316596A JPH09303111A (en) 1996-05-17 1996-05-17 Warm drain water generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12316596A JPH09303111A (en) 1996-05-17 1996-05-17 Warm drain water generating system

Publications (1)

Publication Number Publication Date
JPH09303111A true JPH09303111A (en) 1997-11-25

Family

ID=14853801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12316596A Pending JPH09303111A (en) 1996-05-17 1996-05-17 Warm drain water generating system

Country Status (1)

Country Link
JP (1) JPH09303111A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102408A1 (en) * 2010-02-19 2011-08-25 株式会社Ihi Exhaust heat recovery system, energy supply system, and exhaust heat recovery method
KR101528935B1 (en) * 2009-03-15 2015-06-15 임효진 The generating system using the waste heat of condenser
GB2535181A (en) * 2015-02-11 2016-08-17 Futurebay Ltd Apparatus and method for energy storage
JP2019506563A (en) * 2016-01-20 2019-03-07 クリメオン エービー Heat recovery system and method for converting heat into electrical energy using a heat recovery system
CN110500585A (en) * 2019-07-18 2019-11-26 光大环保技术研究院(南京)有限公司 A kind of waste incineration and generating electricity waste heat ammonia steaming system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157004A (en) * 1981-03-20 1982-09-28 Toshiba Corp Combined electric power generator
JPH04124411A (en) * 1990-09-17 1992-04-24 Toshiba Corp Steam turbine combine generator equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157004A (en) * 1981-03-20 1982-09-28 Toshiba Corp Combined electric power generator
JPH04124411A (en) * 1990-09-17 1992-04-24 Toshiba Corp Steam turbine combine generator equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101528935B1 (en) * 2009-03-15 2015-06-15 임효진 The generating system using the waste heat of condenser
WO2011102408A1 (en) * 2010-02-19 2011-08-25 株式会社Ihi Exhaust heat recovery system, energy supply system, and exhaust heat recovery method
JP2012198018A (en) * 2010-02-19 2012-10-18 Ihi Corp Exhaust heat recovery system, energy supply system, and exhaust heat recovery method
JP5062380B2 (en) * 2010-02-19 2012-10-31 株式会社Ihi Waste heat recovery system and energy supply system
GB2535181A (en) * 2015-02-11 2016-08-17 Futurebay Ltd Apparatus and method for energy storage
CN107250492A (en) * 2015-02-11 2017-10-13 福彻尔贝有限公司 device and method for energy storage
CN107250492B (en) * 2015-02-11 2019-11-19 福彻尔贝有限公司 Device and method for energy storage
US10815835B2 (en) 2015-02-11 2020-10-27 Futurebay Limited Apparatus and method for energy storage
JP2019506563A (en) * 2016-01-20 2019-03-07 クリメオン エービー Heat recovery system and method for converting heat into electrical energy using a heat recovery system
CN110500585A (en) * 2019-07-18 2019-11-26 光大环保技术研究院(南京)有限公司 A kind of waste incineration and generating electricity waste heat ammonia steaming system

Similar Documents

Publication Publication Date Title
CN1297744C (en) Ocean temperature difference energy and solar energy reheat circulating electric generating method
US8752382B2 (en) Dual reheat rankine cycle system and method thereof
US9500205B2 (en) Multi-pressure radial turbine system
JP2001193419A (en) Combined power generating system and its device
JP2006329059A (en) Combined cryogenic power generator
WO1985003328A1 (en) Utilization of thermal energy
AU2012233669A1 (en) Organic Rankine Cycle for concentrated solar power system with saturated liquid storage and method
Pattanayak et al. Thermodynamic analysis of combined cycle power plant using regasification cold energy from LNG terminal
JP2012082750A (en) Waste heat recovery power generator and vessel equipped with waste heat recovery power generator
JP2971378B2 (en) Hydrogen combustion gas turbine plant and operation method thereof
JPH09303111A (en) Warm drain water generating system
JP2004108220A (en) Bottoming cycle power generation system
Mikielewicz et al. Alternative cogeneration thermodynamic cycles for domestic ORC
JP2001248409A (en) Exhaust heat recovery system
JP2002122006A (en) Power generation equipment utilizing low-temperature exhaust heat
JP2003336573A (en) Novel heat cycle and composite power generation system and device thereof
JP2002031035A (en) Solar power generator
JP3044386U (en) Power generator
JPS58138213A (en) Power generation device
WO1999022189A1 (en) Temperature difference heat engine
JPS59180012A (en) Combined cycle turbine power plant utilizing liquefied natural gas and low-boiling point medium
JP2001123936A (en) System and device for utilizing thermal energy included in material as resource
JP2001152813A (en) Combined power generating method and its device
JPS6198974A (en) Combined method of power generation from low temperature difference and water head
JPH08200017A (en) Rankine cycle of thermal power plant