JP2005147584A - Start-up controller and start-up control method for heat pump hot water supply apparatus - Google Patents

Start-up controller and start-up control method for heat pump hot water supply apparatus Download PDF

Info

Publication number
JP2005147584A
JP2005147584A JP2003388192A JP2003388192A JP2005147584A JP 2005147584 A JP2005147584 A JP 2005147584A JP 2003388192 A JP2003388192 A JP 2003388192A JP 2003388192 A JP2003388192 A JP 2003388192A JP 2005147584 A JP2005147584 A JP 2005147584A
Authority
JP
Japan
Prior art keywords
frequency
region
compressor
frequency region
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003388192A
Other languages
Japanese (ja)
Other versions
JP3919736B2 (en
Inventor
Takeji Watanabe
竹司 渡辺
Keijiro Kunimoto
啓次郎 國本
Masahiro Ohama
昌宏 尾浜
Nobuhiko Fujiwara
宣彦 藤原
Seiichi Yasuki
誠一 安木
Tatsumura Mo
立群 毛
Kazuhiko Marumoto
一彦 丸本
Takayuki Takatani
隆幸 高谷
Tetsuei Kuramoto
哲英 倉本
Yusuke Mochizuki
裕介 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003388192A priority Critical patent/JP3919736B2/en
Publication of JP2005147584A publication Critical patent/JP2005147584A/en
Application granted granted Critical
Publication of JP3919736B2 publication Critical patent/JP3919736B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a start-up controller and a start-up control method for a heat pump hot water supply apparatus, allowing solution of a problem of liquid compression in a compressor even without an accumulator. <P>SOLUTION: This start-up controller for the heat pump hot water supply apparatus has: a heat pump circuit having the compressor and a heat radiator; and a hot water storage circuit storing hot water heated by the heat radiator in a hot water storage tank. The heat pump circuit has no receiver nor accumulator, uses a compressor having a variable rotational speed as the compressor, and performs frequency control in a start-up operation area from start-up time of the compressor to stable time. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、圧縮機と放熱器とを有するヒートポンプ回路と、放熱器で加熱した温水を貯湯タンクに貯留する貯湯回路とを備え、圧縮機として回転数可変の圧縮機を用い、圧縮機の起動時から安定時までの起動運転領域における周波数制御を行うヒートポンプ給湯装置の起動制御装置および起動制御方法に関する。   The present invention comprises a heat pump circuit having a compressor and a radiator, and a hot water storage circuit for storing hot water heated by the radiator in a hot water storage tank, using a compressor with a variable rotation speed as the compressor, and starting the compressor The present invention relates to a start-up control device and a start-up control method for a heat pump water heater that performs frequency control in a start-up operation region from time to time.

従来から、ヒートポンプサイクルを利用した給湯装置は種々提案されており、例えば、レシーバを備えた給湯装置が提案されている(例えば特許文献1参照)。
また、ヒートポンプサイクルを利用した給湯装置の多くは、圧縮機での液圧縮を防止する目的から、圧縮機の吸入側配管にアキュムレータを設けている(例えば特許文献2参照)。
特開2003−65616号公報 特許第3393601号公報
Conventionally, various hot water supply apparatuses using a heat pump cycle have been proposed. For example, a hot water supply apparatus including a receiver has been proposed (see, for example, Patent Document 1).
Many hot water supply devices using a heat pump cycle are provided with an accumulator on the suction side piping of the compressor for the purpose of preventing liquid compression in the compressor (see, for example, Patent Document 2).
JP 2003-65616 A Japanese Patent No. 3393601

しかし、従来のヒートポンプ給湯装置においては、ヒートポンプ回路として、圧縮機、放熱器、および蒸発器があり、貯湯回路として貯湯タンクがあるため、装置全体が極めて大きくなってしまうという問題がある。
従って、装置の小型化を図る上では、装置に必要な構成部材を無くすことが有効であり、例えばレシーバやアキュムレータをその対象とするためには、圧縮機での液圧縮の問題を解決する必要がある。
However, in the conventional heat pump hot water supply apparatus, there are a compressor, a radiator, and an evaporator as the heat pump circuit, and a hot water storage tank as the hot water storage circuit, so that the entire apparatus becomes extremely large.
Therefore, in order to reduce the size of the apparatus, it is effective to eliminate the components necessary for the apparatus. For example, in order to target receivers and accumulators, it is necessary to solve the problem of liquid compression in the compressor. There is.

そこで本発明は、特にアキュムレータが無くても圧縮機での液圧縮の問題を解決することができるヒートポンプ給湯装置の起動制御装置および起動制御方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a startup control device and a startup control method for a heat pump hot water supply device that can solve the problem of liquid compression in a compressor even without an accumulator.

請求項1記載の本発明のヒートポンプ給湯装置の起動制御装置は、圧縮機と放熱器とを有するヒートポンプ回路と、前記放熱器で加熱した温水を貯湯タンクに貯留する貯湯回路とを備え、前記ヒートポンプ回路には、レシーバおよびアキュムレータを備えず、前記圧縮機として回転数可変の圧縮機を用い、前記圧縮機の起動時から安定時までの起動運転領域における周波数制御を行い、前記起動運転領域において所定周波数を維持する定周波領域を少なくとも1つ有することを特徴とするヒートポンプ給湯装置の起動制御装置。
請求項2記載の本発明のヒートポンプ給湯装置の起動制御装置は、圧縮機と放熱器とを有するヒートポンプ回路と、前記放熱器で加熱した温水を貯湯タンクに貯留する貯湯回路とを備え、前記ヒートポンプ回路には、レシーバおよびアキュムレータを備えず、前記圧縮機として回転数可変の圧縮機を用い、前記圧縮機の起動時から安定時までの起動運転領域における周波数制御を行うヒートポンプ給湯装置の起動制御装置であって、前記起動運転領域として、少なくとも第1の運転領域と、当該第1の運転領域の後に実行される第2の運転領域とをあらかじめ記憶し、前記第1の運転領域には、所定周波数を維持する第1の定周波数領域と、前記第1の定周波数領域の所定周波数まで運転周波数を徐々に増加させる第1の可変周波数領域とを有し、前記第2の運転領域には、所定周波数を維持する第2の定周波数領域と、前記第1の定周波数領域の所定周波数から前記第2の定周波数領域の所定周波数まで運転周波数を徐々に変更させる第2の可変周波数領域とを有することを特徴とする。
請求項3記載の本発明は、請求項2に記載のヒートポンプ給湯装置の起動制御装置において、前記圧縮機の安定時の運転周波数を、季節、入水温度、外気温度、または使用者の設定温度などの運転条件によって変更可能な構成とし、前記第2の定周波数領域での運転可能な周波数として所定範囲の周波数を記憶し、前記第2の定周波数領域での運転周波数を前記圧縮機の安定時の運転周波数によって変更可能な構成としたことを特徴とする。
請求項4記載の本発明は、請求項3に記載のヒートポンプ給湯装置の起動制御装置において、外気温度を検出する外気温度検出手段と、前記放熱器に導入する水温を検出する入水温度検出手段と、外気温度および入水温度と前記圧縮機の安定時の運転周波数との関係データを記憶した安定運転時条件データ記憶手段と、前記起動運転領域の条件データを記憶した起動運転領域条件データ記憶手段と、前記外気温度検出手段および前記入水温度検出手段からの検出値と前記安定運転時条件データ記憶手段に記憶された条件データとから安定時の運転周波数を決定する安定時運転周波数決定手段と、前記安定時運転周波数決定手段で決定された安定時の運転周波数と前記起動運転領域条件データ記憶手段に記憶された条件データとから前記第2の定周波数領域での運転周波数を決定する起動運転領域運転周波数決定手段とを備えたことを特徴とする。
請求項5記載の本発明は、請求項1から請求項4のいずれかに記載のヒートポンプ給湯装置の起動制御装置において、前記圧縮機として、吸入冷媒を圧縮室に導入し、圧縮室からの吐出冷媒をシェル内に吐出させる高圧型圧縮機を用いたことを特徴とする。
請求項6記載の本発明は、請求項1から請求項4のいずれかに記載のヒートポンプ給湯装置の起動制御装置において、前記圧縮機の圧縮室内が所定圧力を越えると前記圧縮室内の冷媒をシェル内に吐出させるバイパス機構を設けたことを特徴とする。
請求項7記載の本発明は、請求項1から請求項4のいずれかに記載のヒートポンプ給湯装置の起動制御装置において、膨張弁を開放して蒸発器の除霜を行う除霜運転から、前記放熱器で加熱した温水を前記貯湯タンクに貯留する貯湯運転への切換制御を行うヒートポンプ給湯装置の起動制御装置において、前記起動運転領域として、前記除霜運転から前記貯湯運転への切換時に実行する除霜復帰運転領域をあらかじめ記憶し、前記除霜復帰運転領域には、所定周波数を維持する復帰時の定周波数領域と、前記除霜運転時の運転周波数から前記復帰時の定周波数領域の所定周波数まで運転周波数を徐々に減少させる復帰時の可変周波数領域とを有することを特徴とする。
請求項8記載の本発明は、請求項1から請求項4のいずれかに記載のヒートポンプ給湯装置の起動制御装置において、冷媒として二酸化炭素を用い、前記圧縮機によって前記ヒートポンプ回路の高圧側では臨界圧を越える状態で運転することを特徴とする。
請求項9記載の本発明のヒートポンプ給湯装置の起動制御方法は、圧縮機と放熱器とを有するヒートポンプ回路と、前記放熱器で加熱した温水を貯湯タンクに貯留する貯湯回路と、外気温度を検出する外気温度検出手段と、前記放熱器に導入する水温を検出する入水温度検出手段とを備え、前記圧縮機として回転数可変の圧縮機を用い、前記圧縮機の起動時から安定時までの起動運転時間における周波数制御を行うヒートポンプ給湯装置の起動制御方法であって、前記起動運転領域として、少なくとも第1の運転領域と、当該第1の運転領域の後に実行される第2の運転領域とをあらかじめ記憶し、前記第1の運転領域には、所定周波数を維持する第1の定周波数領域と、前記第1の定周波数領域の所定周波数まで運転周波数を徐々に増加させる第1の可変周波数領域とを有し、前記第2の運転領域には、所定周波数を維持する第2の定周波数領域と、前記第1の定周波数領域の所定周波数から前記第2の定周波数領域の所定周波数まで運転周波数を徐々に変更させる第2の可変周波数領域とを有し、前記外気温度検出手段によって検出した外気温度と前記入水温度検出手段によって検出した入水温度とから圧縮機の安定時の運転周波数を決定し、決定された前記安定時の運転周波数が、前記第2の定周波数領域の運転周波数よりも高い場合には、前記第1の可変周波数領域、前記第1の定周波数領域、前記第2の可変周波数領域、および前記第2の定周波数領域とを順に運転し、その後安定時の運転周波数まで前記圧縮機の運転周波数を徐々にまたは段階的に増加することで起動制御を行い、決定された前記安定時の運転周波数が、前記第2の定周波数領域の運転周波数よりも低い場合には、前記第1の可変周波数領域、前記第1の定周波数領域、前記第2の可変周波数領域、および前記第2の定周波数領域とを順に運転し、その後安定時の運転周波数まで前記圧縮機の運転周波数を徐々にまたは段階的に減少することで起動制御を行うことを特徴とする。
請求項10記載の本発明のヒートポンプ給湯装置の起動制御方法は、圧縮機と放熱器とを有するヒートポンプ回路と、前記放熱器で加熱した温水を貯湯タンクに貯留する貯湯回路と、外気温度を検出する外気温度検出手段と、前記放熱器に導入する水温を検出する入水温度検出手段とを備え、前記圧縮機として回転数可変の圧縮機を用い、前記圧縮機の起動時から安定時までの起動運転時間における周波数制御を行うヒートポンプ給湯装置の起動制御方法であって、前記起動運転領域として、少なくとも第1の運転領域と、当該第1の運転領域の後に実行される第2の運転領域とをあらかじめ記憶し、前記第1の運転領域には、所定周波数を維持する第1の定周波数領域と、前記第1の定周波数領域の所定周波数まで運転周波数を徐々に増加させる第1の可変周波数領域とを有し、前記第2の運転領域には、所定周波数を維持する第2の定周波数領域と、前記第1の定周波数領域の所定周波数から前記第2の定周波数領域の所定周波数まで運転周波数を徐々に変更させる第2の可変周波数領域とを有し、前記第2の定周波数領域での運転可能な周波数として所定範囲の周波数を記憶し、前記外気温度検出手段によって検出した外気温度と前記入水温度検出手段によって検出した入水温度とから圧縮機の安定時の運転周波数を決定し、決定された前記安定時の運転周波数が、前記第2の定周波数領域の最大周波数よりも高い場合には、前記第2の定周波数領域での運転周波数を前記最大周波数とし、前記第1の可変周波数領域、前記第1の定周波数領域、前記第2の可変周波数領域、および前記第2の定周波数領域とを順に運転し、その後安定時の運転周波数まで前記圧縮機の運転周波数を徐々にまたは段階的に増加することで起動制御を行い、決定された前記安定時の運転周波数が、前記第2の定周波数領域の所定範囲の周波数である場合には、前記第2の定周波数領域での運転周波数を前記安定時の運転周波数とし、前記第1の可変周波数領域、前記第1の定周波数領域、前記第2の可変周波数領域、および前記第2の定周波数領域とを順に運転することで起動制御を行い、決定された前記安定時の運転周波数が、前記第2の定周波数領域の最小周波数よりも低い場合には、前記第2の定周波数領域での運転周波数を前記最小周波数とし、前記第1の可変周波数領域、前記第1の定周波数領域、前記第2の可変周波数領域、および前記第2の定周波数領域とを順に運転し、その後安定時の運転周波数まで前記圧縮機の運転周波数を徐々にまたは段階的に減少することで起動制御を行うことを特徴とする。
請求項11記載の本発明は、請求項9または請求項10に記載のヒートポンプ給湯装置の起動制御方法において、除霜運転の終了を検出する除霜完了検出手段を有し、膨張弁を開放して蒸発器の除霜を行う除霜運転から、前記放熱器で加熱した温水を前記貯湯タンクに貯留する貯湯運転への切換制御において、前記起動運転領域として、前記除霜運転から前記貯湯運転への切換時に実行する除霜復帰運転領域をあらかじめ記憶し、前記除霜復帰運転領域には、所定周波数を維持する復帰時の定周波数領域と、前記除霜運転時の運転周波数から前記復帰時の定周波数領域の所定周波数まで運転周波数を徐々に減少させる復帰時の可変周波数領域とを有し、前記除霜完了検出手段から除霜完了を検出した場合に、前記復帰時の可変周波数領域、および前記復帰時の定周波数領域とを順に運転し、前記復帰時の定周波数領域での運転中に前記膨張弁を絞ることで前記貯湯運転に切換え、その後安定時の運転周波数まで前記圧縮機の運転周波数を徐々にまたは段階的に増加することで切換制御を行うことを特徴とする。
請求項12記載の本発明は、請求項9または請求項10に記載のヒートポンプ給湯装置の起動制御方法において、冷媒として二酸化炭素を用い、前記圧縮機によって前記ヒートポンプ回路の高圧側では臨界圧を越える状態で運転することを特徴とする。
An activation control device for a heat pump hot water supply apparatus according to claim 1 comprises a heat pump circuit having a compressor and a radiator, and a hot water storage circuit for storing hot water heated by the radiator in a hot water storage tank, and the heat pump The circuit does not include a receiver and an accumulator, uses a variable-speed compressor as the compressor, performs frequency control in the startup operation region from the start of the compressor to the stable time, and performs predetermined control in the start-up operation region. A start-up control device for a heat pump hot-water supply device having at least one constant frequency region for maintaining a frequency.
A start control device for a heat pump hot water supply apparatus according to claim 2 comprises a heat pump circuit having a compressor and a radiator, and a hot water storage circuit for storing hot water heated by the radiator in a hot water storage tank, and the heat pump The circuit does not include a receiver and an accumulator, uses a compressor with a variable rotation speed as the compressor, and performs a start-up control device for a heat pump water heater that performs frequency control in a start-up operation region from the start-up time to the stable time of the compressor In this case, at least the first operation region and the second operation region executed after the first operation region are stored in advance as the start-up operation region, and the first operation region has a predetermined value. A first constant frequency region for maintaining the frequency, and a first variable frequency region for gradually increasing the operating frequency to a predetermined frequency in the first constant frequency region. The second operation region includes a second constant frequency region that maintains a predetermined frequency, and an operation frequency gradually from a predetermined frequency in the first constant frequency region to a predetermined frequency in the second constant frequency region. And a second variable frequency region to be changed.
According to a third aspect of the present invention, in the start-up control device for the heat pump hot water supply device according to the second aspect, the operating frequency at the time of stability of the compressor may be a season, an incoming water temperature, an outside air temperature, a user set temperature, or the like. The frequency can be changed according to the operating conditions, a predetermined frequency range is stored as the operable frequency in the second constant frequency region, and the operating frequency in the second constant frequency region is stored when the compressor is stable. It is characterized by having a configuration that can be changed according to the operating frequency.
According to a fourth aspect of the present invention, in the activation control device for the heat pump hot water supply device according to the third aspect, an outside air temperature detecting means for detecting an outside air temperature, and an incoming water temperature detecting means for detecting a water temperature introduced into the radiator. A stable operation condition data storage means storing relational data between the outside air temperature and the incoming water temperature and the stable operation frequency of the compressor; and a startup operation area condition data storage means storing condition data of the startup operation area; A stable operation frequency determining means for determining a stable operation frequency from the detected value from the outside air temperature detecting means and the incoming water temperature detecting means and the condition data stored in the stable operation time condition data storage means; From the stable operation frequency determined by the stable operation frequency determining means and the condition data stored in the start-up operation area condition data storage means, the second Characterized in that a starting operation area operation frequency determination means for determining the operating frequency in the frequency domain.
According to a fifth aspect of the present invention, in the start-up control device for a heat pump hot water supply device according to any one of the first to fourth aspects, the suction refrigerant is introduced into the compression chamber as the compressor and discharged from the compression chamber. A high-pressure compressor that discharges the refrigerant into the shell is used.
According to a sixth aspect of the present invention, in the activation control device for a heat pump hot water supply device according to any one of the first to fourth aspects, the refrigerant in the compression chamber is shelled when the compression chamber of the compressor exceeds a predetermined pressure. It is characterized by providing a bypass mechanism for discharging inside.
According to a seventh aspect of the present invention, in the start-up control device for a heat pump hot water supply device according to any one of the first to fourth aspects, the defrosting operation in which the expansion valve is opened to defrost the evaporator, In the start control device of the heat pump hot water supply device that performs switching control to hot water storage operation in which hot water heated by a radiator is stored in the hot water storage tank, the start operation region is executed at the time of switching from the defrosting operation to the hot water storage operation. A defrost return operation region is stored in advance, and the defrost return operation region includes a constant frequency region at the time of return to maintain a predetermined frequency, and a predetermined frequency region at the time of return from the operation frequency at the time of the defrost operation. And a variable frequency region at the time of return for gradually decreasing the operating frequency to the frequency.
The invention according to claim 8 is the activation control device for the heat pump hot water supply device according to any one of claims 1 to 4, wherein carbon dioxide is used as a refrigerant, and the compressor is critical on the high pressure side of the heat pump circuit. It is characterized by operating in a state exceeding the pressure.
The start control method for the heat pump water heater of the present invention according to claim 9 includes a heat pump circuit having a compressor and a radiator, a hot water storage circuit for storing hot water heated by the radiator in a hot water storage tank, and detecting an outside air temperature. An outside air temperature detecting means and an incoming water temperature detecting means for detecting a water temperature to be introduced into the radiator, and a compressor having a variable rotational speed is used as the compressor, and the compressor is started up from a start time to a stable time. A start control method of a heat pump water heater that performs frequency control in an operation time, wherein at least a first operation region and a second operation region that is executed after the first operation region as the start operation region. The first operation area is stored in advance, and the first operation frequency is gradually increased to a first constant frequency area for maintaining a predetermined frequency and a predetermined frequency in the first constant frequency area. A first variable frequency region, and the second operating region includes a second constant frequency region for maintaining a predetermined frequency and the second constant frequency region based on the predetermined frequency in the first constant frequency region. A second variable frequency region that gradually changes the operating frequency to a predetermined frequency in the frequency region, and a compressor based on the outside air temperature detected by the outside air temperature detecting means and the incoming water temperature detected by the incoming water temperature detecting means The stable operation frequency is determined, and when the determined stable operation frequency is higher than the operation frequency of the second constant frequency region, the first variable frequency region, the first variable frequency region, By operating the constant frequency region, the second variable frequency region, and the second constant frequency region in order, and then gradually or stepwise increasing the operation frequency of the compressor to the stable operation frequency Start-up If the determined operation frequency at the time of stability is lower than the operation frequency in the second constant frequency region, the first variable frequency region, the first constant frequency region, the first 2 variable frequency region and the second constant frequency region are operated in order, and then the start-up control is performed by gradually or stepwise decreasing the operation frequency of the compressor to the stable operation frequency. Features.
The start control method of the heat pump hot water supply apparatus according to claim 10 includes a heat pump circuit having a compressor and a radiator, a hot water storage circuit for storing hot water heated by the radiator in a hot water storage tank, and detecting an outside air temperature. An outside air temperature detecting means and an incoming water temperature detecting means for detecting a water temperature to be introduced into the radiator, and a compressor having a variable rotational speed is used as the compressor, and the compressor is started up from a start time to a stable time. A start control method of a heat pump water heater that performs frequency control in an operation time, wherein at least a first operation region and a second operation region that is executed after the first operation region as the start operation region. The first operation region is stored in advance, and the first operation region gradually increases the operation frequency up to a first constant frequency region that maintains a predetermined frequency and a predetermined frequency in the first constant frequency region. A first variable frequency region, and the second operating region includes a second constant frequency region for maintaining a predetermined frequency, and the second constant frequency region from the predetermined frequency in the first constant frequency region. A second variable frequency region for gradually changing the operating frequency to a predetermined frequency in the frequency region, storing a predetermined range of frequencies as the operable frequency in the second constant frequency region, and detecting the outside air temperature A stable operating frequency of the compressor is determined from the outside air temperature detected by the means and the incoming water temperature detected by the incoming water temperature detecting means, and the determined operating frequency of the compressor is the second constant frequency region. When the frequency is higher than the maximum frequency, the operating frequency in the second constant frequency region is set as the maximum frequency, and the first variable frequency region, the first constant frequency region, and the second variable frequency region , And the second constant frequency region in order, and then starting control is performed by gradually or stepwise increasing the operating frequency of the compressor to the stable operating frequency, and the determined stable time is When the operation frequency is a frequency in a predetermined range of the second constant frequency region, the operation frequency in the second constant frequency region is set as the operation frequency at the stable time, the first variable frequency region, The start control is performed by sequentially operating the first constant frequency region, the second variable frequency region, and the second constant frequency region, and the determined operation frequency at the stable time is the second If the operating frequency in the second constant frequency region is lower than the minimum frequency, the first variable frequency region, the first constant frequency region, the second frequency Variable frequency range , And the second constant frequency region in order, and then the starting control is performed by gradually or stepwise decreasing the operating frequency of the compressor until the operating frequency at the time of stabilization.
The invention according to claim 11 is the start control method of the heat pump hot water supply device according to claim 9 or claim 10, further comprising a defrosting completion detecting means for detecting the end of the defrosting operation, and opening the expansion valve. In the switching control from the defrosting operation in which the evaporator is defrosted to the hot water storage operation in which the hot water heated by the radiator is stored in the hot water storage tank, the defrosting operation is changed to the hot water storage operation as the startup operation region. The defrost return operation region to be executed at the time of switching is stored in advance, and the defrost return operation region includes a constant frequency region at the time of maintaining a predetermined frequency and an operation frequency at the time of the defrost operation. A variable frequency region at the time of return that gradually decreases the operating frequency to a predetermined frequency in the constant frequency region, and when the defrost completion detection is detected from the defrost completion detection means, And the constant frequency region at the time of return, and switching to the hot water storage operation by restricting the expansion valve during operation in the constant frequency region at the time of return, and then the compressor to the stable operation frequency. The switching control is performed by increasing the operation frequency gradually or stepwise.
According to a twelfth aspect of the present invention, in the activation control method of the heat pump hot water supply apparatus according to the ninth or tenth aspect, carbon dioxide is used as a refrigerant, and the compressor exceeds a critical pressure on the high pressure side of the heat pump circuit. It is characterized by driving in a state.

本発明によれば、起動運転領域において所定周波数を維持する定周波領域を少なくとも1つ設けることで、液圧縮による問題を回避することで、起動運転時間における圧縮機への液戻りに対処しつつ、早期な立ち上がり運転を行うことができる。従って、アキュムレータやレシーバを備えることなく、液圧縮の問題を生じることなく素早い立ち上がり運転を実現することができる。   According to the present invention, at least one constant frequency region that maintains a predetermined frequency in the start-up operation region is provided, thereby avoiding problems due to liquid compression, while coping with liquid return to the compressor during the start-up operation time. Early start-up operation can be performed. Therefore, a quick start-up operation can be realized without providing an accumulator or receiver and without causing a problem of liquid compression.

本発明の第1の実施の形態によるヒートポンプ給湯装置の起動制御装置は、ヒートポンプ回路には、レシーバおよびアキュムレータを備えず、圧縮機として回転数可変の圧縮機を用い、圧縮機の起動時から安定時までの起動運転領域における周波数制御を行い、起動運転領域において所定周波数を維持する定周波領域を少なくとも1つ有するものである。圧縮機のシェル温度が十分に上昇した後の液圧縮はヒートポンプ回路に封入する冷媒量を最適な量にすることで回避可能であるが、シェル温度が十分に上昇していない起動運転時間には大量の液冷媒が圧縮機に流入する。本実施の形態によれば、起動運転領域において所定周波数を維持する定周波領域を少なくとも1つ設けることで、液圧縮による問題を回避することで、起動運転時間における圧縮機への液戻りに対処しつつ、早期な立ち上がり運転を行うことができる。従って、アキュムレータやレシーバを備えることなく、液圧縮の問題を生じることなく素早い立ち上がり運転を実現することができる。
本発明の第2の実施の形態によるヒートポンプ給湯装置の起動制御装置は、起動運転領域として、少なくとも第1の運転領域と、当該第1の運転領域の後に実行される第2の運転領域とをあらかじめ記憶し、第1の運転領域には、所定周波数を維持する第1の定周波数領域と、第1の定周波数領域の所定周波数まで運転周波数を徐々に増加させる第1の可変周波数領域とを有し、第2の運転領域には、所定周波数を維持する第2の定周波数領域と、第1の定周波数領域の所定周波数から第2の定周波数領域の所定周波数まで運転周波数を徐々に変更させる第2の可変周波数領域とを有するものである。圧縮機のシェル温度が十分に上昇した後の液圧縮はヒートポンプ回路に封入する冷媒量を最適な量にすることで回避可能であるが、シェル温度が十分に上昇していない起動運転時間には大量の液冷媒が圧縮機に流入する。起動運転時間における圧縮機への液戻りは、起動直後と、所定時間経過後に生じる。本実施の形態によれば、起動運転領域として、少なくとも第1の運転領域と、当該第1の運転領域の後に実行される第2の運転領域とをあらかじめ記憶し、第1の定周波数領域と第2の定周波数領域を設けることで、起動直後の圧縮機への液戻りに対しては、第1の定周波数領域によって液圧縮による問題を回避し、所定時間経過後の圧縮機への液戻りに対しては、第2の定周波数領域によって液圧縮による問題を回避することで、起動運転時間における圧縮機への液戻りに対処しつつ、早期な立ち上がり運転を行うことができる。従って、アキュムレータやレシーバを備えることなく、液圧縮の問題を生じることなく素早い立ち上がり運転を実現することができる。
本発明の第3の実施の形態は、第2の実施の形態によるヒートポンプ給湯装置の起動制御装置において、圧縮機の安定時の運転周波数を、季節、入水温度、外気温度、または使用者の設定温度などの運転条件によって変更可能な構成とし、第2の定周波数領域での運転可能な周波数として所定範囲の周波数を記憶し、第2の定周波数領域での運転周波数を圧縮機の安定時の運転周波数によって変更可能な構成としたものである。本実施の形態によれば、第2の定周波数領域での運転周波数を、圧縮機の安定時の運転周波数によって変更することで、より確実に液圧縮の問題を回避しつつ素早い立ち上がり運転を実現することができる。
本発明の第4の実施の形態は、第3の実施の形態によるヒートポンプ給湯装置の起動制御装置において、外気温度を検出する外気温度検出手段と、放熱器に導入する水温を検出する入水温度検出手段と、外気温度および入水温度と圧縮機の安定時の運転周波数との関係データを記憶した安定運転時条件データ記憶手段と、起動運転領域の条件データを記憶した起動運転領域条件データ記憶手段と、外気温度検出手段および入水温度検出手段からの検出値と安定運転時条件データ記憶手段に記憶された条件データとから安定時の運転周波数を決定する安定時運転周波数決定手段と、安定時運転周波数決定手段で決定された安定時の運転周波数と起動運転領域条件データ記憶手段に記憶された条件データとから第2の定周波数領域での運転周波数を決定する起動運転領域運転周波数決定手段とを備えたものである。本実施の形態によれば、特に安定時の運転周波数を、外気温度と入水温度から決定し、この安定時の運転周波数をもとに第2の定周波数領域での運転周波数を決定するため、例えばシェル温度の上昇までに時間の必要な冬期運転時であっても、入水温度が高ければ不必要に周波数を上昇させることなく、すなわち液圧縮の問題を生じさせることなく圧縮機の立ち上がり運転を行うことができる。
本発明の第5の実施の形態は、第1から第4の実施の形態によるヒートポンプ給湯装置の起動制御装置において、圧縮機として、吸入冷媒を圧縮室に導入し、圧縮室からの吐出冷媒をシェル内に吐出させる高圧型圧縮機を用いたものである。本実施の形態によれば、高圧型圧縮機を用いることでシェル温度を早期に高めることができ、また通常運転時においても低圧型圧縮機に比べてシェル温度を高くすることができるので、液圧縮の問題を回避することができる。
本発明の第6の実施の形態は、第1から第4の実施の形態によるヒートポンプ給湯装置の起動制御装置において、圧縮機の圧縮室内が所定圧力を越えると圧縮室内の冷媒をシェル内に吐出させるバイパス機構を設けたものである。本実施の形態によれば、何らかの原因によって液冷媒が圧縮室内に流入した場合であっても、液圧縮を回避することができる。
本発明の第7の実施の形態は、第1から第4の実施の形態によるヒートポンプ給湯装置の起動制御装置において、起動運転領域として、除霜運転から貯湯運転への切換時に実行する除霜復帰運転領域をあらかじめ記憶し、除霜復帰運転領域には、所定周波数を維持する復帰時の定周波数領域と、除霜運転時の運転周波数から復帰時の定周波数領域の所定周波数まで運転周波数を徐々に減少させる復帰時の可変周波数領域とを有するものである。本実施の形態によれば、除霜運転から貯湯運転への切換時における圧縮機への液戻りも対処することができる。
本発明の第8の実施の形態は、第1から第4の実施の形態によるヒートポンプ給湯装置の起動制御装置において、冷媒として二酸化炭素を用い、圧縮機によってヒートポンプ回路の高圧側では臨界圧を越える状態で運転するものである。冷媒として二酸化炭素を用い、高圧側圧力が極めて高い本実施の形態のようなヒートポンプ給湯装置においても液圧縮の問題を生じることなく運転することができる。
本発明の第9の実施の形態によるヒートポンプ給湯装置の起動制御方法は、起動運転領域として、少なくとも第1の運転領域と、当該第1の運転領域の後に実行される第2の運転領域とをあらかじめ記憶し、第1の運転領域には、所定周波数を維持する第1の定周波数領域と、第1の定周波数領域の所定周波数まで運転周波数を徐々に増加させる第1の可変周波数領域とを有し、第2の運転領域には、所定周波数を維持する第2の定周波数領域と、第1の定周波数領域の所定周波数から第2の定周波数領域の所定周波数まで運転周波数を徐々に変更させる第2の可変周波数領域とを有し、外気温度検出手段によって検出した外気温度と入水温度検出手段によって検出した入水温度とから圧縮機の安定時の運転周波数を決定し、決定された安定時の運転周波数が、第2の定周波数領域の運転周波数よりも高い場合には、第1の可変周波数領域、第1の定周波数領域、第2の可変周波数領域、および第2の定周波数領域とを順に運転し、その後安定時の運転周波数まで圧縮機の運転周波数を徐々にまたは段階的に増加することで起動制御を行い、決定された安定時の運転周波数が、第2の定周波数領域の運転周波数よりも低い場合には、第1の可変周波数領域、第1の定周波数領域、第2の可変周波数領域、および第2の定周波数領域とを順に運転し、その後安定時の運転周波数まで圧縮機の運転周波数を徐々にまたは段階的に減少することで起動制御を行うものである。圧縮機のシェル温度が十分に上昇した後の液圧縮はヒートポンプ回路に封入する冷媒量を最適な量にすることで回避可能であるが、シェル温度が十分に上昇していない起動運転時間には大量の液冷媒が圧縮機に流入する。起動運転時間における圧縮機への液戻りは、起動直後と、所定時間経過後に生じる。本実施の形態によれば、起動運転領域として、少なくとも第1の運転領域と、当該第1の運転領域の後に実行される第2の運転領域とをあらかじめ記憶し、第1の定周波数領域と第2の定周波数領域を設けることで、起動直後の圧縮機への液戻りに対しては、第1の定周波数領域によって液圧縮による問題を回避し、所定時間経過後の圧縮機への液戻りに対しては、第2の定周波数領域によって液圧縮による問題を回避することで、起動運転時間における圧縮機への液戻りに対処しつつ、早期な立ち上がり運転を行うことができる。また本実施の形態によれば、特に安定時の運転周波数を、外気温度と入水温度から決定し、この安定時の運転周波数をもとに第2の定周波数領域での運転周波数を決定するため、例えばシェル温度の上昇までに時間の必要な冬期運転時であっても、入水温度が高ければ不必要に周波数を上昇させることなく、すなわち液圧縮の問題を生じさせることなく圧縮機の立ち上がり運転を行うことができる。
本発明の第10の実施の形態によるヒートポンプ給湯装置の起動制御方法は、起動運転領域として、少なくとも第1の運転領域と、当該第1の運転領域の後に実行される第2の運転領域とをあらかじめ記憶し、第1の運転領域には、所定周波数を維持する第1の定周波数領域と、第1の定周波数領域の所定周波数まで運転周波数を徐々に増加させる第1の可変周波数領域とを有し、第2の運転領域には、所定周波数を維持する第2の定周波数領域と、第1の定周波数領域の所定周波数から第2の定周波数領域の所定周波数まで運転周波数を徐々に変更させる第2の可変周波数領域とを有し、第2の定周波数領域での運転可能な周波数として所定範囲の周波数を記憶し、外気温度検出手段によって検出した外気温度と入水温度検出手段によって検出した入水温度とから圧縮機の安定時の運転周波数を決定し、決定された安定時の運転周波数が、第2の定周波数領域の最大周波数よりも高い場合には、第2の定周波数領域での運転周波数を最大周波数とし、第1の可変周波数領域、第1の定周波数領域、第2の可変周波数領域、および第2の定周波数領域とを順に運転し、その後安定時の運転周波数まで圧縮機の運転周波数を徐々にまたは段階的に増加することで起動制御を行い、決定された安定時の運転周波数が、第2の定周波数領域の所定範囲の周波数である場合には、第2の定周波数領域での運転周波数を安定時の運転周波数とし、第1の可変周波数領域、第1の定周波数領域、第2の可変周波数領域、および第2の定周波数領域とを順に運転することで起動制御を行い、決定された安定時の運転周波数が、第2の定周波数領域の最小周波数よりも低い場合には、第2の定周波数領域での運転周波数を最小周波数とし、第1の可変周波数領域、第1の定周波数領域、第2の可変周波数領域、および第2の定周波数領域とを順に運転し、その後安定時の運転周波数まで圧縮機の運転周波数を徐々にまたは段階的に減少することで起動制御を行うものである。圧縮機のシェル温度が十分に上昇した後の液圧縮はヒートポンプ回路に封入する冷媒量を最適な量にすることで回避可能であるが、シェル温度が十分に上昇していない起動運転時間には大量の液冷媒が圧縮機に流入する。起動運転時間における圧縮機への液戻りは、起動直後と、所定時間経過後に生じる。本実施の形態によれば、起動運転領域として、少なくとも第1の運転領域と、当該第1の運転領域の後に実行される第2の運転領域とをあらかじめ記憶し、第1の定周波数領域と第2の定周波数領域を設けることで、起動直後の圧縮機への液戻りに対しては、第1の定周波数領域によって液圧縮による問題を回避し、所定時間経過後の圧縮機への液戻りに対しては、第2の定周波数領域によって液圧縮による問題を回避することで、起動運転時間における圧縮機への液戻りに対処しつつ、早期な立ち上がり運転を行うことができる。また本実施の形態によれば、特に安定時の運転周波数を、外気温度と入水温度から決定し、この安定時の運転周波数をもとに第2の定周波数領域での運転周波数を決定するため、例えばシェル温度の上昇までに時間の必要な冬期運転時であっても、入水温度が高ければ不必要に周波数を上昇させることなく、すなわち液圧縮の問題を生じさせることなく圧縮機の立ち上がり運転を行うことができる。更に本実施の形態によれば、第2の定周波数領域での運転周波数を、圧縮機の安定時の運転周波数によって変更することで、より確実に液圧縮の問題を回避しつつ素早い立ち上がり運転を実現することができる。
本発明の第11の実施の形態は、第9または第10の実施の形態によるヒートポンプ給湯装置の起動制御方法において、起動運転領域として、除霜運転から貯湯運転への切換時に実行する除霜復帰運転領域をあらかじめ記憶し、除霜復帰運転領域には、所定周波数を維持する復帰時の定周波数領域と、除霜運転時の運転周波数から復帰時の定周波数領域の所定周波数まで運転周波数を徐々に減少させる復帰時の可変周波数領域とを有し、除霜完了検出手段から除霜完了を検出した場合に、復帰時の可変周波数領域、および復帰時の定周波数領域とを順に運転し、復帰時の定周波数領域での運転中に膨張弁を絞ることで貯湯運転に切換え、その後安定時の運転周波数まで圧縮機の運転周波数を徐々にまたは段階的に増加することで切換制御を行うものである。本実施の形態によれば、除霜運転から貯湯運転への切換時における圧縮機への液戻りも対処することができる。
本発明の第12の実施の形態は、第9または第10の実施の形態によるヒートポンプ給湯装置の起動制御方法において、冷媒として二酸化炭素を用い、圧縮機によって前記ヒートポンプ回路の高圧側では臨界圧を越える状態で運転するものである。冷媒として二酸化炭素を用い、高圧側圧力が極めて高い本実施の形態のようなヒートポンプ給湯装置においても液圧縮の問題を生じることなく運転することができる。
The start-up control device for the heat pump hot water supply apparatus according to the first embodiment of the present invention is stable from the start of the compressor by using a variable-speed compressor as the compressor without including a receiver and an accumulator in the heat pump circuit. The frequency control in the start-up operation region until the time is performed, and at least one constant frequency region that maintains a predetermined frequency in the start-up operation region is provided. Liquid compression after the shell temperature of the compressor has risen sufficiently can be avoided by optimizing the amount of refrigerant sealed in the heat pump circuit, but during startup operation time when the shell temperature has not risen sufficiently A large amount of liquid refrigerant flows into the compressor. According to the present embodiment, by providing at least one constant frequency region that maintains a predetermined frequency in the start-up operation region, the problem of liquid compression is avoided to cope with liquid return to the compressor during the start-up operation time. However, an early start-up operation can be performed. Therefore, a quick start-up operation can be realized without providing an accumulator or receiver and without causing a problem of liquid compression.
The activation control device for the heat pump water heater according to the second embodiment of the present invention includes at least a first operation region and a second operation region that is executed after the first operation region as the activation operation region. The first operation region is stored in advance, and a first constant frequency region for maintaining a predetermined frequency and a first variable frequency region for gradually increasing the operation frequency to a predetermined frequency in the first constant frequency region are stored in the first operation region. The second operation region has a second constant frequency region for maintaining a predetermined frequency, and the operation frequency is gradually changed from a predetermined frequency in the first constant frequency region to a predetermined frequency in the second constant frequency region. And a second variable frequency region. Liquid compression after the shell temperature of the compressor has risen sufficiently can be avoided by optimizing the amount of refrigerant sealed in the heat pump circuit, but during startup operation time when the shell temperature has not risen sufficiently A large amount of liquid refrigerant flows into the compressor. The liquid return to the compressor during the startup operation time occurs immediately after startup and after a predetermined time has elapsed. According to the present embodiment, at least the first operation region and the second operation region that is executed after the first operation region are stored in advance as the start operation region, and the first constant frequency region and By providing the second constant frequency region, the liquid return to the compressor immediately after startup avoids problems due to liquid compression by the first constant frequency region, and the liquid to the compressor after a predetermined time has elapsed. For the return, avoiding the problem due to the liquid compression by the second constant frequency region, it is possible to perform an early start-up operation while coping with the liquid return to the compressor during the startup operation time. Therefore, a quick start-up operation can be realized without providing an accumulator or receiver and without causing a problem of liquid compression.
According to the third embodiment of the present invention, in the start-up control device for the heat pump hot water supply device according to the second embodiment, the operating frequency when the compressor is stable is set to the season, the incoming water temperature, the outside air temperature, or the user. A configuration that can be changed according to operating conditions such as temperature, a predetermined range of frequencies is stored as a frequency that can be operated in the second constant frequency region, and the operating frequency in the second constant frequency region is stored when the compressor is stable. The configuration can be changed according to the operating frequency. According to the present embodiment, the operation frequency in the second constant frequency region is changed according to the operation frequency when the compressor is stable, thereby realizing quick start-up operation while avoiding the problem of liquid compression more reliably. can do.
According to a fourth embodiment of the present invention, in the start-up control device for the heat pump hot water supply apparatus according to the third embodiment, the outside air temperature detecting means for detecting the outside air temperature, and the incoming water temperature detection for detecting the water temperature introduced into the radiator. Means, stable operation condition data storage means storing relational data between the outside air temperature and the incoming water temperature and the compressor operation frequency when stable, and a starting operation area condition data storage means storing condition data of the starting operation area A stable operating frequency determining means for determining a stable operating frequency from the detected values from the outside air temperature detecting means and the incoming water temperature detecting means and the condition data stored in the stable operating condition data storage means, and a stable operating frequency. The operation frequency in the second constant frequency range from the stable operation frequency determined by the determining means and the condition data stored in the starting operation area condition data storage means It is obtained by a starting operation area operation frequency determination means for determining. According to the present embodiment, in particular, the stable operation frequency is determined from the outside air temperature and the incoming water temperature, and the operation frequency in the second constant frequency region is determined based on the stable operation frequency. For example, even during winter operation where it takes time until the shell temperature rises, if the incoming water temperature is high, the frequency of the compressor will not rise unnecessarily, that is, without causing the problem of liquid compression. It can be carried out.
According to a fifth embodiment of the present invention, in the activation control device of the heat pump hot water supply apparatus according to the first to fourth embodiments, as a compressor, an intake refrigerant is introduced into a compression chamber, and a refrigerant discharged from the compression chamber is supplied. A high-pressure compressor that discharges into the shell is used. According to the present embodiment, the shell temperature can be increased early by using the high-pressure compressor, and the shell temperature can be increased compared to the low-pressure compressor even during normal operation. Compression problems can be avoided.
According to a sixth embodiment of the present invention, in the start-up control device for the heat pump water heater according to the first to fourth embodiments, the refrigerant in the compression chamber is discharged into the shell when the compression chamber of the compressor exceeds a predetermined pressure. A bypass mechanism is provided. According to the present embodiment, liquid compression can be avoided even when liquid refrigerant flows into the compression chamber for some reason.
The seventh embodiment of the present invention is the defrosting recovery executed at the time of switching from the defrosting operation to the hot water storage operation as the activation operation region in the activation control device of the heat pump water heater according to the first to fourth embodiments. The operation area is stored in advance, and in the defrost return operation area, the operation frequency is gradually increased from the constant frequency area at the time of return to maintain a predetermined frequency and from the operation frequency at the time of defrost operation to the predetermined frequency in the constant frequency area at the time of return. And a variable frequency region at the time of return to be reduced. According to the present embodiment, it is possible to cope with liquid return to the compressor at the time of switching from the defrosting operation to the hot water storage operation.
The eighth embodiment of the present invention uses carbon dioxide as the refrigerant in the activation control device for the heat pump hot water supply apparatus according to the first to fourth embodiments, and exceeds the critical pressure on the high pressure side of the heat pump circuit by the compressor. Driving in a state. Even a heat pump hot water supply apparatus such as the present embodiment using carbon dioxide as a refrigerant and having a very high pressure on the high pressure side can be operated without causing the problem of liquid compression.
The activation control method for the heat pump water heater according to the ninth embodiment of the present invention includes at least a first operation region and a second operation region that is executed after the first operation region as the activation operation region. The first operation region is stored in advance, and a first constant frequency region for maintaining a predetermined frequency and a first variable frequency region for gradually increasing the operation frequency to a predetermined frequency in the first constant frequency region are stored in the first operation region. The second operation region has a second constant frequency region for maintaining a predetermined frequency, and the operation frequency is gradually changed from a predetermined frequency in the first constant frequency region to a predetermined frequency in the second constant frequency region. A second variable frequency region for determining the operating frequency at the time of stability of the compressor from the outside air temperature detected by the outside air temperature detecting means and the incoming water temperature detected by the incoming water temperature detecting means. Is higher than the operating frequency of the second constant frequency region, the first variable frequency region, the first constant frequency region, the second variable frequency region, and the second constant frequency region; In order, and then starting control is performed by gradually or stepwise increasing the compressor operating frequency up to the stable operating frequency, and the determined stable operating frequency is in the second constant frequency region. When lower than the operation frequency, the first variable frequency region, the first constant frequency region, the second variable frequency region, and the second constant frequency region are operated in order, and then until the stable operation frequency Start-up control is performed by gradually or gradually decreasing the operating frequency of the compressor. Liquid compression after the shell temperature of the compressor has risen sufficiently can be avoided by optimizing the amount of refrigerant sealed in the heat pump circuit, but during startup operation time when the shell temperature has not risen sufficiently A large amount of liquid refrigerant flows into the compressor. The liquid return to the compressor during the startup operation time occurs immediately after startup and after a predetermined time has elapsed. According to the present embodiment, at least the first operation region and the second operation region that is executed after the first operation region are stored in advance as the start operation region, and the first constant frequency region and By providing the second constant frequency region, the liquid return to the compressor immediately after startup avoids problems due to liquid compression by the first constant frequency region, and the liquid to the compressor after a predetermined time has elapsed. For the return, avoiding the problem due to the liquid compression by the second constant frequency region, it is possible to perform an early start-up operation while coping with the liquid return to the compressor during the startup operation time. In addition, according to the present embodiment, in order to determine the operating frequency at the time of particularly stable from the outside air temperature and the incoming water temperature, and to determine the operating frequency in the second constant frequency region based on the operating frequency at the time of stable. For example, even during winter operation where it takes time until the shell temperature rises, if the incoming water temperature is high, the frequency of the compressor does not rise unnecessarily, that is, without causing the problem of liquid compression. It can be performed.
The activation control method for a heat pump water heater according to the tenth embodiment of the present invention includes at least a first operation region and a second operation region that is executed after the first operation region as a start operation region. The first operation region is stored in advance, and a first constant frequency region for maintaining a predetermined frequency and a first variable frequency region for gradually increasing the operation frequency to a predetermined frequency in the first constant frequency region are stored in the first operation region. The second operation region has a second constant frequency region for maintaining a predetermined frequency, and the operation frequency is gradually changed from a predetermined frequency in the first constant frequency region to a predetermined frequency in the second constant frequency region. A second variable frequency region, a frequency within a predetermined range is stored as an operable frequency in the second constant frequency region, and the outside air temperature detected by the outside air temperature detecting unit and the incoming water temperature detecting unit The stable operation frequency of the compressor is determined from the incoming water temperature, and when the determined stable operation frequency is higher than the maximum frequency of the second constant frequency region, the second constant frequency region The first variable frequency region, the first constant frequency region, the second variable frequency region, and the second constant frequency region are sequentially operated until the operation frequency at the stable time When the start-up control is performed by gradually or stepwise increasing the operating frequency of the compressor, and the determined operating frequency at the time of stability is a frequency in a predetermined range of the second constant frequency region, The operation frequency in the constant frequency region is set as the stable operation frequency, and the first variable frequency region, the first constant frequency region, the second variable frequency region, and the second constant frequency region are sequentially operated. Start control with When the stable operation frequency is lower than the minimum frequency in the second constant frequency region, the operation frequency in the second constant frequency region is set to the minimum frequency, and the first variable frequency region and the first constant frequency region are set. The start-up control is performed by sequentially operating the frequency region, the second variable frequency region, and the second constant frequency region, and then gradually or stepwise decreasing the compressor operation frequency to the stable operation frequency. Is. Liquid compression after the shell temperature of the compressor has risen sufficiently can be avoided by optimizing the amount of refrigerant sealed in the heat pump circuit, but during startup operation time when the shell temperature has not risen sufficiently A large amount of liquid refrigerant flows into the compressor. The liquid return to the compressor during the startup operation time occurs immediately after startup and after a predetermined time has elapsed. According to the present embodiment, at least the first operation region and the second operation region that is executed after the first operation region are stored in advance as the start operation region, and the first constant frequency region and By providing the second constant frequency region, the liquid return to the compressor immediately after startup avoids problems due to liquid compression by the first constant frequency region, and the liquid to the compressor after a predetermined time has elapsed. For the return, avoiding the problem due to the liquid compression by the second constant frequency region, it is possible to perform an early start-up operation while coping with the liquid return to the compressor during the startup operation time. In addition, according to the present embodiment, in order to determine the operating frequency at the time of particularly stable from the outside air temperature and the incoming water temperature, and to determine the operating frequency in the second constant frequency region based on the operating frequency at the time of stable. For example, even during winter operation where it takes time until the shell temperature rises, if the incoming water temperature is high, the frequency of the compressor does not rise unnecessarily, that is, without causing the problem of liquid compression. It can be performed. Furthermore, according to the present embodiment, the operation frequency in the second constant frequency region is changed according to the operation frequency when the compressor is stable, so that the quick start-up operation can be performed more reliably while avoiding the problem of liquid compression. Can be realized.
The eleventh embodiment of the present invention is the defrosting return executed at the time of switching from the defrosting operation to the hot water storage operation as the activation operation region in the activation control method of the heat pump water heater according to the ninth or tenth embodiment. The operation area is stored in advance, and in the defrost return operation area, the operation frequency is gradually increased from the constant frequency area at the time of return to maintain a predetermined frequency and from the operation frequency at the time of defrost operation to the predetermined frequency in the constant frequency area at the time of return. When the defrosting completion detecting means detects the defrosting completion, the variable frequency area at the time of restoration and the constant frequency area at the time of restoration are operated in order. During operation in the constant frequency range of time, the expansion valve is throttled to switch to hot water storage operation, and then switching control is performed by gradually or stepwise increasing the compressor operation frequency to the stable operation frequency. It is intended. According to the present embodiment, it is possible to cope with liquid return to the compressor at the time of switching from the defrosting operation to the hot water storage operation.
In a twelfth embodiment of the present invention, in the activation control method for a heat pump water heater according to the ninth or tenth embodiment, carbon dioxide is used as a refrigerant, and a critical pressure is set on the high pressure side of the heat pump circuit by a compressor. It is to drive in the state of exceeding. Even a heat pump hot water supply apparatus such as the present embodiment using carbon dioxide as a refrigerant and having a very high pressure on the high pressure side can be operated without causing the problem of liquid compression.

以下本発明の一実施例におけるヒートポンプ給湯装置の起動制御装置および起動制御方法について説明する。
図1は、本実施例によるヒートポンプ給湯装置の回路構成図である。本実施例によるヒートポンプ給湯装置は、ヒートポンプ回路と貯湯回路とを備えている。ヒートポンプ回路は、圧縮機1、放熱器2、膨張弁3、及び蒸発器4を順に冷媒配管で接続して構成されている。ファン5は、蒸発器4に対向する位置に設けられている。
ここで、ヒートポンプ回路は、二酸化炭素を冷媒として用い、高圧側では臨界圧を越える状態で運転することが好ましい。圧縮機1は、冷媒を圧縮室に導入し、圧縮室からの吐出冷媒をシェル内に吐出させる高圧型圧縮機を用いることが好ましい。また、圧縮機1の圧縮室内が所定圧力を越えると圧縮室内の冷媒をシェル内に吐出させるバイパス機構を設けていることが好ましい。このバイパス機構としては、圧縮室の特に高圧側空間に密閉空間を開放する貫通孔と、この貫通孔を通常は閉塞して圧縮室内が所定圧力を越えると開放する差圧バルブによって構成することができる。
貯湯回路は、貯湯タンク6、循環ポンプ7、および放熱器2を順に水配管で接続して構成されている。なお、放熱器2の出口側水配管には三方弁8を設け、三方弁8の一方の出口接続口には水配管9Aが他方の出口接続口には水配管9Bが接続されている。水配管9Aは貯湯タンク6の上部に接続され、水配管9Bは貯湯タンク6の下部に接続されている。貯湯タンク6としては、上部に高温水が下部に低温水が分離して蓄えられる積層式貯湯タンクを用いる。また放熱器2は、冷媒と水とが対向して流れるように構成されている。
Hereinafter, a start control device and a start control method of a heat pump water heater in one embodiment of the present invention will be described.
FIG. 1 is a circuit configuration diagram of the heat pump water heater according to the present embodiment. The heat pump hot water supply apparatus according to this embodiment includes a heat pump circuit and a hot water storage circuit. The heat pump circuit is configured by connecting a compressor 1, a radiator 2, an expansion valve 3, and an evaporator 4 in order with refrigerant piping. The fan 5 is provided at a position facing the evaporator 4.
Here, it is preferable that the heat pump circuit is operated in a state where carbon dioxide is used as a refrigerant and the high pressure side exceeds the critical pressure. The compressor 1 is preferably a high-pressure compressor that introduces refrigerant into the compression chamber and discharges refrigerant discharged from the compression chamber into the shell. Further, it is preferable to provide a bypass mechanism that discharges the refrigerant in the compression chamber into the shell when the compression chamber of the compressor 1 exceeds a predetermined pressure. This bypass mechanism may be constituted by a through hole that opens a sealed space especially in the high pressure side space of the compression chamber, and a differential pressure valve that normally closes the through hole and opens when the compression chamber exceeds a predetermined pressure. it can.
The hot water storage circuit is configured by sequentially connecting a hot water storage tank 6, a circulation pump 7, and a radiator 2 with water pipes. Note that a three-way valve 8 is provided in the outlet-side water pipe of the radiator 2, and a water pipe 9A is connected to one outlet connection port of the three-way valve 8, and a water pipe 9B is connected to the other outlet connection port. The water pipe 9 </ b> A is connected to the upper part of the hot water storage tank 6, and the water pipe 9 </ b> B is connected to the lower part of the hot water storage tank 6. As the hot water storage tank 6, a stacked hot water storage tank in which high temperature water is separated in the upper part and low temperature water is separated and stored in the lower part is used. Further, the radiator 2 is configured such that the refrigerant and the water flow opposite to each other.

蒸発器4の出口側配管には、除霜運転の終了を検出する蒸発器出口温度検出手段(除霜完了検出手段)10が設けられ、循環ポンプ7の上流側には、放熱器2に導入する水温を検出する入水温度検出手段11が設けられ、ファン5の近傍には、外気温度を検出する外気温度検出手段12が設けられている。
なお、図示はしないが、貯湯タンク6には、上部に給湯用配管が、下部には給水用配管が接続され、給湯用配管は、浴槽、洗面、若しくはキッチンなどの蛇口、または暖房機用や追い焚き用の熱交換器の熱源側配管に接続される。暖房機用や追い焚き用の熱交換器の熱源側配管に接続される場合には、貯湯タンク6の下部に戻し配管が接続される。
The outlet pipe of the evaporator 4 is provided with an evaporator outlet temperature detecting means (defrosting completion detecting means) 10 for detecting the end of the defrosting operation, and is introduced into the radiator 2 upstream of the circulation pump 7. An incoming water temperature detecting means 11 for detecting the water temperature to be detected is provided, and an outside air temperature detecting means 12 for detecting the outside air temperature is provided in the vicinity of the fan 5.
Although not shown, the hot water storage tank 6 has a hot water supply pipe connected to the upper part and a lower part connected to a water supply pipe. The hot water supply pipe is a faucet for a bathtub, washbasin, kitchen, etc. It is connected to the heat source side piping of the heat exchanger for reheating. When connected to the heat source side pipe of the heat exchanger for heating or reheating, a return pipe is connected to the lower part of the hot water storage tank 6.

つぎに、本実施例によるヒートポンプ給湯装置の基本動作を説明する。
貯湯運転信号により、ヒートポンプ回路が運転され、冷媒は圧縮機1で圧縮され、高温高圧となった冷媒は放熱器2で冷却され、膨張弁3により減圧された後に、蒸発器4により大気から吸熱して蒸発し、圧縮機1に戻る。一方、貯湯タンク6の下部から循環ポンプ7により放熱器2に水が供給され、供給された水は、放熱器2で加熱される。そして、加熱され高温となった温水は、三方弁8、水配管9Aを通って貯湯タンク6の上部から流入する。従って高温水は、貯湯タンク6の上部から順次貯湯される。
なお、圧縮機1の起動運転時間や除霜運転時間のように、放熱器2の出口配管での温水温度が低い場合には、三方弁8の出口側接続口を水配管9B側に切換ることで低温水が貯湯タンク6の上部から供給されることを防止する。なお、放熱器2の出口側温水温度を検出する温度検出手段によって三方弁8の切換を行うことが好ましい。
Next, the basic operation of the heat pump hot water supply apparatus according to this embodiment will be described.
The heat pump circuit is operated by the hot water storage operation signal, the refrigerant is compressed by the compressor 1, the high-temperature and high-pressure refrigerant is cooled by the radiator 2, depressurized by the expansion valve 3, and then absorbs heat from the atmosphere by the evaporator 4. Then, it evaporates and returns to the compressor 1. On the other hand, water is supplied from the lower part of the hot water storage tank 6 to the radiator 2 by the circulation pump 7, and the supplied water is heated by the radiator 2. The heated hot water flows from the upper portion of the hot water storage tank 6 through the three-way valve 8 and the water pipe 9A. Accordingly, the hot water is sequentially stored from the upper part of the hot water storage tank 6.
In addition, when the hot water temperature in the exit piping of the radiator 2 is low like the starting operation time and the defrosting operation time of the compressor 1, the outlet side connection port of the three-way valve 8 is switched to the water piping 9B side. This prevents the low temperature water from being supplied from the upper part of the hot water storage tank 6. In addition, it is preferable to switch the three-way valve 8 by a temperature detection means for detecting the outlet side hot water temperature of the radiator 2.

つぎに、本実施例におけるヒートポンプ給湯装置の起動制御装置の構成について説明する。
図2は、本実施例によるヒートポンプ給湯装置の起動制御装置の構成を機能実現手段で表したブロック図である。
第1の記憶手段13には、外気温度および入水温度と圧縮機1の安定時の運転周波数との関係データを記憶した安定運転時条件データ記憶手段14と、起動運転領域の条件データを記憶した起動運転領域条件データ記憶手段15とを有している。
起動運転領域条件データ記憶手段15には、第1の運転領域と、第1の運転領域の後に実行される第2の運転領域と、第2の運転領域の後に実行される第3の運転領域と、除霜運転から貯湯運転への切換時に実行する除霜復帰運転領域とをあらかじめ記憶している。
Below, the structure of the starting control apparatus of the heat pump hot-water supply apparatus in a present Example is demonstrated.
FIG. 2 is a block diagram showing the configuration of the activation control device of the heat pump hot-water supply device according to the present embodiment using function realizing means.
The first storage means 13 stores the stable operation condition data storage means 14 that stores the relationship data between the outside air temperature and the incoming water temperature and the stable operation frequency of the compressor 1, and the condition data of the startup operation area. And a starting operation area condition data storage means 15.
The startup operation region condition data storage means 15 includes a first operation region, a second operation region that is executed after the first operation region, and a third operation region that is executed after the second operation region. And a defrost return operation region that is executed when switching from the defrost operation to the hot water storage operation is stored in advance.

第1の運転領域には、所定周波数を維持する第1の定周波数領域と、第1の定周波数領域の所定周波数まで運転周波数を徐々に増加させる第1の可変周波数領域とを有している。ここで第1の定周波数領域は、例えば液圧縮による問題を生じない運転周波数として所定周波数である48Hzを記憶している。また第1の可変周波数領域は、運転周波数として0Hzから48Hzの間の複数の運転周波数と、運転時間として所定時間である45秒を記憶している。また第1の運転領域の全体の時間として所定時間である2分を記憶している。
また、第2の運転領域には、所定周波数を維持する第2の定周波数領域と、第1の定周波数領域の所定周波数から第2の定周波数領域の所定周波数まで運転周波数を徐々に変更させる第2の可変周波数領域とを有している。ここで第2の定周波数領域は、例えば液圧縮による問題を生じない運転周波数として所定範囲の周波数として最大周波数58Hzから最小周波数44Hzを記憶している。また第2の可変周波数領域は、48Hzから第2の定周波数の間の周波数を複数に分割して順に指示することと、運転時間として所定時間である30秒を記憶している。また第2の運転領域の全体の時間として所定時間である2分を記憶している。
また、第3の運転領域には、所定周波数を維持する第3の定周波数領域と、第2の定周波数領域の所定周波数から第3の定周波数領域の所定周波数まで運転周波数を徐々に変更させる第3の可変周波数領域とを有している。ここで第3の定周波数領域は、例えば液圧縮による問題を生じない運転周波数として所定範囲の周波数として最大周波数72Hzから最小周波数40Hzを記憶している。また第3の可変周波数領域は、第2の定周波数から第3の定周波数の間の周波数を複数に分割して順に指示することと、運転時間として所定時間である30秒を記憶している。また第3の運転領域の全体の時間として所定時間である2分を記憶している。
また、除霜復帰運転領域には、所定周波数を維持する復帰時の定周波数領域と、除霜運転時の運転周波数から復帰時の定周波数領域の所定周波数まで運転周波数を徐々に減少させる復帰時の可変周波数領域とを有している。ここで復帰時の定周波数領域は、例えば液圧縮による問題を生じない運転周波数として所定周波数である56Hzを記憶している。また復帰時の可変周波数領域は、運転周波数として除霜運転終了時の運転周波数である80Hzから所定周波数である56Hzの間の時分割された複数の運転周波数を記憶している。また復帰時の運転領域の全体の時間として所定時間である90秒、除霜完了から貯湯運転切換までの所定時間である30秒を記憶している。
The first operating region has a first constant frequency region that maintains a predetermined frequency, and a first variable frequency region that gradually increases the operating frequency to a predetermined frequency in the first constant frequency region. . Here, the first constant frequency region stores, for example, 48 Hz which is a predetermined frequency as an operation frequency that does not cause a problem due to liquid compression. The first variable frequency region stores a plurality of operating frequencies between 0 Hz and 48 Hz as operating frequencies and 45 seconds as a predetermined time as operating time. Moreover, 2 minutes which are predetermined time is memorize | stored as the whole time of a 1st driving | operation area | region.
In the second operation region, the operation frequency is gradually changed from a second constant frequency region that maintains a predetermined frequency and a predetermined frequency in the first constant frequency region to a predetermined frequency in the second constant frequency region. And a second variable frequency region. Here, the second constant frequency region stores, for example, a maximum frequency of 58 Hz to a minimum frequency of 44 Hz as a predetermined range of frequencies that do not cause a problem due to liquid compression. The second variable frequency region stores a frequency between 48 Hz and the second constant frequency divided into a plurality of instructions and sequentially stores 30 seconds as a predetermined time as an operation time. Also, 2 minutes, which is a predetermined time, is stored as the entire time of the second operation region.
Further, in the third operation region, the operation frequency is gradually changed from the third constant frequency region that maintains the predetermined frequency and the predetermined frequency in the second constant frequency region to the predetermined frequency in the third constant frequency region. And a third variable frequency region. Here, the third constant frequency region stores, for example, a maximum frequency of 72 Hz to a minimum frequency of 40 Hz as an operation frequency that does not cause a problem due to liquid compression. In addition, the third variable frequency region stores a frequency between the second constant frequency and the third constant frequency by dividing the frequency into a plurality of instructions and sequentially storing 30 seconds as a predetermined time as an operation time. . In addition, 2 minutes, which is a predetermined time, is stored as the total time of the third operation region.
In addition, the defrost return operation region includes a constant frequency region at the time of return that maintains a predetermined frequency, and a return time that gradually decreases the operation frequency from the operation frequency at the time of defrost operation to a predetermined frequency in the constant frequency region at the time of return. Variable frequency region. Here, the constant frequency region at the time of return stores, for example, 56 Hz which is a predetermined frequency as an operation frequency that does not cause a problem due to liquid compression. The variable frequency region at the time of return stores a plurality of operation frequencies that are time-divided between 80 Hz that is the operation frequency at the end of the defrosting operation and 56 Hz that is the predetermined frequency as the operation frequency. Further, 90 seconds, which is a predetermined time, and 30 seconds, which is a predetermined time from completion of defrosting to hot water storage operation switching, are stored as the total time of the operation region at the time of return.

第2の記憶手段16には、決定された安定時の運転周波数を記憶した安定時運転周波数記憶手段17と、起動運転領域運転周波数記憶手段18とを有している。
安定時運転周波数決定手段19では、外気温度検出手段12および入水温度検出手段11からの検出値と安定運転時条件データ記憶手段14に記憶された条件データとから安定時の運転周波数を決定し、その結果を安定時運転周波数記憶手段17に記憶する。
起動運転領域運転周波数決定手段20では、安定時運転周波数記憶手段17に記憶された安定時の運転周波数と起動運転領域条件データ記憶手段15に記憶された条件データとから第2の定周波数領域または第3の定周波数領域での運転周波数を決定し、その結果を起動運転領域運転周波数記憶手段18に記憶する。
圧縮機運転指示手段21は、安定時運転周波数記憶手段17、起動運転領域運転周波数記憶手段18、起動運転領域条件データ記憶手段15から、運転タイミングに合わせて必要なデータを読み出して圧縮機1に対して運転指令を出力する。
起動運転領域条件データ記憶手段15から圧縮機運転指示手段21に対して読み出されるデータは、除霜運転から貯湯運転への切換時に実行する除霜復帰運転領域に関する条件データであり、除霜完了検出手段10からの信号がトリガーとなって読み出される。
The second storage unit 16 includes a stable operation frequency storage unit 17 that stores the determined stable operation frequency, and a startup operation region operation frequency storage unit 18.
The stable operation frequency determination means 19 determines the stable operation frequency from the detected values from the outside air temperature detection means 12 and the incoming water temperature detection means 11 and the condition data stored in the stable operation condition data storage means 14. The result is stored in the stable operation frequency storage means 17.
In the starting operation region operating frequency determining means 20, the second constant frequency region or the second constant frequency region or the condition data stored in the starting operation region condition data storing means 15 is stored in the stable operation frequency storing means 17. The operation frequency in the third constant frequency region is determined, and the result is stored in the start operation region operation frequency storage means 18.
The compressor operation instruction means 21 reads out necessary data from the stable operation frequency storage means 17, the start operation area operation frequency storage means 18, and the start operation area condition data storage means 15 in accordance with the operation timing, and sends it to the compressor 1. In response, an operation command is output.
The data read from the start operation area condition data storage means 15 to the compressor operation instruction means 21 is condition data relating to the defrost return operation area executed when switching from the defrost operation to the hot water storage operation, and the defrost completion detection is performed. A signal from the means 10 is read as a trigger.

つぎに、本実施例におけるヒートポンプ給湯装置の起動制御方法について説明する。
図3は、本実施例によるヒートポンプ給湯装置の起動制御方法を表したフローチャートである。
まず、運転開始にあたって外気温度と入水温度が検出される(ステップ1、ステップ2)。
そして、外気温度検出手段12によって検出した外気温度と入水温度検出手段11によって検出した入水温度とから圧縮機1の安定時の運転周波数(FN)を決定する(ステップ3)。この安定時の運転周波数(FN)の決定にあたっては、安定運転時条件データ記憶手段14に記憶された条件データが用いられる。また、決定された安定時の運転周波数(FN)は、安定時運転周波数記憶手段17に記憶される。
Next, an activation control method for the heat pump water heater in the present embodiment will be described.
FIG. 3 is a flowchart showing a start-up control method for the heat pump water heater according to this embodiment.
First, the outside air temperature and the incoming water temperature are detected at the start of operation (steps 1 and 2).
Then, a stable operation frequency (FN) of the compressor 1 is determined from the outside air temperature detected by the outside air temperature detecting means 12 and the incoming water temperature detected by the incoming water temperature detecting means 11 (step 3). In determining the stable operation frequency (FN), the condition data stored in the stable operation condition data storage means 14 is used. The determined stable operation frequency (FN) is stored in the stable operation frequency storage means 17.

つぎに、起動運転領域条件データ記憶手段15に記憶された第2の定周波数領域の運転周波数を決定する。
ステップ4において、第2の定周波数領域の最大周波数58Hz(F2H)よりも安定時の運転周波数(FN)が大きいか否かが判断される。安定時の運転周波数(FN)が第2の定周波数領域の最大周波数(F2H)よりも大きい場合には、第2の定周波数領域の運転周波数として、最大周波数(F2H)が決定される(ステップ5)。安定時の運転周波数(FN)が第2の定周波数領域の最大周波数(F2H)以下の場合には、ステップ6において、第2の定周波数領域の最小周波数44Hz(F2L)よりも安定時の運転周波数(FN)が小さいか否かが判断される。ステップ6において、安定時の運転周波数(FN)が第2の定周波数領域の最小周波数44Hz(F2L)よりも小さい場合には、第2の定周波数領域の運転周波数として、最小周波数(F2L)が決定される(ステップ7)。安定時の運転周波数(FN)が第2の定周波数領域の最小周波数(F2L)以上で第2の定周波数領域の最大周波数(F2H)以下の場合には、ステップ8において、第2の定周波数領域の運転周波数(F2)として安定時の運転周波数(FN)が決定される。
Next, the operation frequency of the second constant frequency region stored in the startup operation region condition data storage unit 15 is determined.
In step 4, it is determined whether or not the stable operation frequency (FN) is higher than the maximum frequency 58 Hz (F2H) in the second constant frequency region. When the stable operation frequency (FN) is larger than the maximum frequency (F2H) in the second constant frequency region, the maximum frequency (F2H) is determined as the operation frequency in the second constant frequency region (step) 5). When the stable operation frequency (FN) is equal to or lower than the maximum frequency (F2H) in the second constant frequency region, in step 6, the stable operation is performed at a frequency lower than the minimum frequency 44 Hz (F2L) in the second constant frequency region. It is determined whether the frequency (FN) is small. In step 6, when the stable operation frequency (FN) is smaller than the minimum frequency 44 Hz (F2L) in the second constant frequency region, the minimum frequency (F2L) is set as the operation frequency in the second constant frequency region. Determined (step 7). When the stable operation frequency (FN) is not less than the minimum frequency (F2L) of the second constant frequency region and not more than the maximum frequency (F2H) of the second constant frequency region, the second constant frequency is determined in step 8. The stable operation frequency (FN) is determined as the region operation frequency (F2).

つぎに、起動運転領域条件データ記憶手段15に記憶された第3の定周波数領域の運転周波数を決定する。
安定時の運転周波数(FN)が第2の定周波数領域の最大周波数(F2H)よりも大きい場合には、ステップ9において、第3の定周波数領域の最大周波数72Hz(F3H)よりも安定時の運転周波数(FN)が大きいか否かが判断される。安定時の運転周波数(FN)が第3の定周波数領域の最大周波数(F3H)よりも大きい場合には、第3の定周波数領域の運転周波数として、最大周波数(F3H)が決定される(ステップ10)。安定時の運転周波数(FN)が第3の定周波数領域の最大周波数(F3H)以下の場合には、ステップ11において、第3の定周波数領域の運転周波数(F3)として安定時の運転周波数(FN)が決定される。なお、新たな運転周波数(FN、F2、F3)が決定された場合には、その都度前回の運転周波数(FN、F2、F3)に代えて新たな運転周波数(FN)が記憶される。
Next, the operation frequency of the third constant frequency region stored in the startup operation region condition data storage unit 15 is determined.
If the stable operation frequency (FN) is larger than the maximum frequency (F2H) in the second constant frequency region, in step 9, the stable frequency is higher than the maximum frequency 72 Hz (F3H) in the third constant frequency region. It is determined whether the operating frequency (FN) is high. When the stable operation frequency (FN) is larger than the maximum frequency (F3H) of the third constant frequency region, the maximum frequency (F3H) is determined as the operation frequency of the third constant frequency region (step) 10). When the stable operation frequency (FN) is equal to or less than the maximum frequency (F3H) in the third constant frequency region, in step 11, the stable operation frequency (F3) is set as the third constant frequency region operation frequency (F3). FN) is determined. When a new operation frequency (FN, F2, F3) is determined, a new operation frequency (FN) is stored in place of the previous operation frequency (FN, F2, F3) each time.

図3で説明した本実施例によるヒートポンプ給湯装置の起動制御方法をグラフで表したものが図4である。
図4は、本実施例によるヒートポンプ給湯装置の起動時からの時間を横軸に圧縮機の運転周波数を縦軸に表した特性図である。
第1の運転領域(可変周波数領域および定周波数領域)は、外気温度および入水温度に関係なくあらかじめ設定された周波数(48Hz)で運転する。
第2の運転領域の定周波数領域は、運転可能な周波数として44Hz〜58Hzの範囲があらかじめ設定され、決定された安定時の運転周波数が58Hzより高い場合には58Hzで運転し、決定された安定時の運転周波数が58Hzより低い場合には、安定時の運転周波数で運転する。ただし、最小周波数を44Hzと設定している。
第3の運転領域の定周波数領域は、運転可能な周波数を40Hz〜72Hzの範囲があらかじめ設定され、決定された安定時の運転周波数が72Hzより高い場合には72Hzで運転し、決定された安定時の運転周波数が72Hzより低い場合は、安定時の運転周波数で運転する。ただし、最小周波数を40Hzと設定している。
圧縮機の安定時の運転周波数は、入水温度および外気温度によって変更する場合の他、季節、または使用者の設定温度などの運転条件によって変更可能な構成とすることが好ましい。
FIG. 4 is a graphical representation of the activation control method for the heat pump water heater according to the present embodiment described with reference to FIG.
FIG. 4 is a characteristic diagram in which the time from the start of the heat pump water heater according to the present embodiment is plotted on the horizontal axis and the operating frequency of the compressor is plotted on the vertical axis.
The first operation region (variable frequency region and constant frequency region) operates at a preset frequency (48 Hz) regardless of the outside air temperature and the incoming water temperature.
In the constant frequency region of the second operation region, a range of 44 Hz to 58 Hz is preset as an operable frequency, and when the determined stable operation frequency is higher than 58 Hz, the operation is performed at 58 Hz, and the determined stability When the operation frequency at the time is lower than 58 Hz, the operation is performed at the stable operation frequency. However, the minimum frequency is set to 44 Hz.
In the constant frequency region of the third operation region, the range of 40 Hz to 72 Hz is set in advance as the operable frequency, and when the determined stable operation frequency is higher than 72 Hz, the operation is performed at 72 Hz and the determined stability is determined. When the operation frequency is lower than 72 Hz, the operation is performed at the stable operation frequency. However, the minimum frequency is set to 40 Hz.
It is preferable that the operation frequency when the compressor is stable can be changed according to operation conditions such as a season or a user's set temperature, in addition to the case where the operation frequency is changed according to the incoming water temperature and the outside air temperature.

つぎに、本実施例によるヒートポンプ給湯装置の起動制御方法の一実験データを説明する。図5は冬期低入水温度時における起動時の圧縮機運転周波数の変化を示す特性図、図6は冬期高入水温度時における起動時の圧縮機運転周波数の変化を示す特性図、図7は冬期低入水温度時における起動特性図、図8は冬期運転起動後の圧縮機液バックと吸入過熱度を示す特性図、図9は冬期運転起動時の圧縮機シェル温度変化を示す特性図、図10は夏期低入水温度時における起動時の圧縮機運転周波数の変化を示す特性図、図11は夏期高入水温度時における起動時の圧縮機運転周波数の変化を示す特性図、図12は夏期運転起動後の圧縮機液バックと吸入過熱度を示す特性図である。
図5から図12に示す実験データを以下に説明する。
Next, one experimental data of the activation control method for the heat pump water heater according to the present embodiment will be described. FIG. 5 is a characteristic diagram showing changes in compressor operating frequency at start-up at a low winter water temperature, FIG. 6 is a characteristic diagram showing changes in compressor operating frequency at start-up at a high winter water temperature, and FIG. 7 is winter. FIG. 8 is a characteristic diagram showing a compressor liquid back and suction superheat degree after starting winter operation, FIG. 9 is a characteristic diagram showing a change in compressor shell temperature at the start of winter operation, FIG. Is a characteristic diagram showing changes in compressor operating frequency at start-up at summer low water inlet temperature, FIG. 11 is a characteristic diagram showing change in compressor operating frequency at start-up at summer high water inlet temperature, and FIG. 12 is summer operation start-up. It is a characteristic view which shows the back compressor liquid back | bag and suction | inhalation superheat degree.
The experimental data shown in FIGS. 5 to 12 will be described below.

図5は、入水温度9℃を出湯温度90℃に沸き上げる場合であり、運転初期は48Hzで起動し、所定温度90℃にするために、安定時の運転周波数である72Hzまで、段階的に周波数を増加する。周波数72Hzは、安定時の所定加熱能力を確保するために入水温度と外気温度から予め設定されている。また図6は、入水温度45℃を出湯温度90℃に沸き上げる場合であり、この場合には、運転初期は同じく48Hzで起動するが、安定時の運転周波数が40Hzとなるため、48Hzから40Hzに運転周波数を下げている。
図7は、冬期起動後の加熱能力と出湯温度変化であり、周波数72Hzに達した時点では、出湯温度および加熱能力は未だ安定せず所定値に達していない。
図8は、冬期起動後の圧縮機へ流入する冷媒状態を表している。冷時起動、熱時起動ともに起動直後の略1分間は液バックし、その際に48Hzの低周波数で運転する。そして、冷時起動時の1〜7分間はガス化した冷媒が圧縮機に吸入する。さらに、7分以降は液バックするが、図9に表すように圧縮機シェル温度は50〜60℃まで上昇しているため、高周波数で運転する。一方、熱時起動時は絶えず液バックするが、圧縮機シェル温度は高いため、異常な液圧縮にはならない。
図10から図12は夏期のデータで、図5、図6、図8に対応する。
FIG. 5 shows a case where the incoming water temperature is raised to 9 ° C. and the hot water temperature is raised to 90 ° C. The initial operation starts at 48 Hz, and in order to obtain a predetermined temperature of 90 ° C., the operation frequency is stabilized at 72 Hz. Increase frequency. The frequency of 72 Hz is set in advance from the incoming water temperature and the outside air temperature in order to ensure a predetermined heating capacity when stable. FIG. 6 shows a case where the incoming water temperature is 45 ° C. and the hot water temperature is 90 ° C. In this case, the initial operation starts at 48 Hz, but the stable operating frequency is 40 Hz. The operating frequency has been lowered.
FIG. 7 shows the heating capacity and the hot water temperature change after the start in winter, and when the frequency reaches 72 Hz, the hot water temperature and the heating capacity are not yet stabilized and have not reached the predetermined values.
FIG. 8 shows the state of the refrigerant flowing into the compressor after winter start-up. Both cold start and hot start are backed up for approximately 1 minute immediately after start-up, and at that time, operation is performed at a low frequency of 48 Hz. And the gasified refrigerant | coolant suck | inhales to a compressor for 1 to 7 minutes at the time of cold start. Furthermore, although the liquid is back after 7 minutes, as shown in FIG. 9, the compressor shell temperature has risen to 50 to 60 ° C., so the operation is performed at a high frequency. On the other hand, the liquid is constantly backed up at the time of start-up when heated, but because the compressor shell temperature is high, abnormal liquid compression does not occur.
FIGS. 10 to 12 show summer data and correspond to FIGS. 5, 6, and 8.

図13、図14は除霜運転から貯湯運転に切換った時の圧縮機の駆動周波数変化を示す特性図である。
本実施例の場合、除霜終了時には圧縮機シェル温度が比較的高いため、貯湯運転に切換る起動時の運転周波数は1分間、56Hzで運転し、その後に78Hzに上昇させる。
除霜運転時に、蒸発器出口の冷媒温度が6℃に達したことを検出すると、圧縮機の運転周波数を56Hzに下げる。すなわち、蒸発器に付着している霜が除霜されると霜取りに奪われる冷媒の熱が少なくなるため、蒸発器出口の冷媒温度が0℃から過熱ガスの6℃に上昇する。その温度変化を検出し、除霜終了と判断して、貯湯運転に移行するために運転周波数を一旦56Hzに下げてから貯湯運転に移行する。
安定時の運転周波数78Hzは、先の起動制御と同様に外気温度と入水温度を検出して、その検出温度に基づき決定した圧縮機の安定時の運転周波数で運転する。
13 and 14 are characteristic diagrams showing changes in the drive frequency of the compressor when the defrosting operation is switched to the hot water storage operation.
In the case of this embodiment, since the compressor shell temperature is relatively high at the end of defrosting, the operating frequency at the time of switching to hot water storage operation is operated at 56 Hz for 1 minute and then increased to 78 Hz.
When detecting that the refrigerant temperature at the evaporator outlet has reached 6 ° C. during the defrosting operation, the operation frequency of the compressor is lowered to 56 Hz. That is, when the frost adhering to the evaporator is defrosted, the heat of the refrigerant taken away by the defrosting is reduced, so that the refrigerant temperature at the evaporator outlet rises from 0 ° C. to 6 ° C. of superheated gas. The temperature change is detected, it is determined that the defrosting is completed, and the operation frequency is temporarily lowered to 56 Hz in order to shift to the hot water storage operation, and then the hot water storage operation is started.
As for the stable operation frequency of 78 Hz, the outside air temperature and the incoming water temperature are detected in the same manner as in the previous startup control, and the compressor is operated at the stable operation frequency determined based on the detected temperature.

以上のように、本実施例によれば運転起動時に圧縮機の駆動周波数を低くして立ち上げることによって、急激な液戻りを防止することができる。特に、圧縮機冷時起動時に低周波数で起動することで、圧縮機メカ部の焼き付け防止と異常な液圧縮を防止できる。そして、圧縮機シェル温度がある程度上昇すれば、運転周波数を大きくして運転する。圧縮機シェル温度が高い場合に液戻りがあると、圧縮機のメカ部から受熱して冷媒乾き度が大きくなるか、あるいは冷媒が気化するため、異常な液圧縮が防止できる。特に、高圧型圧縮機とすることによりこれらの効果を顕著に得ることができる。   As described above, according to the present embodiment, rapid liquid return can be prevented by starting up the compressor by lowering the drive frequency at the start of operation. In particular, by starting at a low frequency when the compressor is cold, it is possible to prevent seizure of the compressor mechanism and abnormal liquid compression. If the compressor shell temperature rises to some extent, the operation frequency is increased. If there is a liquid return when the compressor shell temperature is high, heat is received from the mechanical part of the compressor and the dryness of the refrigerant increases, or the refrigerant is vaporized, so that abnormal liquid compression can be prevented. In particular, these effects can be remarkably obtained by using a high-pressure compressor.

本発明によるヒートポンプ給湯装置は、一般家庭における浴室の浴槽に給湯する追い炊き機能付きの給湯機として有用であり、浴槽の追い炊き機能に加えて、又は浴槽の追い炊き機能に変えて床暖房などの暖房機能を備えた給湯機として利用することができる。   The heat pump water heater according to the present invention is useful as a hot water heater with a reheating function for supplying hot water to a bath tub in a general home. In addition to the reheating function of the bathtub or in place of the reheating function of the bathtub, floor heating, etc. It can be used as a water heater with a heating function.

本実施例によるヒートポンプ給湯装置の回路構成図Circuit configuration diagram of heat pump water heater according to this embodiment 本実施例によるヒートポンプ給湯装置の起動制御装置の構成を機能実現手段であらわしたブロック図The block diagram which represented the structure of the starting control apparatus of the heat pump hot-water supply apparatus by a present Example with the function implementation means 本実施例によるヒートポンプ給湯装置の起動制御方法をあらわしたフローチャートThe flowchart showing the activation control method of the heat pump water heater according to the present embodiment 本実施例によるヒートポンプ給湯装置の起動時からの時間を横軸に圧縮機の運転周波数を縦軸に表した特性図Characteristic diagram showing time from start of heat pump water heater according to the present embodiment on the horizontal axis and operating frequency of the compressor on the vertical axis 冬期低入水温度時における起動時の圧縮機運転周波数の変化を示す特性図Characteristic chart showing changes in compressor operating frequency at start-up at low water temperature in winter 冬期高入水温度時における起動時の圧縮機運転周波数の変化を示す特性図Characteristic chart showing changes in compressor operating frequency at start-up at high water inlet temperature in winter 冬期低入水温度時における起動特性図Start-up characteristics at low water temperature in winter 冬期運転起動後の圧縮機液バックと吸入過熱度を示す特性図Characteristic chart showing compressor liquid back and suction superheat degree after start of winter operation 冬期運転起動時の圧縮機シェル温度変化を示す特性図Characteristic chart showing compressor shell temperature change at start of winter operation 夏期低入水温度時における起動時の圧縮機運転周波数の変化を示す特性図Characteristic chart showing changes in compressor operating frequency at start-up at low water temperature in summer 夏期高入水温度時における起動時の圧縮機運転周波数の変化を示す特性図Characteristic chart showing change in compressor operating frequency at start-up at high water temperature in summer 夏期運転起動後の圧縮機液バックと吸入過熱度を示す特性図Characteristic chart showing compressor liquid back and suction superheat after start of summer operation 除霜運転から貯湯運転への切換え時の圧縮機の駆動周波数変化を示す特性図Characteristic chart showing changes in compressor drive frequency when switching from defrosting operation to hot water storage operation 除霜運転から貯湯運転への切換え時の圧縮機のシェル温度変化を示す特性図Characteristic chart showing changes in compressor shell temperature when switching from defrosting operation to hot water storage operation

符号の説明Explanation of symbols

1 圧縮機
2 放熱器
3 膨張弁
4 蒸発器
6 貯湯タンク
DESCRIPTION OF SYMBOLS 1 Compressor 2 Radiator 3 Expansion valve 4 Evaporator 6 Hot water storage tank

Claims (12)

圧縮機と放熱器とを有するヒートポンプ回路と、前記放熱器で加熱した温水を貯湯タンクに貯留する貯湯回路とを備え、前記ヒートポンプ回路には、レシーバおよびアキュムレータを備えず、前記圧縮機として回転数可変の圧縮機を用い、前記圧縮機の起動時から安定時までの起動運転領域における周波数制御を行い、前記起動運転領域において所定周波数を維持する定周波領域を少なくとも1つ有することを特徴とするヒートポンプ給湯装置の起動制御装置。   A heat pump circuit having a compressor and a radiator; and a hot water storage circuit for storing hot water heated by the radiator in a hot water storage tank. The heat pump circuit does not include a receiver and an accumulator, and the number of revolutions as the compressor. A variable compressor is used, frequency control is performed in a start-up operation region from the start-up to the stable time of the compressor, and at least one constant frequency region that maintains a predetermined frequency in the start-up operation region is provided. Start-up control device for heat pump water heater. 圧縮機と放熱器とを有するヒートポンプ回路と、前記放熱器で加熱した温水を貯湯タンクに貯留する貯湯回路とを備え、前記ヒートポンプ回路には、レシーバおよびアキュムレータを備えず、前記圧縮機として回転数可変の圧縮機を用い、前記圧縮機の起動時から安定時までの起動運転領域における周波数制御を行うヒートポンプ給湯装置の起動制御装置であって、
前記起動運転領域として、少なくとも第1の運転領域と、当該第1の運転領域の後に実行される第2の運転領域とをあらかじめ記憶し、
前記第1の運転領域には、所定周波数を維持する第1の定周波数領域と、前記第1の定周波数領域の所定周波数まで運転周波数を徐々に増加させる第1の可変周波数領域とを有し、
前記第2の運転領域には、所定周波数を維持する第2の定周波数領域と、前記第1の定周波数領域の所定周波数から前記第2の定周波数領域の所定周波数まで運転周波数を徐々に変更させる第2の可変周波数領域とを有することを特徴とするヒートポンプ給湯装置の起動制御装置。
A heat pump circuit having a compressor and a radiator; and a hot water storage circuit for storing hot water heated by the radiator in a hot water storage tank. The heat pump circuit does not include a receiver and an accumulator, and the number of revolutions as the compressor. Using a variable compressor, a start-up control device for a heat pump water heater that performs frequency control in the start-up operation region from the start-up time to the stable time of the compressor,
As the start-up operation region, at least a first operation region and a second operation region that is executed after the first operation region are stored in advance,
The first operation region includes a first constant frequency region that maintains a predetermined frequency, and a first variable frequency region that gradually increases the operation frequency to the predetermined frequency of the first constant frequency region. ,
The second operation region includes a second constant frequency region that maintains a predetermined frequency, and gradually changes the operation frequency from a predetermined frequency in the first constant frequency region to a predetermined frequency in the second constant frequency region. A start-up control device for a heat pump hot-water supply device.
前記圧縮機の安定時の運転周波数を、季節、入水温度、外気温度、または使用者の設定温度などの運転条件によって変更可能な構成とし、
前記第2の定周波数領域での運転可能な周波数として所定範囲の周波数を記憶し、
前記第2の定周波数領域での運転周波数を前記圧縮機の安定時の運転周波数によって変更可能な構成としたことを特徴とする請求項2に記載のヒートポンプ給湯装置の起動制御装置。
The stable operation frequency of the compressor is configured to be changeable according to operation conditions such as season, incoming water temperature, outside air temperature, or user set temperature,
Storing a predetermined range of frequencies as operable frequencies in the second constant frequency region;
The start-up control device for a heat pump hot-water supply device according to claim 2, wherein the operation frequency in the second constant frequency region can be changed according to the operation frequency when the compressor is stable.
外気温度を検出する外気温度検出手段と、
前記放熱器に導入する水温を検出する入水温度検出手段と、
外気温度および入水温度と前記圧縮機の安定時の運転周波数との関係データを記憶した安定運転時条件データ記憶手段と、
前記起動運転領域の条件データを記憶した起動運転領域条件データ記憶手段と、
前記外気温度検出手段および前記入水温度検出手段からの検出値と前記安定運転時条件データ記憶手段に記憶された条件データとから安定時の運転周波数を決定する安定時運転周波数決定手段と、
前記安定時運転周波数決定手段で決定された安定時の運転周波数と前記起動運転領域条件データ記憶手段に記憶された条件データとから前記第2の定周波数領域での運転周波数を決定する起動運転領域運転周波数決定手段とを備えたことを特徴とする請求項3に記載のヒートポンプ給湯装置の起動制御装置。
Outside temperature detecting means for detecting outside temperature;
Incoming water temperature detecting means for detecting the water temperature introduced into the radiator,
Stable operation condition data storage means storing relational data between the outside air temperature and the incoming water temperature and the stable operation frequency of the compressor;
A starting operation region condition data storage means for storing condition data of the starting operation region;
A stable operating frequency determining means for determining a stable operating frequency from the detected value from the outside air temperature detecting means and the incoming water temperature detecting means and the condition data stored in the stable operating condition data storage means;
A start-up operation region in which the operation frequency in the second constant frequency region is determined from the stable operation frequency determined by the stable-time operation frequency determining unit and the condition data stored in the start-up operation region condition data storage unit. The start-up control device for a heat pump hot-water supply device according to claim 3, further comprising an operating frequency determining means.
前記圧縮機として、吸入冷媒を圧縮室に導入し、圧縮室からの吐出冷媒をシェル内に吐出させる高圧型圧縮機を用いたことを特徴とする請求項1から請求項4のいずれかに記載のヒートポンプ給湯装置の起動制御装置。   5. The high-pressure compressor according to claim 1, wherein a high-pressure compressor that introduces suction refrigerant into the compression chamber and discharges refrigerant discharged from the compression chamber into the shell is used as the compressor. Start-up control device for heat pump water heater. 前記圧縮機の圧縮室内が所定圧力を越えると前記圧縮室内の冷媒をシェル内に吐出させるバイパス機構を設けたことを特徴とする請求項1から請求項4のいずれかに記載のヒートポンプ給湯装置の起動制御装置。   The heat pump hot water supply device according to any one of claims 1 to 4, further comprising a bypass mechanism that discharges refrigerant in the compression chamber into the shell when a pressure in the compression chamber of the compressor exceeds a predetermined pressure. Start control device. 膨張弁を開放して蒸発器の除霜を行う除霜運転から、前記放熱器で加熱した温水を前記貯湯タンクに貯留する貯湯運転への切換制御を行うヒートポンプ給湯装置の起動制御装置において、
前記起動運転領域として、前記除霜運転から前記貯湯運転への切換時に実行する除霜復帰運転領域をあらかじめ記憶し、
前記除霜復帰運転領域には、所定周波数を維持する復帰時の定周波数領域と、前記除霜運転時の運転周波数から前記復帰時の定周波数領域の所定周波数まで運転周波数を徐々に減少させる復帰時の可変周波数領域とを有することを特徴とする請求項1から請求項4のいずれかに記載のヒートポンプ給湯装置の起動制御装置。
In the start control device of the heat pump hot water supply device that performs switching control from the defrosting operation in which the expansion valve is opened to defrost the evaporator to the hot water storage operation in which the hot water heated by the radiator is stored in the hot water storage tank,
As the start-up operation area, previously stored a defrost return operation area that is executed when switching from the defrost operation to the hot water storage operation,
The defrost return operation region includes a constant frequency region at the time of return that maintains a predetermined frequency, and a return that gradually decreases the operation frequency from the operation frequency at the time of the defrost operation to a predetermined frequency in the constant frequency region at the time of return. The start-up control device for a heat pump hot-water supply device according to any one of claims 1 to 4, wherein the start-up control device has a variable frequency region at the time.
冷媒として二酸化炭素を用い、前記圧縮機によって前記ヒートポンプ回路の高圧側では臨界圧を越える状態で運転することを特徴とする請求項1から請求項4のいずれかに記載のヒートポンプ給湯装置の起動制御装置。   The start control of the heat pump water heater according to any one of claims 1 to 4, wherein carbon dioxide is used as a refrigerant, and the compressor is operated in a state exceeding a critical pressure on a high pressure side of the heat pump circuit. apparatus. 圧縮機と放熱器とを有するヒートポンプ回路と、前記放熱器で加熱した温水を貯湯タンクに貯留する貯湯回路と、外気温度を検出する外気温度検出手段と、前記放熱器に導入する水温を検出する入水温度検出手段とを備え、前記圧縮機として回転数可変の圧縮機を用い、前記圧縮機の起動時から安定時までの起動運転時間における周波数制御を行うヒートポンプ給湯装置の起動制御方法であって、
前記起動運転領域として、少なくとも第1の運転領域と、当該第1の運転領域の後に実行される第2の運転領域とをあらかじめ記憶し、
前記第1の運転領域には、所定周波数を維持する第1の定周波数領域と、前記第1の定周波数領域の所定周波数まで運転周波数を徐々に増加させる第1の可変周波数領域とを有し、
前記第2の運転領域には、所定周波数を維持する第2の定周波数領域と、前記第1の定周波数領域の所定周波数から前記第2の定周波数領域の所定周波数まで運転周波数を徐々に変更させる第2の可変周波数領域とを有し、
前記外気温度検出手段によって検出した外気温度と前記入水温度検出手段によって検出した入水温度とから圧縮機の安定時の運転周波数を決定し、
決定された前記安定時の運転周波数が、前記第2の定周波数領域の運転周波数よりも高い場合には、前記第1の可変周波数領域、前記第1の定周波数領域、前記第2の可変周波数領域、および前記第2の定周波数領域とを順に運転し、その後安定時の運転周波数まで前記圧縮機の運転周波数を徐々にまたは段階的に増加することで起動制御を行い、
決定された前記安定時の運転周波数が、前記第2の定周波数領域の運転周波数よりも低い場合には、前記第1の可変周波数領域、前記第1の定周波数領域、前記第2の可変周波数領域、および前記第2の定周波数領域とを順に運転し、その後安定時の運転周波数まで前記圧縮機の運転周波数を徐々にまたは段階的に減少することで起動制御を行うことを特徴とするヒートポンプ給湯装置の起動制御方法。
A heat pump circuit having a compressor and a radiator; a hot water storage circuit for storing hot water heated by the radiator in a hot water storage tank; an outside air temperature detecting means for detecting an outside air temperature; and a water temperature to be introduced into the radiator. A heat pump water heater start-up control method for controlling the frequency in the start-up operation time from the start-up time of the compressor to a stable time using a compressor having a variable rotation speed as the compressor. ,
As the start-up operation region, at least a first operation region and a second operation region that is executed after the first operation region are stored in advance,
The first operation region includes a first constant frequency region that maintains a predetermined frequency, and a first variable frequency region that gradually increases the operation frequency to the predetermined frequency of the first constant frequency region. ,
The second operation region includes a second constant frequency region that maintains a predetermined frequency, and gradually changes the operation frequency from a predetermined frequency in the first constant frequency region to a predetermined frequency in the second constant frequency region. A second variable frequency region to be
Determine the operating frequency at the time of stability of the compressor from the outside air temperature detected by the outside air temperature detecting means and the incoming water temperature detected by the incoming water temperature detecting means,
When the determined operation frequency at the time of stability is higher than the operation frequency in the second constant frequency region, the first variable frequency region, the first constant frequency region, and the second variable frequency Region, and the second constant frequency region in order, and then starting control by gradually or stepwise increasing the operating frequency of the compressor until the stable operating frequency,
When the determined operation frequency at the time of stability is lower than the operation frequency in the second constant frequency region, the first variable frequency region, the first constant frequency region, and the second variable frequency And a second constant frequency region in order, and then starting control is performed by gradually or stepwise decreasing the operating frequency of the compressor to a stable operating frequency. Start-up control method for hot water supply device.
圧縮機と放熱器とを有するヒートポンプ回路と、前記放熱器で加熱した温水を貯湯タンクに貯留する貯湯回路と、外気温度を検出する外気温度検出手段と、前記放熱器に導入する水温を検出する入水温度検出手段とを備え、前記圧縮機として回転数可変の圧縮機を用い、前記圧縮機の起動時から安定時までの起動運転時間における周波数制御を行うヒートポンプ給湯装置の起動制御方法であって、
前記起動運転領域として、少なくとも第1の運転領域と、当該第1の運転領域の後に実行される第2の運転領域とをあらかじめ記憶し、
前記第1の運転領域には、所定周波数を維持する第1の定周波数領域と、前記第1の定周波数領域の所定周波数まで運転周波数を徐々に増加させる第1の可変周波数領域とを有し、
前記第2の運転領域には、所定周波数を維持する第2の定周波数領域と、前記第1の定周波数領域の所定周波数から前記第2の定周波数領域の所定周波数まで運転周波数を徐々に変更させる第2の可変周波数領域とを有し、
前記第2の定周波数領域での運転可能な周波数として所定範囲の周波数を記憶し、
前記外気温度検出手段によって検出した外気温度と前記入水温度検出手段によって検出した入水温度とから圧縮機の安定時の運転周波数を決定し、
決定された前記安定時の運転周波数が、前記第2の定周波数領域の最大周波数よりも高い場合には、前記第2の定周波数領域での運転周波数を前記最大周波数とし、前記第1の可変周波数領域、前記第1の定周波数領域、前記第2の可変周波数領域、および前記第2の定周波数領域とを順に運転し、その後安定時の運転周波数まで前記圧縮機の運転周波数を徐々にまたは段階的に増加することで起動制御を行い、
決定された前記安定時の運転周波数が、前記第2の定周波数領域の所定範囲の周波数である場合には、前記第2の定周波数領域での運転周波数を前記安定時の運転周波数とし、前記第1の可変周波数領域、前記第1の定周波数領域、前記第2の可変周波数領域、および前記第2の定周波数領域とを順に運転することで起動制御を行い、
決定された前記安定時の運転周波数が、前記第2の定周波数領域の最小周波数よりも低い場合には、前記第2の定周波数領域での運転周波数を前記最小周波数とし、前記第1の可変周波数領域、前記第1の定周波数領域、前記第2の可変周波数領域、および前記第2の定周波数領域とを順に運転し、その後安定時の運転周波数まで前記圧縮機の運転周波数を徐々にまたは段階的に減少することで起動制御を行うことを特徴とするヒートポンプ給湯装置の起動制御方法。
A heat pump circuit having a compressor and a radiator; a hot water storage circuit for storing hot water heated by the radiator in a hot water storage tank; an outside air temperature detecting means for detecting an outside air temperature; and a water temperature to be introduced into the radiator. A heat pump water heater start-up control method for controlling the frequency in the start-up operation time from the start-up time of the compressor to a stable time using a compressor having a variable rotation speed as the compressor. ,
As the start-up operation region, at least a first operation region and a second operation region that is executed after the first operation region are stored in advance,
The first operation region includes a first constant frequency region that maintains a predetermined frequency, and a first variable frequency region that gradually increases the operation frequency to the predetermined frequency of the first constant frequency region. ,
The second operation region includes a second constant frequency region that maintains a predetermined frequency, and gradually changes the operation frequency from a predetermined frequency in the first constant frequency region to a predetermined frequency in the second constant frequency region. A second variable frequency region to be
Storing a predetermined range of frequencies as operable frequencies in the second constant frequency region;
Determine the operating frequency at the time of stability of the compressor from the outside air temperature detected by the outside air temperature detecting means and the incoming water temperature detected by the incoming water temperature detecting means,
When the determined operation frequency at the time of stability is higher than the maximum frequency in the second constant frequency region, the operation frequency in the second constant frequency region is set as the maximum frequency, and the first variable The frequency region, the first constant frequency region, the second variable frequency region, and the second constant frequency region are operated in order, and thereafter the operation frequency of the compressor is gradually or until the stable operation frequency. Start control by increasing in stages,
When the determined operation frequency at the time of stability is a frequency in a predetermined range of the second constant frequency region, the operation frequency in the second constant frequency region is set as the operation frequency at the time of stabilization, and The start control is performed by sequentially operating the first variable frequency region, the first constant frequency region, the second variable frequency region, and the second constant frequency region,
When the determined operation frequency at the time of stability is lower than the minimum frequency in the second constant frequency region, the operation frequency in the second constant frequency region is set as the minimum frequency, and the first variable The frequency region, the first constant frequency region, the second variable frequency region, and the second constant frequency region are operated in order, and thereafter the operation frequency of the compressor is gradually or until the stable operation frequency. A start-up control method for a heat pump water heater, wherein start-up control is performed by decreasing stepwise.
除霜運転の終了を検出する除霜完了検出手段を有し、膨張弁を開放して蒸発器の除霜を行う除霜運転から、前記放熱器で加熱した温水を前記貯湯タンクに貯留する貯湯運転への切換制御において、
前記起動運転領域として、前記除霜運転から前記貯湯運転への切換時に実行する除霜復帰運転領域をあらかじめ記憶し、
前記除霜復帰運転領域には、所定周波数を維持する復帰時の定周波数領域と、前記除霜運転時の運転周波数から前記復帰時の定周波数領域の所定周波数まで運転周波数を徐々に減少させる復帰時の可変周波数領域とを有し、
前記除霜完了検出手段から除霜完了を検出した場合に、前記復帰時の可変周波数領域、および前記復帰時の定周波数領域とを順に運転し、前記復帰時の定周波数領域での運転中に前記膨張弁を絞ることで前記貯湯運転に切換え、その後安定時の運転周波数まで前記圧縮機の運転周波数を徐々にまたは段階的に増加することで切換制御を行うことを特徴とする請求項9または請求項10に記載のヒートポンプ給湯装置の起動制御方法。
Hot water storage that has defrosting completion detection means for detecting the end of the defrosting operation, and stores hot water heated by the radiator in the hot water storage tank from the defrosting operation that opens the expansion valve to defrost the evaporator In switching control to operation,
As the start-up operation area, previously stored a defrost return operation area that is executed when switching from the defrost operation to the hot water storage operation,
The defrost return operation region includes a constant frequency region at the time of return that maintains a predetermined frequency, and a return that gradually decreases the operation frequency from the operation frequency at the time of the defrost operation to a predetermined frequency in the constant frequency region at the time of return. Variable frequency region of time,
When defrosting completion is detected from the defrosting completion detecting means, the variable frequency region at the time of return and the constant frequency region at the time of return are sequentially operated, and during operation in the constant frequency region at the time of return The switching control is performed by gradually or stepwise increasing the operation frequency of the compressor until the operation frequency is stabilized after the expansion valve is throttled to the stable operation frequency. The start-up control method of the heat pump hot-water supply apparatus of Claim 10.
冷媒として二酸化炭素を用い、前記圧縮機によって前記ヒートポンプ回路の高圧側では臨界圧を越える状態で運転することを特徴とする請求項9または請求項10に記載のヒートポンプ給湯装置の起動制御方法。
The start-up control method for a heat pump water heater according to claim 9 or 10, wherein carbon dioxide is used as a refrigerant, and the compressor is operated in a state exceeding a critical pressure on a high pressure side of the heat pump circuit.
JP2003388192A 2003-11-18 2003-11-18 Start-up control device and start-up control method for heat pump water heater Expired - Fee Related JP3919736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003388192A JP3919736B2 (en) 2003-11-18 2003-11-18 Start-up control device and start-up control method for heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003388192A JP3919736B2 (en) 2003-11-18 2003-11-18 Start-up control device and start-up control method for heat pump water heater

Publications (2)

Publication Number Publication Date
JP2005147584A true JP2005147584A (en) 2005-06-09
JP3919736B2 JP3919736B2 (en) 2007-05-30

Family

ID=34695340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003388192A Expired - Fee Related JP3919736B2 (en) 2003-11-18 2003-11-18 Start-up control device and start-up control method for heat pump water heater

Country Status (1)

Country Link
JP (1) JP3919736B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040555A (en) * 2005-08-01 2007-02-15 Matsushita Electric Ind Co Ltd Heat pump type water heater
JP2008157596A (en) * 2006-12-26 2008-07-10 Toshiba Kyaria Kk Air conditioner
JP2009243774A (en) * 2008-03-31 2009-10-22 Panasonic Corp Heat pump type water heater
JP2010169352A (en) * 2009-01-26 2010-08-05 Panasonic Corp Heat pump water heater
JP2010243111A (en) * 2009-04-08 2010-10-28 Mitsubishi Electric Corp Heat pump type water heater
JP2011075257A (en) * 2009-10-02 2011-04-14 Hitachi Appliances Inc Heat pump type water heater
JP2012032091A (en) * 2010-07-30 2012-02-16 Fujitsu General Ltd Heat pump cycle system
JP2016044856A (en) * 2014-08-21 2016-04-04 パナソニックIpマネジメント株式会社 Air conditioner
EP2360439A4 (en) * 2009-12-28 2016-07-06 Daikin Ind Ltd Heat pump system
JPWO2015198424A1 (en) * 2014-06-25 2017-04-20 三菱電機株式会社 Heat pump equipment
CN109059253A (en) * 2018-08-04 2018-12-21 齐凤臣 A kind of frequency conversion constant temperature constant pressure water supply gas fired-boiler and its method of supplying water
CN111121237A (en) * 2019-12-27 2020-05-08 广东美的白色家电技术创新中心有限公司 Air conditioner, control method thereof, server, and computer-readable storage medium
JP2020079695A (en) * 2018-11-12 2020-05-28 杭州三花▲微▼通道▲換▼▲熱▼▲器▼有限公司Sanhua(Hanghou)Micro Channel Heat Exchanger Co.,Ltd. Control method for air conditioning system
CN113701266A (en) * 2020-05-20 2021-11-26 北京新元瑞普科技发展有限公司 Energy storage type heat exchange system and heat exchange method of energy storage type heat exchange system
WO2022249437A1 (en) * 2021-05-28 2022-12-01 三菱電機株式会社 Heat pump device and hot water supply device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040555A (en) * 2005-08-01 2007-02-15 Matsushita Electric Ind Co Ltd Heat pump type water heater
JP2008157596A (en) * 2006-12-26 2008-07-10 Toshiba Kyaria Kk Air conditioner
JP4764326B2 (en) * 2006-12-26 2011-08-31 東芝キヤリア株式会社 Air conditioner
JP2009243774A (en) * 2008-03-31 2009-10-22 Panasonic Corp Heat pump type water heater
JP2010169352A (en) * 2009-01-26 2010-08-05 Panasonic Corp Heat pump water heater
JP2010243111A (en) * 2009-04-08 2010-10-28 Mitsubishi Electric Corp Heat pump type water heater
JP2011075257A (en) * 2009-10-02 2011-04-14 Hitachi Appliances Inc Heat pump type water heater
EP2360439A4 (en) * 2009-12-28 2016-07-06 Daikin Ind Ltd Heat pump system
JP2012032091A (en) * 2010-07-30 2012-02-16 Fujitsu General Ltd Heat pump cycle system
JPWO2015198424A1 (en) * 2014-06-25 2017-04-20 三菱電機株式会社 Heat pump equipment
JP2016044856A (en) * 2014-08-21 2016-04-04 パナソニックIpマネジメント株式会社 Air conditioner
CN109059253A (en) * 2018-08-04 2018-12-21 齐凤臣 A kind of frequency conversion constant temperature constant pressure water supply gas fired-boiler and its method of supplying water
JP2020079695A (en) * 2018-11-12 2020-05-28 杭州三花▲微▼通道▲換▼▲熱▼▲器▼有限公司Sanhua(Hanghou)Micro Channel Heat Exchanger Co.,Ltd. Control method for air conditioning system
JP7026664B2 (en) 2018-11-12 2022-02-28 杭州三花▲微▼通道▲換▼▲熱▼▲器▼有限公司 How to control the air conditioning system
CN111121237A (en) * 2019-12-27 2020-05-08 广东美的白色家电技术创新中心有限公司 Air conditioner, control method thereof, server, and computer-readable storage medium
CN113701266A (en) * 2020-05-20 2021-11-26 北京新元瑞普科技发展有限公司 Energy storage type heat exchange system and heat exchange method of energy storage type heat exchange system
WO2022249437A1 (en) * 2021-05-28 2022-12-01 三菱電機株式会社 Heat pump device and hot water supply device
GB2621065A (en) * 2021-05-28 2024-01-31 Mitsubishi Electric Corp Heat pump device and hot water supply device

Also Published As

Publication number Publication date
JP3919736B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
JP3919736B2 (en) Start-up control device and start-up control method for heat pump water heater
JP4403193B2 (en) System and method for controlling an economizer circuit
EP2015004B1 (en) Air conditioner
JP3783711B2 (en) Heat pump water heater
JP6919780B2 (en) Heat pump type hot water supply device
JP5239897B2 (en) refrigerator
JP3894190B2 (en) Heat pump water heater
JP3659197B2 (en) Heat pump water heater
JP2004354017A (en) Cooling device
JP4823501B2 (en) Heat pump type heating device
JP2004354019A (en) Cooling device
JP3737357B2 (en) Water heater
JPH0849930A (en) Heat pump equipment
JP2009300055A (en) Heat pump water heater
WO2006112157A1 (en) Refrigeration cycle device and method of operating the same
JP2006258418A (en) Refrigerating device
JP3668750B2 (en) Air conditioner
JPH04222353A (en) Operation controller for air conditioner
JP7094134B2 (en) Water heater
JP2012149834A (en) Heat pump
JP3703995B2 (en) Heat pump water heater
JP2005201532A (en) Freezing-refrigerating unit and refrigerator
JP2004361046A (en) Heat pump hot water supply apparatus
JP2005214442A (en) Refrigerator
JP2003185308A (en) Heat pump type hot-water supplying apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees