JP5128267B2 - Heat pump type water heater - Google Patents

Heat pump type water heater Download PDF

Info

Publication number
JP5128267B2
JP5128267B2 JP2007335331A JP2007335331A JP5128267B2 JP 5128267 B2 JP5128267 B2 JP 5128267B2 JP 2007335331 A JP2007335331 A JP 2007335331A JP 2007335331 A JP2007335331 A JP 2007335331A JP 5128267 B2 JP5128267 B2 JP 5128267B2
Authority
JP
Japan
Prior art keywords
water
heat exchanger
refrigerant
refrigerant heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007335331A
Other languages
Japanese (ja)
Other versions
JP2009156515A (en
Inventor
一 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2007335331A priority Critical patent/JP5128267B2/en
Publication of JP2009156515A publication Critical patent/JP2009156515A/en
Application granted granted Critical
Publication of JP5128267B2 publication Critical patent/JP5128267B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Description

本発明は、冷凍サイクルを用いて水を加熱し湯に変える、ヒートポンプ式給湯装置に関する。   The present invention relates to a heat pump type hot water supply apparatus that uses a refrigeration cycle to heat water and convert it into hot water.

たとえば、[特許文献1]には、冷媒に超臨界で使用する超臨界冷媒を用いたヒートポンプ式給湯装置が開示されている。この発明は、圧縮機、水・冷媒熱交換器(凝縮器)、内部熱交換器(冷却部)、膨張弁、空気熱交換器(蒸発器)を順次、冷媒管を介して連通する冷凍サイクル回路(冷媒回路)が構成される。   For example, [Patent Document 1] discloses a heat pump type hot water supply apparatus using a supercritical refrigerant used as a refrigerant in a supercritical state. The present invention relates to a refrigeration cycle in which a compressor, a water / refrigerant heat exchanger (condenser), an internal heat exchanger (cooling unit), an expansion valve, and an air heat exchanger (evaporator) are sequentially communicated via a refrigerant pipe. A circuit (refrigerant circuit) is configured.

上記水・冷媒熱交換器では、圧縮機から吐出されたあとの高温高圧のガス冷媒と、貯湯タンクとポンプとを連通する水管に導かれる水とを熱交換して、水を加熱し湯に変える。上記内部熱交換器は、水・冷媒熱交換器から導出される高圧冷媒と、空気熱交換器から導出される低圧冷媒とを熱交換させ、過熱度を取る。   In the above water / refrigerant heat exchanger, heat is exchanged between the high-temperature and high-pressure gas refrigerant discharged from the compressor and the water led to the water pipe connecting the hot water storage tank and the pump to heat the water into hot water. Change. The internal heat exchanger exchanges heat between the high-pressure refrigerant derived from the water / refrigerant heat exchanger and the low-pressure refrigerant derived from the air heat exchanger, and takes superheat.

特開2003−65616号公報JP 2003-65616 A

ところで、外気温よりも水・冷媒熱交換器への入水温度が低く、水・冷媒熱交換器から導出される高圧冷媒の温度が外気温よりも低下する場合がある。このとき、上記[特許文献1]の技術でも、内部熱交換器において熱交換する、水・冷媒熱交換器から導出される高圧冷媒と、空気熱交換器から導出される低圧冷媒との温度差が小さくなる。   By the way, the temperature of water entering the water / refrigerant heat exchanger is lower than the outside air temperature, and the temperature of the high-pressure refrigerant derived from the water / refrigerant heat exchanger may be lower than the outside air temperature. At this time, even in the technique of the above [Patent Document 1], the temperature difference between the high-pressure refrigerant derived from the water / refrigerant heat exchanger and the low-pressure refrigerant derived from the air heat exchanger that exchange heat in the internal heat exchanger. Becomes smaller.

すなわち、空気熱交換器における低圧冷媒の蒸発温度は、外気温と略相関するように制御されている。そのため、水・冷媒熱交換器から導出される高圧冷媒の温度が外気温よりも低下すると、空気熱交換器から導出される低圧冷媒との温度差が小さくなってしまう。   That is, the evaporation temperature of the low-pressure refrigerant in the air heat exchanger is controlled so as to substantially correlate with the outside air temperature. Therefore, when the temperature of the high-pressure refrigerant derived from the water / refrigerant heat exchanger is lower than the outside air temperature, the temperature difference from the low-pressure refrigerant derived from the air heat exchanger becomes small.

したがって、水・冷媒熱交換器から導出される高圧冷媒の温度と、外気温との温度差が大きくなると、内部熱交換器において充分な過熱度をとることができず、圧縮機に冷媒が液バックして、圧縮機の故障の原因となる。   Therefore, if the temperature difference between the high-temperature refrigerant derived from the water / refrigerant heat exchanger and the outside air temperature becomes large, the internal heat exchanger cannot take a sufficient degree of superheat, and the refrigerant will not be liquidated in the compressor. This will cause a compressor failure.

従来、このような場合には、膨張弁を絞って低圧冷媒の蒸発温度を低下させ、水・冷媒熱交換器から導出される高圧冷媒との温度差を大きくして、圧縮機に冷媒が液バックしないようにしている。   Conventionally, in such a case, the expansion valve is throttled to lower the evaporation temperature of the low-pressure refrigerant, and the temperature difference from the high-pressure refrigerant derived from the water / refrigerant heat exchanger is increased, so that the refrigerant flows into the compressor. I try not to back.

しかしながら、上記従来の方法では、圧縮機に吸込まれる低圧冷媒の圧力が低下することから、冷媒循環量が低下し、熱交換量が低下するため能力が低下する不具合があった。   However, in the above conventional method, since the pressure of the low-pressure refrigerant sucked into the compressor is lowered, the refrigerant circulation amount is lowered, and the heat exchange amount is lowered, so that the ability is lowered.

本発明は上記事情にもとづきなされたものであり、その目的とするところは、水・冷媒熱交換器を3分割することにより、外気温よりも貯湯タンクから導出される水の温度が低い場合にも、この中間温度の冷媒と水とを熱交換することで、水・冷媒熱交換器から導出される高圧冷媒の温度を上昇させて内部熱交換器に導入される低圧冷媒の温度との温度差を大とし、充分な過熱度を取って圧縮機の液バックを防止し、常に給湯能力を確保して信頼性の向上化を得るヒートポンプ式給湯装置を提供しようとするものである。   The present invention has been made based on the above circumstances, and the object of the present invention is to divide the water / refrigerant heat exchanger into three parts so that the temperature of water led out from the hot water storage tank is lower than the outside temperature. However, the temperature of the high-pressure refrigerant derived from the water / refrigerant heat exchanger is raised by exchanging heat between the intermediate-temperature refrigerant and water, and the temperature of the low-pressure refrigerant introduced into the internal heat exchanger. It is an object of the present invention to provide a heat pump type hot water supply apparatus that increases the difference, prevents a liquid back of the compressor by taking a sufficient degree of superheat, and always secures a hot water supply capacity to improve reliability.

上記目的を満足するため本発明は、圧縮機と、水・冷媒熱交換器と、膨張装置と、空気熱交換器を順次冷媒管を介して接続するとともに、水・冷媒熱交換器から導出される高圧冷媒と空気熱交換器から導出される低圧冷媒とを熱交換する内部熱交換器を接続する冷凍サイクル回路を備え、ポンプと、水・冷媒熱交換器と、貯湯タンクを順次水管を介して接続する水サイクル回路を備え、冷凍サイクル回路の水・冷媒熱交換器で生成される凝縮熱をもって水サイクル回路の水・冷媒熱交換器に導かれる水を加熱して湯に変えるのヒートポンプ式給湯装置である。
水・冷媒熱交換器は、冷凍サイクル回路に導かれる冷媒流の上流側に位置する第1の水・冷媒熱交換器と、この第1の水・冷媒熱交換器の下流側に位置する第2の水・冷媒熱交換器とに分割し、さらに、第1の水・冷媒熱交換器から導出される冷媒と、水サイクル回路における第2の水・冷媒熱交換器に導入される前の水とを熱交換させる第3の水・冷媒熱交換器とに分割する。
In order to satisfy the above object, the present invention is connected to a compressor, a water / refrigerant heat exchanger, an expansion device, and an air heat exchanger sequentially through a refrigerant pipe, and is derived from the water / refrigerant heat exchanger. The refrigeration cycle circuit connects an internal heat exchanger that exchanges heat between the high-pressure refrigerant and the low-pressure refrigerant derived from the air heat exchanger, and the pump, water / refrigerant heat exchanger, and hot water storage tank are sequentially passed through the water pipe. The heat pump system is equipped with a water cycle circuit that connects to the water cycle and heats the water led to the water / refrigerant heat exchanger of the water cycle circuit with the heat of condensation generated by the water / refrigerant heat exchanger of the refrigeration cycle circuit to convert it into hot water. It is a water heater.
The water / refrigerant heat exchanger includes a first water / refrigerant heat exchanger located on the upstream side of the refrigerant flow led to the refrigeration cycle circuit, and a first water / refrigerant heat exchanger located on the downstream side of the first water / refrigerant heat exchanger. The water / refrigerant heat exchanger is divided into two, and the refrigerant derived from the first water / refrigerant heat exchanger and before being introduced into the second water / refrigerant heat exchanger in the water cycle circuit It divides | segments into the 3rd water and refrigerant | coolant heat exchanger which heat-exchanges with water.

本発明によれば、水・冷媒熱交換器から導出される高圧冷媒の温度を上昇させて内部熱交換器に導入される低圧冷媒の温度との温度差を大とし、充分な過熱度を取って圧縮機の液バックを防止し、常に給湯能力を確保して信頼性の向上化を得るという効果を奏する。   According to the present invention, the temperature of the high-pressure refrigerant derived from the water / refrigerant heat exchanger is increased to increase the temperature difference from the temperature of the low-pressure refrigerant introduced to the internal heat exchanger, thereby obtaining a sufficient degree of superheat. Thus, the liquid back of the compressor is prevented, and there is an effect that the hot water supply capacity is always secured and the reliability is improved.

以下、本発明の実施の形態を、図面にもとづいて説明する。
図1は、ヒートポンプ式給湯装置の配管構成図である。
図中1は圧縮機であり、この圧縮機1の吐出部aに接続される冷媒管Paには、第1の水・冷媒熱交換器2と、第1の流体制御弁3と、第2の水・冷媒熱交換器4と、内部熱交換器5と、膨張装置である膨張弁6と、蒸発器である空気熱交換器7と、前記内部熱交換器5と、圧縮機1の吸込み部bが順次接続され、これらで冷凍サイクル回路Rが構成される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a piping configuration diagram of a heat pump hot water supply apparatus.
In the figure, reference numeral 1 denotes a compressor. A refrigerant pipe Pa connected to a discharge part a of the compressor 1 includes a first water / refrigerant heat exchanger 2, a first fluid control valve 3, and a second fluid control valve 3. Water / refrigerant heat exchanger 4, internal heat exchanger 5, expansion valve 6 that is an expansion device, air heat exchanger 7 that is an evaporator, internal heat exchanger 5, and suction of compressor 1 The parts b are sequentially connected, and these constitute the refrigeration cycle circuit R.

上記第1の水・冷媒熱交換器2と第2の水・冷媒熱交換器4には、後述するように水が導かれ、冷凍サイクル回路Rを循環する冷媒と熱交換ができるように作られている。上記第1の流体制御弁3は、開閉弁である。   As described later, water is introduced into the first water / refrigerant heat exchanger 2 and the second water / refrigerant heat exchanger 4 so that heat can be exchanged with the refrigerant circulating in the refrigeration cycle circuit R. It has been. The first fluid control valve 3 is an on-off valve.

上記内部熱交換器5は、第2の水・冷媒熱交換器4と膨張弁6とを接続する冷媒管Paに導かれる冷媒と、空気熱交換器7と圧縮機1を接続する冷媒管Paに導かれる冷媒とが熱交換できるように作られている。   The internal heat exchanger 5 includes a refrigerant led to a refrigerant pipe Pa that connects the second water / refrigerant heat exchanger 4 and the expansion valve 6, and a refrigerant pipe Pa that connects the air heat exchanger 7 and the compressor 1. It is made to be able to exchange heat with the refrigerant led to

上記冷凍サイクル回路Rにおける、第1の水・冷媒熱交換器2と第1の流体制御弁3との間と、第1の流体制御弁3と第2の水・冷媒熱交換器4との間にバイパス管Pbが接続され、バイパス回路Kが構成される。このバイパス回路Kのバイパス管Pbには、第2の流体制御弁8と第3の水・冷媒熱交換器10が順次設けられる。   In the refrigeration cycle circuit R, between the first water / refrigerant heat exchanger 2 and the first fluid control valve 3, and between the first fluid control valve 3 and the second water / refrigerant heat exchanger 4. A bypass pipe Pb is connected between them, and a bypass circuit K is configured. In the bypass pipe Pb of the bypass circuit K, a second fluid control valve 8 and a third water / refrigerant heat exchanger 10 are sequentially provided.

上記第2の流体制御弁8は開閉弁であり、上記第1の水・冷媒熱交換器2に対して第1の流体制御弁3と並列に接続されることになる。上記第3の水・冷媒熱交換器10は、第1、第2の水・冷媒熱交換器2,4と同様、後述するように水が導かれ、バイパス回路Kに導かれる冷媒と熱交換できるように作られている。   The second fluid control valve 8 is an on-off valve, and is connected in parallel to the first fluid control valve 3 with respect to the first water / refrigerant heat exchanger 2. As with the first and second water / refrigerant heat exchangers 2 and 4, the third water / refrigerant heat exchanger 10 exchanges heat with the refrigerant guided to the bypass circuit K through which water is introduced as will be described later. Made to be able to.

本来、ヒートポンプ式給湯装置では、圧縮機と膨張弁との間に、凝縮器である水・冷媒熱交換器を備えればよいが、この発明においては水・冷媒熱交換器を、第1の水・冷媒熱交換器2と、第2の水・冷媒熱交換器4および、第3の水・冷媒熱交換器10とに分割している。そして、第3の水・冷媒熱交換器10のみ、バイパス回路Kに設けられている。   Originally, in a heat pump hot water supply apparatus, a water / refrigerant heat exchanger that is a condenser may be provided between the compressor and the expansion valve. The water / refrigerant heat exchanger 2, the second water / refrigerant heat exchanger 4, and the third water / refrigerant heat exchanger 10 are divided. Only the third water / refrigerant heat exchanger 10 is provided in the bypass circuit K.

さらに、水サイクル回路Hが設けられている。この水サイクル回路Hは、貯湯タンク12とポンプ13の吸込み部cが順次、水管Pcを介して接続される。ポンプ13の吐出部dに接続される水管Pcは2方向に分岐され、それぞれの分岐水管Pcに第1の流量制御弁14と第2の流量制御弁15が並列に接続される。   Furthermore, a water cycle circuit H is provided. In this water cycle circuit H, the hot water storage tank 12 and the suction part c of the pump 13 are sequentially connected via a water pipe Pc. The water pipe Pc connected to the discharge part d of the pump 13 is branched in two directions, and the first flow control valve 14 and the second flow control valve 15 are connected in parallel to each branch water pipe Pc.

第1の流量制御弁14に接続される水管Pcは、上記第2の水・冷媒熱交換器4に水を導き、ここに導かれる冷媒と熱交換できるように構成される。第2の流量制御弁15に接続される水管Pcは、上記第3の水・冷媒熱交換器10に水を導き、ここに導かれる冷媒と熱交換できるように構成される。   The water pipe Pc connected to the first flow control valve 14 is configured to guide water to the second water / refrigerant heat exchanger 4 and to exchange heat with the refrigerant guided here. The water pipe Pc connected to the second flow rate control valve 15 is configured to guide water to the third water / refrigerant heat exchanger 10 and to exchange heat with the refrigerant guided here.

第3の水・冷媒熱交換器10から水を導出する側の水管Pcは、第2の水・冷媒熱交換器4における水導入側の水管Pcに接続されている。したがって、第1の流量制御弁14と、第2の流量制御弁15を介して第3の水・冷媒熱交換器10から導出される水は、互いに合流して第2の水・冷媒熱交換器4に導かれるようになっている。   The water pipe Pc on the side where water is led out from the third water / refrigerant heat exchanger 10 is connected to the water pipe Pc on the water introduction side in the second water / refrigerant heat exchanger 4. Therefore, the water led out from the third water / refrigerant heat exchanger 10 via the first flow control valve 14 and the second flow control valve 15 merges with each other to perform the second water / refrigerant heat exchange. It is guided to the container 4.

第2の水・冷媒熱交換器4の水導出側に接続される水管Pcは、上記第1の水・冷媒熱交換器2に水を導くよう接続され、第1の水・冷媒熱交換器2から上記貯湯タンク12に接続される。   The water pipe Pc connected to the water outlet side of the second water / refrigerant heat exchanger 4 is connected to guide water to the first water / refrigerant heat exchanger 2, and the first water / refrigerant heat exchanger 4 2 to the hot water storage tank 12.

なお説明すると水サイクル回路Hは、貯湯タンク12、ポンプ13、第1の流量制御弁14と第2の流量制御弁15との並列回路が順次接続される。第1の流量制御弁14は第2の水・冷媒熱交換器4に直接連通し、第2の流量制御弁15のみ第3の水・冷媒熱交換器10を介して第2の水・冷媒熱交換器4に連通し、さらに第1の水・冷媒熱交換器2を介して貯湯タンク12に接続される。   In other words, in the water cycle circuit H, a hot water storage tank 12, a pump 13, and a parallel circuit of a first flow control valve 14 and a second flow control valve 15 are sequentially connected. The first flow control valve 14 is in direct communication with the second water / refrigerant heat exchanger 4, and only the second flow control valve 15 is connected to the second water / refrigerant heat exchanger 10 via the third water / refrigerant heat exchanger 10. It communicates with the heat exchanger 4 and is further connected to the hot water storage tank 12 via the first water / refrigerant heat exchanger 2.

上記貯湯タンク12底部には図示しない給水源と連通する給水管Pdが設けられ、この給水管Pdには開閉弁である給水弁17が接続される。貯湯タンク12上端部には、浴室、洗面所等、給湯の必要箇所に設けられる図示しない給湯栓と連通する給湯管Peが接続される。   A water supply pipe Pd that communicates with a water supply source (not shown) is provided at the bottom of the hot water storage tank 12, and a water supply valve 17 that is an open / close valve is connected to the water supply pipe Pd. Connected to the upper end of the hot water storage tank 12 is a hot water supply pipe Pe that communicates with a hot water tap (not shown) provided in a hot water supply location such as a bathroom or a washroom.

このようにして構成されるヒートポンプ式給湯装置において、冷凍サイクル回路Rを構成する圧縮機1と、第1の流体制御弁3および膨張弁6は、図示しない制御部と電気的に接続され、必要な制御信号を受けるようになっている。   In the heat pump type hot water supply apparatus configured as described above, the compressor 1, the first fluid control valve 3, and the expansion valve 6 constituting the refrigeration cycle circuit R are electrically connected to a control unit (not shown) and are necessary. The control signal is received.

さらに、バイパス回路Kを構成する第2の流体制御弁8と、水サイクル回路Hを構成するポンプ13と、第1の流量制御弁14および第2の流量制御弁15も、図示しない制御部と電気的に接続され、制御信号を受けるようになっている。   Furthermore, the second fluid control valve 8 constituting the bypass circuit K, the pump 13 constituting the water cycle circuit H, the first flow control valve 14 and the second flow control valve 15 are also provided with a control unit (not shown). It is electrically connected to receive control signals.

また、少なくとも内部熱交換器5に導入される高圧冷媒の温度を検知する温度センサと、内部熱交換器5に導入される低圧冷媒の温度を検知する温度センサを取付け、これらを上記制御部に電気的に接続して検知信号を送信する必要がある。この他、貯湯タンク12内の温水温度を検知する温度センサ等が備えられる。   Further, at least a temperature sensor for detecting the temperature of the high-pressure refrigerant introduced into the internal heat exchanger 5 and a temperature sensor for detecting the temperature of the low-pressure refrigerant introduced into the internal heat exchanger 5 are attached, and these are attached to the control unit. It is necessary to connect electrically and send a detection signal. In addition, a temperature sensor or the like for detecting the temperature of hot water in the hot water storage tank 12 is provided.

つぎに、上記ヒートポンプ式給湯機における、通常の湯沸し運転について説明する。
たとえば深夜電力料金が適用される時間帯になったら、制御部は圧縮機1に駆動信号を送って駆動させ、冷凍サイクル運転を開始する。同時に、ポンプ13に駆動信号を送って駆動させ、水回路Hに水が循環する。
Next, a normal water heating operation in the heat pump type hot water heater will be described.
For example, when it is time to apply the late-night electricity charge, the control unit sends a drive signal to the compressor 1 to drive it, and starts the refrigeration cycle operation. At the same time, a drive signal is sent to the pump 13 to drive it, and water circulates in the water circuit H.

このとき、制御部は第1の流体制御弁3に開放信号を送り、第2の流体制御弁8に閉成信号を送る。さらに、第1の流量制御弁14に全開信号を送り、第2の流量制御弁15に全閉信号を送る。それぞれの弁3,8,14,15は、制御部からの制御信号に応じて開閉する。   At this time, the control unit sends an opening signal to the first fluid control valve 3 and sends a closing signal to the second fluid control valve 8. Further, a full open signal is sent to the first flow control valve 14 and a full close signal is sent to the second flow control valve 15. Each valve 3, 8, 14, 15 opens and closes according to the control signal from a control part.

圧縮機1で圧縮され高温高圧化したガス冷媒が吐出部aから吐出され、図に実線矢印に示すように導かれる。すなわち、圧縮機1から第1の水・冷媒熱交換器2に導かれて1段階目の凝縮をなし、凝縮熱を放出する。そして、開放された第1の流体制御弁3を介して第2の水・冷媒熱交換器4に導かれ、2段階目の凝縮をなして凝縮熱を放出する。この状態で、ガス冷媒は液冷媒に変わる。   The gas refrigerant compressed by the compressor 1 and subjected to high temperature and pressure is discharged from the discharge part a, and is guided as indicated by solid arrows in the figure. That is, it is led from the compressor 1 to the first water / refrigerant heat exchanger 2 to perform the first-stage condensation, and releases the condensation heat. Then, it is guided to the second water / refrigerant heat exchanger 4 through the opened first fluid control valve 3 to release condensation heat in the second stage of condensation. In this state, the gas refrigerant is changed to a liquid refrigerant.

第2の水・冷媒熱交換器4から導出される液冷媒は、内部熱交換器5に導かれて後述するように熱交換する。さらに、膨張弁6に導かれて断熱膨張し、低圧化して空気熱交換器7に導かれて蒸発する。   The liquid refrigerant derived from the second water / refrigerant heat exchanger 4 is guided to the internal heat exchanger 5 to exchange heat as described later. Furthermore, it is led to the expansion valve 6 to undergo adiabatic expansion, is reduced in pressure, is led to the air heat exchanger 7 and evaporates.

この空気熱交換器7から導出される低圧の蒸発冷媒は、先に説明したように、内部熱交換器5において第2の水・冷媒熱交換器4から導出される高圧の冷媒と熱交換する。したがって、低圧冷媒はある程度は温度上昇し、内部熱交換器5を出て圧縮機1の吸込み部bに吸込まれる。   The low-pressure evaporative refrigerant derived from the air heat exchanger 7 exchanges heat with the high-pressure refrigerant derived from the second water / refrigerant heat exchanger 4 in the internal heat exchanger 5 as described above. . Therefore, the temperature of the low-pressure refrigerant rises to some extent, exits the internal heat exchanger 5 and is sucked into the suction portion b of the compressor 1.

外気温より第2の水・冷媒熱交換器4に導かれる水の温度が高い、あるいは水の温度が若干低い通常条件での運転(通常運転)では、第2の水・冷媒熱交換器4から内部熱交換器5に導入される高圧冷媒の冷媒温度と、空気熱交換器7から内部熱交換器5に導入される低圧冷媒の冷媒温度との温度差が大きい。   In an operation under normal conditions (normal operation) in which the temperature of the water guided to the second water / refrigerant heat exchanger 4 is higher than the outside air temperature or the temperature of the water is slightly lower, the second water / refrigerant heat exchanger 4 There is a large temperature difference between the refrigerant temperature of the high-pressure refrigerant introduced into the internal heat exchanger 5 and the refrigerant temperature of the low-pressure refrigerant introduced into the internal heat exchanger 5 from the air heat exchanger 7.

この状態で、内部熱交換器5において高圧冷媒と低圧冷媒とが熱交換するので、低圧冷媒の温度が上昇する。すなわち、内部熱交換器5で充分な過熱度が取れて、低圧冷媒は完全に蒸発した状態で圧縮機1に吸込まれ、液バックが防止される。   In this state, since the high-pressure refrigerant and the low-pressure refrigerant exchange heat in the internal heat exchanger 5, the temperature of the low-pressure refrigerant rises. That is, a sufficient degree of superheat is obtained by the internal heat exchanger 5, and the low-pressure refrigerant is sucked into the compressor 1 in a completely evaporated state, thereby preventing liquid back.

これにともない、空気熱交換器7における冷媒の蒸発圧力と蒸発温度が高くなり、したがって圧縮機1から吐出されるガス冷媒の温度が高くなって、第1の水・冷媒熱交換器2と第2の水・冷媒熱交換器4において放出する凝縮熱の熱量が大になる。   Accordingly, the evaporating pressure and evaporating temperature of the refrigerant in the air heat exchanger 7 are increased, and thus the temperature of the gas refrigerant discharged from the compressor 1 is increased, so that the first water / refrigerant heat exchanger 2 and the first The amount of heat of condensation released in the water / refrigerant heat exchanger 4 is increased.

水サイクル回路Hでは、ポンプ13の駆動にともない貯湯タンク12に貯溜されている水が、図中破線矢印に示すように、水管Pcに導出される。水は第1の流量制御弁14と第2の流量制御弁15に一旦分流されるが、第1の流量制御弁14のみが全開であるので、全ての水は第2の水・冷媒熱交換器4に導かれる。   In the water cycle circuit H, the water stored in the hot water storage tank 12 as the pump 13 is driven is led to the water pipe Pc as shown by the broken line arrow in the figure. The water is once divided into the first flow control valve 14 and the second flow control valve 15, but only the first flow control valve 14 is fully open, so that all the water is in the second water / refrigerant heat exchange. Guided to vessel 4.

上述したように、第2の水・冷媒熱交換器4では第2段階目の冷媒凝縮がなされて凝縮熱が放出されており、水はこの熱を吸熱して温度上昇する。そのあと水は、第1の水・冷媒熱交換器2に導かれ、第1段階目の冷媒凝縮により放出される凝縮熱を吸熱して、さらに温度上昇する。   As described above, in the second water / refrigerant heat exchanger 4, the second stage refrigerant condensation is performed and the heat of condensation is released, and the water absorbs this heat and the temperature rises. Thereafter, the water is led to the first water / refrigerant heat exchanger 2 and absorbs the condensation heat released by the refrigerant condensation in the first stage, and the temperature further rises.

温度上昇した水は、第1の水・冷媒熱交換器2から導出され、貯湯タンク12に導かれる。以上の水サイクル回路Hを加熱された水が循環している間に、温度上昇が顕著となる。貯湯タンク12に設置された温度センサが、温水が設定温度に上昇したことを検知し、その検知信号を制御部へ送ると、制御部は圧縮機1とポンプ13に運転停止の信号を送る。   The water whose temperature has risen is led out from the first water / refrigerant heat exchanger 2 and led to the hot water storage tank 12. While heated water circulates through the water cycle circuit H described above, the temperature rise becomes significant. When the temperature sensor installed in the hot water storage tank 12 detects that the hot water has risen to the set temperature and sends the detection signal to the control unit, the control unit sends an operation stop signal to the compressor 1 and the pump 13.

給湯栓を開放すれば、貯湯タンク12内に貯溜される設定温度の湯が、給湯管Peを介して導かれる。すなわち、必要な給湯作用を行うことができる。貯湯タンク12内の湯が給出される分、給水弁17が開放され水が貯湯タンク12に補充される。したがって、貯湯タンク12内は常に温水が充満して、所定の水圧が保持される。   When the hot-water tap is opened, hot water having a set temperature stored in the hot water storage tank 12 is guided through the hot water supply pipe Pe. That is, a necessary hot water supply operation can be performed. As hot water in hot water storage tank 12 is supplied, water supply valve 17 is opened and water is replenished to hot water storage tank 12. Therefore, the hot water storage tank 12 is always filled with warm water and a predetermined water pressure is maintained.

なお説明すると、貯湯タンク12の上端部に接続される給湯管Peから設定温度の湯が給出される一方で、貯湯タンク12底部に接続される給水管Pdから貯湯タンク12内へ水が補充される。したがって、貯湯タンク12内部において設定温度の湯と、補充される水とが混合する割合はごく少なく、給湯には何らの支障もない。   In other words, hot water having a set temperature is supplied from a hot water supply pipe Pe connected to the upper end of the hot water storage tank 12, while water is replenished into the hot water storage tank 12 from a water supply pipe Pd connected to the bottom of the hot water storage tank 12. The Therefore, the ratio of hot water having a set temperature and water to be replenished in the hot water storage tank 12 is very small, and there is no problem in hot water supply.

以上、要するに冷凍サイクル回路Rに内部熱交換器5を備えて冷媒の過熱度を取るとともに、第1の水・冷媒熱交換器2と第2の水・冷媒熱交換器4を備えて、2段階で水を加熱することで、貯湯タンク12内の温水を、より短時間で設定温度まで上昇させ、給湯に供することができる。   In short, the refrigeration cycle circuit R includes the internal heat exchanger 5 to take the degree of superheat of the refrigerant, and includes the first water / refrigerant heat exchanger 2 and the second water / refrigerant heat exchanger 4. By heating the water in stages, the hot water in the hot water storage tank 12 can be raised to the set temperature in a shorter time and supplied to hot water.

つぎに、外気温に対して第2の水・冷媒熱交換器4に導かれる水の温度が低下するとともに、第2の水・冷媒熱交換器4から導出される高圧冷媒の温度が外気温よりも低下し、上記内部熱交換器5において第2の水・冷媒熱交換器4から導出される高圧冷媒の温度と、空気熱交換器7から導出される低圧冷媒の温度との温度差が小さくなっていく場合について説明する。   Next, the temperature of the water led to the second water / refrigerant heat exchanger 4 decreases with respect to the outside air temperature, and the temperature of the high-pressure refrigerant led out from the second water / refrigerant heat exchanger 4 changes to the outside air temperature. The temperature difference between the temperature of the high-pressure refrigerant derived from the second water / refrigerant heat exchanger 4 and the temperature of the low-pressure refrigerant derived from the air heat exchanger 7 in the internal heat exchanger 5 is The case where it gets smaller will be described.

上述したように、このような低温状況で何らの対策も施さない限り、内部熱交換器で充分な過熱度を取ることができない。その結果、水・冷媒熱交換器での放出凝縮熱の熱量が不足し、圧縮機への液バックが生じてしまう。   As described above, a sufficient degree of superheat cannot be obtained with the internal heat exchanger unless any countermeasure is taken in such a low temperature condition. As a result, the amount of heat of condensation heat discharged from the water / refrigerant heat exchanger is insufficient, and liquid back to the compressor occurs.

しかしながら本発明では、上記温度条件下において、以下に述べるように対処している。
図2は、上記温度条件下での冷媒と水に対する制御を説明する図である。
制御部は、第1の流体制御弁3を閉成し、第2の流体制御弁8を開放するよう切換え制御し、第1の流量制御弁14と第2の流量制御弁15はともに所定量開放するよう制御する。そのうえで、圧縮機1を駆動して冷凍サイクル運転を行い、ポンプ13を駆動して水サイクル回路Hに水を循環させる。
However, in the present invention, the following measures are taken under the above temperature conditions.
FIG. 2 is a diagram for explaining control of the refrigerant and water under the above temperature conditions.
The controller closes the first fluid control valve 3 and performs switching control so as to open the second fluid control valve 8, and both the first flow control valve 14 and the second flow control valve 15 have a predetermined amount. Control to open. Then, the compressor 1 is driven to perform the refrigeration cycle operation, and the pump 13 is driven to circulate water in the water cycle circuit H.

図2に一点鎖線矢印で示すように、冷凍サイクル回路Rにおいて、圧縮機1から吐出されるガス冷媒は第1の水・冷媒熱交換器2を介してバイパス回路Kに導かれる。すなわち、開放された第2の流体制御弁8を介して第3の水・冷媒熱交換器10に導かれ、熱交換したあと冷凍サイクル回路Rに戻る。   In the refrigeration cycle circuit R, the gas refrigerant discharged from the compressor 1 is guided to the bypass circuit K via the first water / refrigerant heat exchanger 2 as indicated by a one-dot chain line arrow in FIG. That is, it is led to the third water / refrigerant heat exchanger 10 through the opened second fluid control valve 8 and returns to the refrigeration cycle circuit R after heat exchange.

そして冷媒は、第2の水・冷媒熱交換器4−内部熱交換器5−膨張弁6−空気熱交換器7−内部熱交換器5−圧縮機1−第1の水・冷媒熱交換器2からバイパス回路Kの順に導かれる。したがって、通常運転時とは異なり、冷媒は冷凍サイクル回路Rから一旦バイパス回路Kに導かれ、さらに冷凍サイクル回路Rに戻ることになる。   The refrigerant is a second water / refrigerant heat exchanger 4-internal heat exchanger 5-expansion valve 6-air heat exchanger 7-internal heat exchanger 5-compressor 1-first water / refrigerant heat exchanger. 2 to the bypass circuit K in this order. Therefore, unlike during normal operation, the refrigerant is once led from the refrigeration cycle circuit R to the bypass circuit K and then returned to the refrigeration cycle circuit R.

水サイクル回路Hでは、貯湯タンク12に貯溜されていた水がポンプ13から吐出され、さらに第1の流量制御弁14と第2の流量制御弁15の開度に応じて分流される。第1の流量制御弁14から導出される水は、先に説明した通常運転時と同様、第2の水・冷媒熱交換器4へ直接導かれる。   In the water cycle circuit H, water stored in the hot water storage tank 12 is discharged from the pump 13 and further divided according to the opening degrees of the first flow control valve 14 and the second flow control valve 15. The water led out from the first flow control valve 14 is directly led to the second water / refrigerant heat exchanger 4 as in the normal operation described above.

その一方で、第2の流量制御弁15から導出される水は、第3の水・冷媒熱交換器10に導かれ、バイパス回路Kにおける第3の水・冷媒熱交換器10に導かれる冷媒と熱交換する。第3の水・冷媒熱交換器10で放出される凝縮熱温度は、第1の水・冷媒熱交換器2と第2の水・冷媒熱交換器4との、中間の凝縮熱温度である。   On the other hand, the water led out from the second flow control valve 15 is led to the third water / refrigerant heat exchanger 10 and the refrigerant led to the third water / refrigerant heat exchanger 10 in the bypass circuit K. Exchange heat with. The condensation heat temperature released by the third water / refrigerant heat exchanger 10 is an intermediate condensation heat temperature between the first water / refrigerant heat exchanger 2 and the second water / refrigerant heat exchanger 4. .

通常運転時では、貯湯タンク12から吐出されポンプ13を介して第2の水・冷媒熱交換器4に導かれる水の温度は、貯湯タンク12から吐出されたときの温度そのままである。この状態を上記温度条件下でも適用すると、第1の水・冷媒熱交換器2を介して第2の水・冷媒熱交換器4から内部熱交換器5に導かれる高圧冷媒の温度が上昇しない。   During normal operation, the temperature of the water discharged from the hot water storage tank 12 and guided to the second water / refrigerant heat exchanger 4 via the pump 13 is the same as the temperature when discharged from the hot water storage tank 12. If this state is applied even under the above temperature condition, the temperature of the high-pressure refrigerant led from the second water / refrigerant heat exchanger 4 to the internal heat exchanger 5 through the first water / refrigerant heat exchanger 2 does not increase. .

しかしながら、図2の制御をなすことにより、第1の流量制御弁14から直接導かれる水の温度が貯湯タンク12から吐出される水の温度そのままであっても、第2の流量制御弁15から第3の水・冷媒熱交換器10に導かれる水が、第3の水・冷媒熱交換器10から放出される中間の凝縮熱により加熱される。   However, by performing the control of FIG. 2, even if the temperature of the water directly led from the first flow control valve 14 is the temperature of the water discharged from the hot water storage tank 12, the second flow control valve 15 The water guided to the third water / refrigerant heat exchanger 10 is heated by the intermediate condensation heat released from the third water / refrigerant heat exchanger 10.

したがって、第1の流量制御弁14から直接導かれる水と第2の流量制御弁15から導かれる加熱された水が合流して、第2の水・冷媒熱交換器4に導かれる水の温度が、通常運転時よりも高くなる。
一方、第2の水・冷媒熱交換器4に導かれる高圧冷媒の温度は、通常運転時よりも低くなる。そのため、第2の水・冷媒熱交換器4における高圧冷媒と水の熱交換量は、通常運転時よりも小さくなる。
しかしながら、第2の水・冷媒熱交換器4から導出される高圧冷媒の温度は、第2の水・冷媒熱交換器4に導かれ通常運転時よりも高くなっている水の温度以下になることはない。その結果、第2の水・冷媒熱交換器4から導出される高圧冷媒の温度は、通常運転時よりも高くなる。
さらに、第2の水・冷媒熱交換器4から出て第1の水・冷媒熱交換器2に導かれる水が、第1の水・冷媒熱交換器2に導かれる冷媒と熱交換し温度上昇させる。
Therefore, the water directly led from the first flow rate control valve 14 and the heated water led from the second flow rate control valve 15 join together, and the temperature of the water led to the second water / refrigerant heat exchanger 4. but, of that higher than during normal operation.
On the other hand, the temperature of the high-pressure refrigerant guided to the second water / refrigerant heat exchanger 4 is lower than that during normal operation. Therefore, the amount of heat exchange between the high-pressure refrigerant and water in the second water / refrigerant heat exchanger 4 is smaller than that during normal operation.
However, the temperature of the high-pressure refrigerant derived from the second water / refrigerant heat exchanger 4 is equal to or lower than the temperature of the water guided to the second water / refrigerant heat exchanger 4 and higher than that during normal operation. There is nothing. As a result, the temperature of the high-pressure refrigerant led out from the second water / refrigerant heat exchanger 4 becomes higher than that during normal operation.
Furthermore, the water that comes out of the second water / refrigerant heat exchanger 4 and is guided to the first water / refrigerant heat exchanger 2 exchanges heat with the refrigerant that is guided to the first water / refrigerant heat exchanger 2. Raise.

結局、内部熱交換器5において熱交換する、第2の水・冷媒熱交換器4から導出される高圧冷媒と、空気熱交換器7から導出される低圧冷媒との温度差を、より大きくすることができる。   Eventually, the temperature difference between the high-pressure refrigerant derived from the second water / refrigerant heat exchanger 4 and the low-pressure refrigerant derived from the air heat exchanger 7 that exchanges heat in the internal heat exchanger 5 is increased. be able to.

このように上記温度条件下であっても、内部熱交換器5で熱交換する高圧冷媒と低圧冷媒の温度が大きくなり、より大きな過熱度を確保する。したがって、圧縮機1への冷媒の液バックを防止でき、圧縮機の故障要因を除去し、常に給湯能力を確保して信頼性の向上化を得られる。   Thus, even under the above temperature conditions, the temperatures of the high-pressure refrigerant and the low-pressure refrigerant that exchange heat with the internal heat exchanger 5 are increased, and a greater degree of superheat is ensured. Therefore, the liquid back of the refrigerant to the compressor 1 can be prevented, the failure factor of the compressor can be removed, the hot water supply capability can be always secured, and the reliability can be improved.

図3は温度エンタルピー特性を模式的に示す図であり、冷媒と水の温度を縦軸に取り、冷媒のエンタルピーを横軸に取っている。なお、分かり易く説明した図であり、温度およびエンタルピーの値を必ずしも正確に表したものではない。   FIG. 3 is a diagram schematically showing the temperature enthalpy characteristics, in which the temperature of the refrigerant and water is plotted on the vertical axis, and the enthalpy of the refrigerant is plotted on the horizontal axis. In addition, it is the figure demonstrated easily and does not necessarily represent the value of temperature and enthalpy correctly.

図中A線は、第2の水・冷媒熱交換器4から導出される高圧冷媒の温度が外気温よりも低下し、図2に示したように制御したときの冷媒の変化を示す線図であり、Aa線は図1に示す通常運転での冷媒の変化を示す線図である。同様に、図中B線は、図2に示したように制御したときの水の変化を示す線図であり、Bb線は図1に示す通常運転での水の変化を示す線図である。   A line A in the figure shows a change in the refrigerant when the temperature of the high-pressure refrigerant derived from the second water / refrigerant heat exchanger 4 is lower than the outside air temperature and is controlled as shown in FIG. The Aa line is a diagram showing the change of the refrigerant in the normal operation shown in FIG. Similarly, the B line in the figure is a diagram showing the change of water when controlled as shown in FIG. 2, and the Bb line is a diagram showing the change of water in the normal operation shown in FIG. .

上述したように、第2の水・冷媒熱交換器4へ導かれる水の温度が低下し、内部熱交換器5に導入される高圧冷媒と、低圧冷媒との温度差が所定値以下になった場合は、バイパス回路Kを開放して第3の水・冷媒熱交換器10に冷媒を導くとともに、第2の流量制御弁15を介して水を第3の水・冷媒熱交換器10に導びき熱交換させる。   As described above, the temperature of the water guided to the second water / refrigerant heat exchanger 4 decreases, and the temperature difference between the high-pressure refrigerant introduced into the internal heat exchanger 5 and the low-pressure refrigerant becomes a predetermined value or less. In this case, the bypass circuit K is opened to guide the refrigerant to the third water / refrigerant heat exchanger 10, and the water is supplied to the third water / refrigerant heat exchanger 10 via the second flow control valve 15. Conduct heat exchange.

水は上記B線に示されるように、第3の水・冷媒熱交換器10−第2の水・冷媒熱交換器4−第1の水・冷媒熱交換器2の順に導かれ、温度は右肩上がりに直線状に上昇していく。水温度の上昇については、従来構成のものと同様であるが、後述するようにエンタルピーは大になる。   The water is led in the order of the third water / refrigerant heat exchanger 10 -the second water / refrigerant heat exchanger 4 -the first water / refrigerant heat exchanger 2 as shown by the line B, and the temperature is Ascending straight to the right. The rise in water temperature is the same as that of the conventional configuration, but the enthalpy increases as described later.

また、冷媒は上記A線に示されるように、第1の水・冷媒熱交換器2−第3の水・冷媒熱交換器10−第2の水・冷媒熱交換器4の順に導かれる。
以上の構成から、冷媒変化Aにおいて、第2の水・冷媒熱交換器4から導出される冷媒の温度がβ分だけ高くなり、圧縮機1から吐出される冷媒の温度が、通常運転の冷媒変化Aaにおける圧縮機吐出温度よりもα分だけ高くなる。
Further, the refrigerant is guided in the order of the first water / refrigerant heat exchanger 2 -the third water / refrigerant heat exchanger 10 -the second water / refrigerant heat exchanger 4, as indicated by line A above.
With the above configuration, in the refrigerant change A, the temperature of the refrigerant derived from the second water / refrigerant heat exchanger 4 is increased by β, and the temperature of the refrigerant discharged from the compressor 1 is the refrigerant in the normal operation. It becomes higher by α than the compressor discharge temperature in the change Aa.

すなわち、第2の水・冷媒熱交換器4から導出される高圧冷媒の温度(内部熱交換器5に導入される高圧冷媒の温度)が高くなり、空気熱交換器7から導出される低圧冷媒の温度(内部熱交換器5に導入される低圧冷媒の温度)との温度差が大きくなる。結果として、内部熱交換器5において高圧冷媒と低圧冷媒との熱交換により、圧縮機1に吸込まれる冷媒の温度が上昇して、圧縮機1への液バックを防止できる。   That is, the temperature of the high-pressure refrigerant derived from the second water / refrigerant heat exchanger 4 (the temperature of the high-pressure refrigerant introduced into the internal heat exchanger 5) increases, and the low-pressure refrigerant derived from the air heat exchanger 7 Temperature difference (temperature of the low-pressure refrigerant introduced into the internal heat exchanger 5). As a result, the temperature of the refrigerant sucked into the compressor 1 is increased by heat exchange between the high-pressure refrigerant and the low-pressure refrigerant in the internal heat exchanger 5, and liquid back to the compressor 1 can be prevented.

同時に、空気熱交換器7において冷媒の蒸発圧力と蒸発温度が高くなるため、圧縮機1から吐出される冷媒ガスの温度が通常運転の冷媒変化Aaにおける圧縮機吐出温度よりもα分だけ高くなり、よって水に対する加熱量が減少するのを防止できる。   At the same time, the evaporating pressure and evaporating temperature of the refrigerant are increased in the air heat exchanger 7, so that the temperature of the refrigerant gas discharged from the compressor 1 is higher by α than the compressor discharging temperature in the refrigerant change Aa in the normal operation. Therefore, it is possible to prevent the amount of heating with respect to water from decreasing.

なお、内部熱交換器5に導入される高圧冷媒の温度と、低圧冷媒の温度を検出するために、それぞれ温度センサを設けたが、これに限定されるものではなく、高圧冷媒温度は、第2の水・冷媒熱交換器4へ導かれる水の温度を検出し、この水温度から推定してもよい。低圧冷媒温度は、空気熱交換器7の冷媒蒸発温度と略同一であるので、外気温から推定してもよい。   In order to detect the temperature of the high-pressure refrigerant introduced into the internal heat exchanger 5 and the temperature of the low-pressure refrigerant, temperature sensors are provided, but the present invention is not limited to this. The temperature of the water led to the water / refrigerant heat exchanger 4 may be detected and estimated from this water temperature. Since the low-pressure refrigerant temperature is substantially the same as the refrigerant evaporation temperature of the air heat exchanger 7, it may be estimated from the outside air temperature.

また、上記実施の形態では、第1の流体制御弁3および第2の流体制御弁8により、冷媒の流路を冷凍サイクル回路Rからバイパス回路Kに切換えるようにしたが、これに限定されるものではなく、第1の流体制御弁3と第2の流体制御弁8を不用として、冷媒が常時、第3の水・冷媒熱交換器10に導かれるようにしてもよい。   In the above embodiment, the refrigerant flow path is switched from the refrigeration cycle circuit R to the bypass circuit K by the first fluid control valve 3 and the second fluid control valve 8, but the present invention is not limited to this. Instead of this, the first fluid control valve 3 and the second fluid control valve 8 may not be used, and the refrigerant may be guided to the third water / refrigerant heat exchanger 10 at all times.

ただし、このような構成を採用すると、条件によっては、圧縮機1から吐出されるガス冷媒の温度が高くなり過ぎる場合もあり得るので、冷媒流路を冷凍サイクル回路Rからバイパス回路Kに切換えることが、より好ましい。   However, if such a configuration is adopted, depending on the conditions, the temperature of the gas refrigerant discharged from the compressor 1 may become too high, so the refrigerant flow path is switched from the refrigeration cycle circuit R to the bypass circuit K. Is more preferable.

さらに、第1の流量制御弁14と第2の流量制御弁15を設けて、第3の水・冷媒熱交換器10に導かれる水量を調整し、きめ細かい制御をなすようにしたが、これに限定されるものではなく、これら第1、第2の流量制御弁14,15を備えることなく、常時、水の全量が第3の水・冷媒熱交換器10に導かれるようにしてもよい。   In addition, the first flow control valve 14 and the second flow control valve 15 are provided to adjust the amount of water led to the third water / refrigerant heat exchanger 10 for fine control. The present invention is not limited, and the first and second flow rate control valves 14 and 15 may not be provided, and the entire amount of water may be always led to the third water / refrigerant heat exchanger 10.

なお、本発明は上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。そして、上述した実施の形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments.

本発明における一実施の形態に係る、ヒートポンプ式給湯機の配管構成図と、通常運転時における冷媒と水の循環を説明する図。The piping block diagram of the heat pump type water heater based on one embodiment in this invention, and the figure explaining the circulation of the refrigerant | coolant and water at the time of normal operation. 同実施の形態に係る、外気温よりも水・冷媒熱交換器出口部の高圧冷媒温度が低い状況下における冷媒と水の循環を説明する図。The figure explaining the circulation of the refrigerant | coolant and water in the condition where the high pressure refrigerant | coolant temperature of a water / refrigerant heat exchanger exit part is lower than external temperature based on the embodiment. 同実施の形態に係る、本発明のヒートポンプ式給湯機の温度エンタルピー特性を模式的に表した線図。The diagram which represented typically the temperature enthalpy characteristic of the heat pump type water heater of this invention based on the embodiment.

符号の説明Explanation of symbols

1…圧縮機、2…第1の水・冷媒熱交換器、4…第2の水・冷媒熱交換器、10…第3の水・冷媒熱交換器、6…膨張弁(膨張装置)、7…空気熱交換器、Pa…冷媒管、5…内部熱交換器、R…冷凍サイクル回路、13…ポンプ、12…貯湯タンク、Pc…水管、H…水サイクル回路、3…第1の流体制御弁、8…第2の流体制御弁、Pb…バイパス管、K…バイパス回路。   DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... 1st water / refrigerant heat exchanger, 4 ... 2nd water / refrigerant heat exchanger, 10 ... 3rd water / refrigerant heat exchanger, 6 ... Expansion valve (expansion apparatus), DESCRIPTION OF SYMBOLS 7 ... Air heat exchanger, Pa ... Refrigerant tube, 5 ... Internal heat exchanger, R ... Refrigeration cycle circuit, 13 ... Pump, 12 ... Hot water storage tank, Pc ... Water pipe, H ... Water cycle circuit, 3 ... 1st fluid Control valve, 8 ... second fluid control valve, Pb ... bypass pipe, K ... bypass circuit.

Claims (2)

圧縮機と、水・冷媒熱交換器と、膨張装置と、空気熱交換器が順次冷媒管を介して接続されるとともに、前記水・冷媒熱交換器から導出される高圧冷媒と上記空気熱交換器から導出される低圧冷媒とを熱交換する内部熱交換器が接続される冷凍サイクル回路と、
ポンプと、上記水・冷媒熱交換器と、貯湯タンクが順次水管を介して接続される水サイクル回路とを有し、
上記冷凍サイクル回路の水・冷媒熱交換器で生成される凝縮熱をもって上記水サイクル回路の水・冷媒熱交換器に導かれる水を加熱して湯に変えるヒートポンプ式給湯装置において、
上記水・冷媒熱交換器は、
上記冷凍サイクル回路に導かれる冷媒流の上流側に位置する第1の水・冷媒熱交換器と、この第1の水・冷媒熱交換器の下流側に位置する第2の水・冷媒熱交換器とに分割されるとともに、
上記第1の水・冷媒熱交換器から導出される冷媒と、上記水サイクル回路における第2の水・冷媒熱交換器に導入される前の水とを熱交換する第3の水・冷媒熱交換器とに分割されることを特徴とするヒートポンプ式給湯装置。
A compressor, a water / refrigerant heat exchanger, an expansion device, and an air heat exchanger are sequentially connected via a refrigerant pipe, and the high-pressure refrigerant derived from the water / refrigerant heat exchanger and the air heat exchange. A refrigeration cycle circuit to which an internal heat exchanger for exchanging heat with the low-pressure refrigerant derived from the vessel is connected;
A water cycle circuit in which a pump, the water / refrigerant heat exchanger, and a hot water storage tank are sequentially connected via a water pipe;
In the heat pump type hot water supply apparatus that heats the water led to the water / refrigerant heat exchanger of the water cycle circuit with the heat of condensation generated in the water / refrigerant heat exchanger of the refrigeration cycle circuit and converts it into hot water,
The water / refrigerant heat exchanger is
A first water / refrigerant heat exchanger located upstream of the refrigerant flow led to the refrigeration cycle circuit and a second water / refrigerant heat exchange located downstream of the first water / refrigerant heat exchanger Divided into containers,
Third water / refrigerant heat that exchanges heat between the refrigerant derived from the first water / refrigerant heat exchanger and the water before being introduced into the second water / refrigerant heat exchanger in the water cycle circuit. A heat pump type hot water supply apparatus, which is divided into an exchanger.
上記冷凍サイクル回路において、上記第1の水・冷媒熱交換器と、上記第2の水・冷媒熱交換器との間に第1の流体制御弁が設けられ、
上記冷凍サイクル回路における第1の水・冷媒熱交換器と前記第1の流体制御弁との間から分岐されて、第1の流体制御弁と第2の水・冷媒熱交換器との間に接続されるバイパス管に、第2の流体制御弁と上記第3の水・冷媒熱交換器が設けられるバイパス回路を有する
ことを特徴とする請求項1記載のヒートポンプ式給湯装置。
In the refrigeration cycle circuit, a first fluid control valve is provided between the first water / refrigerant heat exchanger and the second water / refrigerant heat exchanger,
Branched between the first water / refrigerant heat exchanger and the first fluid control valve in the refrigeration cycle circuit, and between the first fluid control valve and the second water / refrigerant heat exchanger. The heat pump type hot water supply apparatus according to claim 1, further comprising a bypass circuit in which a second fluid control valve and the third water / refrigerant heat exchanger are provided in a connected bypass pipe.
JP2007335331A 2007-12-26 2007-12-26 Heat pump type water heater Expired - Fee Related JP5128267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007335331A JP5128267B2 (en) 2007-12-26 2007-12-26 Heat pump type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007335331A JP5128267B2 (en) 2007-12-26 2007-12-26 Heat pump type water heater

Publications (2)

Publication Number Publication Date
JP2009156515A JP2009156515A (en) 2009-07-16
JP5128267B2 true JP5128267B2 (en) 2013-01-23

Family

ID=40960731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007335331A Expired - Fee Related JP5128267B2 (en) 2007-12-26 2007-12-26 Heat pump type water heater

Country Status (1)

Country Link
JP (1) JP5128267B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032091A (en) * 2010-07-30 2012-02-16 Fujitsu General Ltd Heat pump cycle system
JP5845590B2 (en) * 2011-02-14 2016-01-20 富士電機株式会社 Heat pump steam generator
EP3059519B1 (en) * 2013-10-17 2021-03-03 Mitsubishi Electric Corporation Refrigeration cycle device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113262U (en) * 1984-06-29 1986-01-25 三菱電機株式会社 Solar heat pump water heater
JP3870841B2 (en) * 2002-05-23 2007-01-24 株式会社デンソー Heat exchanger

Also Published As

Publication number Publication date
JP2009156515A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
JP4931848B2 (en) Heat pump type outdoor unit for hot water supply
EP2933588B1 (en) Air conditioning hot water supply composite system
CN102419024B (en) Refrigeration cycle apparatus and hot-water heating apparatus
JP5411643B2 (en) Refrigeration cycle apparatus and hot water heater
KR102098164B1 (en) Refrigeration cycle device and control method of refrigeration cycle device
JP2008232508A (en) Water heater
CN102032698A (en) Refrigeration cycle apparatus and hot water heater
EP2752628A1 (en) Supercritical cycle and heat pump hot-water supplier using same
JP5418253B2 (en) Refrigeration cycle equipment
WO2017037771A1 (en) Refrigeration cycle device
JP2007139244A (en) Refrigeration device
CN105102902A (en) Hot-water supply device
JPWO2012043297A1 (en) Hot water system
JP5128267B2 (en) Heat pump type water heater
WO2010131516A1 (en) Hot-water supply system
JP2010084975A (en) Heating device
JP5409318B2 (en) HEAT PUMP DEVICE AND HEAT PUMP DEVICE OPERATION METHOD
JP2011252637A (en) Refrigeration cycle device and its control method
JP4595546B2 (en) Heat pump equipment
JP2021076259A (en) Hot water supply device
JP6250428B2 (en) Refrigeration cycle equipment
JP2009264714A (en) Heat pump hot water system
US11506427B2 (en) Air conditioning apparatus
WO2013111786A1 (en) Heat pump device
JP7236606B2 (en) refrigeration cycle equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120501

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees