JPS6198974A - Combined method of power generation from low temperature difference and water head - Google Patents

Combined method of power generation from low temperature difference and water head

Info

Publication number
JPS6198974A
JPS6198974A JP59220366A JP22036684A JPS6198974A JP S6198974 A JPS6198974 A JP S6198974A JP 59220366 A JP59220366 A JP 59220366A JP 22036684 A JP22036684 A JP 22036684A JP S6198974 A JPS6198974 A JP S6198974A
Authority
JP
Japan
Prior art keywords
turbine
water
boiling point
head
low boiling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59220366A
Other languages
Japanese (ja)
Inventor
Takeshi Suzuki
剛 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP59220366A priority Critical patent/JPS6198974A/en
Publication of JPS6198974A publication Critical patent/JPS6198974A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PURPOSE:To obtain efficient hydraulic power generation throughout the year by simplified constitution, by rotating both a turbine through high pressure vapor of a low boiling point medium and a hydraulic turbine through a head of snow water in a melted snow dam. CONSTITUTION:A generating device, constituted by a low boiling point medium turbine 1 using a low boiling point material of flon or the like as a working medium and a hydraulic turbine 2, provides respectively an evaporator 4 by geothermal water heating to be arranged in the vicinity of said turbine 1 while a condenser 6 of low boiling point medium vapor to be arranged in a melted snow dam 5 constructed in a place higher than the generating device and having a water head. In this way, the device rotates both the turbine 1 by high pressure vapor of the low boiling point medium and the hydraulic turbine 2 by the head of snow water in the melted snow dam 5. Here the device, connecting the hydraulic turbine 2 in series with the turbine 1 and a generator 3 through a clutch C, separates the hydraulic turbine 2 in winter to perform low temperature difference generation only by the turbine 1, engaging the clutch C as snow melts.

Description

【発明の詳細な説明】 一般に、回収廃熱などで水蒸気または有機媒体の蒸気な
どを発生させてタービンを回して発電する一つまりラン
キンサイクルによる発電法における主要構成機器は、■
ボイラー(蒸発器)、■タービン発電機、■蒸気の1疑
縮器、■凝縮器から蒸発器への給水(液)ポンプ、であ
る。
[Detailed Description of the Invention] Generally, the main components in the Rankine cycle power generation method, in which water vapor or organic medium steam is generated using recovered waste heat and the like to rotate a turbine, are as follows:
They are: boiler (evaporator), ■turbine generator, ■steam condenser, and ■water (liquid) pump from the condenser to the evaporator.

ところが従来の低温度差発電では、■の蒸発器には自然
の温水や廃熱などをを利用するにしても、利用できる熱
エネルギーはもともとが小さいうえに、■の凝縮器への
冷却水供給ポンプおよび■の給液ポンプ、などの補機の
駆動にかなりのエネノーギーが奪われ、■の、タービン
発電機出力はその分だけ少なくなり、そのサイクル発電
効率が余り良くならない−という欠点があった。
However, in conventional low temperature difference power generation, even if natural hot water or waste heat is used in the evaporator (■), the usable thermal energy is small to begin with, and the cooling water supply to the condenser (■) is limited. A considerable amount of energy is taken up by driving the pump and auxiliary equipment such as the liquid supply pump (■), and the output of the turbine generator (■) decreases by that amount, which has the disadvantage that the cycle power generation efficiency is not very good. .

本発明による低温度差・水落差発電法は、たとえば東北
、裏日本に特有の豪雪と地熱水に恵まれた山岳地帯にお
ける一つの”ローカルエネルギー利用システム″の中核
となるもので、これらの自然立地並びに自然エネルギー
を利用または組み合わせることにより、上記の欠点を改
善したうえに、さらに雪水ダムの水力をも加えることに
より、発電効率の極太化に資するものである。
The low temperature difference/water head power generation method according to the present invention is the core of a "local energy utilization system" in mountainous areas blessed with heavy snowfall and geothermal water, which are unique to Tohoku and Ura-Nihon, for example. In addition to improving the above-mentioned drawbacks by utilizing or combining the location and natural energy, by adding the hydraulic power of the snow water dam, it will contribute to extremely high power generation efficiency.

この発明の一実施例を図面に基づいて説明すると、低温
でも高圧ガスとなり得るフロンなどの低沸点物質を作動
媒体とする低沸点媒体ターピノ1倉びに水車2による発
電装置において、前記低沸点媒体タービン1の近傍に1
00’C以下の地熱温水加熱による蒸発器4を、また前
記発電装置よりも高所に建設した水頭・落差を有する雪
水ダム5に、低沸点媒体蒸気の凝縮器6を、それぞれ配
設することにより、前記のタービン1を低沸点媒体の高
圧蒸気により回すとともに、前記水車1を雪水ダム5の
融雪水の水頭・落差により回すシステムである。
An embodiment of the present invention will be described with reference to the drawings. In a power generation device using a low-boiling point medium terpino 1 and a water turbine 2, the working medium is a low-boiling point substance such as chlorofluorocarbon that can become a high-pressure gas even at low temperatures. 1 near 1
An evaporator 4 that heats geothermal hot water at 00'C or less, and a condenser 6 for low boiling point medium vapor are installed in a snow dam 5 that has a water head and head and is constructed higher than the power generation device. This is a system in which the turbine 1 is rotated by high-pressure steam, which is a low boiling point medium, and the water turbine 1 is rotated by the water head and head of snowmelt water from the snow water dam 5.

本実施例では、水車2をクラッチCを介して低沸点媒体
タービン1並びに発電機3に直列に連結する方式として
いるので、冬期には水車2を切り離し、同タービン1の
みによる低温度差発電を行い、春の雪解けとともにクラ
ッチCを入れ、同ターピント水車2による複合発電を行
うこともできる。
In this embodiment, the water turbine 2 is connected in series to the low boiling point medium turbine 1 and the generator 3 via the clutch C, so in the winter, the water turbine 2 is disconnected and low temperature difference power generation is performed using only the turbine 1. It is also possible to perform combined power generation using the Turpinto turbine 2 by engaging the clutch C when the snow melts in the spring.

なお前記タービン1と発電機6との間に定回転装置Rを
介在させているので、夏期と冬期の雪水ダム5の融雪水
量の増減による水車3の出力変動や、上記のクラッチC
のかん脱などにより、出力端の速度が変化しても、発電
機3の回転数を一定に保ち、年間を通じて安定した周波
数の電力を得ることができる。
In addition, since a constant rotation device R is interposed between the turbine 1 and the generator 6, the output fluctuation of the water turbine 3 due to an increase or decrease in the amount of snowmelt water in the snow water dam 5 during summer and winter, and the clutch C described above can be controlled.
Even if the speed of the output end changes due to drainage, etc., the rotation speed of the generator 3 can be kept constant, and power with a stable frequency can be obtained throughout the year.

以上のように構成された本発明は、■フロンなどの凝縮
器6は雪水ダム5の雪水の中に設けられているので、凝
縮器用の冷却水ポンプが不要となる、■また凝縮器6よ
りの凝縮液は蒸発器4へ水頭・落差でもって自然流下す
るので、給液ポンプが省略される、■さらに、上記凝縮
器乙におけるフロンなどの蒸気の凝縮潜熱により、凝縮
器乙の周りの雪が解けることから、冬の褐水期にもかか
わらず”小水力発電°゛が可能となり、夏の豊水期にお
ける6大水力発電″とあいまって、年間を通じて水車2
による水力発電が行える。
The present invention configured as described above has the following advantages: (1) Since the condenser 6 for fluorocarbons etc. is provided in the snow water of the snow water dam 5, a cooling water pump for the condenser is not required; Since the condensate from No. 6 naturally flows down to the evaporator 4 with the water head and head, the supply pump is omitted. Furthermore, due to the latent heat of condensation of vapor such as fluorocarbons in the condenser No. As the snow melts, small-scale hydropower generation is possible despite the brown water season in winter, and combined with the 6 large hydropower generation during the summer high water season, two water turbines can be generated throughout the year.
can generate hydroelectric power.

上記の■、■は、低温度差発電の高効率化を意味するが
、これに■の水力発電を加えた本複合発電法により、従
来の低温度差発電などをはるか江上回る電力が、自然エ
ネルギー利用の形で得られることになる。
The above ■ and ■ mean high efficiency of low temperature difference power generation, but by adding hydroelectric power generation in It will be obtained in the form of energy use.

【図面の簡単な説明】[Brief explanation of the drawing]

本図は、低温度差・水落差複合発電法の一実施例を示す
系統図である。
This figure is a system diagram showing an example of a low temperature difference/water head combined power generation method.

Claims (1)

【特許請求の範囲】[Claims] 低沸点媒体タービン並びに水車による発電装置において
、当該タービンの近傍に地熱温水による蒸発器を、また
前記発電装置よりも高所に建設した水頭・落差を有する
雪水ダムに、低沸点媒体蒸気の凝縮器を、それぞれ配設
することにより、前記タービンを低沸点媒体の高圧蒸気
により回すとともに、前記水車を雪水ダムの融雪水の水
頭・落差により回すことを特徴とする低温度差・水落差
複合発電法。
In a power generation device using a low boiling point medium turbine and a water wheel, an evaporator using geothermal hot water is installed near the turbine, and the low boiling point medium steam is condensed in a snow water dam with a water head and head built at a higher place than the power generation device. A combination of low temperature difference and water head, characterized in that the turbine is rotated by high pressure steam of a low boiling point medium and the water turbine is rotated by the head and head of snowmelt water of a snow water dam. Power generation method.
JP59220366A 1984-10-22 1984-10-22 Combined method of power generation from low temperature difference and water head Pending JPS6198974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59220366A JPS6198974A (en) 1984-10-22 1984-10-22 Combined method of power generation from low temperature difference and water head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59220366A JPS6198974A (en) 1984-10-22 1984-10-22 Combined method of power generation from low temperature difference and water head

Publications (1)

Publication Number Publication Date
JPS6198974A true JPS6198974A (en) 1986-05-17

Family

ID=16750005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59220366A Pending JPS6198974A (en) 1984-10-22 1984-10-22 Combined method of power generation from low temperature difference and water head

Country Status (1)

Country Link
JP (1) JPS6198974A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256108A (en) * 1992-03-12 1993-10-05 Kosaburo Sato Snow power generating system
JP2011145050A (en) * 2010-01-18 2011-07-28 Sumitomo Fudosan Kk Energy supply system reusing existing cavern
JP5190662B1 (en) * 2012-10-29 2013-04-24 岡本 應守 Siphon type binary power generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256108A (en) * 1992-03-12 1993-10-05 Kosaburo Sato Snow power generating system
JP2011145050A (en) * 2010-01-18 2011-07-28 Sumitomo Fudosan Kk Energy supply system reusing existing cavern
JP5190662B1 (en) * 2012-10-29 2013-04-24 岡本 應守 Siphon type binary power generator

Similar Documents

Publication Publication Date Title
US8341960B2 (en) Multi-heat source power plant
CA2597881C (en) Method and system integrating thermal oil recovery and bitumen mining for thermal efficiency
US5671601A (en) Geothermal power plant operating on high pressure geothermal fluid
US8266908B2 (en) Multi-heat source power plant
US8596066B2 (en) Power plant using organic working fluids
EP2647841B1 (en) Solar thermal power system
EP0168494B1 (en) Utilization of thermal energy
US4342197A (en) Geothermal pump down-hole energy regeneration system
US4102133A (en) Multiple well dual fluid geothermal power cycle
JPS6198974A (en) Combined method of power generation from low temperature difference and water head
CN102536365A (en) Organic working medium thermal power generation circulating system boosted by aid of gravity
CN108506177A (en) Solar energy overlapping organic Rankine cycle power generation system based on gas-liquid two-phase heat collector
JPH09303111A (en) Warm drain water generating system
JPH05256108A (en) Snow power generating system
JPS58138213A (en) Power generation device
JPS59180012A (en) Combined cycle turbine power plant utilizing liquefied natural gas and low-boiling point medium
CN107044392A (en) Electricity generation system
KR100477065B1 (en) Solar power generation system
JPS59110872A (en) Compound generation device which utilizes sea temperature difference and solar heat
CN208236587U (en) A kind of association circulating power generation system in parallel with geothermal energy using solar energy
JPS5543266A (en) Power generator utilizing thermal difference between solar heat and cool water
US10577986B2 (en) Systems and methods for improving power plant efficiency
Anderson A vapor turbine geothermal power plant
RU93007934A (en) METHOD FOR CONVERTING GEOTHERMAL ENERGY TO ELECTRICITY, DEVICE FOR ITS IMPLEMENTATION
JPS61126381A (en) Total-flow generation utilizing terrestrial-heat water