JP2012032091A - Heat pump cycle system - Google Patents

Heat pump cycle system Download PDF

Info

Publication number
JP2012032091A
JP2012032091A JP2010172442A JP2010172442A JP2012032091A JP 2012032091 A JP2012032091 A JP 2012032091A JP 2010172442 A JP2010172442 A JP 2010172442A JP 2010172442 A JP2010172442 A JP 2010172442A JP 2012032091 A JP2012032091 A JP 2012032091A
Authority
JP
Japan
Prior art keywords
compressor
outside air
air temperature
temperature
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010172442A
Other languages
Japanese (ja)
Inventor
Hiroshi Abiko
博 安孫子
Shintaro Sanada
慎太郎 真田
Takashi Sugiyama
隆 杉山
Tsuguyuki Endo
嗣享 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2010172442A priority Critical patent/JP2012032091A/en
Publication of JP2012032091A publication Critical patent/JP2012032091A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump cycle system capable of efficiently carrying out a heating cycle operation at a low outside air temperature while improving the durability of a compressor by preventing the intake pressure of the compressor from becoming lower than a lower limit.SOLUTION: When detected condensation pressure or a water temperature and an outside air temperature are lower than predetermined values, an allowable maximum rotational frequency of the compressor 1 is set low compared with the case that these are equal to predetermined values or higher. When the condensation pressure or the water temperature, and the outside air temperature are low and when the intake pressure of the compressor 1 is low, the durability of the compressor 1 is improved by controlling the intake pressure of the compressor 1 so as not to become lower than the lower limit by decreasing a refrigerant circulation amount in an outdoor heat exchanger 5 by lowering the allowable maximum rotational frequency of the compressor 1. When the condensation pressure or the water temperature, and the outside air temperature are equal to the predetermined values or higher, the heating cycle operation can be efficiently carried out by improving an operation capacity of the compressor 1 by setting the allowable maximum rotational frequency of the compressor 1 high.

Description

本発明は、ヒートポンプ式温冷水空気調和機やヒートポンプ式給湯装置等のヒートポンプサイクル装置に係わり、詳細には、低外気温時の圧縮機の保護を行いつつ、より効率的に運転を行うことを可能とするヒートポンプサイクル装置に関する。   The present invention relates to a heat pump cycle device such as a heat pump type hot / cold water air conditioner or a heat pump type hot water supply device, and more specifically, to perform a more efficient operation while protecting a compressor at a low outside temperature. The present invention relates to a heat pump cycle device that can be used.

従来、ヒートポンプサイクル装置は、圧縮機と、四方弁と、利用側熱交換器と、電子膨張弁と、熱源側熱交換器である室外熱交換器とを順次配管接続してなる冷媒回路を有している。このヒートポンプサイクル装置で暖房運転や給湯運転を行う際は、冷媒回路が暖房サイクルとなり、圧縮機で圧縮され高温高圧のガスとなった冷媒は四方弁を通過し、利用側熱交換器で熱を放出して液冷媒となり、さらに電子膨張弁で減圧されて室外熱交換器で蒸発して室外空気と熱交換し、ガスとなって再び圧縮機で圧縮される過程を繰り返す。尚、冷房/除霜運転の際は、冷媒回路は、四方弁が切り換わって上述した冷媒の流れとは逆方向の流れとなる冷房サイクルとなる。   Conventionally, a heat pump cycle apparatus has a refrigerant circuit in which a compressor, a four-way valve, a use-side heat exchanger, an electronic expansion valve, and an outdoor heat exchanger that is a heat source-side heat exchanger are sequentially connected by piping. is doing. When performing heating operation or hot water supply operation with this heat pump cycle device, the refrigerant circuit becomes a heating cycle, and the refrigerant compressed into high-temperature and high-pressure gas by the compressor passes through the four-way valve and heats it with the use side heat exchanger. It is discharged to become liquid refrigerant, further reduced in pressure by the electronic expansion valve, evaporated in the outdoor heat exchanger, exchanged with outdoor air, and converted into gas and compressed again by the compressor. In the cooling / defrosting operation, the refrigerant circuit is in a cooling cycle in which the four-way valve is switched to flow in the direction opposite to the refrigerant flow described above.

このようなヒートポンプサイクル装置では、外気温度が低い時と高い時では、同じ圧縮機回転数でのヒートポンプサイクル装置の運転能力が変化する。そこで、外気温度を検出し、検出された外気温度の変化に応じて圧縮機の回転数や膨張弁の開度を制御して、運転能力の制御を可能としたヒートポンプサイクル装置が提案されている(例えば、特許文献1参照)。   In such a heat pump cycle device, the operating capability of the heat pump cycle device at the same compressor speed changes when the outside air temperature is low and high. Therefore, a heat pump cycle device has been proposed that detects the outside air temperature and controls the operating capacity by controlling the rotation speed of the compressor and the opening of the expansion valve in accordance with the detected change in the outside air temperature. (For example, see Patent Document 1).

特許文献1には、圧縮機と、利用側熱交換器と、電子膨張弁と、熱源側熱交換器である室外熱交換器とが接続された冷媒回路を有する冷凍サイクル装置と、この冷凍サイクル装置で加熱された給湯用水を貯留する貯湯タンクと、外気温度を一定時間毎に検出し、検出された外気温度の変化に対し所定の基準に従って圧縮機能力(回転数)や電子膨張弁の開度を制御する制御装置を備えたヒートポンプ式給湯装置が記載されている。   Patent Document 1 discloses a refrigeration cycle apparatus having a refrigerant circuit to which a compressor, a use side heat exchanger, an electronic expansion valve, and an outdoor heat exchanger that is a heat source side heat exchanger are connected, and the refrigeration cycle. A hot water storage tank for storing hot water heated by the device, and the outside air temperature are detected at regular intervals, and the compression function force (number of rotations) and the electronic expansion valve are opened according to a predetermined standard with respect to the detected change in the outside air temperature. A heat pump type hot water supply device provided with a control device for controlling the degree is described.

このヒートポンプ式給湯装置では、制御装置で外気温度を一定時間毎、例えば、30分毎に検出して外気温度の変化を検出している。そして、制御装置は、検出した外気温度の変化に応じて、所定の基準、例えば、予め試験等で測定し制御装置に記憶されている外気温度と圧縮機の回転数とを対応させたテーブル等に従って、圧縮機の回転数や電動膨張弁の開度を制御することで、ヒートポンプ式給湯装置の運転能力を制御して効率良く運転することができる。   In this heat pump type hot water supply device, the control device detects the outside air temperature every predetermined time, for example, every 30 minutes, and detects the change in the outside air temperature. Then, the control device, in accordance with the detected change in the outside air temperature, a predetermined reference, for example, a table in which the outside air temperature measured in advance in a test or the like and stored in the control device is associated with the rotation speed of the compressor, etc. Accordingly, by controlling the rotation speed of the compressor and the opening of the electric expansion valve, the operation capability of the heat pump hot water supply device can be controlled to operate efficiently.

以上説明したようなヒートポンプサイクル装置が暖房サイクルで運転する時は、同じ水温(水利用側熱交換器で得られる温水温度のこと)を得ようとする場合は、外気温度が低くなるほど、水温を下げないように運転能力を上げる制御を行うので、室外熱交換器での蒸発圧力が低下し圧縮機の吸入圧力が低下する。   When the heat pump cycle apparatus as described above is operated in a heating cycle, when trying to obtain the same water temperature (the hot water temperature obtained by the water use side heat exchanger), the lower the outside air temperature, the lower the water temperature. Since control is performed to increase the operating capacity so as not to decrease, the evaporation pressure in the outdoor heat exchanger decreases and the suction pressure of the compressor decreases.

従って、低外気温度領域(例えば、外気温度が−15℃以下である場合)では、圧縮機の吸入圧力が、圧縮機に個別に定められる吸入圧力の下限値(例えば、0.16メガパスカル)を下回る虞があり、圧縮機の吸入圧力が下限値を下回ると、圧縮機のベーンバルブの破損や異音の発生といった現象が起こり、圧縮機の信頼性を確保できない虞があった。   Therefore, in the low outside air temperature region (for example, when the outside air temperature is −15 ° C. or lower), the suction pressure of the compressor is a lower limit value of the suction pressure individually determined for the compressor (for example, 0.16 megapascal). If the suction pressure of the compressor falls below the lower limit, phenomena such as breakage of the vane valve of the compressor and generation of abnormal noise may occur, and the reliability of the compressor may not be ensured.

そこで、上述した問題の解決方法として、外気温度が低い場合は、圧縮機の許容最大回転数を低く設定し、室外熱交換器での冷媒循環量を減らして室外熱交換器の温度が低下しないようにすることで、蒸発圧力の低下、ひいては吸入圧力の低下を抑え、圧縮機の吸入圧力が下限値を下回らないようにする方法が考えられる。   Therefore, as a solution to the above-described problem, when the outside air temperature is low, the allowable maximum number of rotations of the compressor is set low, the refrigerant circulation amount in the outdoor heat exchanger is reduced, and the temperature of the outdoor heat exchanger does not decrease. By doing so, a method is conceivable in which a decrease in the evaporation pressure and thus a decrease in the suction pressure is suppressed, so that the suction pressure of the compressor does not fall below a lower limit value.

また、外気温度が一定である場合は、水温が高くなるほど室外熱交換器での蒸発圧力が上昇して吸入圧力も上昇する。つまり、外気温度が低くても、水温が高い場合は圧縮機の吸入圧力が下限値に対して余裕のある値となっていると考えられるので、圧縮機の許容最大回転数を高く(例えば、圧縮機に個別に定められている回転数の上限値と)しても問題ないと考えられる。従って、低外気温度領域において、外気温度のみで圧縮機の許容最大回転数を決定する方法では、水温が高く圧縮機の吸入圧力が下限値に対して余裕があるにも関わらず圧縮機の許容最大回転数を低く設定する場合が発生し、効率的な暖房サイクル運転が行えない虞があった。   When the outside air temperature is constant, the evaporation pressure in the outdoor heat exchanger increases and the suction pressure increases as the water temperature increases. That is, even if the outside air temperature is low, if the water temperature is high, it is considered that the compressor suction pressure has a margin with respect to the lower limit value, so the allowable maximum rotational speed of the compressor is increased (for example, It can be considered that there is no problem even if it is set as the upper limit value of the rotational speed individually determined for the compressor. Therefore, in the method of determining the maximum allowable rotation speed of the compressor only with the outside air temperature in the low outside air temperature region, the allowable pressure of the compressor is high even though the water temperature is high and the intake pressure of the compressor has a margin with respect to the lower limit value. There was a case where the maximum number of revolutions was set low, and there was a possibility that efficient heating cycle operation could not be performed.

特開2003−74970号公報(第3〜5頁、第2図、第3図)Japanese Unexamined Patent Publication No. 2003-74970 (pages 3 to 5, FIGS. 2 and 3)

本発明は以上述べた問題点を解決し、圧縮機の吸入圧力が下限値を下回らないようにして圧縮機の耐久性を高めつつ、低外気温時により効率的な暖房サイクル運転が行えるヒートポンプサイクル装置を提供することを目的とする。   The present invention solves the above-described problems, and improves the durability of the compressor so that the suction pressure of the compressor does not fall below the lower limit value, and enables a more efficient heating cycle operation at a low outside air temperature. An object is to provide an apparatus.

本発明は上述の課題を解決するものであって、本発明のヒートポンプサイクル装置は、圧縮機と利用側熱交換器と膨張弁と熱源側熱交換器とを有する冷媒回路と、凝縮圧力検出手段および/または水温検出手段と、外気温度検出手段と、制御手段とを備えたものであって、制御手段は、凝縮圧力を凝縮圧力検出手段により検出、あるいは、水温を水温検出手段により検出するとともに、外気温度を外気温度検出手段により検出し、検出した凝縮圧力あるいは水温、および、外気温度とが夫々所定の値未満である場合は、凝縮圧力あるいは水温、および、外気温度とが夫々所定の値以上である場合に比べて、圧縮機の許容最大回転数を低く設定するものである。   The present invention solves the above-mentioned problem, and the heat pump cycle device of the present invention includes a refrigerant circuit having a compressor, a use side heat exchanger, an expansion valve, and a heat source side heat exchanger, and a condensation pressure detecting means. And / or a water temperature detection means, an outside air temperature detection means, and a control means, wherein the control means detects the condensation pressure by the condensation pressure detection means or detects the water temperature by the water temperature detection means. When the outside air temperature is detected by the outside air temperature detecting means, and the detected condensing pressure or water temperature and the outside air temperature are respectively lower than predetermined values, the condensing pressure or water temperature and the outside air temperature are respectively predetermined values. Compared to the case described above, the allowable maximum rotational speed of the compressor is set low.

また、制御手段は、冷媒回路における複数の凝縮圧力あるいは複数の水温と、外気温度とに対応させて圧縮機の許容最大回転数を記憶した圧縮機回転数テーブルを有するものである。   Further, the control means has a compressor rotation speed table that stores a maximum allowable rotation speed of the compressor in correspondence with a plurality of condensing pressures or a plurality of water temperatures in the refrigerant circuit and an outside air temperature.

本発明のヒートポンプサイクル装置は、検出した凝縮圧力あるいは水温、および、外気温度が夫々所定の値未満である場合は、凝縮圧力あるいは水温、および、外気温度が夫々所定の値以上である場合に比べて、圧縮機の許容最大回転数を低く設定する。従って、凝縮圧力あるいは水温、および、外気温度が低く圧縮機の吸入圧力が低い場合は、圧縮機の許容最大回転数を低くして圧縮機の吸入圧力が低下しないよう制御して、圧縮機の耐久性を向上させるとともに、凝縮圧力あるいは水温、および、外気温度とが夫々所定の値以上である場合は、圧縮機の許容最大回転数を高くして圧縮機の吐出圧力を上昇させることで圧縮機の運転能力を向上させることにより、効率的な暖房サイクル運転が行える。   In the heat pump cycle device of the present invention, when the detected condensing pressure or water temperature and the outside air temperature are each lower than a predetermined value, the condensing pressure or water temperature and the outside air temperature are respectively higher than or equal to a predetermined value. Therefore, the allowable maximum number of rotations of the compressor is set low. Therefore, when the condensing pressure or water temperature and the outside air temperature are low and the compressor suction pressure is low, the allowable maximum rotation speed of the compressor is lowered to control the compressor suction pressure so that it does not decrease. In addition to improving durability, when the condensing pressure or water temperature and the outside air temperature are above the specified values, compression is performed by increasing the maximum allowable rotational speed of the compressor and increasing the discharge pressure of the compressor. Efficient heating cycle operation can be performed by improving the operation capacity of the machine.

本発明の実施例におけるヒートポンプサイクル装置の構成図である。It is a block diagram of the heat pump cycle apparatus in the Example of this invention. 本発明の実施例における、圧縮機回転数テーブルである。It is a compressor rotation speed table in the Example of this invention. 本発明の実施例による制御を説明するフローチャートである。It is a flowchart explaining the control by the Example of this invention. 本発明の他の実施例における、圧縮機回転数テーブルである。It is a compressor rotation speed table in the other Example of this invention.

以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施例としては、床暖房装置や室内機等の室内ユニットを有し、利用側熱交換器で水と冷媒との熱交換が行われるヒートポンプサイクル装置を例として説明することとする。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. As an example, a heat pump cycle device having an indoor unit such as a floor heating device or an indoor unit and performing heat exchange between water and refrigerant in a use side heat exchanger will be described as an example. The present invention is not limited to the following embodiments, and can be variously modified without departing from the gist of the present invention.

図1は、本発明によるヒートポンプサイクル装置の構成を示している。このヒートポンプサイクル装置100は、圧縮機1、四方弁2、冷媒と水との熱交換を行う利用側熱交換器3、第1膨張弁4、熱源側熱交換器である室外熱交換器5、アキュムレータ6を順に冷媒用配管12で接続して冷媒回路が構成されており、四方弁2を介して冷媒循環方向を切り替えるように構成されている。また、冷媒用配管12の利用側熱交換器3と第1膨張弁4との間と、圧縮機1の図示しない冷媒注入口とは、第2膨張弁15と電磁開閉弁16とを有するインジェクション配管14で接続されている。   FIG. 1 shows a configuration of a heat pump cycle apparatus according to the present invention. The heat pump cycle device 100 includes a compressor 1, a four-way valve 2, a use side heat exchanger 3 that performs heat exchange between refrigerant and water, a first expansion valve 4, an outdoor heat exchanger 5 that is a heat source side heat exchanger, The accumulator 6 is connected by the refrigerant | coolant piping 12 in order, and the refrigerant circuit is comprised, and it is comprised so that the refrigerant | coolant circulation direction may be switched via the four-way valve 2. FIG. Further, between the use side heat exchanger 3 of the refrigerant pipe 12 and the first expansion valve 4 and a refrigerant inlet (not shown) of the compressor 1, an injection having a second expansion valve 15 and an electromagnetic opening / closing valve 16. They are connected by a pipe 14.

利用側熱交換器3には、冷媒用配管12を流れる冷媒の温度を検出する利用側熱交温度センサ20が、室外熱交換器5近傍には外気温度検出手段である外気温センサ21が、圧縮機1の吐出口付近には冷媒の吐出温度を検出するための吐出温度センサ22が、利用側熱交換器3と第1膨張弁4の間には第1膨張弁付近の冷媒温度を検出する冷媒温度センサ23が、第1膨張弁4と室外熱交換器5の間には室外熱交換器5の温度を検出する室外熱交温度センサ25が、それぞれ設置されている。さらには、冷媒用配管12の圧縮機1吐出側(四方弁2と利用側熱交換器3との間)には、凝縮圧力検出手段である圧力センサ30が配置されている。   The use side heat exchanger 3 has a use side heat exchange temperature sensor 20 that detects the temperature of the refrigerant flowing through the refrigerant pipe 12, and an outdoor temperature sensor 21 that is an outside air temperature detection means in the vicinity of the outdoor heat exchanger 5. A discharge temperature sensor 22 for detecting a refrigerant discharge temperature is detected near the discharge port of the compressor 1, and a refrigerant temperature near the first expansion valve is detected between the use side heat exchanger 3 and the first expansion valve 4. Between the first expansion valve 4 and the outdoor heat exchanger 5, an outdoor heat exchanger temperature sensor 25 for detecting the temperature of the outdoor heat exchanger 5 is installed. Furthermore, a pressure sensor 30 serving as a condensation pressure detecting means is disposed on the refrigerant 1 discharge side of the refrigerant pipe 12 (between the four-way valve 2 and the use-side heat exchanger 3).

利用側熱交換器3には、冷媒用配管12と水用配管13とが接続されており、水用配管13には室内ユニット11に水を循環させるための循環ポンプ17が接続され、冷媒と熱交換された水の流れが図1に示す矢印62の方向に循環するように構成されている。また、利用側熱交換器3の水の入口付近には水温検出手段である入口側水温センサ24が、利用側熱交換器3の水の出口付近には水温検出手段である出口側水温センサ26が、それぞれ設置されている。   A refrigerant pipe 12 and a water pipe 13 are connected to the use side heat exchanger 3, and a circulation pump 17 for circulating water through the indoor unit 11 is connected to the water pipe 13. The flow of heat-exchanged water is configured to circulate in the direction of the arrow 62 shown in FIG. Further, an inlet-side water temperature sensor 24, which is a water temperature detecting means, is provided near the water inlet of the use-side heat exchanger 3, and an outlet-side water temperature sensor 26, which is a water temperature detecting means, is provided near the water outlet of the use-side heat exchanger 3. Are installed.

ヒートポンプサイクル装置100は、各温度センサで検出した温度や圧力センサ30で検出した凝縮圧力を入力し、あるいは、図示しないリモコン等による使用者からの運転要求に応じて、圧縮機1と四方弁2と循環ポンプ17と電磁開閉弁16と第1膨張弁4及び第2膨張弁15の駆動制御を行い、ヒートポンプサイクル装置100の制御を行う制御手段10が備えられている。制御手段10は、図示しないインバータの出力周波数を制御して圧縮機1の回転数を制御し、圧縮機1の回転数は定期的に図示しない制御手段10の記憶部に管理データとして記憶されている。   The heat pump cycle apparatus 100 inputs the temperature detected by each temperature sensor and the condensing pressure detected by the pressure sensor 30, or the compressor 1 and the four-way valve 2 in response to an operation request from a user using a remote controller (not shown). And a control means 10 for controlling the heat pump cycle device 100 by controlling the driving of the circulation pump 17, the electromagnetic on-off valve 16, the first expansion valve 4 and the second expansion valve 15. The control means 10 controls the output frequency of the inverter (not shown) to control the rotational speed of the compressor 1, and the rotational speed of the compressor 1 is periodically stored as management data in a storage unit of the control means 10 (not shown). Yes.

尚、図1では暖房運転時、つまり、暖房サイクルでの運転時の冷媒流れ方向を矢印60で、第2膨張弁15と電磁開閉弁16とが開いてインジェクション配管14に冷媒が流れた場合の冷媒流れ方向を矢印61で、それぞれ示している。また、冷房運転時や除霜運転時、つまり、冷房サイクルでの運転時の冷媒流れ方向は、暖房運転時の冷媒流れ方向(矢印60の方向)と逆方向となるが、矢印による冷媒流れ方向の記載は省略している。   In FIG. 1, the refrigerant flow direction during heating operation, that is, during the heating cycle is indicated by an arrow 60, and the second expansion valve 15 and the electromagnetic opening / closing valve 16 are opened and the refrigerant flows into the injection pipe 14. The refrigerant flow directions are indicated by arrows 61, respectively. In addition, the refrigerant flow direction during cooling operation or defrosting operation, that is, during operation in the cooling cycle is opposite to the refrigerant flow direction during heating operation (the direction of arrow 60). Is omitted.

以上説明した構成を有するヒートポンプサイクル装置100の運転動作を、暖房運転を行う場合を例に挙げて説明する。ユーザーが室内ユニット11のリモコン等を操作してスイッチをオンすると、ヒートポンプサイクル装置100が運転を開始し、制御手段10は循環ポンプ17を回転させ、利用側熱交換器3と室内ユニット11との間で水を循環させる。   The operation of the heat pump cycle apparatus 100 having the above-described configuration will be described by taking a case where the heating operation is performed as an example. When the user operates the remote control or the like of the indoor unit 11 to turn on the switch, the heat pump cycle device 100 starts operation, and the control means 10 rotates the circulation pump 17 to connect the use side heat exchanger 3 and the indoor unit 11. Circulate water between them.

同時に制御手段10は、出口側水温センサ26で検出された現在の水温、つまり、利用側熱交換器3で暖められた水の温度が、使用者が定めた暖房運転の目標温度である設定温度に対応する水の温度となるように圧縮機1を回転させる。圧縮機1で高温高圧のガスとなった冷媒は四方弁2を通過し、利用側熱交換器3で水と熱交換して液体となり、さらに第1膨張弁4で減圧されて室外熱交換器5で室外空気と熱交換して蒸発し、ガスとなって再び圧縮機1で圧縮される過程を繰り返す。尚、四方弁2は冷房及び除霜運転時に冷媒の循環方向を逆転させるために用いられる。   At the same time, the controller 10 sets the current water temperature detected by the outlet-side water temperature sensor 26, that is, the temperature of the water heated by the use-side heat exchanger 3, as a target temperature for heating operation determined by the user. The compressor 1 is rotated so that the temperature of water corresponds to. The refrigerant that has become a high-temperature and high-pressure gas in the compressor 1 passes through the four-way valve 2, becomes a liquid by exchanging heat with water in the use-side heat exchanger 3, and further depressurized in the first expansion valve 4, so that it is an outdoor heat exchanger. In step 5, heat is exchanged with outdoor air to evaporate, and the process of being converted into gas and compressed by the compressor 1 is repeated. The four-way valve 2 is used to reverse the direction of refrigerant circulation during cooling and defrosting operations.

また、暖房運転時に外気温度が低温で高い水温が求められる場合は、制御手段10は、電磁開閉弁16を開くと共に、圧力センサ30で検出した凝縮圧力や圧縮機1の回転数に応じて第2膨張弁15を所定の開度で開き、インジェクションONとする。インジェクションONとなると、圧縮機1の機構部に液冷媒がインジェクションされ、圧縮機1の吐出温度を下げると共に、利用側熱交換器3での冷媒循環量が増加するので、外気温度が低温で高い水温が求められる場合でも、利用側熱交換器3での冷媒流量を大きくすることで高い暖房能力を発揮できる。尚、冷房運転時や除霜運転時は、電磁開閉弁16を閉じたまま、つまり、インジェクションOFFとなっている。   In addition, when the outside air temperature is low and a high water temperature is required during heating operation, the control means 10 opens the electromagnetic on-off valve 16 and adjusts the condensing pressure detected by the pressure sensor 30 and the rotation speed of the compressor 1. 2 Open the expansion valve 15 at a predetermined opening to turn on the injection. When the injection is turned on, liquid refrigerant is injected into the mechanical portion of the compressor 1 to lower the discharge temperature of the compressor 1 and increase the amount of refrigerant circulating in the use-side heat exchanger 3, so that the outside air temperature is high at a low temperature. Even when the water temperature is required, high heating capacity can be exhibited by increasing the refrigerant flow rate in the use side heat exchanger 3. During the cooling operation or the defrosting operation, the electromagnetic on-off valve 16 is kept closed, that is, the injection is OFF.

次に、図1乃至図3を用いて、本実施例における低外気温時に暖房運転を行う際に、圧縮機1の吸入圧力が下限値を下回らないよう圧縮機1の許容最大回転数を決定する原理および制御について説明する。尚、本実施例の圧縮機1では、圧縮機に個別に定められる回転数の上限値が90rpsであるものとして説明する。制御手段10の記憶部には、図2に示す圧縮機回転数テーブルAが記憶されている。この圧縮機回転数テーブルAには、低外気温度領域における暖房運転時の、凝縮圧力および外気温度に対応して圧縮機1の許容最大回転数(単位:rps)が定められており、左欄の項目が外気温度(単位:℃)となっている。尚、低外気温度領域とは、本実施例における圧縮機1の許容最大回転数の制御を行う必要がある温度領域を意味し、本実施例の場合は、外気温度が−15℃以下の温度領域を低外気温度領域としている。また、−15℃以下の外気温度を5℃毎に区分して外気温度レンジとしている。   Next, using FIG. 1 to FIG. 3, when the heating operation is performed at the low outside air temperature in this embodiment, the allowable maximum rotation speed of the compressor 1 is determined so that the suction pressure of the compressor 1 does not fall below the lower limit value. The principle and control will be described. In the compressor 1 of the present embodiment, the description will be made on the assumption that the upper limit value of the rotational speed individually determined for the compressor is 90 rps. A compressor speed table A shown in FIG. 2 is stored in the storage unit of the control means 10. In the compressor rotation speed table A, the allowable maximum rotation speed (unit: rps) of the compressor 1 is determined in correspondence with the condensation pressure and the outside air temperature during the heating operation in the low outside air temperature region. The item is the outside air temperature (unit: ° C). The low outside air temperature region means a temperature region where it is necessary to control the maximum allowable number of rotations of the compressor 1 in this embodiment. In this embodiment, the outside air temperature is a temperature of −15 ° C. or lower. The region is a low outside air temperature region. In addition, the outside air temperature range of −15 ° C. or lower is divided every 5 ° C. into the outside air temperature range.

圧縮機1の許容最大回転数は、『凝縮圧力:2.1MPa(メガパスカル、以下MPaと記載)未満』、『凝縮圧力:2.1MPa以上』、の各々の場合について、外気温度レンジ毎に対応させて規定されており、凝縮圧力が2.1MPa未満の場合の、各外気温度レンジにおける圧縮機1の許容最大回転数は、外気温度が−20℃未満の時が80rps、外気温度が−20℃以上−15℃未満および−15℃以上の時が圧縮機1の上限回転数である90rpsとなっている。また、凝縮圧力が2.1MPa以上の場合は、外気温度レンジに関わらず、圧縮機1の許容最大回転数は全て圧縮機1の上限回転数である90rpsとなっている。   The allowable maximum rotation speed of the compressor 1 is “condensation pressure: less than 2.1 MPa (megapascal, hereinafter referred to as MPa)” and “condensation pressure: 2.1 MPa or more” for each outside air temperature range. When the condensation pressure is less than 2.1 MPa, the allowable maximum number of revolutions of the compressor 1 in each outside air temperature range is 80 rps when the outside air temperature is less than −20 ° C., and the outside air temperature is − When the temperature is 20 ° C. or higher and lower than −15 ° C. and −15 ° C. or higher, the upper limit rotation speed of the compressor 1 is 90 rps. When the condensing pressure is 2.1 MPa or higher, the allowable maximum rotational speed of the compressor 1 is 90 rps which is the upper limit rotational speed of the compressor 1 regardless of the outside air temperature range.

ヒートポンプサイクル装置100が暖房運転を行っている時は、外気温度が低くなるほど、室外熱交換器5での蒸発圧力も低下するため圧縮機1の吸入圧力が低下し、特に、外気温度が−20℃未満となった時は、圧縮機1の吸入圧力が下限値に近づく。一方、利用側熱交換器3での凝縮圧力が2.1MPa以下の場合も、室外熱交換器5での蒸発圧力が低くなって圧縮機1の吸入圧力が低くなる。   When the heat pump cycle apparatus 100 is performing the heating operation, the lower the outside air temperature is, the lower the evaporation pressure in the outdoor heat exchanger 5 is, so that the suction pressure of the compressor 1 is lowered. In particular, the outside air temperature is −20. When it becomes less than ° C., the suction pressure of the compressor 1 approaches the lower limit value. On the other hand, also when the condensation pressure in the use side heat exchanger 3 is 2.1 MPa or less, the evaporation pressure in the outdoor heat exchanger 5 becomes low and the suction pressure of the compressor 1 becomes low.

以上のことを考慮して、図2の圧縮機回転数テーブルAでは、外気温度が−20℃以下であって、かつ、凝縮圧力が2.1MPa未満の場合(例えば、目標水温が低い、すなわち、暖房運転時の設定温度が比較的低く、凝縮圧力も低い場合等)は、圧縮機1の許容最大回転数を、圧縮機1の上限回転数である90rpsより低い80rpsに制限している。これは、圧縮機1の最大回転数を下げて室外熱交換器5での冷媒循環量を減少させることで、蒸発圧力の低下を抑制して圧縮機1の吸入圧力が下限値を下回らないようにするためである。   In consideration of the above, in the compressor rotation speed table A of FIG. 2, when the outside air temperature is −20 ° C. or less and the condensation pressure is less than 2.1 MPa (for example, the target water temperature is low, that is, For example, when the set temperature during heating operation is relatively low and the condensing pressure is low, the allowable maximum rotational speed of the compressor 1 is limited to 80 rps, which is lower than 90 rps, which is the upper limit rotational speed of the compressor 1. This is to reduce the refrigerant circulation amount in the outdoor heat exchanger 5 by lowering the maximum number of rotations of the compressor 1, thereby suppressing a decrease in the evaporation pressure so that the suction pressure of the compressor 1 does not fall below the lower limit value. It is to make it.

また、図2の圧縮機回転数テーブルAでは、凝縮圧力が2.1MPa未満、かつ、外気温度が−20℃以上である場合や、凝縮圧力が2.1MPa以上である場合は、圧縮機1の許容最大回転数を、圧縮機1の上限回転数である90rpsとしている。このような条件下では、圧縮機1の吸入圧力は、外気温度が−20℃以下であって、かつ、凝縮圧力が2.1MPa未満の場合に比べて高いと考えられるので、圧縮機1の許容最大回転数を制限せずに、上限回転数である90rpsまでの上昇を許可することで、圧縮機1の運転能力を高めて、低外気温時に効率的な暖房運転が行えるようにするためである。尚、この圧縮機回転数テーブルAに規定されている、凝縮圧力と外気温度レンジとに対応付けられているそれぞれの許容最大回転数の値は、予め試験等により求められたものである。   Further, in the compressor rotation speed table A of FIG. 2, when the condensation pressure is less than 2.1 MPa and the outside air temperature is −20 ° C. or more, or when the condensation pressure is 2.1 MPa or more, the compressor 1 Is set to 90 rps, which is the upper limit number of rotations of the compressor 1. Under such conditions, the suction pressure of the compressor 1 is considered to be higher than the case where the outside air temperature is −20 ° C. or lower and the condensation pressure is less than 2.1 MPa. In order to increase the operating capacity of the compressor 1 and allow efficient heating operation at low outside air temperature by permitting an increase to the upper limit rotation speed of 90 rps without limiting the maximum allowable rotation speed. It is. In addition, the value of each allowable maximum number of rotations associated with the condensing pressure and the outside air temperature range defined in the compressor rotation number table A is obtained in advance by a test or the like.

以上説明した圧縮機回転数テーブルAを記憶したヒートポンプサイクル装置100の動作は以下のようになる。使用者がリモコン等を操作することによって、あるいは、タイマー運転開始によってヒートポンプサイクル装置100の暖房運転を開始すると、制御手段10は、圧力センサ30で検出した現在の凝縮圧力、および、外気温センサ21で検出した現在の外気温度を抽出する。制御手段10は、図2の圧縮機回転数テーブルAを参照して、抽出した凝縮圧力および外気温度に対応する圧縮機1の許容最大回転数を決定する。そして、制御手段10は、室内ユニット11の運転負荷等に応じて、圧縮機1の回転数を許容最大回転数内で制御する。   The operation of the heat pump cycle apparatus 100 storing the compressor rotation speed table A described above is as follows. When the user operates the remote controller or the like or starts the heating operation of the heat pump cycle apparatus 100 by starting the timer operation, the control means 10 detects the current condensing pressure detected by the pressure sensor 30 and the outside air temperature sensor 21. Extract the current outside air temperature detected by. The control means 10 refers to the compressor rotation speed table A in FIG. 2 and determines the allowable maximum rotation speed of the compressor 1 corresponding to the extracted condensing pressure and outside air temperature. And the control means 10 controls the rotation speed of the compressor 1 within the allowable maximum rotation speed in accordance with the operation load of the indoor unit 11 and the like.

次に図3に示すヒートポンプサイクル装置100の制御フローチャートを用いて、制御手段10での処理の流れについて説明する。図3(A)はヒートポンプサイクル装置100のメインルーチンである。また、図3(B)は本発明による、暖房運転時の圧縮機1の許容最大回転数決定ルーチンである。圧縮機1の許容最大回転数決定ルーチンは、暖房運転時に圧縮機1で許容する最大回転数を決定するものである。メインルーチンでは、暖房運転時に圧縮機1の許容最大回転数決定ルーチンで決定した最大回転数以内で、室内ユニット11の運転負荷等に応じて圧縮機1の回転数を制御する。   Next, the flow of processing in the control means 10 will be described using a control flowchart of the heat pump cycle apparatus 100 shown in FIG. FIG. 3A shows a main routine of the heat pump cycle apparatus 100. FIG. 3B is a routine for determining the maximum allowable number of rotations of the compressor 1 during the heating operation according to the present invention. The allowable maximum rotational speed determination routine of the compressor 1 determines the maximum rotational speed allowed by the compressor 1 during heating operation. In the main routine, the rotation speed of the compressor 1 is controlled in accordance with the operation load of the indoor unit 11 within the maximum rotation speed determined in the allowable maximum rotation speed determination routine of the compressor 1 during the heating operation.

尚、図3のフローチャートにおいて、STはステップを表し、これに続く数字はステップ番号を表している。また、図3では、本発明による処理を中心にして説明しており、ユーザーの設定操作処理や詳細な水温制御等の一般的な処理の説明は省略している。   In the flowchart of FIG. 3, ST represents a step, and the number following this represents a step number. In FIG. 3, the processing according to the present invention is mainly described, and descriptions of general processing such as user setting operation processing and detailed water temperature control are omitted.

図3(A)に示すように、ヒートポンプサイクル装置100が運転を開始すると、制御手段10は、循環ポンプ17の回転を開始し、利用側熱交換器3と室内ユニット11との間で水を循環させる(ST1)。そして、制御手段10は、出口側水温センサ26が検出した循環水の水温を取り込む(ST2)。   As shown in FIG. 3 (A), when the heat pump cycle device 100 starts operation, the control means 10 starts rotating the circulation pump 17 and supplies water between the use side heat exchanger 3 and the indoor unit 11. Circulate (ST1). And the control means 10 takes in the water temperature of the circulating water which the exit side water temperature sensor 26 detected (ST2).

次に、制御手段10は、ヒートポンプサイクル装置100の運転モードが暖房運転に設定されているか否かを判断する(ST3)。運転モードが暖房運転である場合は(ST3−Yes)、制御手段10は、図3(B)に示す圧縮機1の許容最大回転数決定ルーチンを実行する(ST4)。そして、制御手段10は、圧縮機1の許容最大回転数決定ルーチンで決定した許容最大回転数以内で、出口側水温センサ26の検出値が目標となる水温となるよう圧縮機1の回転数を決定し、圧縮機1の運転を制御して暖房運転を開始もしくは継続する(ST5)。そして、ST2に処理を返す。   Next, the control means 10 determines whether or not the operation mode of the heat pump cycle device 100 is set to the heating operation (ST3). When the operation mode is the heating operation (ST3-Yes), the control means 10 executes an allowable maximum rotational speed determination routine of the compressor 1 shown in FIG. 3B (ST4). And the control means 10 sets the rotation speed of the compressor 1 so that the detected value of the outlet side water temperature sensor 26 becomes the target water temperature within the allowable maximum rotation speed determined by the allowable maximum rotation speed determination routine of the compressor 1. Then, the operation of the compressor 1 is controlled to start or continue the heating operation (ST5). Then, the process is returned to ST2.

尚、ST3において、運転モードが暖房運転でない場合、つまり、冷房運転である場合は(ST3−No)、制御手段10は、出口側水温センサ26の検出値が目標となる水温となるよう、圧縮機1の回転数を決定し、圧縮機1の運転を制御して冷房運転を開始もしくは継続する(ST6)。そして、ST2に処理を返す。   In ST3, when the operation mode is not the heating operation, that is, in the cooling operation (ST3-No), the control means 10 compresses the detected value of the outlet side water temperature sensor 26 so as to become the target water temperature. The number of rotations of the machine 1 is determined, the operation of the compressor 1 is controlled, and the cooling operation is started or continued (ST6). Then, the process is returned to ST2.

次に、図3(B)に示す圧縮機1の許容最大回転数決定ルーチンについて説明する。ヒートポンプサイクル装置100の運転モードが暖房運転に設定されているとき、制御手段10は、現在の凝縮圧力および現在の外気温度を抽出する(ST11)。具体的には、制御手段10は、圧力センサ30が検出した凝縮圧力や外気温センサ21が検出した外気温度を定期的に取り込んで図示しない制御手段10の記憶部に管理データとして記憶しており、この管理データから直近の凝縮圧力値や外気温度を抽出し、現在の凝縮圧力および外気温度として認識している。   Next, the routine for determining the maximum allowable rotation speed of the compressor 1 shown in FIG. When the operation mode of heat pump cycle apparatus 100 is set to heating operation, control means 10 extracts the current condensing pressure and the current outside air temperature (ST11). Specifically, the control means 10 periodically takes in the condensation pressure detected by the pressure sensor 30 and the outside air temperature detected by the outside air temperature sensor 21 and stores them as management data in a storage unit of the control means 10 (not shown). The latest condensation pressure value and outside air temperature are extracted from this management data and recognized as the current condensation pressure and outside air temperature.

尚、制御手段10は、凝縮圧力や外気温度以外に、圧縮機1の回転数、入口側水温センサ24や出口側水温センサ26が検出した水温、吐出温度センサ22が検出した吐出温度、室外熱交温度センサ25が検出した室外熱交換器5の温度等、ヒートポンプサイクル装置100の冷凍サイクルの制御に必要な様々なパラメータ値や、使用者により設定された運転モードや設定温度等といった設定情報を、管理データとして記憶部に記憶している。   In addition to the condensing pressure and the outside air temperature, the control means 10 determines the rotation speed of the compressor 1, the water temperature detected by the inlet side water temperature sensor 24 and the outlet side water temperature sensor 26, the discharge temperature detected by the discharge temperature sensor 22, and the outdoor heat. Various parameter values necessary for controlling the refrigeration cycle of the heat pump cycle device 100, such as the temperature of the outdoor heat exchanger 5 detected by the AC temperature sensor 25, and setting information such as the operation mode and temperature set by the user , Stored as management data in the storage unit.

次に制御手段10は、記憶部に記憶している圧縮機回転数テーブルAを参照して、圧縮機1の許容最大回転数を決定する(ST12)。具体的には、ST11で抽出した現在の凝縮圧力および現在の外気温度に対応した圧縮機1の許容最大回転数を、図2に示す圧縮機回転数テーブルAを参照して抽出し、これを圧縮機1の許容最大回転数と決定する。そして、制御手段10は、処理を終了する。   Next, the control means 10 refers to the compressor rotational speed table A stored in the storage unit and determines the allowable maximum rotational speed of the compressor 1 (ST12). Specifically, the allowable maximum rotational speed of the compressor 1 corresponding to the current condensing pressure and the current outside air temperature extracted in ST11 is extracted with reference to the compressor rotational speed table A shown in FIG. The maximum allowable number of rotations of the compressor 1 is determined. And the control means 10 complete | finishes a process.

以上説明したように、ヒートポンプサイクル装置100が暖房運転を行っている時に、凝縮圧力および外気温度に応じて圧縮機1の許容最大回転数を設定し、さらには、所定の凝縮圧力未満かつ外気温度未満(本実施例の場合、凝縮圧力が2.1MPa未満かつ外気温度が−20℃未満)である場合は、所定の凝縮圧力以上かつ外気温度以上(本実施例の場合、凝縮圧力が2.1MPa未満かつ外気温度が−20℃以上、あるいは、凝縮圧力が2.1MPa以上)である場合に比べて、圧縮機1の許容最大回転数を低く設定しているので、低外気温時に圧縮機1の吸入圧力が低くなって下限値を下回らないようにすることができ、圧縮機1の耐久性を向上させることができる。   As described above, when the heat pump cycle device 100 is performing the heating operation, the allowable maximum number of rotations of the compressor 1 is set according to the condensation pressure and the outside air temperature, and further, less than the predetermined condensation pressure and the outside air temperature. (In the case of the present embodiment, the condensation pressure is less than 2.1 MPa and the outside air temperature is less than −20 ° C.), the condensation pressure is not less than the predetermined condensation pressure and not less than the outside temperature (in this embodiment, the condensation pressure is 2. Since the allowable maximum number of revolutions of the compressor 1 is set lower than when the outside air temperature is less than 1 MPa and the outside air temperature is −20 ° C. or higher, or the condensing pressure is 2.1 MPa or higher), the compressor is at a low outside air temperature. Thus, the suction pressure of the compressor 1 can be reduced so as not to fall below the lower limit value, and the durability of the compressor 1 can be improved.

また、凝縮圧力および外気温度の両方が所定の値以上である場合は、圧縮機1の許容最大回転数を制限せずに上限回転数である90rpsまでの上昇を許可することによって圧縮機1の運転能力を最大限発揮させ、低外気温度領域においても目標温度である設定温度を達成できるようにすることで、効率的な暖房運転を行うことができる。   Further, when both the condensation pressure and the outside air temperature are equal to or higher than a predetermined value, the compressor 1 is allowed to rise up to the upper limit number of revolutions of 90 rps without limiting the allowable maximum number of revolutions of the compressor 1. Efficient heating operation can be performed by maximizing the operation capability and achieving the target temperature that is the target temperature even in the low outside air temperature region.

尚、以上説明した実施例では、図2の圧縮機回転数テーブルAにおいて、凝縮圧力が2.1MPa未満/以上、の2通りの場合に分けて圧縮機1の許容最大回転数を規定した場合について説明したが、これを3通り以上、例えば、凝縮圧力が2.1MPa未満/2.1MPa以上4.2MPa未満/4.2Mpa以上(4.2MPaは、例えば、圧縮機1に個別に定められる吐出圧力の上限値に対応した凝縮圧力)、の3通りの場合に分けて圧縮機1の許容最大回転数を規定してもよい。   In the embodiment described above, in the compressor rotation speed table A in FIG. 2, the allowable maximum rotation speed of the compressor 1 is defined in two cases where the condensation pressure is less than 2.1 MPa / more. However, the condensation pressure is less than 2.1 MPa / 2.1 MPa or more and less than 4.2 MPa / 4.2 MPa or more (4.2 MPa is individually determined for the compressor 1, for example. The allowable maximum number of rotations of the compressor 1 may be defined in three cases: the condensation pressure corresponding to the upper limit value of the discharge pressure.

また、図2の圧縮機回転数テーブルAでは、外気温度レンジを5℃毎に設定しているが、例えば、外気温度レンジを4℃毎に設定する、というように、レンジ幅を変えてもよい。また、図2の圧縮機回転数テーブルAでは、凝縮圧力が2.1MPa未満かつ外気温度が−20℃未満である場合以外は、圧縮機1の許容最大回転数を全て90rpsとしているが、例えば、外気温度が−20℃以上−15℃未満の時の圧縮機1の許容最大回転数を90rps、外気温度が−15℃以上の時の圧縮機1の許容最大回転数を85rpsとする、というように複数の外気温度レンジで異なる圧縮機1の許容最大回転数が設定されていてもよい。   Further, in the compressor rotation speed table A of FIG. 2, the outside temperature range is set every 5 ° C. However, for example, even if the range width is changed such that the outside temperature range is set every 4 ° C. Good. Further, in the compressor rotation speed table A of FIG. 2, the allowable maximum rotation speed of the compressor 1 is all 90 rps except when the condensation pressure is less than 2.1 MPa and the outside air temperature is less than −20 ° C. The allowable maximum number of revolutions of the compressor 1 when the outside air temperature is −20 ° C. or more and less than −15 ° C. is 90 rps, and the allowable maximum number of revolutions of the compressor 1 when the outside temperature is −15 ° C. or more is 85 rps. In this way, the allowable maximum number of rotations of the compressor 1 that is different in a plurality of outside air temperature ranges may be set.

さらには、図2の圧縮機回転数テーブルAでは、外気温度が−15℃以上の温度範囲や、−20℃未満の温度範囲については、一律に圧縮機1の許容最大回転数を設定しているが、外気温度が−15℃以上の温度範囲や−20℃未満の温度範囲についても、例えば、5℃毎に複数の外気温度レンジを設定し、それぞれに圧縮機1の許容最大回転数を設定してもよい。   Furthermore, in the compressor rotation speed table A of FIG. 2, the allowable maximum rotation speed of the compressor 1 is uniformly set for a temperature range where the outside air temperature is −15 ° C. or higher or a temperature range lower than −20 ° C. However, for a temperature range where the outside air temperature is −15 ° C. or higher and a temperature range below −20 ° C., for example, a plurality of outside air temperature ranges are set every 5 ° C., and the allowable maximum rotation speed of the compressor 1 is set for each. It may be set.

次に、本発明によるヒートポンプサイクル装置の第2の実施例について説明する。尚、本実施例では、ヒートポンプサイクル装置の構成や冷媒回路、圧縮機の許容最大回転数の制御の流れ、及び圧縮機の許容最大回転数を制御した効果については第1の実施例と同じであるため説明を省略する。第1の実施例と異なるのは、凝縮圧力の代わりに水温を用い、水温に応じて圧縮機の許容最大回転数を変えることである。   Next, a second embodiment of the heat pump cycle apparatus according to the present invention will be described. In this embodiment, the configuration of the heat pump cycle device, the refrigerant circuit, the flow of control of the allowable maximum rotational speed of the compressor, and the effect of controlling the allowable maximum rotational speed of the compressor are the same as in the first embodiment. Since there is, explanation is omitted. The difference from the first embodiment is that the water temperature is used instead of the condensing pressure, and the allowable maximum rotation speed of the compressor is changed according to the water temperature.

図1に示すヒートポンプサイクル装置100において、圧力センサ30を設けない場合は、凝縮圧力の検出が行えないため、凝縮圧力に対応する水温(水温は、入口側温度センサ24で検出した値を使用する)を用い、図4に示す圧縮機回転数テーブルBを制御手段10の記憶部に記憶して圧縮機1の許容最大回転数の制御を行う。この圧縮機回転数テーブルBには、低外気温度領域における暖房運転時の、水温および外気温度に対応して圧縮機1の許容最大回転数(単位:rps)が定められており、左欄の項目が外気温度(単位:℃)となっている。尚、本実施例においては、低外気温度領域を外気温度が−15℃以下の領域とし、−15℃以下の外気温度を5℃毎に区分して外気温度レンジとしている。   In the heat pump cycle apparatus 100 shown in FIG. 1, when the pressure sensor 30 is not provided, the condensation pressure cannot be detected, so the water temperature corresponding to the condensation pressure (the water temperature uses the value detected by the inlet side temperature sensor 24). ), The compressor rotation speed table B shown in FIG. 4 is stored in the storage unit of the control means 10 and the allowable maximum rotation speed of the compressor 1 is controlled. In this compressor rotation speed table B, the allowable maximum rotation speed (unit: rps) of the compressor 1 is determined corresponding to the water temperature and the outside air temperature during the heating operation in the low outside air temperature region. The item is the outside air temperature (unit: ° C). In this embodiment, the low outside air temperature region is a region where the outside air temperature is −15 ° C. or less, and the outside air temperature below −15 ° C. is divided every 5 ° C. to form an outside air temperature range.

圧縮機1の許容最大回転数は、『水温:35℃未満』、『水温:35℃以上』、の各々の場合について、外気温度レンジ毎に対応させて規定されており、水温が35℃未満の場合の、各外気温度レンジにおける圧縮機1の許容最大回転数は、外気温度が−20℃未満の時が80rps、外気温度が−20℃以上−15℃未満および−15℃以上の時が圧縮機1の上限回転数である90rpsとなっている。また、水温が35℃以上の場合は、外気温度レンジに関わらず、圧縮機1の許容最大回転数は全て圧縮機1の上限回転数である90rpsとなっている。   The maximum allowable number of rotations of the compressor 1 is defined in accordance with each outside air temperature range for each of “water temperature: less than 35 ° C.” and “water temperature: 35 ° C. or more”, and the water temperature is less than 35 ° C. The maximum allowable number of rotations of the compressor 1 in each outside air temperature range is 80 rps when the outside air temperature is less than −20 ° C., and when the outside air temperature is −20 ° C. or more and less than −15 ° C. and −15 ° C. or more. The upper limit number of rotations of the compressor 1 is 90 rps. When the water temperature is 35 ° C. or higher, the allowable maximum rotational speed of the compressor 1 is 90 rps, which is the upper limit rotational speed of the compressor 1, regardless of the outside air temperature range.

尚、この圧縮機回転数テーブルBに規定されている、水温と外気温度レンジとに対応付けられているそれぞれの許容最大回転数の値は、予め試験等により求められたものである。また、制御手段10は、予め試験等で求めた、水温と凝縮圧力とを対応させたテーブル(例えば、水温が35℃であるとき、凝縮圧力は2.1MPaであるテーブル)を、記憶部に記憶している。   In addition, the value of each allowable maximum number of rotations associated with the water temperature and the outside air temperature range, which is defined in the compressor rotation number table B, is obtained in advance by a test or the like. In addition, the control means 10 stores a table in which the water temperature and the condensation pressure, which have been obtained in advance by a test or the like, are associated with each other (for example, a table in which the condensation pressure is 2.1 MPa when the water temperature is 35 ° C.) I remember it.

以上説明した圧縮機回転数テーブルBを記憶したヒートポンプサイクル装置100の動作は以下のようになる。使用者がリモコン等を操作することによって、あるいは、タイマー運転開始によってヒートポンプサイクル装置100の暖房運転を開始すると、制御手段10は、入口側水温センサ24で検出した現在の水温、および、外気温センサ21で検出した現在の外気温度を抽出する。制御手段10は、図4の圧縮機回転数テーブルBを参照して、抽出した水温および外気温度に対応する圧縮機1の許容最大回転数を決定する。そして、制御手段10は、室内ユニット11の運転負荷等に応じて、圧縮機1の回転数を許容最大回転数内で制御する。   The operation of the heat pump cycle apparatus 100 storing the compressor rotation speed table B described above is as follows. When the user operates the remote controller or the like or starts the heating operation of the heat pump cycle apparatus 100 by starting the timer operation, the control means 10 detects the current water temperature detected by the inlet side water temperature sensor 24 and the outside air temperature sensor. The current outside air temperature detected at 21 is extracted. The control means 10 refers to the compressor rotation speed table B in FIG. 4 and determines the maximum allowable rotation speed of the compressor 1 corresponding to the extracted water temperature and outside air temperature. And the control means 10 controls the rotation speed of the compressor 1 within the allowable maximum rotation speed in accordance with the operation load of the indoor unit 11 and the like.

以上説明したように、ヒートポンプサイクル装置100が暖房運転を行っている時に、水温および外気温度に応じて圧縮機1の許容最大回転数を設定し、さらには、所定の水温未満かつ外気温度未満(本実施例の場合、水温が35℃未満かつ外気温度が−20℃未満)である場合は、所定の水温以上かつ外気温度以上(本実施例の場合、水温が35℃未満かつ外気温度が−20℃以上、あるいは、水温が35℃以上)である場合に比べて、圧縮機1の許容最大回転数を低く設定しているので、低外気温時に圧縮機1の吸入圧力が低くなって下限値を下回らないようにすることができ、圧縮機1の耐久性を向上させることができる。   As described above, when the heat pump cycle apparatus 100 is performing the heating operation, the allowable maximum number of rotations of the compressor 1 is set according to the water temperature and the outside air temperature, and further, less than the predetermined water temperature and less than the outside air temperature ( In this embodiment, when the water temperature is less than 35 ° C. and the outside air temperature is less than −20 ° C., the water temperature is less than 35 ° C. and the outside air temperature is − Since the allowable maximum number of revolutions of the compressor 1 is set lower than the case where the temperature is 20 ° C. or higher, or the water temperature is 35 ° C. or higher), the suction pressure of the compressor 1 becomes lower at low outside air temperature. The value can be kept below the value, and the durability of the compressor 1 can be improved.

また、水温および外気温度の両方が所定の値以上である場合は、圧縮機1の許容最大回転数を制限せずに上限回転数である90rpsまでの上昇を許可することによって圧縮機1の運転能力を最大限発揮させ、低外気温度領域においても目標温度である設定温度を達成できるようにすることで、効率的な暖房運転を行うことができる。   Further, when both the water temperature and the outside air temperature are equal to or higher than a predetermined value, the operation of the compressor 1 is allowed by allowing the compressor 1 to increase to the upper limit number of rotations of 90 rps without limiting the allowable maximum number of rotations. Efficient heating operation can be performed by maximizing the capability and achieving the target temperature that is the target temperature even in the low outside air temperature region.

尚、以上説明した実施例では、図4の圧縮機回転数テーブルBにおいて、水温が35℃未満/以上、の2通りの場合に分けて圧縮機1の許容最大回転数を規定した場合について説明したが、これを3通り以上、例えば、水温が35℃未満/35℃以上60℃未満/60℃以上(60℃は、例えば、圧縮機1に個別に定められる吐出圧力の上限値に対応した水温)、の3通りの場合に分けて圧縮機1の許容最大回転数を規定してもよい。   In the embodiment described above, in the compressor rotation speed table B of FIG. 4, the case where the allowable maximum rotation speed of the compressor 1 is defined in two cases where the water temperature is less than 35 ° C./more is described. However, this is three or more, for example, the water temperature is less than 35 ° C./35° C. or more and less than 60 ° C./60° C. or more (60 ° C. corresponds to the upper limit value of the discharge pressure individually determined for the compressor 1, for example. The allowable maximum number of rotations of the compressor 1 may be defined in three cases of (water temperature).

また、図4の圧縮機回転数テーブルBでは、外気温度レンジを5℃毎に設定しているが、例えば、外気温度レンジを4℃毎に設定する、というように、レンジ幅を変えてもよい。また、図4の圧縮機回転数テーブルBでは、水温が35℃未満かつ外気温度が−20℃未満である場合以外は、圧縮機1の許容最大回転数を全て90rpsとしているが、例えば、外気温度が−20℃以上−15℃未満の時の圧縮機1の許容最大回転数を90rps、外気温度が−15℃以上の時の圧縮機1の許容最大回転数を85rpsとする、いうように、複数の外気温度レンジで異なる圧縮機1の許容最大回転数が設定されていてもよい。   Moreover, in the compressor rotation speed table B of FIG. 4, the outside air temperature range is set every 5 ° C. However, even if the range width is changed, for example, the outside air temperature range is set every 4 ° C. Good. Further, in the compressor rotation speed table B in FIG. 4, the allowable maximum rotation speed of the compressor 1 is all 90 rps except when the water temperature is less than 35 ° C. and the outside air temperature is less than −20 ° C. The allowable maximum rotational speed of the compressor 1 when the temperature is −20 ° C. or higher and lower than −15 ° C. is 90 rps, and the allowable maximum rotational speed of the compressor 1 when the outside air temperature is −15 ° C. or higher is 85 rps. The allowable maximum number of rotations of the compressor 1 that is different in a plurality of outside air temperature ranges may be set.

さらには、図4の圧縮機回転数テーブルBでは、外気温度が−15℃以上の温度範囲や、−20℃未満の温度範囲については、一律に、圧縮機1の許容最大回転数を設定しているが、外気温度が−15℃以上の温度範囲や、−20℃未満の温度範囲についても、例えば、5℃毎に複数の外気温度レンジを設定し、それぞれに圧縮機1の許容最大回転数を設定してもよい。   Further, in the compressor rotation speed table B of FIG. 4, the allowable maximum rotation speed of the compressor 1 is uniformly set for a temperature range where the outside air temperature is −15 ° C. or higher and a temperature range lower than −20 ° C. However, for the temperature range where the outside air temperature is −15 ° C. or higher and the temperature range below −20 ° C., for example, a plurality of outside air temperature ranges are set every 5 ° C., and the maximum allowable rotation of the compressor 1 is set for each. A number may be set.

以上説明した通り、本発明によれば、検出した凝縮圧力あるいは水温、および、外気温度が夫々所定の値未満である場合は、凝縮圧力あるいは水温、および、外気温度が夫々所定の値以上である場合に比べて、圧縮機の許容最大回転数を低く設定する。従って、凝縮圧力あるいは水温、および、外気温度が低く圧縮機の吸入圧力が低い場合は、圧縮機の許容最大回転数を低くして圧縮機の吸入圧力が低下しないよう制御して、圧縮機の耐久性を向上させるとともに、凝縮圧力あるいは水温、および、外気温度とが夫々所定の値以上である場合は、圧縮機の許容最大回転数を高くして圧縮機の吐出圧力を上昇させることで圧縮機の運転能力を向上させることにより、効率的な暖房サイクル運転が行える。   As described above, according to the present invention, when the detected condensing pressure or water temperature and the outside air temperature are each less than a predetermined value, the condensing pressure or water temperature and the outside air temperature are each a predetermined value or more. Compared to the case, the allowable maximum rotational speed of the compressor is set low. Therefore, when the condensing pressure or water temperature and the outside air temperature are low and the compressor suction pressure is low, the allowable maximum rotation speed of the compressor is lowered to control the compressor suction pressure so that it does not decrease. In addition to improving durability, when the condensing pressure or water temperature and the outside air temperature are above the specified values, compression is performed by increasing the maximum allowable rotational speed of the compressor and increasing the discharge pressure of the compressor. Efficient heating cycle operation can be performed by improving the operation capacity of the machine.

1 圧縮機
2 四方弁
3 利用側熱交換器
4 第1膨張弁
5 室外熱交換器
6 アキュムレータ
10 制御手段
11 室内ユニット
12 冷媒用配管
13 水用配管
14 インジェクション配管
15 第2膨張弁
16 電磁開閉弁
17 循環ポンプ
20 熱交温度センサ
21 外気温センサ
22 吐出温度センサ
23 冷媒温度センサ
24 入口側水温センサ
25 室外熱交温度センサ
26 出口側水温センサ
30 圧力センサ
60 冷媒の流れ
61 インジェクションON時の冷媒の流れ
62 水の流れ
100 ヒートポンプサイクル装置
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Use side heat exchanger 4 1st expansion valve 5 Outdoor heat exchanger 6 Accumulator 10 Control means 11 Indoor unit 12 Refrigerant piping 13 Water piping 14 Injection piping 15 2nd expansion valve 16 Electromagnetic on-off valve DESCRIPTION OF SYMBOLS 17 Circulation pump 20 Heat exchange temperature sensor 21 Outside air temperature sensor 22 Discharge temperature sensor 23 Refrigerant temperature sensor 24 Inlet side water temperature sensor 25 Outdoor heat exchange temperature sensor 26 Outlet side water temperature sensor 30 Pressure sensor 60 Flow of refrigerant 61 Refrigerant flow at the time of injection ON Flow 62 Water flow 100 Heat pump cycle device

Claims (4)

圧縮機と利用側熱交換器と膨張弁と熱源側熱交換器とを有する冷媒回路と、凝縮圧力検出手段と、外気温度検出手段と、制御手段とを備えたヒートポンプサイクル装置であって、
前記制御手段は、前記凝縮圧力を前記凝縮圧力検出手段により検出すると共に、前記外気温度を前記外気温度検出手段により検出し、
前記制御手段は、低外気温度領域において、検出した前記凝縮圧力および前記外気温度が夫々閾値未満である場合は、前記凝縮圧力および前記外気温度が夫々前記閾値以上である場合に比べて、前記圧縮機の許容最大回転数を低く設定することを特徴とするヒートポンプサイクル装置。
A heat pump cycle apparatus comprising a refrigerant circuit having a compressor, a use side heat exchanger, an expansion valve, and a heat source side heat exchanger, a condensation pressure detection means, an outside air temperature detection means, and a control means,
The control means detects the condensation pressure by the condensation pressure detection means, and detects the outside air temperature by the outside air temperature detection means,
In the low outside air temperature region, the control means is configured to reduce the compression when the detected condensation pressure and the outside air temperature are each less than a threshold value, compared to when the condensation pressure and the outside air temperature are each greater than or equal to the threshold value, respectively. A heat pump cycle device characterized in that the allowable maximum number of rotations of the machine is set low.
請求項1に記載のヒートポンプサイクル装置において、
前記制御手段は、前記冷媒回路における複数の凝縮圧力と外気温度とに対応させて前記圧縮機の許容最大回転数を記憶した圧縮機回転数テーブルを有することを特徴とするヒートポンプサイクル装置。
In the heat pump cycle device according to claim 1,
The said control means has a compressor rotation speed table which memorize | stored the allowable maximum rotation speed of the said compressor corresponding to the some condensing pressure and external temperature in the said refrigerant circuit, The heat pump cycle apparatus characterized by the above-mentioned.
圧縮機と利用側熱交換器と膨張弁と熱源側熱交換器とを有する冷媒回路と、水温検出手段と、外気温度検出手段と、制御手段とを備えたヒートポンプサイクル装置であって、
前記制御手段は、前記水温を前記水温検出手段により検出すると共に、前記外気温度を前記外気温度検出手段により検出し、
前記制御手段は、低外気温度領域において、検出した前記水温および前記外気温度が夫々閾値未満である場合は、前記水温および前記外気温度が夫々前記閾値以上である場合に比べて、前記圧縮機の許容最大回転数を低く設定することを特徴とするヒートポンプサイクル装置。
A heat pump cycle apparatus comprising a refrigerant circuit having a compressor, a use side heat exchanger, an expansion valve, and a heat source side heat exchanger, a water temperature detection means, an outside air temperature detection means, and a control means,
The control means detects the water temperature by the water temperature detection means, and detects the outside air temperature by the outside air temperature detection means,
When the detected water temperature and the outside air temperature are each lower than the threshold value in the low outside air temperature region, the control means is configured to reduce the compressor temperature compared to the case where the water temperature and the outside air temperature are respectively equal to or higher than the threshold value. A heat pump cycle device characterized in that the allowable maximum rotational speed is set low.
請求項3に記載のヒートポンプサイクル装置において、
前記制御手段は、前記冷媒回路における複数の水温と外気温度とに対応させて前記圧縮機の許容最大回転数を記憶した圧縮機回転数テーブルを有することを特徴とするヒートポンプサイクル装置。
In the heat pump cycle device according to claim 3,
The said control means has a compressor rotation speed table which memorize | stored the allowable maximum rotation speed of the said compressor corresponding to the some water temperature and external temperature in the said refrigerant circuit, The heat pump cycle apparatus characterized by the above-mentioned.
JP2010172442A 2010-07-30 2010-07-30 Heat pump cycle system Pending JP2012032091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010172442A JP2012032091A (en) 2010-07-30 2010-07-30 Heat pump cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010172442A JP2012032091A (en) 2010-07-30 2010-07-30 Heat pump cycle system

Publications (1)

Publication Number Publication Date
JP2012032091A true JP2012032091A (en) 2012-02-16

Family

ID=45845720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010172442A Pending JP2012032091A (en) 2010-07-30 2010-07-30 Heat pump cycle system

Country Status (1)

Country Link
JP (1) JP2012032091A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062657A (en) * 2012-09-20 2014-04-10 Fujitsu General Ltd Heat pump cycle device
JP2014119187A (en) * 2012-12-17 2014-06-30 Mitsubishi Electric Corp Refrigerator and refrigeration cycle device
WO2015092845A1 (en) * 2013-12-16 2015-06-25 三菱電機株式会社 Heat pump hot water supply device
JP2015203541A (en) * 2014-04-15 2015-11-16 サンポット株式会社 heat pump system
JP2016191548A (en) * 2016-06-16 2016-11-10 三菱電機株式会社 Refrigeration device and refrigeration cycle device
JP2018136098A (en) * 2017-02-23 2018-08-30 株式会社富士通ゼネラル Hear pump-type water heater
JP2020203615A (en) * 2019-06-18 2020-12-24 株式会社Subaru Air conditioner for vehicle
WO2022070614A1 (en) * 2020-09-30 2022-04-07 株式会社デンソー Refrigeration cycle device
CN114608129A (en) * 2022-02-07 2022-06-10 青岛海尔空调器有限总公司 Method and device for controlling temperature of air conditioner chip, air conditioner and storage medium

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774535A (en) * 1980-10-29 1982-05-10 Hitachi Ltd Heating operation control method for heat pump system heating and cooling device
JPH02294583A (en) * 1989-05-09 1990-12-05 Daikin Ind Ltd Freezing device employing scroll type compressor
JPH0468263A (en) * 1990-07-06 1992-03-04 Hitachi Ltd Refrigerating device
JPH07248167A (en) * 1994-03-10 1995-09-26 Mitsubishi Electric Corp Air conditioner
JP2000146315A (en) * 1998-11-16 2000-05-26 Sanyo Electric Co Ltd Refrigerating device and air conditioner
JP2002115922A (en) * 2000-10-06 2002-04-19 Denso Corp Heat pump type hot water heater apparatus
JP2002228284A (en) * 2001-02-06 2002-08-14 Daikin Ind Ltd Refrigerating machine
JP2003148821A (en) * 2001-11-14 2003-05-21 Sanyo Electric Co Ltd Supercritical refrigerating cycle device and water heater
JP2005147584A (en) * 2003-11-18 2005-06-09 Matsushita Electric Ind Co Ltd Start-up controller and start-up control method for heat pump hot water supply apparatus
JP2005291558A (en) * 2004-03-31 2005-10-20 Mitsubishi Heavy Ind Ltd Air conditioner
JP2008038912A (en) * 2007-08-10 2008-02-21 Daikin Ind Ltd Compressor internal state estimating device and air conditioner
JP2009068812A (en) * 2007-09-18 2009-04-02 Panasonic Corp Air conditioner
JP2009156515A (en) * 2007-12-26 2009-07-16 Toshiba Carrier Corp Heat pump type water heater
JP2010060193A (en) * 2008-09-03 2010-03-18 Corona Corp Heat pump type hot water supply device
JP2010112682A (en) * 2008-11-10 2010-05-20 Denso Corp Heat pump cycle device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774535A (en) * 1980-10-29 1982-05-10 Hitachi Ltd Heating operation control method for heat pump system heating and cooling device
JPH02294583A (en) * 1989-05-09 1990-12-05 Daikin Ind Ltd Freezing device employing scroll type compressor
JPH0468263A (en) * 1990-07-06 1992-03-04 Hitachi Ltd Refrigerating device
JPH07248167A (en) * 1994-03-10 1995-09-26 Mitsubishi Electric Corp Air conditioner
JP2000146315A (en) * 1998-11-16 2000-05-26 Sanyo Electric Co Ltd Refrigerating device and air conditioner
JP2002115922A (en) * 2000-10-06 2002-04-19 Denso Corp Heat pump type hot water heater apparatus
JP2002228284A (en) * 2001-02-06 2002-08-14 Daikin Ind Ltd Refrigerating machine
JP2003148821A (en) * 2001-11-14 2003-05-21 Sanyo Electric Co Ltd Supercritical refrigerating cycle device and water heater
JP2005147584A (en) * 2003-11-18 2005-06-09 Matsushita Electric Ind Co Ltd Start-up controller and start-up control method for heat pump hot water supply apparatus
JP2005291558A (en) * 2004-03-31 2005-10-20 Mitsubishi Heavy Ind Ltd Air conditioner
JP2008038912A (en) * 2007-08-10 2008-02-21 Daikin Ind Ltd Compressor internal state estimating device and air conditioner
JP2009068812A (en) * 2007-09-18 2009-04-02 Panasonic Corp Air conditioner
JP2009156515A (en) * 2007-12-26 2009-07-16 Toshiba Carrier Corp Heat pump type water heater
JP2010060193A (en) * 2008-09-03 2010-03-18 Corona Corp Heat pump type hot water supply device
JP2010112682A (en) * 2008-11-10 2010-05-20 Denso Corp Heat pump cycle device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062657A (en) * 2012-09-20 2014-04-10 Fujitsu General Ltd Heat pump cycle device
JP2014119187A (en) * 2012-12-17 2014-06-30 Mitsubishi Electric Corp Refrigerator and refrigeration cycle device
JPWO2015092845A1 (en) * 2013-12-16 2017-03-16 三菱電機株式会社 Heat pump water heater
WO2015092845A1 (en) * 2013-12-16 2015-06-25 三菱電機株式会社 Heat pump hot water supply device
JP5985077B2 (en) * 2013-12-16 2016-09-06 三菱電機株式会社 Heat pump water heater
JP2015203541A (en) * 2014-04-15 2015-11-16 サンポット株式会社 heat pump system
JP2016191548A (en) * 2016-06-16 2016-11-10 三菱電機株式会社 Refrigeration device and refrigeration cycle device
JP2018136098A (en) * 2017-02-23 2018-08-30 株式会社富士通ゼネラル Hear pump-type water heater
JP2020203615A (en) * 2019-06-18 2020-12-24 株式会社Subaru Air conditioner for vehicle
JP7312617B2 (en) 2019-06-18 2023-07-21 株式会社Subaru vehicle air conditioner
WO2022070614A1 (en) * 2020-09-30 2022-04-07 株式会社デンソー Refrigeration cycle device
JP7472744B2 (en) 2020-09-30 2024-04-23 株式会社デンソー Refrigeration Cycle Equipment
CN114608129A (en) * 2022-02-07 2022-06-10 青岛海尔空调器有限总公司 Method and device for controlling temperature of air conditioner chip, air conditioner and storage medium

Similar Documents

Publication Publication Date Title
JP2012032091A (en) Heat pump cycle system
CN102032704B (en) Heat pump apparatus
JP5524571B2 (en) Heat pump equipment
JP2011094810A (en) Heat pump cycle apparatus
JP2014196849A (en) Heat pump water heater
JP2013119954A (en) Heat pump hot water heater
KR20150057624A (en) Air conditioner and a method controlling the same
JP5816422B2 (en) Waste heat utilization system of refrigeration equipment
JP5589607B2 (en) Heat pump cycle equipment
JP2012233626A (en) Heat pump water heater
JP5943869B2 (en) Air conditioner
JP2011257098A (en) Heat pump cycle device
JP6749471B2 (en) Air conditioner
JP5515568B2 (en) Heat pump cycle equipment
JP6297072B2 (en) Heat pump type water heater
KR101883368B1 (en) Method for controlling cooling system for operation cost reduction of refrigerator
JP2012007751A (en) Heat pump cycle device
JP6147659B2 (en) Heat pump equipment
JP6273471B2 (en) Temperature control device
JP2021055931A (en) Heat pump cycle device
JP5516332B2 (en) Heat pump type hot water heater
EP3502585B1 (en) Heat pump system
JP6315797B2 (en) Heat pump equipment
JP6367642B2 (en) Air conditioner
JP6136158B2 (en) Heat pump cycle equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141104