JP2006169971A - Rankine system - Google Patents

Rankine system Download PDF

Info

Publication number
JP2006169971A
JP2006169971A JP2004359389A JP2004359389A JP2006169971A JP 2006169971 A JP2006169971 A JP 2006169971A JP 2004359389 A JP2004359389 A JP 2004359389A JP 2004359389 A JP2004359389 A JP 2004359389A JP 2006169971 A JP2006169971 A JP 2006169971A
Authority
JP
Japan
Prior art keywords
working fluid
power generator
flow path
condenser
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004359389A
Other languages
Japanese (ja)
Inventor
Yasuaki Kano
靖明 狩野
Hideo Kashima
秀雄 加島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2004359389A priority Critical patent/JP2006169971A/en
Publication of JP2006169971A publication Critical patent/JP2006169971A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Rankine system capable of respectively efficiently using heat of a working fluid for power generation and heating of hot water of a hot water storage tank. <P>SOLUTION: Since heating air is heated by the working fluid flowing in a second heat exchanger 8 by making the working fluid flowing out of a motive power generator 2 flow to the second heat exchanger 8 of a bypass passage 7 by switching a flow passage by a three-way valve 7a, the heating air can be heated without making the working fluid flow to a condenser 3 when generating electric power and performing heating, and the heat of the working fluid can be respectively efficiently used for power generation and heating. In that case, since the heat is exchanged between the working fluid flowing out of the motive power generator 2 and the working fluid flowing in the evaporator 1 side by a first heat exchanger 6, a low temperature working fluid flowing in the evaporator 1 side can be heated by the high temperature working fluid flowing out of the motive power generator 2, and re-evaporation of the working fluid in an evaporator 1 can be promoted. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば太陽光等の自然界で発生する熱、内燃機関やボイラの廃熱、工場廃熱等を熱源として利用することにより、発電及び給湯等を行うランキンシステムに関するものである。   The present invention relates to a Rankine system that performs power generation, hot water supply, and the like by using, as a heat source, heat generated in nature such as sunlight, waste heat from internal combustion engines and boilers, factory waste heat, and the like.

従来、この種のランキンシステムとしては、作動流体を所定の熱源により加熱して蒸発させる蒸発器と、蒸発器によって蒸発した作動流体の膨張により動力を発生するタービン等の動力発生機と、動力発生機から流出する作動流体を凝縮させる凝縮器と、凝縮器から流出する作動流体を吸入して蒸発器側に吐出するポンプとを備え、動力発生機によって発電機を駆動するとともに、凝縮器を流通する作動流体の熱により暖房用の空気の加熱、給湯用の温水の生成を行うようにしたものが知られている(例えば、特許文献1参照。)。
特開2004−60550号公報
Conventionally, this type of Rankine system includes an evaporator that heats and evaporates a working fluid by a predetermined heat source, a power generator such as a turbine that generates power by expansion of the working fluid evaporated by the evaporator, and power generation. It is equipped with a condenser that condenses the working fluid flowing out from the machine and a pump that sucks the working fluid flowing out from the condenser and discharges it to the evaporator side. The power generator drives the generator and distributes the condenser. There is known one that heats air for heating and generates hot water for hot water supply by the heat of the working fluid (see, for example, Patent Document 1).
JP 2004-60550 A

しかしながら、前記ランキンシステムでは、凝縮器を流通する作動流体が常に暖房用の空気または給湯用の温水と熱交換しているため、暖房または給湯を行わないときには凝縮後の作動流体の温度を無用に低下させ、システム全体の熱効率が低下するという問題点があった。   However, in the Rankine system, since the working fluid flowing through the condenser always exchanges heat with air for heating or hot water for hot water supply, the temperature of the working fluid after condensation is useless when heating or hot water is not used. There is a problem that the thermal efficiency of the entire system is lowered.

本発明は前記問題点に鑑みてなされたものであり、その目的とするところは、作動流体の熱を発電、暖房及び温水の生成にそれぞれ効率的に利用することのできるランキンシステムを提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a Rankine system that can efficiently use the heat of a working fluid for power generation, heating, and hot water generation. It is in.

本発明は前記目的を達成するために、作動流体を所定の熱源により加熱して蒸発させる蒸発器と、蒸発器から流出する作動流体の膨張により動力を発生する動力発生機と、動力発生機から流出する作動流体を凝縮させる凝縮器と、凝縮器から流出する作動流体を吸入して蒸発器側に吐出するポンプとを備え、動力発生機によって発電機を駆動するとともに、作動流体の熱によって暖房用の空気を加熱するようにしたランキンシステムにおいて、前記動力発生機から流出する作動流体と蒸発器に流入する作動流体とを熱交換する第1の熱交換器と、一端側を動力発生機と凝縮器との間に接続され、他端側を凝縮器の流出側に接続されたバイパス流路と、動力発生機から流出した作動流体を凝縮器側とバイパス流路側の何れか一方に流通させる流路切換弁と、バイパス流路を流通する作動流体と暖房用の空気とを熱交換する第2の熱交換器とを備えている。   To achieve the above object, the present invention provides an evaporator that heats and evaporates a working fluid with a predetermined heat source, a power generator that generates power by expansion of the working fluid flowing out of the evaporator, and a power generator. A condenser that condenses the flowing working fluid and a pump that sucks the working fluid flowing out from the condenser and discharges it to the evaporator side, drives the generator by a power generator, and heats the working fluid by the heat of the working fluid In the Rankine system that heats the working air, a first heat exchanger that exchanges heat between the working fluid that flows out of the power generator and the working fluid that flows into the evaporator, and a power generator on one end side A bypass flow path connected between the condenser and the other end side connected to the outflow side of the condenser, and the working fluid flowing out from the power generator is circulated to either the condenser side or the bypass flow path side. Flow And switching valve, the working fluid flowing through the bypass passage and the air for heating and a second heat exchanger for exchanging heat.

これにより、動力発生機から流出した作動流体を流路切換弁によりバイパス流路に流通させることにより、動力発生機から流出した作動流体が第2の熱交換器に流入し、暖房用の空気が第2の熱交換器の作動流体によって加熱されることから、暖房用の空気の加熱を行う場合は、作動流体を凝縮器に流通させることなく暖房用の空気を加熱することが可能となる。その際、蒸発器側に流入する作動流体が動力発生機から流出した作動流体と第1の熱交換器によって熱交換されることから、蒸発器側に流入する低温の作動流体が動力発生機から流出した高温の作動流体によって加熱される。   As a result, the working fluid that has flowed out of the power generator is circulated to the bypass flow path by the flow path switching valve, so that the working fluid that has flowed out of the power generator flows into the second heat exchanger, and the heating air is Since the heating air is heated by the working fluid of the second heat exchanger, the heating air can be heated without circulating the working fluid to the condenser. At this time, since the working fluid flowing into the evaporator side is heat-exchanged by the first heat exchanger with the working fluid flowing out from the power generator, the low-temperature working fluid flowing into the evaporator side is exchanged from the power generator. Heated by the hot working fluid that has flowed out.

また、本発明は前記目的を達成するために、作動流体を所定の熱源により加熱して蒸発させる蒸発器と、蒸発器から流出する作動流体の膨張により動力を発生する動力発生機と、動力発生機から流出する作動流体を凝縮させる凝縮器と、凝縮器から流出する作動流体を吸入して蒸発器側に吐出するポンプとを備え、動力発生機によって発電機を駆動するとともに、作動流体の熱によって貯湯槽の温水を生成するようにしたランキンシステムにおいて、前記動力発生機から流出する作動流体と蒸発器に流入する作動流体とを熱交換する第1の熱交換器と、一端側を動力発生機と凝縮器との間に接続され、他端側を凝縮器の流出側に接続されたバイパス流路と、動力発生機から流出した作動流体を凝縮器側とバイパス流路側の何れか一方に流通させる流路切換弁と、バイパス流路を流通する作動流体と貯湯槽に流入する水とを熱交換する第2の熱交換器とを備えている。   In order to achieve the above object, the present invention provides an evaporator that heats and evaporates a working fluid with a predetermined heat source, a power generator that generates power by expansion of the working fluid flowing out of the evaporator, A condenser for condensing the working fluid flowing out from the machine, and a pump for sucking the working fluid flowing out from the condenser and discharging it to the evaporator side. The power generator drives the generator, and heat of the working fluid In the Rankine system configured to generate hot water in the hot water storage tank, a first heat exchanger for exchanging heat between the working fluid flowing out from the power generator and the working fluid flowing into the evaporator generates power at one end side. A bypass flow path connected between the compressor and the condenser, with the other end connected to the outflow side of the condenser, and the working fluid flowing out from the power generator to either the condenser side or the bypass flow path side. Distributed A flow path switching valve that, the water flowing into the working fluid and the hot water storage tank flowing through the bypass passage and a second heat exchanger for exchanging heat.

これにより、動力発生機から流出した作動流体を流路切換弁によりバイパス流路に流通させることにより、動力発生機から流出した作動流体が第2の熱交換器に流入し、貯湯槽に流入する水が第2の熱交換器の作動流体によって加熱されることから、貯湯槽の温水の加熱を行う場合は、作動流体を凝縮器に流通させることなく貯湯槽に流入する水を加熱することが可能となる。その際、蒸発器側に流入する作動流体が動力発生機から流出した作動流体と第1の熱交換器によって熱交換されることから、蒸発器側に流入する低温の作動流体が動力発生機から流出した高温の作動流体によって加熱される。   Thereby, the working fluid that has flowed out of the power generator is caused to flow through the bypass flow path by the flow path switching valve, so that the working fluid that has flowed out of the power generator flows into the second heat exchanger and flows into the hot water storage tank. Since water is heated by the working fluid of the second heat exchanger, when heating the hot water in the hot water tank, the water flowing into the hot water tank can be heated without circulating the working fluid to the condenser. It becomes possible. At this time, since the working fluid flowing into the evaporator side is heat-exchanged by the first heat exchanger with the working fluid flowing out from the power generator, the low-temperature working fluid flowing into the evaporator side is exchanged from the power generator. Heated by the hot working fluid that has flowed out.

また、本発明は前記目的を達成するために、作動流体を所定の熱源により加熱して蒸発させる蒸発器と、蒸発器から流出する作動流体の膨張により動力を発生する動力発生機と、動力発生機から流出する作動流体を凝縮させる凝縮器と、凝縮器から流出する作動流体を吸入して蒸発器側に吐出するポンプとを備え、動力発生機によって発電機を駆動するとともに、作動流体の熱によって暖房用の空気を加熱するようにしたランキンシステムにおいて、前記動力発生機から流出する作動流体と蒸発器に流入する作動流体とを熱交換する第1の熱交換器と、一端側を動力発生機と凝縮器との間に接続され、他端側を凝縮器の流出側に接続された第1のバイパス流路と、動力発生機から流出した作動流体を凝縮器側と第1のバイパス流路側の何れか一方に流通させる第1の流路切換弁と、第1のバイパス流路を流通する作動流体と暖房用の空気とを熱交換する第2の熱交換器と、一端側を蒸発器と動力発生機との間に接続され、他端側を第2の熱交換器の流入側に接続された第2のバイパス流路と、蒸発器から流出した作動流体を動力発生機側と第2のバイパス流路側の何れか一方に流通させる第2の流路切換弁とを備えている。   In order to achieve the above object, the present invention provides an evaporator that heats and evaporates a working fluid with a predetermined heat source, a power generator that generates power by expansion of the working fluid flowing out of the evaporator, A condenser for condensing the working fluid flowing out from the machine, and a pump for sucking the working fluid flowing out from the condenser and discharging it to the evaporator side. The power generator drives the generator, and heat of the working fluid In the Rankine system in which heating air is heated by the first heat exchanger for exchanging heat between the working fluid flowing out from the power generator and the working fluid flowing into the evaporator, power is generated at one end side. A first bypass flow path connected between the compressor and the condenser and having the other end connected to the outflow side of the condenser, and the working fluid flowing out from the power generator is connected to the condenser side and the first bypass flow Either on the roadside A first flow path switching valve that circulates in the direction, a second heat exchanger that exchanges heat between the working fluid that flows through the first bypass flow path and the air for heating, and an evaporator at one end side to generate power A second bypass flow path connected between the power generator and the other end side of the second heat exchanger connected to the inflow side of the second heat exchanger, and the working fluid flowing out of the evaporator from the power generator side and the second bypass And a second flow path switching valve that circulates in any one of the flow path sides.

これにより、動力発生機から流出した作動流体を第1の流路切換弁により第1のバイパス流路に流通させることにより、動力発生機から流出した作動流体が第2の熱交換器に流入し、暖房用の空気が第2の熱交換器の作動流体によって加熱されることから、暖房用の空気の加熱を行う場合は、作動流体を凝縮器に流通させることなく暖房用の空気を加熱することが可能となる。その際、蒸発器側に流入する作動流体が動力発生機から流出した作動流体と第1の熱交換器によって熱交換されることから、蒸発器側に流入する低温の作動流体が動力発生機から流出した高温の作動流体によって加熱される。また、蒸発器から流出した作動流体を第2の流路切換弁により第2のバイパス流路に流通させることにより、蒸発器から流出した作動流体が第2の熱交換器に流入することから、暖房用の空気が蒸発器から流出する高温の作動流体によって加熱される。   As a result, the working fluid that has flowed out of the power generator flows into the first bypass flow path by the first flow path switching valve, so that the working fluid that has flowed out of the power generator flows into the second heat exchanger. Since the heating air is heated by the working fluid of the second heat exchanger, when heating the heating air, the heating air is heated without circulating the working fluid to the condenser. It becomes possible. At this time, since the working fluid flowing into the evaporator side is heat-exchanged by the first heat exchanger with the working fluid flowing out from the power generator, the low-temperature working fluid flowing into the evaporator side is exchanged from the power generator. Heated by the hot working fluid that has flowed out. In addition, since the working fluid that has flowed out of the evaporator flows into the second bypass flow path by the second flow path switching valve, the working fluid that has flowed out of the evaporator flows into the second heat exchanger, Heating air is heated by the hot working fluid flowing out of the evaporator.

本発明によれば、作動流体の熱によって暖房用の空気を加熱する場合、作動流体を凝縮器に流通させることなく暖房用の空気を加熱することができるので、作動流体の熱を発電及び暖房用の空気の加熱にそれぞれ効率的に利用することができる。その際、動力発生機から流出した高温の作動流体によって蒸発器側に流入する低温の作動流体を加熱することができるので、蒸発器における作動流体の再蒸発を促進することができる。   According to the present invention, when heating air is heated by the heat of the working fluid, the heating air can be heated without circulating the working fluid to the condenser. Therefore, the heat of the working fluid is generated and heated. Each can be used efficiently for heating the air. At this time, since the low-temperature working fluid flowing into the evaporator can be heated by the high-temperature working fluid flowing out from the power generator, re-evaporation of the working fluid in the evaporator can be promoted.

また、本発明によれば、作動流体の熱によって貯湯槽に流入する水を加熱する場合、作動流体を凝縮器に流通させることなく貯湯槽に流入する水を加熱することができるので、作動流体の熱を発電及び貯湯槽の温水の加熱にそれぞれ効率的に利用することができる。その際、動力発生機から流出した高温の作動流体によって蒸発器側に流入する低温の作動流体を加熱することができるので、蒸発器における作動流体の再蒸発を促進することができる。   Further, according to the present invention, when the water flowing into the hot water tank is heated by the heat of the working fluid, the water flowing into the hot water tank can be heated without circulating the working fluid to the condenser. Can be efficiently used for power generation and heating of hot water in a hot water tank. At this time, since the low-temperature working fluid flowing into the evaporator can be heated by the high-temperature working fluid flowing out from the power generator, re-evaporation of the working fluid in the evaporator can be promoted.

また、本発明によれば、発電を行わずに暖房用の空気を加熱する場合、暖房用の空気を高温の作動流体によって加熱することができるので、作動流体から十分な熱量を得ることができる。   Further, according to the present invention, when heating air is heated without generating electricity, the heating air can be heated by a high temperature working fluid, so that a sufficient amount of heat can be obtained from the working fluid. .

図1は本発明の第1の実施形態を示すもので、ランキンシステムの概略構成図である。   FIG. 1 shows a first embodiment of the present invention and is a schematic configuration diagram of a Rankine system.

このランキンシステムは、作動流体を蒸発させる蒸発器1と、蒸発器1から流出する作動流体の膨張により動力を発生する動力発生機2と、動力発生機2から流出する作動流体を凝縮させる凝縮器3と、凝縮器3から流出した作動流体を受容する受液器4と、受液器4側から作動流体を吸入して蒸発器1側に吐出するポンプ5と、動力発生機2から流出する作動流体と蒸発器1に流入する作動流体とを熱交換する第1の熱交換器6と、動力発生機2の流出側回路から分岐するバイパス流路7と、バイパス流路7を流通する作動流体と暖房用の空気とを熱交換する第2の熱交換器8とを備え、動力発生機2によって発電機Gを駆動するとともに、作動流体の熱によって暖房用の空気を加熱するようにようになっている。   This Rankine system includes an evaporator 1 that evaporates working fluid, a power generator 2 that generates power by expansion of the working fluid that flows out of the evaporator 1, and a condenser that condenses the working fluid that flows out of the power generator 2. 3, a liquid receiver 4 that receives the working fluid flowing out from the condenser 3, a pump 5 that sucks the working fluid from the liquid receiver 4 side and discharges it to the evaporator 1 side, and flows out from the power generator 2. A first heat exchanger 6 that exchanges heat between the working fluid and the working fluid that flows into the evaporator 1, a bypass flow path 7 that branches from the outflow side circuit of the power generator 2, and an operation that flows through the bypass flow path 7. And a second heat exchanger 8 for exchanging heat between the fluid and the air for heating. The generator G is driven by the power generator 2 and the air for heating is heated by the heat of the working fluid. It has become.

蒸発器1は、内部を流通する作動流体を所定の熱源(例えば太陽光等の自然エネルギー、工場廃熱等)によって蒸発させるように構成され、熱源としては、例えば太陽光等の自然エネルギー、工場廃熱等が用いられる。また、作動流体には、例えばフロン(R245fa等)が用いられる。   The evaporator 1 is configured to evaporate the working fluid flowing through the inside with a predetermined heat source (for example, natural energy such as sunlight, factory waste heat, etc.). As the heat source, for example, natural energy such as sunlight, factory Waste heat or the like is used. Further, for example, chlorofluorocarbon (R245fa or the like) is used as the working fluid.

動力発生機2はタービン、スクロール型膨張機等の周知の機器からなり、作動流体の流入側を蒸発器1の流出側に接続されるとともに、その回転軸を発電機Gに連結されている。   The power generator 2 is composed of a well-known device such as a turbine or a scroll type expander. The inflow side of the working fluid is connected to the outflow side of the evaporator 1, and the rotating shaft thereof is connected to the generator G.

凝縮器3は、内部を流通する作動流体を外気との熱交換によって凝縮させるように構成され、その近傍には外気送風用の送風機3aが設けられている。   The condenser 3 is configured to condense the working fluid flowing through the inside by heat exchange with the outside air, and a blower 3a for blowing outside air is provided in the vicinity thereof.

受液器4は、内部に流入した作動流体を気体と液体に分離するように構成され、液状の作動流体をポンプ5側に流出するようになっている。   The liquid receiver 4 is configured to separate the working fluid flowing into the inside into a gas and a liquid, and the liquid working fluid flows out to the pump 5 side.

ポンプ5は作動流体を圧送する周知の機器からなり、蒸発器1の流入側と受液器4の流出側との間に設けられている。   The pump 5 is a well-known device that pumps the working fluid, and is provided between the inflow side of the evaporator 1 and the outflow side of the liquid receiver 4.

第1の熱交換器6は動力発生機2の流出側回路と蒸発器1の流入側回路に設けられ、動力発生機2から流出する作動流体と蒸発器1に流入する作動流体とを互いに熱交換させるように構成されている。   The first heat exchanger 6 is provided in the outflow side circuit of the power generator 2 and the inflow side circuit of the evaporator 1, and the working fluid flowing out from the power generator 2 and the working fluid flowing into the evaporator 1 heat each other. It is configured to be exchanged.

バイパス流路7は一端を動力発生機2の流出側(第1の熱交換器6の流出側)と凝縮器3との間の流路に接続され、その他端は凝縮器3と受液器4との間の流路に接続されている。動力発生機2の流出側とバイパス流路7の流入側との間には流路切換弁としての三方弁7aが設けられ、三方弁7aによって流路を切換えることにより、動力発生機2から流出した作動流体を凝縮器3側とバイパス流路7側の何れか一方に流通させるようになっている。   One end of the bypass flow path 7 is connected to the flow path between the outflow side of the power generator 2 (outflow side of the first heat exchanger 6) and the condenser 3, and the other end is connected to the condenser 3 and the liquid receiver. 4 is connected to the flow path between the two. A three-way valve 7a as a flow path switching valve is provided between the outflow side of the power generator 2 and the inflow side of the bypass flow path 7. By switching the flow path by the three-way valve 7a, the outflow from the power generator 2 The working fluid is circulated through either the condenser 3 side or the bypass flow path 7 side.

第2の熱交換器8はバイパス流路7に設けられ、バイパス流路7を流通する作動流体と暖房用の空気とを互いに熱交換させるように構成されている。この場合、第2の熱交換器8によって加熱された空気は送風機8aによって所定の暖房空間(図示せず)に供給されるようになっている。   The second heat exchanger 8 is provided in the bypass channel 7 and is configured to exchange heat between the working fluid flowing through the bypass channel 7 and the air for heating. In this case, the air heated by the second heat exchanger 8 is supplied to a predetermined heating space (not shown) by the blower 8a.

本実施形態のランキンシステムにおいて発電のみを行う場合は、三方弁7aによって動力発生機2の流出側を凝縮器3の流入側に連通する。これにより、蒸発器1で加熱されて蒸発した作動流体が動力発生機2に流入し、動力発生機2内で膨張する。その際、動力発生機2が作動流体の膨張により回転し、動力発生機2によって発電機Gが駆動される。動力発生機2から流出した作動流体は凝縮器3に流入して凝縮し、凝縮器3から流出した作動流体は受液器4を介してポンプ5に吸入されるとともに、ポンプ5によって蒸発器1側に吐出される。その際、蒸発器1側に流入する作動流体は、動力発生機2から流出した作動流体と第1の熱交換器6によって熱交換された後、蒸発器1に流入して再び蒸発する。   When only power generation is performed in the Rankine system of this embodiment, the outflow side of the power generator 2 is communicated with the inflow side of the condenser 3 by the three-way valve 7a. Thereby, the working fluid heated and evaporated by the evaporator 1 flows into the power generator 2 and expands in the power generator 2. At that time, the power generator 2 rotates due to the expansion of the working fluid, and the power generator 2 drives the generator G. The working fluid that has flowed out of the power generator 2 flows into the condenser 3 to be condensed, and the working fluid that has flowed out of the condenser 3 is sucked into the pump 5 through the receiver 4 and is also evaporated by the pump 5. Discharged to the side. At that time, the working fluid flowing into the evaporator 1 side is exchanged with the working fluid flowing out from the power generator 2 by the first heat exchanger 6, and then flows into the evaporator 1 and evaporates again.

また、前記ランキンシステムにおいて発電及び暖房を行う場合は、三方弁7aによって動力発生機2の流出側をバイパス流路7に連通する。これにより、動力発生機2から流出した作動流体がバイパス流路7を流通し、凝縮器3を介さずに受液器4に流入する。その際、バイパス流路7を流通する作動流体が第2の熱交換器8を介して暖房用の空気と熱交換され、暖房用の空気が作動流体により加熱されて所定の暖房空間へ供給される。   Further, when power generation and heating are performed in the Rankine system, the outflow side of the power generator 2 is communicated with the bypass flow path 7 by the three-way valve 7a. As a result, the working fluid that has flowed out of the power generator 2 flows through the bypass flow path 7 and flows into the liquid receiver 4 without passing through the condenser 3. At that time, the working fluid flowing through the bypass flow path 7 exchanges heat with the heating air via the second heat exchanger 8, and the heating air is heated by the working fluid and supplied to a predetermined heating space. The

このように、本実施形態のランキンシステムによれば、動力発生機2から流出した作動流体を三方弁7aにより流路を切換えてバイパス流路7の第2の熱交換器8に流通させることにより、第2の熱交換器8を流通する作動流体によって暖房用の空気を加熱するようにしたので、発電及び暖房を行う場合は作動流体を凝縮器3に流通させることなく暖房用の空気を加熱することができ、作動流体の熱を発電及び暖房にそれぞれ効率的に利用することができる。その際、動力発生機2から流出した作動流体と蒸発器1側に流入する作動流体とを第1の熱交換器6によって熱交換するようにしたので、動力発生機2から流出した高温の作動流体によって蒸発器1側に流入する低温の作動流体を加熱することができ、蒸発器1における作動流体の再蒸発を促進することができる。   Thus, according to the Rankine system of the present embodiment, the working fluid that has flowed out of the power generator 2 is switched to the flow path by the three-way valve 7 a and is circulated to the second heat exchanger 8 of the bypass flow path 7. Since the heating air is heated by the working fluid flowing through the second heat exchanger 8, the heating air is heated without flowing the working fluid through the condenser 3 when generating and heating. The heat of the working fluid can be used efficiently for power generation and heating, respectively. At that time, since the working fluid flowing out from the power generator 2 and the working fluid flowing into the evaporator 1 are heat-exchanged by the first heat exchanger 6, the high-temperature operation flowing out from the power generator 2 is performed. The low-temperature working fluid flowing into the evaporator 1 side can be heated by the fluid, and re-evaporation of the working fluid in the evaporator 1 can be promoted.

また、作動流体の流路をバイパス流路7側に切換える三方弁7aを動力発生機2の流出側とバイパス流路7の流入側との間に設けたので、バイパス流路7の流入側を動力発生機2の流出側に確実に連通することができる。   Further, since the three-way valve 7a for switching the working fluid flow path to the bypass flow path 7 side is provided between the outflow side of the power generator 2 and the inflow side of the bypass flow path 7, the inflow side of the bypass flow path 7 is provided. It is possible to reliably communicate with the outflow side of the power generator 2.

図2は本発明の第2の実施形態を示すもので、ランキンシステムの概略構成図である。尚、第1の実施形態と同等の構成部分には同一の符号を付して示す。   FIG. 2 shows a second embodiment of the present invention and is a schematic configuration diagram of a Rankine system. In addition, the same code | symbol is attached | subjected and shown to the component equivalent to 1st Embodiment.

本実施形態のランキンシステムは、第1の実施形態の三方弁7aに代わる流路切換弁として、凝縮器3の流出側とバイパス流路7の流出側との間に設けられた三方弁7bを備えている。これにより、凝縮器3及びバイパス流路7の流出側は動力発生機2の流出側よりも作動流体の温度が低いため、三方弁7bとして耐熱性の高い高価なものを用いる必要がなく、低コスト化を図ることができる。   The Rankine system according to the present embodiment includes a three-way valve 7b provided between the outflow side of the condenser 3 and the outflow side of the bypass flow path 7 as a flow path switching valve instead of the three-way valve 7a of the first embodiment. I have. Thereby, since the temperature of the working fluid is lower on the outflow side of the condenser 3 and the bypass flow path 7 than on the outflow side of the power generator 2, it is not necessary to use an expensive one having high heat resistance as the three-way valve 7b. Cost can be reduced.

図3は本発明の第3の実施形態を示すもので、ランキンシステムの概略構成図である。尚、第1の実施形態と同等の構成部分には同一の符号を付して示す。   FIG. 3 shows a third embodiment of the present invention and is a schematic configuration diagram of a Rankine system. In addition, the same code | symbol is attached | subjected and shown to the component equivalent to 1st Embodiment.

本実施形態のランキンシステムは、バイパス流路7を流通する作動流体と貯湯槽Hに流入する水とを熱交換する第2の熱交換器9と、貯湯槽Hの水を第2の熱交換器9に循環する水回路10と、第2の熱交換器9から貯湯槽Hに流入する水を加熱する加熱器11とを備えている。   The Rankine system according to the present embodiment includes a second heat exchanger 9 that exchanges heat between the working fluid flowing through the bypass flow path 7 and the water flowing into the hot water tank H, and the second heat exchange of the water in the hot water tank H. A water circuit 10 that circulates in the vessel 9 and a heater 11 that heats the water flowing from the second heat exchanger 9 into the hot water tank H are provided.

第2の熱交換器9はバイパス流路7及び水回路10に設けられ、バイパス流路7を流通する作動流体と水回路10の水とを互いに熱交換させるように構成されている。   The second heat exchanger 9 is provided in the bypass flow path 7 and the water circuit 10 and is configured to exchange heat between the working fluid flowing through the bypass flow path 7 and the water in the water circuit 10.

水回路10は第2の熱交換器9及び貯湯槽Hに接続され、貯湯槽H内の水をポンプ10aによって第2の熱交換器9に循環するようになっている。また、貯湯槽Hには給水管12を介して外部から水道水が供給されるとともに、貯湯槽H内の温水は給湯管13から任意に吐出されるようになっている。   The water circuit 10 is connected to the second heat exchanger 9 and the hot water tank H, and the water in the hot water tank H is circulated to the second heat exchanger 9 by the pump 10a. Further, tap water is supplied to the hot water tank H from the outside through the water supply pipe 12, and hot water in the hot water tank H is arbitrarily discharged from the hot water pipe 13.

加熱器11は補助加熱手段としての電気ヒータ11aを有し、内部を流通する水回路10の水を電気ヒータ11aによって加熱するようになっている。   The heater 11 has an electric heater 11a as auxiliary heating means, and heats the water in the water circuit 10 that circulates inside the heater 11a.

本実施形態のランキンシステムにおいて発電のみを行う場合は、三方弁7aによって動力発生機2の流出側を凝縮器3の流入側に連通することにより、第1の実施形態と同様、動力発生機2が作動流体の膨張により回転し、動力発生機2によって発電機Gが駆動される。その際、動力発生機2から流出した作動流体は凝縮器3に流入し、凝縮器3によって凝縮する。   When only the power generation is performed in the Rankine system of the present embodiment, the power generator 2 is connected to the inflow side of the condenser 3 by connecting the outflow side of the power generator 2 to the inflow side of the condenser 3 by the three-way valve 7a. Is rotated by the expansion of the working fluid, and the generator G is driven by the power generator 2. At that time, the working fluid flowing out from the power generator 2 flows into the condenser 3 and is condensed by the condenser 3.

また、前記ランキンシステムにおいて発電及び給湯を行う場合は、三方弁7aによって動力発生機2の流出側をバイパス流路7に連通する。これにより、動力発生機2から流出した作動流体がバイパス流路7を流通し、凝縮器3を介さずに受液器4に流入する。その際、バイパス流路7を流通する作動流体が第2の熱交換器9を介して水回路10の水と熱交換され、水回路10の水が作動流体により加熱されて貯湯槽H内に温水として貯えられる。また、加熱器11の電気ヒータ11aを作動することにより、貯湯槽Hに流入する水が電気ヒータ11aによっても加熱される。   Further, when power generation and hot water supply are performed in the Rankine system, the outflow side of the power generator 2 is communicated with the bypass flow path 7 by the three-way valve 7a. As a result, the working fluid that has flowed out of the power generator 2 flows through the bypass flow path 7 and flows into the liquid receiver 4 without passing through the condenser 3. At that time, the working fluid flowing through the bypass channel 7 is heat-exchanged with the water in the water circuit 10 through the second heat exchanger 9, and the water in the water circuit 10 is heated by the working fluid into the hot water storage tank H. Stored as hot water. Further, by operating the electric heater 11a of the heater 11, the water flowing into the hot water tank H is also heated by the electric heater 11a.

このように、本実施形態のランキンシステムによれば、動力発生機2から流出した作動流体を三方弁7aにより流路を切換えてバイパス流路7の第1の熱交換器9に流通させることにより、第1の熱交換器9を流通する作動流体によって水回路10の水を加熱するようにしたので、発電及び給湯を行う場合は作動流体を凝縮器3に流通させることなく水回路10の水を加熱することができ、作動流体の熱を発電及び給湯にそれぞれ効率的に利用することができる。   As described above, according to the Rankine system of the present embodiment, the working fluid flowing out from the power generator 2 is switched to the flow path by the three-way valve 7a and is circulated to the first heat exchanger 9 in the bypass flow path 7. Since the water in the water circuit 10 is heated by the working fluid flowing through the first heat exchanger 9, the water in the water circuit 10 does not flow through the condenser 3 when power generation and hot water supply are performed. The heat of the working fluid can be efficiently used for power generation and hot water supply, respectively.

また、作動流体の流路をバイパス流路7側に切換える三方弁7aを動力発生機2の流出側とバイパス流路7の流入側との間に設けたので、バイパス流路7の流入側を動力発生機2の流出側に確実に連通することができる。   Further, since the three-way valve 7a for switching the working fluid flow path to the bypass flow path 7 side is provided between the outflow side of the power generator 2 and the inflow side of the bypass flow path 7, the inflow side of the bypass flow path 7 is provided. It is possible to reliably communicate with the outflow side of the power generator 2.

更に、貯湯槽Hに流入する水を加熱器11の電気ヒータ11aによって加熱することができるので、バイパス流路7を流通する作動流体の熱量が不足する場合でも、貯湯槽Hの温水を電気ヒータ11aによって必要な温度まで加熱することができる。   Furthermore, since the water flowing into the hot water tank H can be heated by the electric heater 11a of the heater 11, even when the amount of heat of the working fluid flowing through the bypass channel 7 is insufficient, the hot water in the hot water tank H is used as the electric heater. It can be heated to the required temperature by 11a.

図4は本発明の第4の実施形態を示すもので、ランキンシステムの概略構成図である。尚、第3の実施形態と同等の構成部分には同一の符号を付して示す。   FIG. 4 shows a fourth embodiment of the present invention and is a schematic configuration diagram of a Rankine system. In addition, the same code | symbol is attached | subjected and shown to the component equivalent to 3rd Embodiment.

本実施形態のランキンシステムは、第3の実施形態の三方弁7aに代わる流路切換弁として、凝縮器3の流出側とバイパス流路7の流出側との間に設けられた三方弁7bを備えている。これにより、凝縮器3及びバイパス流路7の流出側は動力発生機2の流出側よりも作動流体の温度が低いため、三方弁7bとして耐熱性の高い高価なものを用いる必要がなく、低コスト化を図ることができる。   The Rankine system according to the present embodiment includes a three-way valve 7b provided between the outflow side of the condenser 3 and the outflow side of the bypass flow path 7 as a flow path switching valve in place of the three-way valve 7a of the third embodiment. I have. Thereby, since the temperature of the working fluid is lower on the outflow side of the condenser 3 and the bypass flow path 7 than on the outflow side of the power generator 2, it is not necessary to use an expensive one having high heat resistance as the three-way valve 7b. Cost can be reduced.

図5は本発明の第5の実施形態を示すもので、ランキンシステムの概略構成図である。尚、第1の実施形態と同等の構成部分には同一の符号を付して示す。   FIG. 5 shows a fifth embodiment of the present invention and is a schematic configuration diagram of a Rankine system. In addition, the same code | symbol is attached | subjected and shown to the component equivalent to 1st Embodiment.

本実施形態のランキンシステムは、動力発生機2の流出側回路から分岐する第1のバイパス流路14と、蒸発器1の流出側回路から分岐する第2のバイパス流路15とを備え、第1のバイパス流路14には前記第2の熱交換器8が設けられている。   The Rankine system according to the present embodiment includes a first bypass passage 14 that branches from the outflow side circuit of the power generator 2 and a second bypass passage 15 that branches from the outflow side circuit of the evaporator 1. One bypass flow path 14 is provided with the second heat exchanger 8.

第1のバイパス流路14は第1の実施形態と同様、一端を動力発生機2の流出側と凝縮器3との間の流路に接続され、その他端は凝縮器3と受液器4との間の流路に接続されている。動力発生機2の流出側と第1のバイパス流路14の流入側との間には第1の流路切換弁としての第1の三方弁14aが設けられ、第1の三方弁14aによって流路を切換えることにより、動力発生機2から流出した作動流体を凝縮器3側と第1のバイパス流路14側の何れか一方に流通させるようになっている。   As in the first embodiment, one end of the first bypass channel 14 is connected to the channel between the outflow side of the power generator 2 and the condenser 3, and the other end is connected to the condenser 3 and the receiver 4. Is connected to the flow path between. A first three-way valve 14a serving as a first flow path switching valve is provided between the outflow side of the power generator 2 and the inflow side of the first bypass flow path 14, and is flown by the first three-way valve 14a. By switching the path, the working fluid flowing out from the power generator 2 is circulated to either the condenser 3 side or the first bypass flow path 14 side.

第2のバイパス流路15は一端を蒸発器1と動力発生機2との間の流路に接続され、その他端は第1のバイパス流路14における第2の熱交換器8の流入側に接続されている。蒸発器1の流出側と動力発生機2の流入側との間には第2の流路切換弁としての第2の三方弁15aが設けられ、第2の三方弁15aによって流路を切換えることにより、蒸発器1から流出した作動流体を動力発生機2側と第2のバイパス流路15側の何れか一方に流通させるようになっている。また、第2のバイパス流路15における第2の熱交換器8の流入側には膨張弁15bが設けられている。   The second bypass flow path 15 has one end connected to the flow path between the evaporator 1 and the power generator 2, and the other end connected to the inflow side of the second heat exchanger 8 in the first bypass flow path 14. It is connected. A second three-way valve 15a as a second flow path switching valve is provided between the outflow side of the evaporator 1 and the inflow side of the power generator 2, and the flow path is switched by the second three-way valve 15a. Thus, the working fluid flowing out of the evaporator 1 is circulated to either the power generator 2 side or the second bypass flow path 15 side. An expansion valve 15 b is provided on the inflow side of the second heat exchanger 8 in the second bypass flow path 15.

本実施形態のランキンシステムにおいて発電のみを行う場合は、第1の三方弁14aによって動力発生機2の流出側を凝縮器3の流入側に連通することにより、第1の実施形態と同様、動力発生機2が作動流体の膨張により回転し、動力発生機2によって発電機Gが駆動される。その際、動力発生機2から流出した作動流体は凝縮器3に流入し、凝縮器3によって凝縮する。   When only the power generation is performed in the Rankine system of the present embodiment, the first three-way valve 14a communicates the outflow side of the power generator 2 to the inflow side of the condenser 3, so that the power is the same as in the first embodiment. The generator 2 is rotated by the expansion of the working fluid, and the generator G is driven by the power generator 2. At that time, the working fluid flowing out from the power generator 2 flows into the condenser 3 and is condensed by the condenser 3.

また、前記ランキンシステムにおいて発電及び暖房を行う場合は、第1の三方弁14aによって動力発生機2の流出側を第1のバイパス流路14に連通する。これにより、動力発生機2から流出した作動流体が第1のバイパス流路14を流通し、凝縮器3を介さずに受液器4に流入する。その際、第1のバイパス流路14を流通する作動流体が第2の熱交換器8を介して暖房用の空気と熱交換され、暖房用の空気が作動流体によって加熱される。   When power generation and heating are performed in the Rankine system, the outflow side of the power generator 2 is communicated with the first bypass passage 14 by the first three-way valve 14a. As a result, the working fluid that has flowed out of the power generator 2 flows through the first bypass flow path 14 and flows into the liquid receiver 4 without passing through the condenser 3. At that time, the working fluid flowing through the first bypass passage 14 is heat-exchanged with the heating air via the second heat exchanger 8, and the heating air is heated by the working fluid.

更に、前記ランキンシステムにおいて暖房のみを行う場合は、第2の三方弁15aによって蒸発器1の流出側を第2のバイパス流路15に連通する。これにより、蒸発器1から流出した作動流体が第2のバイパス流路15を流通し、動力発生機2及び凝縮器3を介さずに第2の熱交換器8に流入する。その際、第2の熱交換器8を流通する作動流体によって暖房用の空気が加熱される。   Furthermore, when only heating is performed in the Rankine system, the outflow side of the evaporator 1 is communicated with the second bypass passage 15 by the second three-way valve 15a. As a result, the working fluid flowing out of the evaporator 1 flows through the second bypass passage 15 and flows into the second heat exchanger 8 without passing through the power generator 2 and the condenser 3. At that time, the heating air is heated by the working fluid flowing through the second heat exchanger 8.

このように、本実施形態のランキンシステムによれば、蒸発器1から流出した作動流体を第2の三方弁15aにより流路を切換えて第2のバイパス流路15に流通させ、第2のバイパス流路15から第2の熱交換器8に流通させることにより、第2の熱交換器8を流通する作動流体によって暖房用の空気を加熱するようにしたので、暖房を行う場合は作動流体を動力発生機2及び凝縮器3に流通させることなく暖房用の空気を加熱することができ、作動流体の熱を発電及び暖房にそれぞれ効率的に利用することができる。その際、暖房用の空気を蒸発器1から流出する高温の作動流体によって加熱することができるので、暖房用の空気を加熱する際、作動流体から十分な熱量を得ることができる。   Thus, according to the Rankine system of the present embodiment, the working fluid flowing out of the evaporator 1 is circulated to the second bypass passage 15 by switching the passage by the second three-way valve 15a. The air for heating is heated by the working fluid flowing through the second heat exchanger 8 by flowing it from the flow path 15 to the second heat exchanger 8. Heating air can be heated without flowing through the power generator 2 and the condenser 3, and the heat of the working fluid can be efficiently used for power generation and heating, respectively. At that time, since the heating air can be heated by the high-temperature working fluid that flows out of the evaporator 1, a sufficient amount of heat can be obtained from the working fluid when the heating air is heated.

本発明の第1の実施形態を示すランキンシステムの概略構成図The schematic block diagram of Rankine system which shows the 1st Embodiment of this invention 本発明の第2の実施形態を示すランキンシステムの概略構成図The schematic block diagram of Rankine system which shows the 2nd Embodiment of this invention 本発明の第3の実施形態を示すランキンシステムの概略構成図The schematic block diagram of Rankine system which shows the 3rd Embodiment of this invention 本発明の第4の実施形態を示すランキンシステムの概略構成図The schematic block diagram of Rankine system which shows the 4th Embodiment of this invention 本発明の第5の実施形態を示すランキンシステムの概略構成図The schematic block diagram of Rankine system which shows the 5th Embodiment of this invention

符号の説明Explanation of symbols

1…蒸発器、2…動力発生機、3…凝縮器、5…ポンプ、6…第1の熱交換器、7…バイパス回路、7a,7b…三方弁、8…第2の熱交換器、11a…電気ヒータ、14…第1のバイパス回路、14a,14c…第1の三方弁、15…第2のバイパス回路、15a…第2の三方弁、G…発電機、H…貯湯槽。   DESCRIPTION OF SYMBOLS 1 ... Evaporator, 2 ... Power generator, 3 ... Condenser, 5 ... Pump, 6 ... 1st heat exchanger, 7 ... Bypass circuit, 7a, 7b ... Three-way valve, 8 ... 2nd heat exchanger, DESCRIPTION OF SYMBOLS 11a ... Electric heater, 14 ... 1st bypass circuit, 14a, 14c ... 1st three-way valve, 15 ... 2nd bypass circuit, 15a ... 2nd three-way valve, G ... Generator, H ... Hot water storage tank.

Claims (6)

作動流体を所定の熱源により加熱して蒸発させる蒸発器と、蒸発器から流出する作動流体の膨張により動力を発生する動力発生機と、動力発生機から流出する作動流体を凝縮させる凝縮器と、凝縮器から流出する作動流体を吸入して蒸発器側に吐出するポンプとを備え、動力発生機によって発電機を駆動するとともに、作動流体の熱によって暖房用の空気を加熱するようにしたランキンシステムにおいて、
前記動力発生機から流出する作動流体と蒸発器に流入する作動流体とを熱交換する第1の熱交換器と、
一端側を動力発生機と凝縮器との間に接続され、他端側を凝縮器の流出側に接続されたバイパス流路と、
動力発生機から流出した作動流体を凝縮器側とバイパス流路側の何れか一方に流通させる流路切換弁と、
バイパス流路を流通する作動流体と暖房用の空気とを熱交換する第2の熱交換器とを備えた
ことを特徴とするランキンシステム。
An evaporator that heats and evaporates the working fluid with a predetermined heat source, a power generator that generates power by expansion of the working fluid that flows out of the evaporator, a condenser that condenses the working fluid that flows out of the power generator, A Rankine system that includes a pump that sucks the working fluid flowing out of the condenser and discharges it to the evaporator side, drives the generator by a power generator, and heats the air for heating by the heat of the working fluid In
A first heat exchanger for exchanging heat between the working fluid flowing out of the power generator and the working fluid flowing into the evaporator;
A bypass flow path having one end connected between the power generator and the condenser and the other end connected to the outflow side of the condenser;
A flow path switching valve for flowing the working fluid flowing out from the power generator to either the condenser side or the bypass flow path side;
A Rankine system comprising a second heat exchanger for exchanging heat between the working fluid flowing through the bypass flow path and the air for heating.
作動流体を所定の熱源により加熱して蒸発させる蒸発器と、蒸発器から流出する作動流体の膨張により動力を発生する動力発生機と、動力発生機から流出する作動流体を凝縮させる凝縮器と、凝縮器から流出する作動流体を吸入して蒸発器側に吐出するポンプとを備え、動力発生機によって発電機を駆動するとともに、作動流体の熱によって貯湯槽の温水を生成するようにしたランキンシステムにおいて、
前記動力発生機から流出する作動流体と蒸発器に流入する作動流体とを熱交換する第1の熱交換器と、
一端側を動力発生機と凝縮器との間に接続され、他端側を凝縮器の流出側に接続されたバイパス流路と、
動力発生機から流出した作動流体を凝縮器側とバイパス流路側の何れか一方に流通させる流路切換弁と、
バイパス流路を流通する作動流体と貯湯槽に流入する水とを熱交換する第2の熱交換器とを備えた
ことを特徴とするランキンシステム。
An evaporator that heats and evaporates the working fluid with a predetermined heat source, a power generator that generates power by expansion of the working fluid that flows out of the evaporator, a condenser that condenses the working fluid that flows out of the power generator, A Rankine system comprising a pump that sucks the working fluid flowing out from the condenser and discharges it to the evaporator side, drives the generator by a power generator, and generates hot water in the hot water tank by the heat of the working fluid In
A first heat exchanger for exchanging heat between the working fluid flowing out of the power generator and the working fluid flowing into the evaporator;
A bypass flow path having one end connected between the power generator and the condenser and the other end connected to the outflow side of the condenser;
A flow path switching valve for flowing the working fluid flowing out from the power generator to either the condenser side or the bypass flow path side;
A Rankine system comprising: a second heat exchanger for exchanging heat between the working fluid flowing through the bypass passage and the water flowing into the hot water storage tank.
前記熱交換器から貯湯槽に流入する水を加熱する補助加熱手段を備えた
ことを特徴とする請求項2記載のランキンシステム。
The Rankine system according to claim 2, further comprising auxiliary heating means for heating water flowing into the hot water storage tank from the heat exchanger.
前記流路切換弁を動力発生機の流出側とバイパス流路の流入側との間に設けた
ことを特徴とする請求項1、2または3記載のランキンシステム。
The Rankine system according to claim 1, 2 or 3, wherein the flow path switching valve is provided between the outflow side of the power generator and the inflow side of the bypass flow path.
前記流路切換弁を凝縮器の流出側とバイパス流路の流出側との間に設けた
ことを特徴とする請求項1、2または3記載のランキンシステム。
The Rankine system according to claim 1, 2 or 3, wherein the flow path switching valve is provided between the outflow side of the condenser and the outflow side of the bypass flow path.
作動流体を所定の熱源により加熱して蒸発させる蒸発器と、蒸発器から流出する作動流体の膨張により動力を発生する動力発生機と、動力発生機から流出する作動流体を凝縮させる凝縮器と、凝縮器から流出する作動流体を吸入して蒸発器側に吐出するポンプとを備え、動力発生機によって発電機を駆動するとともに、作動流体の熱によって暖房用の空気を加熱するようにしたランキンシステムにおいて、
前記動力発生機から流出する作動流体と蒸発器に流入する作動流体とを熱交換する第1の熱交換器と、
一端側を動力発生機と凝縮器との間に接続され、他端側を凝縮器の流出側に接続された第1のバイパス流路と、
動力発生機から流出した作動流体を凝縮器側と第1のバイパス流路側の何れか一方に流通させる第1の流路切換弁と、
第1のバイパス流路を流通する作動流体と暖房用の空気とを熱交換する第2の熱交換器と、
一端側を蒸発器と動力発生機との間に接続され、他端側を第2の熱交換器の流入側に接続された第2のバイパス流路と、
蒸発器から流出した作動流体を動力発生機側と第2のバイパス流路側の何れか一方に流通させる第2の流路切換弁とを備えた
ことを特徴とするランキンシステム。
An evaporator that heats and evaporates the working fluid with a predetermined heat source, a power generator that generates power by expansion of the working fluid that flows out of the evaporator, a condenser that condenses the working fluid that flows out of the power generator, A Rankine system that includes a pump that sucks the working fluid flowing out of the condenser and discharges it to the evaporator side, drives the generator by a power generator, and heats the air for heating by the heat of the working fluid In
A first heat exchanger for exchanging heat between the working fluid flowing out of the power generator and the working fluid flowing into the evaporator;
A first bypass flow path having one end connected between the power generator and the condenser and the other end connected to the outflow side of the condenser;
A first flow path switching valve for flowing the working fluid flowing out of the power generator to either the condenser side or the first bypass flow path side;
A second heat exchanger for exchanging heat between the working fluid flowing through the first bypass flow path and the air for heating;
A second bypass flow path having one end connected between the evaporator and the power generator and the other end connected to the inflow side of the second heat exchanger;
A Rankine system comprising: a second flow path switching valve for flowing the working fluid flowing out of the evaporator to either the power generator side or the second bypass flow path side.
JP2004359389A 2004-12-13 2004-12-13 Rankine system Pending JP2006169971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004359389A JP2006169971A (en) 2004-12-13 2004-12-13 Rankine system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004359389A JP2006169971A (en) 2004-12-13 2004-12-13 Rankine system

Publications (1)

Publication Number Publication Date
JP2006169971A true JP2006169971A (en) 2006-06-29

Family

ID=36671010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004359389A Pending JP2006169971A (en) 2004-12-13 2004-12-13 Rankine system

Country Status (1)

Country Link
JP (1) JP2006169971A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257159A (en) * 2008-04-15 2009-11-05 Tlv Co Ltd Condensate force feed device
ES2344494A1 (en) * 2008-06-06 2010-08-27 Juan Carlos Cubero Simon Energetic support system in housing and type buildings, with solid cogenerated thermal and electric production (Machine-translation by Google Translate, not legally binding)
KR101528935B1 (en) * 2009-03-15 2015-06-15 임효진 The generating system using the waste heat of condenser
WO2018062696A1 (en) * 2016-09-28 2018-04-05 두산중공업 주식회사 Hybrid power generation system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257159A (en) * 2008-04-15 2009-11-05 Tlv Co Ltd Condensate force feed device
ES2344494A1 (en) * 2008-06-06 2010-08-27 Juan Carlos Cubero Simon Energetic support system in housing and type buildings, with solid cogenerated thermal and electric production (Machine-translation by Google Translate, not legally binding)
KR101528935B1 (en) * 2009-03-15 2015-06-15 임효진 The generating system using the waste heat of condenser
WO2018062696A1 (en) * 2016-09-28 2018-04-05 두산중공업 주식회사 Hybrid power generation system
KR20180035008A (en) * 2016-09-28 2018-04-05 두산중공업 주식회사 Hybrid type power generation system
US10731515B2 (en) 2016-09-28 2020-08-04 Doosan Heavy Industries Construction Co., Ltd. Hybrid type power generation system

Similar Documents

Publication Publication Date Title
JP4972421B2 (en) Heat pump steam / hot water generator
JP5845590B2 (en) Heat pump steam generator
JP2010243012A (en) Exhaust gas heat recovery device
JP5738110B2 (en) Double pressure radial turbine system
JP2010190218A (en) Waste heat utilization for pre-heating fuel
MX2014011444A (en) System and method for recovery of waste heat from dual heat sources.
JP2016061227A (en) Cooling facility, combined cycle plant including the same, and cooling method
JP2006194242A (en) Energy supply system, method of supplying energy and method of improving energy supply system
JP5325038B2 (en) System and method applied to combined cycle power plant or Rankine cycle power plant using air-cooled steam condenser
JP2018123756A (en) Thermal cycle facility
JP6277148B2 (en) Power generator
KR20140085001A (en) Energy saving system for using waste heat of ship
JP5592305B2 (en) Power generator
JP2015096703A (en) Heat recovery power generation system
KR101481010B1 (en) Ocean thermal energy conversion system and operation method thereof
JP2010038160A (en) System and method for use in combined or rankine cycle power plant
JP4546788B2 (en) Rankine system
KR101528935B1 (en) The generating system using the waste heat of condenser
JP5713824B2 (en) Power generation system
JP2006169971A (en) Rankine system
JP2006169970A (en) Rankine system
JP2006132871A (en) Rankine system
JP2016151191A (en) Power generation system
KR101103768B1 (en) Electric Generating System Using Heat Pump Unit
KR20140085003A (en) Energy saving system for using waste heat of ship