JP5845590B2 - Heat pump steam generator - Google Patents

Heat pump steam generator Download PDF

Info

Publication number
JP5845590B2
JP5845590B2 JP2011028477A JP2011028477A JP5845590B2 JP 5845590 B2 JP5845590 B2 JP 5845590B2 JP 2011028477 A JP2011028477 A JP 2011028477A JP 2011028477 A JP2011028477 A JP 2011028477A JP 5845590 B2 JP5845590 B2 JP 5845590B2
Authority
JP
Japan
Prior art keywords
medium
heat
compressor
heat pump
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011028477A
Other languages
Japanese (ja)
Other versions
JP2012167852A (en
Inventor
池田 洋一
洋一 池田
小松 正
正 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2011028477A priority Critical patent/JP5845590B2/en
Publication of JP2012167852A publication Critical patent/JP2012167852A/en
Application granted granted Critical
Publication of JP5845590B2 publication Critical patent/JP5845590B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、工場排水などから排熱を回収して蒸気を生成するヒートポンプ式蒸気生成装置に関する。   The present invention relates to a heat pump type steam generator that recovers exhaust heat from factory wastewater and generates steam.

従来より、エアコンや冷蔵庫などにおいて、ヒートポンプ循環経路が設けられている。また、近年では、蒸気生成装置にもヒートポンプ循環経路が用いられている。ヒートポンプ式蒸気生成装置は、工場排水など排熱を回収して蒸気を生成するものであって、燃焼系蒸気生成装置に比べて、ランニングコストが低く、COの排出量を低減できるなどのメリットがある。 Conventionally, a heat pump circulation path is provided in an air conditioner, a refrigerator, or the like. In recent years, a heat pump circulation path is also used in the steam generation apparatus. The heat pump steam generator recovers exhaust heat such as factory wastewater and generates steam, which has lower running costs and reduced CO 2 emissions compared to combustion steam generators. There is.

特許文献1には、圧縮機の吐出側に一端が接続された冷媒管の他端が、蒸気生成用熱交換器、温水生成用熱交換器、膨張弁、熱回収器を介して前記圧縮機の吸入側に接続された冷媒回路を備え、熱回収器において外部熱源からの熱を回収し、蒸気生成用熱交換器で蒸気を生成し、温水生成用熱交換器で温水を生成するように構成されたヒートポンプ式蒸気・温水発生装置が開示されている。   In Patent Document 1, the other end of the refrigerant pipe having one end connected to the discharge side of the compressor is connected to the compressor via a steam generating heat exchanger, a hot water generating heat exchanger, an expansion valve, and a heat recovery unit. The refrigerant circuit connected to the suction side of the heat recovery unit recovers heat from the external heat source in the heat recovery unit, generates steam in the heat generation heat exchanger, and generates hot water in the heat generation heat exchanger A configured heat pump steam / hot water generator is disclosed.

ヒートポンプ循環経路では、圧縮機で媒体(以下、「ヒートポンプ媒体」ともいう)を圧縮して高温の過熱蒸気にするが、圧縮機に液体が混入すると、液圧縮が生じて圧縮機が損傷するおそれがある。このため、圧縮機に液体が混入しないようにすることが求められている。特許文献1では、膨張弁を絞ってヒートポンプ媒体の流量を減らすことにより圧縮機入口の温度を昇温して、圧縮機への液体の混入を抑制している。しかしながら、この方法では、ヒートポンプ媒体の流量を低減させると排熱回収器、媒体凝縮器、媒体冷却器での各交換熱量が減るためにヒートポンプとしての能力が低下するという問題点がある。   In the heat pump circulation path, the compressor compresses the medium (hereinafter also referred to as “heat pump medium”) into high-temperature superheated steam. However, if liquid is mixed in the compressor, liquid compression may occur and the compressor may be damaged. There is. For this reason, it is required to prevent liquid from entering the compressor. In Patent Document 1, the temperature of the compressor inlet is raised by reducing the flow rate of the heat pump medium by restricting the expansion valve, thereby suppressing the mixing of liquid into the compressor. However, this method has a problem in that when the flow rate of the heat pump medium is reduced, the amount of exchange heat in the exhaust heat recovery unit, the medium condenser, and the medium cooler is reduced, so that the ability as a heat pump is reduced.

また、圧縮機入口温度を昇温する別の手段として、排熱回収器の性能を高くする方法が考えられるが、この場合は排熱回収器が大型化し、コストも高くなるという問題点があった。   As another means of raising the compressor inlet temperature, a method of increasing the performance of the exhaust heat recovery device is conceivable. However, in this case, there is a problem that the exhaust heat recovery device is enlarged and the cost is increased. It was.

また、さらに別の手段として、ヒータ等により外部から昇温する方法があるが、この場合は、ヒータ加熱にエネルギーが必要になるために、装置全体としてのエネルギー効率が低くなる問題点があった。   Further, as another means, there is a method of raising the temperature from the outside with a heater or the like, but in this case, energy is required for heating the heater, which causes a problem that the energy efficiency of the entire apparatus is lowered. .

一方、特許文献2には、冷媒を圧縮する圧縮機と、前記圧縮機によって圧縮された冷媒の放熱を行う放熱器と、前記放熱器において放熱した冷媒を減圧する膨張機構と、前記膨張機構において減圧された冷媒を蒸発させる蒸発器とが接続されることによって構成されており、分子式:C(但し、m=1〜5、n=1〜5、かつ、m+n=6)で示され、かつ、分子構造中に二重結合を1個有する冷媒からなる単一冷媒、又は、前記冷媒を含む混合冷媒が充填された冷媒回路と、冷媒回路に設けられており、放熱器から膨張機構に送られる冷媒によって蒸発器から圧縮機に送られる冷媒を加熱する第1内部熱交換器とを備えた冷凍装置が開示されている。 On the other hand, Patent Document 2 discloses a compressor that compresses a refrigerant, a radiator that radiates heat of the refrigerant compressed by the compressor, an expansion mechanism that depressurizes the refrigerant radiated in the radiator, and the expansion mechanism. is configured by an evaporator for evaporating the decompressed refrigerant is connected, molecular formula: C 3 H m F n (where, m = 1~5, n = 1~5 and,, m + n = 6) And a refrigerant circuit filled with a single refrigerant composed of a refrigerant having one double bond in the molecular structure or a mixed refrigerant containing the refrigerant, and a radiator circuit. A refrigeration apparatus including a first internal heat exchanger that heats a refrigerant sent from an evaporator to a compressor by a refrigerant sent from the evaporator to the expansion mechanism is disclosed.

特許文献2の冷凍装置によれば、第1内部熱交換器にて、放熱器から膨張機構に送られる比較的高温の冷媒を用いて蒸発器から圧縮機に送られる冷媒を加熱して、圧縮機に吸入される冷媒が湿り状態になるのを防ぐようにしている(すなわち、圧縮機に吸入される冷媒が過熱状態になるようにしている)ため、圧縮機において液圧縮が生じるおそれを少なくすることができるとされている。   According to the refrigeration apparatus of Patent Document 2, the first internal heat exchanger uses the relatively high-temperature refrigerant sent from the radiator to the expansion mechanism to heat the refrigerant sent from the evaporator to the compressor and compress it. Since the refrigerant sucked into the machine is prevented from becoming wet (that is, the refrigerant sucked into the compressor is overheated), the compressor is less likely to cause liquid compression. It is supposed to be possible.

特開2007−232357号公報JP 2007-232357 A 特開2009−222348号公報JP 2009-222348 A

特許文献2は、冷凍装置を対象としたものであって、蒸気生成装置に比べてヒートポンプから取出される温度は低い。このため、冷凍装置のヒートポンプ媒体と、ヒートポンプ式蒸気生成装置のヒートポンプ媒体とは異なる特性を有するものが用いられている。   Patent Document 2 is intended for a refrigeration apparatus, and a temperature taken out from a heat pump is lower than that of a steam generation apparatus. For this reason, what has a different characteristic from the heat pump medium of a freezing apparatus and the heat pump medium of a heat pump type steam generation apparatus is used.

ヒートポンプ式蒸気生成装置のヒートポンプ媒体には、より多くの熱量を取り出す必要があるため、臨界温度の高いものを用いる必要があり、1,1,1,3,3−ペンタフルオロプロパン(CHFCHCF、以下、R245faという)、プロパンなどが用いられている。特許文献1においても、R245faをヒートポンプ媒体として用いている。 Since it is necessary to take out a larger amount of heat as a heat pump medium of the heat pump type steam generator, it is necessary to use one having a high critical temperature. 1,1,1,3,3-pentafluoropropane (CHF 2 CH 2 CF 3 (hereinafter referred to as R245fa), propane and the like are used. Also in patent document 1, R245fa is used as a heat pump medium.

しかしながら、図3に示すように、R245faのPH線図は過熱蒸気領域において、飽和蒸気線の傾きよりも、等エントロピー線の傾きの方が大きいため、圧縮機で昇圧する際にヒートポンプ媒体が過熱蒸気領域から気液領域に移行して凝縮する可能性があった。また、ペンタンにおいても、図4のPH線図に示されるように、過熱蒸気領域において飽和蒸気線の傾きよりも、等エントロピー線の傾きの方が大きいため、圧縮機で昇圧する際にヒートポンプ媒体が過熱蒸気領域から気液領域に移行して凝縮する可能性があった。   However, as shown in FIG. 3, the R245fa PH diagram shows that in the superheated steam region, the slope of the isentropic line is larger than the slope of the saturated steam line. There was a possibility of condensation from the vapor region to the gas-liquid region. Also in pentane, as shown in the PH diagram of FIG. 4, since the slope of the isentropic line is larger than the slope of the saturated steam line in the superheated steam region, the heat pump medium is used when the pressure is increased by the compressor. However, there was a possibility that it would be condensed from the superheated steam region to the gas-liquid region.

したがって、本発明の目的は、ヒートポンプ媒体の圧縮機での凝縮を抑制し、長期にわたって安定して蒸気を取り出すことが可能なヒートポンプ式蒸気生成装置を提供することにある。   Accordingly, an object of the present invention is to provide a heat pump type steam generator capable of suppressing the condensation of the heat pump medium in the compressor and stably taking out the steam over a long period of time.

本発明のヒートポンプ式蒸気生成装置は、
外部熱源から熱を回収して媒体を加温する排熱回収器、前記排熱回収器を通過した媒体を圧縮する圧縮機、前記圧縮機で圧縮された媒体の熱を被加熱水に伝熱して温水及び蒸気の気液二相流を生成する媒体凝縮器、及び前記媒体凝縮器を通過した媒体を減圧して温度を下げる膨張機を有するヒートポンプ循環経路と、
前記媒体凝縮器に供給水を導入する給水経路と、
前記媒体凝縮器で生成した、温水及び蒸気の気液二相流を、水蒸気と水とに分離する気液分離器と、
前記気液分離器の気相部に設けられた蒸気取出し経路と、
前記気液分離器の液相部と前記給水経路とを接続する水循環経路とを備えたヒートポンプ式蒸気生成装置であって、
前記媒体が、PH線図の過熱蒸気領域において、飽和蒸気線の傾きよりも、等エントロピー線の傾きの方が大きく、臨界温度が150℃以上の媒体であり、
前記ヒートポンプ循環経路に、前記媒体凝縮器から前記膨張機に向かう湿り蒸気の媒体と、前記排熱回収器から前記圧縮機に向かう湿り蒸気の媒体とを熱交換して、前記圧縮機に導入される媒体を加熱する内部熱交換器が配置されており、前記媒体凝縮器を通過した媒体は、前記内部熱交換器内で過冷却液体となり前記膨張機に導入され、前記排熱回収器を通過した媒体は、前記内部熱交換器内で過熱蒸気となり前記圧縮機に導入されることを特徴とする。
The heat pump steam generator of the present invention is
An exhaust heat recovery unit that recovers heat from an external heat source to heat the medium, a compressor that compresses the medium that has passed through the exhaust heat recovery unit, and transfers the heat of the medium compressed by the compressor to the water to be heated. A heat pump circulation path having a medium condenser that generates a gas-liquid two-phase flow of hot water and steam, and an expander that depressurizes the medium that has passed through the medium condenser to lower the temperature;
A water supply path for introducing supply water to the medium condenser;
A gas-liquid separator that separates the gas-liquid two-phase flow of hot water and steam generated by the medium condenser into water vapor and water;
A vapor extraction path provided in a gas phase portion of the gas-liquid separator;
A heat pump type steam generator comprising a water circulation path connecting the liquid phase part of the gas-liquid separator and the water supply path,
In the superheated steam region of the PH diagram, the medium is a medium whose isentropic line has a larger slope than the saturated steam line and has a critical temperature of 150 ° C. or higher.
In the heat pump circulation path, heat exchange is performed between the medium of the wet steam from the medium condenser toward the expander and the medium of the wet steam from the exhaust heat recovery unit toward the compressor, and is introduced into the compressor. An internal heat exchanger for heating the medium to be heated is disposed, and the medium that has passed through the medium condenser becomes a supercooled liquid in the internal heat exchanger, is introduced into the expander, and passes through the exhaust heat recovery unit The obtained medium becomes superheated steam in the internal heat exchanger and is introduced into the compressor.

本発明のヒートポンプ式蒸気生成装置は、前記媒体が、n−ペンタン(C12)、1,1,1,3,3−ペンタフルオロプロパン(CHFCHCF)、1,1,1,2,2,3,3−ヘプタフルオロ−3−メトキシプロパン(COCH)から選ばれる1種であることが好ましい。 In the heat pump steam generating apparatus of the present invention, the medium is n-pentane (C 5 H 12 ), 1,1,1,3,3-pentafluoropropane (CHF 2 CH 2 CF 3 ), 1,1, It is preferably one selected from 1,2,2,3,3-heptafluoro-3-methoxypropane (C 3 F 7 OCH 3 ).

本発明のヒートポンプ式蒸気生成装置の前記内部熱交換器は、前記圧縮機で前記媒体を圧縮して目的温度まで昇温する際において、該媒体が凝縮することなく目的温度まで昇温可能な温度に達するまで、前記圧縮機に導入される媒体を加熱することが好ましい。   The internal heat exchanger of the heat pump steam generator according to the present invention is a temperature at which the medium can be heated to the target temperature without condensing when the medium is compressed by the compressor and heated to the target temperature. Until the medium introduced into the compressor is heated.

本発明のヒートポンプ式蒸気生成装置は、前記内部熱交換器から前記膨張機に向かう媒体と、前記媒体凝縮器に向かう供給水とを熱交換して、前記媒体凝縮器に向かう供給水を予備加熱する媒体冷却器が配置されていることが好ましい。   The heat pump type steam generating apparatus of the present invention preheats the supply water toward the medium condenser by exchanging heat between the medium from the internal heat exchanger toward the expander and the supply water toward the medium condenser. A medium cooler is preferably arranged.

PH線図の過熱蒸気領域において、飽和蒸気線の傾きよりも、等エントロピー線の傾きの方が大きい媒体は、十分に過熱されないまま圧縮機に導入されると、圧縮時に凝縮することがあったが、本発明のヒートポンプ式蒸気生成装置は、ヒートポンプ循環経路に、媒体凝縮器から膨張機に向かう媒体と、排熱回収器から圧縮機に向かう媒体とを熱交換して、圧縮機に導入される媒体を加熱する内部熱交換器を配置したことにより、圧縮機に導入される媒体が加熱され、圧縮機内部における媒体の凝縮を防止できる。このため、圧縮機の損傷を抑え、長期にわたって安定して蒸気を取り出すことができる。   In the superheated steam region of the PH diagram, media with a greater isentropic slope than saturated steam may be condensed during compression if introduced into the compressor without being sufficiently heated. However, the heat pump steam generator of the present invention is introduced into the compressor by exchanging heat between the medium from the medium condenser to the expander and the medium from the exhaust heat recovery device to the compressor in the heat pump circulation path. By disposing the internal heat exchanger that heats the medium to be heated, the medium introduced into the compressor is heated, and condensation of the medium inside the compressor can be prevented. For this reason, damage to the compressor can be suppressed and steam can be taken out stably over a long period of time.

本発明のヒートポンプ式蒸気生成装置の第1の実施形態の概略構成図である。It is a schematic structure figure of a 1st embodiment of a heat pump type steam generating device of the present invention. 本発明のヒートポンプ式蒸気生成装置の第2の実施形態の概略構成図である。It is a schematic block diagram of 2nd Embodiment of the heat pump type steam generation apparatus of this invention. R245faのPH線図である。It is a PH diagram of R245fa. ペンタンのPH線図である。It is a PH diagram of pentane.

図1は、本発明を適用するヒートポンプ式蒸気生成装置の第1の実施形態の概略図である。   FIG. 1 is a schematic diagram of a first embodiment of a heat pump steam generator to which the present invention is applied.

図1に示すように、このヒートポンプ式蒸気生成装置は、排熱回収器1の出口側から伸びた配管L1が、内部熱交換器10の低温媒体部、圧縮機2、媒体凝縮器3、内部熱交換器10の高温媒体部、膨張機5の順に経由して、排熱回収器1の入り口側に接続したヒートポンプ循環経路20を備える。   As shown in FIG. 1, in this heat pump type steam generator, a pipe L1 extending from the outlet side of the exhaust heat recovery unit 1 includes a low temperature medium part of an internal heat exchanger 10, a compressor 2, a medium condenser 3, A heat pump circulation path 20 connected to the inlet side of the exhaust heat recovery unit 1 is provided via the high-temperature medium part of the heat exchanger 10 and the expander 5 in this order.

ヒートポンプ循環経路20では、媒体(以下、ヒートポンプ媒体という)が循環流通しており、ヒートポンプ媒体を介して外部熱源から送られてくる熱媒体(この実施形態では、熱媒体として排温水を使用している)の熱を回収するとともに、給水源から送られてくる供給水にヒートポンプ媒体の熱を伝熱して蒸気を生成するように構成されている。   In the heat pump circulation path 20, a medium (hereinafter referred to as a heat pump medium) circulates and circulates, and a heat medium (in this embodiment, waste water is used as a heat medium sent from an external heat source via the heat pump medium. The heat of the heat pump medium is transferred to the supply water sent from the water supply source to generate steam.

ヒートポンプ媒体としては、PH線図の過熱蒸気領域において、飽和蒸気線の傾きよりも、等エントロピー線の傾きの方が大きい媒体を用いる。好ましくは、R245fa(CHFCHCF)、n−ペンタン(C12)、1,1,1,2,2,3,3−ヘプタフルオロ−3−メトキシプロパン(COCH、3M社製品名:「HFE−7000」)である。これらは、臨界温度が150℃以上であり、地球温暖化係数が低く、オゾン破壊係数が低いため、好ましく用いられる。 As the heat pump medium, a medium in which the slope of the isentropic line is larger than the slope of the saturated vapor line in the superheated steam region of the PH diagram is used. Preferably, R245fa (CHF 2 CH 2 CF 3), n- pentane (C 5 H 12), 1,1,1,2,2,3,3- heptafluoro-3-methoxypropane (C 3 F 7 OCH 3 , 3M company product name: “HFE-7000”). These are preferably used because they have a critical temperature of 150 ° C. or higher, a low global warming potential, and a low ozone depletion potential.

外部熱源から伸びた、排温水が流通する配管L2は、排熱回収器1を経由して系外に接続している。   A pipe L <b> 2 extending from an external heat source and through which the exhaust hot water flows is connected to the outside of the system via the exhaust heat recovery device 1.

給水源から伸びた、供給水が流通する配管L3は、図示していない給水ポンプ、媒体凝縮器3の順に経由して、気液分離器7の気相部に接続している。   A pipe L3 extending from the water supply source and through which the supply water circulates is connected to the gas phase portion of the gas-liquid separator 7 via a water supply pump (not shown) and the medium condenser 3 in this order.

気液分離器7は、気相部に、蒸気取出し用の開閉弁V1を介装した配管L4が設けられている。また、液相部に、系外の排水系へと伸びる開閉弁V2を介装した配管L5と、媒体凝縮器3に接続する配管L6が設けられている。   The gas-liquid separator 7 is provided with a pipe L4 in the gas phase portion with an on-off valve V1 for taking out the vapor. In the liquid phase part, a pipe L5 provided with an on-off valve V2 extending to a drainage system outside the system and a pipe L6 connected to the medium condenser 3 are provided.

次に、本発明のヒートポンプ式蒸気生成装置の定常運転時における動作について、ヒートポンプ媒体としてR245faを用いた場合を例に挙げて、熱の流れに沿って説明する。   Next, the operation at the time of steady operation of the heat pump type steam generating apparatus of the present invention will be described along the flow of heat, taking the case of using R245fa as a heat pump medium as an example.

(排温水)
工場排水系等の外部熱源から送られる排温水(この実施形態では70℃)は、配管L2を流通し、排熱回収器1を通過して排水(この実施形態では60℃)として系外へと送られる。
排熱回収器1では、排温水の熱を、配管L1を流通するヒートポンプ媒体に伝熱してヒートポンプ媒体を加温する。
(Waste water)
Waste hot water (70 ° C. in this embodiment) sent from an external heat source such as a factory drainage system flows through the pipe L2 and passes through the exhaust heat recovery device 1 as waste water (60 ° C. in this embodiment). Sent.
In the exhaust heat recovery device 1, the heat of the exhaust hot water is transferred to the heat pump medium flowing through the pipe L1 to heat the heat pump medium.

(ヒートポンプ媒体)
排熱回収器1にて、排温水との熱交換により加温されたヒートポンプ媒体(この実施形態では60℃の湿り蒸気)は、内部熱交換器10の低温媒体部に送られる。そして、内部熱交換器10の高温媒体部に送られる、媒体凝縮器3を通過したヒートポンプ媒体(この実施形態では130℃の湿り蒸気)との熱交換により加熱されて、圧縮機2に送られる。内部熱交換器10では、圧縮機2でヒートポンプ媒体を圧縮して目的温度まで昇温する際において、ヒートポンプ媒体が凝縮することなく目的温度まで昇温可能な温度に達するまで加熱することが好ましい。すなわち、この実施形態では、ヒートポンプ媒体が70℃以上の過熱蒸気になるまで行うことが好ましい。
(Heat pump medium)
The heat pump medium heated in the exhaust heat recovery device 1 by heat exchange with the exhaust hot water ( wet steam at 60 ° C. in this embodiment) is sent to the low temperature medium portion of the internal heat exchanger 10. Then, it is heated by heat exchange with the heat pump medium (in this embodiment, 130 ° C. wet steam ) that has passed through the medium condenser 3 and sent to the high-temperature medium section of the internal heat exchanger 10, and is sent to the compressor 2. . In the internal heat exchanger 10, when the heat pump medium is compressed by the compressor 2 and heated to the target temperature, it is preferable to heat the heat pump medium until the temperature reaches the target temperature without condensing. That is, in this embodiment, it is preferable to carry out until the heat pump medium becomes superheated steam of 70 ° C. or higher.

圧縮機2では、内部熱交換器10で加熱されたヒートポンプ媒体(この実施形態では70℃の過熱蒸気)を所定の圧力まで圧縮して高温高圧媒体(この実施形態では130℃の過熱蒸気)とする。この高温高圧媒体は、媒体凝縮器3を通過して、配管L3を流通する供給水との熱交換に利用される。   In the compressor 2, the heat pump medium (70 ° C. superheated steam in this embodiment) heated by the internal heat exchanger 10 is compressed to a predetermined pressure to obtain a high-temperature high-pressure medium (130 ° C. superheated steam in this embodiment) and To do. This high-temperature and high-pressure medium passes through the medium condenser 3 and is used for heat exchange with the supply water flowing through the pipe L3.

媒体凝縮器3では、高温高圧媒体(ヒートポンプ媒体)の熱を、配管L3を流通する被加熱水に伝熱して温水及び蒸気の気液二相流を生成する。   In the medium condenser 3, the heat of the high-temperature and high-pressure medium (heat pump medium) is transferred to the heated water flowing through the pipe L3 to generate a gas-liquid two-phase flow of hot water and steam.

媒体凝縮器3を通過したヒートポンプ媒体は、内部熱交換器10の高温媒体部に送られ、前述したように内部熱交換器10の低温媒体部に送られるヒートポンプ媒体との熱交換により、内部熱交換器10の低温媒体部を流通するヒートポンプ媒体を加熱する。そして、内部熱交換器10の高温媒体部を通過したヒートポンプ媒体(この実施形態では120℃の過冷却液体)は、膨張機5にて所定圧力まで膨張し、排熱回収器1に再び導入して、配管L2を流通する排温水の熱回収に用いられる。   The heat pump medium that has passed through the medium condenser 3 is sent to the high-temperature medium part of the internal heat exchanger 10 and, as described above, heat exchange with the heat pump medium that is sent to the low-temperature medium part of the internal heat exchanger 10 results in internal heat. The heat pump medium flowing through the low temperature medium part of the exchanger 10 is heated. Then, the heat pump medium (the supercooled liquid at 120 ° C. in this embodiment) that has passed through the high-temperature medium portion of the internal heat exchanger 10 is expanded to a predetermined pressure by the expander 5 and reintroduced into the exhaust heat recovery unit 1. And used for the heat recovery of the exhaust hot water flowing through the pipe L2.

(供給水)
給水源から図示していない給水ポンプで供給される供給水(この実施形態では25℃)は、供給水の質量流量Q1が、配管L4から取出される蒸気の質量流量Q2及び配管L5からの排水流量Q3との合計量(Q2+Q3)となるように制御される。
(Supply water)
The supply water (25 ° C. in this embodiment) supplied from a water supply source by a water supply pump (not shown) has a mass flow Q1 of the supply water discharged from the pipe L4 and a mass flow Q2 of steam taken out from the pipe L4. The total amount (Q2 + Q3) with the flow rate Q3 is controlled.

次に、供給水は、配管L6から送られてくる、気液分離器7内の温水(以下、循環水という。この実施形態では120℃)と合流して、循環水と供給水との混合水(この実施形態では100℃)が形成され、媒体凝縮器3に送液される。媒体凝縮器3に導入された混合水は、前述したように高温高圧媒体(ヒートポンプ媒体)の熱を回収し、温水及び蒸気の気液二相流(この実施形態では125℃)を生成して、気液分離器7に送られる。   Next, the feed water merges with warm water (hereinafter referred to as circulating water, 120 ° C. in this embodiment) in the gas-liquid separator 7 sent from the pipe L6 to mix the circulating water and the feed water. Water (100 ° C. in this embodiment) is formed and sent to the medium condenser 3. The mixed water introduced into the medium condenser 3 recovers the heat of the high-temperature and high-pressure medium (heat pump medium) as described above, and generates a gas-liquid two-phase flow (125 ° C. in this embodiment) of hot water and steam. To the gas-liquid separator 7.

気液分離器7では、温水及び蒸気の気液二相流を蒸気と温水とに分離する。そして、気液分離器7の気相部に貯留された蒸気は、外部の需要に応じて開閉弁V1を開閉し、配管L4から取出される。また、気液分離器7の液相部に貯留された温水は、配管L6を通して配管L3内を流通する供給水と混合して循環利用される。   In the gas-liquid separator 7, the gas-liquid two-phase flow of hot water and steam is separated into steam and hot water. And the vapor | steam stored by the gaseous-phase part of the gas-liquid separator 7 opens / closes the on-off valve V1 according to an external demand, and is taken out from the piping L4. Moreover, the warm water stored in the liquid phase part of the gas-liquid separator 7 is circulated and used by mixing with the supply water flowing through the pipe L3 through the pipe L6.

気液分離器7の液相部に接続された配管L5に設けられた開閉弁V2は、循環水系統の塩分の濃縮防止を目的としてブローダウンするために、定期的又は一時的に開閉制御を行う。   The on-off valve V2 provided in the pipe L5 connected to the liquid phase part of the gas-liquid separator 7 is periodically or temporarily controlled to blow down for the purpose of preventing the concentration of salt in the circulating water system. Do.

本発明のヒートポンプ式蒸気生成装置によれば、内部熱交換器10によって、圧縮機2に送られるヒートポンプ媒体が、媒体凝縮器3を通過したヒートポンプ媒体によって加熱されるので、排熱回収器を大型化したり、ヒータ等で加熱しなくても、圧縮機2入口前のヒートポンプ媒体の温度を昇温して過熱蒸気状態にできる。このため、装置コストや運転コストを増加させることなく、圧縮機2内部におけるヒートポンプ媒体の凝縮を効果的に防止できる。   According to the heat pump type steam generating apparatus of the present invention, the heat pump medium sent to the compressor 2 is heated by the heat pump medium that has passed through the medium condenser 3 by the internal heat exchanger 10, so that the exhaust heat recovery device has a large size. Even without heating or heating with a heater or the like, the temperature of the heat pump medium before the inlet of the compressor 2 can be raised to a superheated steam state. For this reason, condensation of the heat pump medium in the compressor 2 can be effectively prevented without increasing the apparatus cost and the operating cost.

次に、本発明の図2を用いて、本発明を適用するヒートポンプ式蒸気生成装置の第2の実施形態について説明する。なお、第1の実施形態のヒートポンプ式蒸気生成装置と同一箇所は同一符号を付して、その説明を省略する。   Next, a second embodiment of the heat pump steam generator to which the present invention is applied will be described with reference to FIG. 2 of the present invention. In addition, the same location as the heat pump type steam generation apparatus of 1st Embodiment attaches | subjects the same code | symbol, and abbreviate | omits the description.

この実施形態では、ヒートポンプ循環経路20に、内部熱交換器10の高温媒体部と、膨張機5との間の経路に、媒体冷却器4が配置され、媒体冷却器4にて、媒体凝縮器3に導入される供給水を予備加熱できるように構成されている。   In this embodiment, the medium cooler 4 is disposed in the heat pump circulation path 20 in the path between the high-temperature medium section of the internal heat exchanger 10 and the expander 5. It is comprised so that the feed water introduce | transduced into 3 can be preheated.

この実施形態によれば、供給水(25℃)が、内部熱交換器10の高温媒体部を通過したヒートポンプ媒体(この実施形態では120℃の過冷却液体)によって予備加熱(この実施形態では90℃に加熱)されるので、媒体凝縮器3において、蒸気を効率よく発生させることができる。   According to this embodiment, the feed water (25 ° C.) is preheated (in this embodiment 90 ° C. by a heat pump medium (120 ° C. supercooled liquid in this embodiment)) that has passed through the hot medium section of the internal heat exchanger 10. Therefore, steam can be efficiently generated in the medium condenser 3.

1:排熱回収器
2:圧縮機
3:媒体凝縮器
4:媒体冷却器
5:膨張機
7:気液分離器
10:内部熱交換器
20:ヒートポンプ循環経路
L1〜L6:配管
V1,V2:開閉弁
1: Waste heat recovery device 2: Compressor 3: Medium condenser 4: Medium cooler 5: Expander 7: Gas-liquid separator 10: Internal heat exchanger 20: Heat pump circulation paths L1 to L6: Pipes V1, V2: On-off valve

Claims (4)

外部熱源から熱を回収して媒体を加温する排熱回収器、前記排熱回収器を通過した媒体を圧縮する圧縮機、前記圧縮機で圧縮された媒体の熱を被加熱水に伝熱して温水及び蒸気の気液二相流を生成する媒体凝縮器、及び前記媒体凝縮器を通過した媒体を減圧して温度を下げる膨張機を有するヒートポンプ循環経路と、
前記媒体凝縮器に供給水を導入する給水経路と、
前記媒体凝縮器で生成した、温水及び蒸気の気液二相流を、水蒸気と水とに分離する気液分離器と、
前記気液分離器の気相部に設けられた蒸気取出し経路と、
前記気液分離器の液相部と前記給水経路とを接続する水循環経路とを備えたヒートポンプ式蒸気生成装置であって、
前記媒体が、PH線図の過熱蒸気領域において、飽和蒸気線の傾きよりも、等エントロピー線の傾きの方が大きく、臨界温度が150℃以上の媒体であり、
前記ヒートポンプ循環経路に、前記媒体凝縮器から前記膨張機に向かう湿り蒸気の媒体と、前記排熱回収器から前記圧縮機に向かう湿り蒸気の媒体とを熱交換して、前記圧縮機に導入される媒体を加熱する内部熱交換器が配置されており、前記媒体凝縮器を通過した媒体は、前記内部熱交換器内で過冷却液体となり前記膨張機に導入され、前記排熱回収器を通過した媒体は、前記内部熱交換器内で過熱蒸気となり前記圧縮機に導入されることを特徴とするヒートポンプ式蒸気生成装置。
An exhaust heat recovery unit that recovers heat from an external heat source to heat the medium, a compressor that compresses the medium that has passed through the exhaust heat recovery unit, and transfers the heat of the medium compressed by the compressor to the water to be heated. A heat pump circulation path having a medium condenser that generates a gas-liquid two-phase flow of hot water and steam, and an expander that depressurizes the medium that has passed through the medium condenser to lower the temperature;
A water supply path for introducing supply water to the medium condenser;
A gas-liquid separator that separates the gas-liquid two-phase flow of hot water and steam generated by the medium condenser into water vapor and water;
A vapor extraction path provided in a gas phase portion of the gas-liquid separator;
A heat pump type steam generator comprising a water circulation path connecting the liquid phase part of the gas-liquid separator and the water supply path,
In the superheated steam region of the PH diagram, the medium is a medium whose isentropic line has a larger slope than the saturated steam line and has a critical temperature of 150 ° C. or higher.
In the heat pump circulation path, heat exchange is performed between the medium of the wet steam from the medium condenser toward the expander and the medium of the wet steam from the exhaust heat recovery unit toward the compressor, and is introduced into the compressor. An internal heat exchanger for heating the medium to be heated is disposed, and the medium that has passed through the medium condenser becomes a supercooled liquid in the internal heat exchanger, is introduced into the expander, and passes through the exhaust heat recovery unit The heat-pump-type steam generating apparatus is characterized in that the heated medium becomes superheated steam in the internal heat exchanger and is introduced into the compressor.
前記媒体が、n−ペンタン(C12)、1,1,1,3,3−ペンタフルオロプロパン(CHFCHCF)、1,1,1,2,2,3,3−ヘプタフルオロ−3−メトキシプロパン(COCH)から選ばれる1種である、請求項1に記載のヒートポンプ式蒸気生成装置。 The medium is n-pentane (C 5 H 12 ), 1,1,1,3,3-pentafluoropropane (CHF 2 CH 2 CF 3 ), 1,1,1,2,2,3,3- it is one selected from heptafluoro-3-methoxypropane (C 3 F 7 OCH 3) , the heat pump type steam generating device according to claim 1. 前記内部熱交換器は、前記圧縮機で前記媒体を圧縮して目的温度まで昇温する際において、該媒体が凝縮することなく目的温度まで昇温可能な温度に達するまで、前記圧縮機に導入される媒体を加熱する、請求項1又は2に記載のヒートポンプ式蒸気生成装置。   The internal heat exchanger is introduced into the compressor until the temperature reaches a target temperature without condensing when the medium is compressed by the compressor and heated to the target temperature. The heat pump type steam generator according to claim 1 or 2, wherein the medium to be heated is heated. 前記内部熱交換器から前記膨張機に向かう媒体と、前記媒体凝縮器に向かう供給水とを熱交換して、前記媒体凝縮器に向かう供給水を予備加熱する媒体冷却器が配置されている、請求項1〜3のいずれか1項に記載のヒートポンプ式蒸気生成装置。   A medium cooler is arranged that preheats the feed water that goes to the medium condenser by exchanging heat between the medium that goes from the internal heat exchanger to the expander and the feed water that goes to the medium condenser. The heat pump type | formula steam generator of any one of Claims 1-3.
JP2011028477A 2011-02-14 2011-02-14 Heat pump steam generator Expired - Fee Related JP5845590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011028477A JP5845590B2 (en) 2011-02-14 2011-02-14 Heat pump steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011028477A JP5845590B2 (en) 2011-02-14 2011-02-14 Heat pump steam generator

Publications (2)

Publication Number Publication Date
JP2012167852A JP2012167852A (en) 2012-09-06
JP5845590B2 true JP5845590B2 (en) 2016-01-20

Family

ID=46972185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011028477A Expired - Fee Related JP5845590B2 (en) 2011-02-14 2011-02-14 Heat pump steam generator

Country Status (1)

Country Link
JP (1) JP5845590B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180064622A (en) * 2016-12-05 2018-06-15 한국에너지기술연구원 Vapor injection applied heat pump system for making highly dried hot steam

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5390039B1 (en) * 2012-07-23 2014-01-15 三浦工業株式会社 heat pump
JP5954581B2 (en) * 2012-09-24 2016-07-20 三浦工業株式会社 Steam generation system
DE102013210175A1 (en) * 2013-05-31 2014-12-18 Siemens Aktiengesellschaft Heat pump for use of environmentally friendly refrigerants
JP6132028B2 (en) * 2013-10-18 2017-05-24 富士電機株式会社 Heat pump equipment
WO2015064347A1 (en) * 2013-10-31 2015-05-07 富士電機株式会社 Vapor generation device and vapor generation heat pump
DE102014200820A1 (en) * 2014-01-17 2015-07-23 Siemens Aktiengesellschaft Method for producing a heat exchanger having at least one heat transfer surface
KR101642653B1 (en) * 2014-04-16 2016-07-25 주식회사 엘지화학 Heat recovery apparatus
KR101653105B1 (en) * 2014-05-07 2016-08-31 주식회사 엘지화학 Heat recovery apparatus
US10302335B2 (en) * 2014-06-10 2019-05-28 Lg Chem, Ltd. Heat recovery apparatus
KR101966773B1 (en) 2015-05-13 2019-04-08 주식회사 엘지화학 Method of separating normal butane using isomerization and process system for separating normal butane
KR101839781B1 (en) * 2015-06-18 2018-03-20 주식회사 엘지화학 Heat recovery apparatus
JP6696226B2 (en) * 2016-03-04 2020-05-20 富士電機株式会社 Heat pump type steam generator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247962A (en) * 1988-03-29 1989-10-03 Hisaka Works Ltd Heat pump
JP2002162123A (en) * 2000-11-21 2002-06-07 Sekisui Chem Co Ltd Heat pump
JP4972421B2 (en) * 2006-02-01 2012-07-11 関西電力株式会社 Heat pump steam / hot water generator
ITMO20060418A1 (en) * 2006-12-21 2008-06-22 Teklab S A S Di Barbieri Mauro E C REFRIGERATION PLANT
JP5128267B2 (en) * 2007-12-26 2013-01-23 東芝キヤリア株式会社 Heat pump type water heater
JP5211883B2 (en) * 2008-06-19 2013-06-12 東京電力株式会社 Steam generation system
JP2012141070A (en) * 2010-12-28 2012-07-26 Panasonic Corp Refrigerating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180064622A (en) * 2016-12-05 2018-06-15 한국에너지기술연구원 Vapor injection applied heat pump system for making highly dried hot steam
KR101878234B1 (en) * 2016-12-05 2018-07-16 한국에너지기술연구원 Vapor injection applied heat pump system for making highly dried hot steam

Also Published As

Publication number Publication date
JP2012167852A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP5845590B2 (en) Heat pump steam generator
JP4972421B2 (en) Heat pump steam / hot water generator
JP4343738B2 (en) Binary cycle power generation method and apparatus
JP5339193B2 (en) Exhaust gas heat recovery device
KR101819241B1 (en) Rankine cycle integrated with absorption chiller
CN105135749B (en) Carbon dioxide cold-hot combined supply system
JP2007064047A (en) Waste heat recovery facility for steam turbine plant
JP2010038391A (en) Heat pump type steam generating device
JP5691844B2 (en) Heat pump steam generator
JP4471992B2 (en) Multi-source heat pump steam / hot water generator
US11300010B2 (en) Cooling equipment, combined cycle plant comprising same, and cooling method
JP2008298406A (en) Multiple heat pump-type steam-hot water generation device
JP2009216383A (en) Multiple heat pump type steam/hot water generating device
JP2004251125A (en) Exhaust heat recovery system
JP4659601B2 (en) Energy supply system, energy supply method, and energy supply system remodeling method
JP2012247156A (en) Steam generating method using heat pump
JP2007023976A (en) Gas turbine generator and gas turbine combined-cycle power generation system
JP2011099640A (en) Hybrid heat pump
JP2008267341A (en) Exhaust heat recovering device
JP2007262909A (en) Power system
JP2006017426A (en) Heat pump type steam/hot water generator
CN107587907A (en) A kind of working system and method using low-temperature heat source
JP4999992B2 (en) Gas turbine combined power generation system
JP2016151191A (en) Power generation system
JP2014190285A (en) Binary power generation device operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151109

R150 Certificate of patent or registration of utility model

Ref document number: 5845590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees