WO2006112157A1 - Refrigeration cycle device and method of operating the same - Google Patents

Refrigeration cycle device and method of operating the same Download PDF

Info

Publication number
WO2006112157A1
WO2006112157A1 PCT/JP2006/303870 JP2006303870W WO2006112157A1 WO 2006112157 A1 WO2006112157 A1 WO 2006112157A1 JP 2006303870 W JP2006303870 W JP 2006303870W WO 2006112157 A1 WO2006112157 A1 WO 2006112157A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigeration cycle
compressor
radiator
cycle apparatus
expander
Prior art date
Application number
PCT/JP2006/303870
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuya Saito
Yuuichi Yakumaru
Tomoichiro Tamura
Masaya Honma
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006112157A1 publication Critical patent/WO2006112157A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B11/00Compression machines, plants or systems, using turbines, e.g. gas turbines
    • F25B11/02Compression machines, plants or systems, using turbines, e.g. gas turbines as expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • F25B2400/141Power generation using energy from the expansion of the refrigerant the extracted power is not recycled back in the refrigerant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator

Definitions

  • the present invention relates to a refrigeration cycle apparatus using an expander and an operation method thereof.
  • FIG. 17 shows a conventional refrigeration cycle apparatus described in Patent Document 1.
  • Compressors 1 are those driven by driving means (not shown) such as a traveling engine for sucking and compressing the refrigerant, the refrigerant discharged by the compressor 1 is cooled by the radiator 2.
  • the refrigerant flowing out of the radiator 2 flows into the expander 3 to convert and recover the expansion energy of the refrigerant into mechanical energy (rotational energy), and supplies the recovered mechanical energy (rotational energy) to the generator 4. Power is generated.
  • the refrigerant expanded under reduced pressure in the expander 3 evaporates and evaporates in the evaporator 5 and then sucked into the compressor 1 again.
  • the present invention has been made in view of the above-described problems of the prior art, and when starting up the compressor, the capacity of the expander can be quickly increased by controlling the capacity of the radiator or the evaporator.
  • An object of the present invention is to provide a refrigeration cycle apparatus that secures a differential pressure necessary for driving, minimizes power recovery loss at the start of the compressor, and improves the reliability of the compressor, and an operation method thereof. .
  • the present invention provides a method for operating a refrigeration cycle apparatus in which a compressor, a radiator, an expander, and an evaporator are sequentially connected to circulate a refrigerant, and the radiator is a chamber.
  • the evaporator is provided in one of the outdoor unit and the indoor unit, and the evaporator is provided in the other of the outdoor unit and the indoor unit.
  • the present invention circulates refrigerant by sequentially connecting a compressor, a radiator, an expander, and an evaporator.
  • the radiator is provided in one of the outdoor unit and the indoor unit
  • the evaporator is provided in the other of the outdoor unit and the indoor unit
  • the refrigeration cycle device is provided in the outdoor unit.
  • a controller for controlling the capacity of the fan is further provided, and when the compressor is started, the controller controls the capacity of the outdoor fan to be reduced for a predetermined time from that during normal operation.
  • the controller may control the outdoor fan to operate at a set speed during normal operation.
  • the refrigeration cycle apparatus includes a bypass circuit having an expansion valve that bypasses the expander.
  • the compressor When the compressor is started, the refrigerant flows into the nopass circuit side, and the radiator capacity and the evaporator capacity are At least one of them is controlled so as to reduce the capacity for a predetermined time from the normal operation.
  • the differential pressure necessary for promptly driving the expander by controlling the capabilities of the radiator and the evaporator when the compressor is started up. it is possible to secure a can shorten the time until the expander is driven to minimize the power recovery loss of the compressor startup, and it is possible to improve the reliability of the compressor.
  • FIG. 1 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a configuration diagram of another refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a Mollier diagram of the refrigeration cycle apparatus in Embodiment 1 of the present invention.
  • FIG. 4 is a flowchart of the refrigeration cycle apparatus in Embodiment 1 of the present invention.
  • FIG. 5 is a pressure change diagram of the refrigeration cycle apparatus in Embodiment 1 of the present invention.
  • FIG. 6 is a configuration diagram of another refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • FIG. 7 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • FIG. 8 is a flowchart of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • FIG. 9 is a configuration diagram of a refrigeration cycle apparatus according to a modification of the second embodiment of the present invention.
  • FIG. 10 is a flowchart of a refrigeration cycle apparatus in a modification of the second embodiment of the present invention.
  • FIG. 11 is a configuration diagram of a refrigeration cycle apparatus according to another modification of the second embodiment of the present invention.
  • FIG. 12 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 3 of the present invention.
  • FIG. 13 is a flowchart of the refrigeration cycle apparatus in Embodiment 3 of the present invention.
  • FIG. 14 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 4 of the present invention.
  • FIG. 15 is a flowchart of the refrigeration cycle apparatus in Embodiment 4 of the present invention.
  • FIG. 16 is a pressure change diagram of the refrigeration cycle apparatus in Embodiment 4 of the present invention.
  • FIG. 17 is a configuration diagram of a conventional refrigeration cycle apparatus.
  • Figure 18 shows the Mollier diagram of a conventional refrigeration cycle system.
  • the refrigeration cycle apparatus of the first embodiment includes a refrigeration cycle in which a compressor 1, a radiator 2, an expander 3, and an evaporator 5 are sequentially connected to circulate refrigerant.
  • a radiator capacity controller 8 that controls the capacity of the radiator 2 or an evaporator capacity controller 10 that controls the capacity of the evaporator 5 is provided.
  • the refrigeration cycle apparatus preferably also includes a generator 4 connected to the expander 3.
  • the expander 3 recovers power by converting the expansion energy of the refrigerant into mechanical energy.
  • the expansion machine 3 converts the expansion energy of the refrigerant into mechanical energy (rotational energy) and recovers it, and supplies the recovered mechanical energy (rotational energy) to the generator 4 to generate electric power.
  • the generated electric power is used, for example, as a drive source for the compressor 1.
  • the generator 4 that generates electric power by supplying the expansion energy recovered by the expander 3, Since it is possible to reduce the load on the compressor at startup, it is possible to reduce power consumption.
  • the radiator 2 includes an air cooling type and a water cooling type.
  • the radiator capacity controller 8 is for controlling the radiator capacity, that is, the heat radiation amount of the radiator 2, and includes a cooling means for the radiator 2. Cooling means include those that exchange heat by sending air to the radiator using a radiator fan (air-cooled), and those that exchange heat using water or other fluids (such as water-cooled).
  • the radiator 2 is an air-cooled heat exchanger
  • the radiator capacity controller 8 is a radiator fan control that supplies voltage to the electric radiator fan 9 and the radiator fan 9. It consists of part 31.
  • One of the features of the first embodiment is that the ability of the radiator fan 9 provided in the outdoor unit during the cooling operation is reduced by the radiator fan control unit 31. By reducing the capacity of the radiator fan 9 at startup, the temperature of the radiator 2 rises quickly. Thereby, the high pressure at the inlet of the expander 3 can be increased, and the expander 3 can be driven quickly.
  • the problem can be solved by quickly increasing the high-low pressure difference between the inlet and the outlet of the expander 3. This can be achieved by increasing the high pressure at the expander inlet or decreasing the low pressure at the expander outlet.
  • the temperature of the radiator 2 may be increased due to the physical properties of the refrigerant. In other words, if you operate the refrigeration cycle to increase AT (K) from (Equation 1), you should decrease K (W / m 2 K) or A (m 2 )!
  • the evaporator capacity controller 10 is for controlling the amount of heat absorbed by the evaporator 5, and includes heating means for the evaporator 5.
  • the evaporator 5 is also an air-cooled heat exchanger.
  • the evaporator capacity controller 10 includes an electric evaporator fan 11 and an evaporator fan controller 32 that supplies voltage to the evaporator fan 11. Heat exchange with air and evaporator 5.
  • Another feature of the first embodiment is that the ability of the evaporator fan 11 provided in the outdoor unit during the heating operation is reduced by the evaporator fan control unit 32. In order to shorten the time until the tension machine 3 is driven, it is necessary to quickly ensure the high-low pressure difference at the inlet / outlet of the expander 3.
  • One method for this is to quickly reduce the low pressure at the outlet of the expander 3, that is, to quickly reduce the temperature of the evaporator 5.
  • the temperature of the evaporator 5 quickly decreases. Thereby, the low pressure at the outlet of the expander 3 can be reduced, and the expander 3 can be driven quickly.
  • the refrigeration cycle apparatus of Embodiment 1 desirably further includes a bypass circuit 6 that bypasses the expander 3, and an expansion valve 7 as a decompression means in the bypass circuit 6.
  • a bypass circuit 6 that bypasses the expander 3, and an expansion valve 7 as a decompression means in the bypass circuit 6.
  • the compressor 1 When the compressor 1 is started, the refrigerant flows into the bypass circuit 6 side, and at least one of the heat sink fan 9 and the evaporator fan 11 has a capacity for a predetermined time (for example, 3 minutes or more) during normal operation. It is desirable to control to reduce. This prevents the refrigeration cycle from being blocked when the compressor 1 is started, so it is possible to avoid an abnormal drop in the low pressure of the refrigeration cycle, improving the reliability of the compressor 1 and starting the compressor 1. At the same time, the power recovery loss of the expander 3 can be reduced.
  • the refrigeration cycle apparatus of the first embodiment includes a controller (control) that controls the start and stop of the compressor 1, the opening of the expansion valve 7, the radiator capacity controller 8, and the evaporator capacity controller 10.
  • Instrument) 211 The controller 211 includes a timer 221.
  • the timer 221 may be provided in connection with the controller 211 outside the force controller 211 provided in the controller 211 in FIG. As will be described later, it is possible to construct a simple and low-cost system by shifting from the control of the refrigeration cycle apparatus when the compressor 1 is started to the control during normal operation by the timer 222.
  • the low-temperature and low-pressure refrigerant is compressed by the operation of the compressor 1, becomes a high-temperature and high-pressure refrigerant, and is discharged (A ⁇ B).
  • the discharged refrigerant exchanges heat with the outdoor air during the cooling operation and indoor air during the heating operation and flows into the expander 3 by the action of the radiator fan 9 in the radiator 2 (B ⁇ C).
  • the coefficient of performance COP (IB -iC) / ((iB-iA)-(iE— iD)), reducing the required power of the compressor 1 compared to a refrigeration cycle system that is enthalpy-expanded with a conventional expansion valve, a capillary tube, etc. Can improve efficiency.
  • the electric power generated by the generator 4 is used as a drive source for the compressor 1.
  • the coefficient of performance COP ((iA—iE) + (iE-iD)) / ((iB-iA) one (iE— iD)), and so on with conventional expansion valves, cylindrical tubes, etc.
  • the required power of the compressor 1 is reduced and the refrigeration effect is increased, so that the efficiency is further improved.
  • controller 211 starts the compressor 1 and starts the accumulated power S of the timer 221 and starts it. Go to step 100.
  • controller 211 sends a signal to radiator capacity controller 8 and evaporator capacity controller 10 to stop radiator fan 9 and evaporator fan 11 (or keep it stopped). Then, control the throttle opening of the expansion valve 7 appropriately, and proceed to Step 110.
  • the expansion energy is not recovered by the expander 3 (the expander 3 is in a stopped state), and the refrigerating cycle operation in which the expansion valve 7 performs isenthalpy expansion is performed.
  • step 110 the integrated value TA of the timer 221 is compared with a preset set time TX1. If the accumulated value TA of timer 221 is smaller than the set time TX1, return to start step 100 to avoid blockage of the freezing cycle, and start step 100 until the accumulated value TA of timer 221 reaches the set time TX1 or more. Maintain the operating state of.
  • the operation proceeds to normal operation step 120, and a signal is sent from the controller 211 to the radiator capacity controller 8 and the evaporator capacity controller 10, and the fan for the radiator 9
  • the evaporator fan 11 is operated at a set speed suitable for normal operation, the expansion valve 7 is fully closed, the capacity of the radiator 2 and the evaporator 5 is maximized, and the refrigerant is applied only to the expander 3 side. To recover the expansion energy.
  • the integrated value TA of the timer 221 is reset.
  • step 120 When the normal operation step 120 is continued, for example, when an indoor temperature detection means (not shown) detects a set temperature or higher, the routine proceeds to step 130, where the controller 211 controls the compressor 1, the radiator fan 9, and the evaporator fan. 11 stops.
  • FIG. 5 the pressure change at the inlet / outlet of the expander 3 is shown by a solid line, and the differential pressure at the inlet / outlet of the expander 3 is shown by a broken line when the compressor 1 is activated.
  • the pressure at the inlet / outlet of the expander 3 is in a balanced state, so the differential pressure is almost OMPa.
  • the refrigeration cycle apparatus of the first embodiment is configured to include the bypass circuit 6 that bypasses the expander 3, but as shown in FIG. 6, the bypass circuit 6 that bypasses the expander 3. Even when the compressor 1 is started, the radiator fan 9 or the evaporator fan 11 1 is stopped when the compressor 1 is started, so that the expander can be operated more quickly than when the radiator fan 9 or the evaporator fan 11 is normally operated. 3 can be driven.
  • the radiator fan 9 and the evaporator fan 11 are stopped.
  • the applied voltage to each fan is smaller than that during normal operation, and the radiator 2 and
  • the radiator fan 9 and the evaporator fan 11 are stopped or decelerated when the compressor 1 is started.
  • the gist of the present invention is that when the compressor is started in the air conditioner or the like.
  • the radiator fan provided in the outdoor unit is stopped or decelerated, or the evaporator fan provided in the outdoor unit is stopped or decelerated when starting the compressor in a heater or the like.
  • the outdoor fan is particularly stopped or decelerated.
  • the refrigeration cycle apparatus of Embodiment 2 includes a first pressure gauge 12 that detects the inlet pressure of the expander 3 in addition to the refrigeration cycle apparatus shown in FIG.
  • a second pressure gauge 13 for detecting the outlet pressure of the expander 3 is arranged in the outlet pipe of the expander 3 on the side pipe, and the signals from the first pressure gauge 12 and the second pressure gauge 13 are And a controller (controller) 212 for controlling the opening degree of the expansion valve 7, the radiator capacity controller 8, and the evaporator capacity controller 10.
  • the operation method of the refrigeration cycle apparatus of the second embodiment is performed by the timer in the first embodiment! /, And the start step force also shifts to the normal operation step.
  • This is a control method in which the difference between the pressure detected by the second pressure gauge 13 and the second pressure gauge 13 exceeds a set value.
  • the arrangement position of the first pressure gauge 12 is most suitable on the inlet side of the expander 3, but from the discharge side of the compressor 1 of the refrigeration cycle to the outlet of the radiator 2.
  • the same role can be played everywhere.
  • the piping on the outlet side of the expander 3 is most appropriate as the position of the second pressure gauge 13, but from the outlet side of the expander 3 of the refrigeration cycle, the compressor 1 If the suction side, can play the same role
  • the compressor 212 is started by the controller 212, and the start step 200 is performed.
  • a signal is sent from the controller 212 to the radiator capacity controller 8 and the evaporator capacity controller 10 to stop the heat radiator fan 9 and the evaporator fan 11 (or continue the stopped state).
  • the throttle opening degree of the expansion valve 7 is appropriately controlled, and the routine proceeds to step 210.
  • expansion energy is not collected by the expander 3 (the expander 3 is in a stopped state), and the refrigeration cycle operation in which the expansion valve 7 performs isenthalpy expansion is performed.
  • step 210 the controller 212 calculates a difference A (PG-PE) between the detected value PG (inlet pressure) of the first pressure gauge 12 and the detected value PE (outlet pressure) of the second pressure gauge 13. While calculating, the difference ⁇ (PG-PE) is compared with the preset differential pressure value ⁇ . If the difference ⁇ (PG-PE) is smaller than the differential pressure value ⁇ , the operation returns to the start step 200, and the operation state of the start step 200 is maintained until the difference A (PG-PE) exceeds the differential pressure value ⁇ PX. .
  • the operation proceeds to the normal operation step 220, and the controller 212 sends a signal to the radiator capacity controller 8 and the evaporator capacity controller 10, and the radiator fan 9 And the evaporator fan 11 and the expansion valve 7 are fully closed, the capacity of the radiator 2 and the evaporator 5 is increased, and the refrigerant is supplied only to the expander 3 side to recover the expansion energy. It becomes a state.
  • step 230 is performed.
  • the controller 212 stops the compressor 1, the radiator fan 9, and the evaporator fan 11 by the controller 212.
  • FIG. 9 shows a refrigeration cycle apparatus as a modified example of the above-described second embodiment.
  • a first thermometer 14 that detects the temperature of the evaporator 5 is shown. (For example, a thermistor).
  • a thermistor By moving from the startup step of the compressor 1 to the normal operation step based on the pressure value detected by the first pressure gauge 12 and the temperature detected by the first thermometer 14, accurate and low-cost The step transition can be realized.
  • the first thermometer 14 is in a position where the temperature of the evaporator 5 can be detected.
  • the outlet force of the expander 3 may be installed in a pipe leading to the outlet of the evaporator 5.
  • the refrigeration cycle apparatus includes a controller (controller) 213 for controlling the opening degree of the radiator capacity controller 8, the evaporator capacity controller 10, and the expansion valve 7, as shown in FIG. It has.
  • the controller 213 is provided with expander outlet pressure calculating means for calculating the physical force saturation pressure of the refrigerant used, that is, the pressure on the outlet side of the expander 3, based on the temperature detected by the first thermometer 14. Speak.
  • the controller (controller) 213 starts up the compressor 1 and proceeds to the start step 300.
  • signals are sent from the controller 213 to the radiator capacity controller 8 and the evaporator capacity controller 10 to stop the radiator fan 9 and the evaporator fan 11 and to stop the expansion valve 7 Adjust the opening appropriately, and go to Step 310.
  • the controller 213 is equipped with The detected value force of the first thermometer 14 and the outlet pressure PE ′ of the expander 3 are always calculated by the expanded expander outlet pressure calculation means. At this time, the expansion energy is not recovered by the expander 3 (the expander 3 is in a stopped state), and the refrigerating cycle operation in which the expansion valve 7 performs isenthalpy expansion is performed.
  • step 310 the controller 213 determines the difference A between the detected value PG (inlet pressure) of the first pressure gauge 12 and the outlet pressure PE 'of the expander 3 that also estimates the detected value force of the first thermometer 14.
  • PG ⁇ PE ′ is calculated and the difference ⁇ (PG ⁇ PE ′) is compared with a preset differential pressure value ⁇ . If the difference A (PG— ⁇ ′) is smaller than the differential pressure value ⁇ , the process returns to the start step 300, and the operating state of the start step 300 is changed until the differential ⁇ (PG—PE ′) becomes greater than the differential pressure value ⁇ . maintain.
  • the operation proceeds to the normal operation step 320, and the controller 213 sends a signal to the radiator capacity controller 8 and the evaporator capacity controller 10 for the radiator. Operate fan 9 and evaporator fan 11 and fully expand expansion valve 7 to increase the capacity of radiator 2 and evaporator 5 and supply refrigerant only to expander 3 side to recover expansion energy. It becomes a driving state.
  • step 330 the controller 1, the compressor 1, the radiator fan 9, and the evaporator fan 11 are stopped by the controller 213.
  • FIG. 11 shows a refrigeration cycle apparatus as another modification of the above-described second embodiment, and a pipe extending from the discharge side of the compressor 1 to the inlet of the radiator 2 without using a pressure gauge.
  • This is a configuration using a second thermometer 15 that detects the temperature.
  • Inlet machine 3 inlet pressure and compressor 1
  • the discharge side force of the radiator has a correlation with the temperature of the pipe leading to the inlet of the radiator 2, so by measuring the discharge temperature of the compressor 1, the inlet pressure of the expander 3 is estimated, and based on this inlet pressure Therefore, the differential pressure across the expander 3 can be estimated.
  • thermometer 15 when the second thermometer 15 detects a set temperature or higher, a signal is sent from the controller (controller) 214 to the radiator capacity controller 8 and the evaporator capacity controller 10 to dissipate heat.
  • controller controller
  • the fan 9 and the evaporator fan 11 are operated and the expansion valve 7 is fully closed, the capacity of the radiator 2 and the evaporator 5 is increased, and the refrigerant is supplied only to the expander 3 side to recover the expansion energy.
  • the transition to the normal operation state can be realized at a lower cost.
  • FIG. 12 shows a schematic diagram of the refrigeration cycle apparatus in the third embodiment.
  • the same components as those in the first embodiment are given the same reference numerals.
  • the refrigeration cycle apparatus of the third embodiment is provided with an ammeter 16 for detecting the current flowing through the generator 4, and the opening of the expansion valve 7, the heat dissipation by the signal of the ammeter 16.
  • a controller (controller) 215 for controlling the vessel capacity controller 8 and the evaporator capacity controller 10 is provided.
  • the compressor 1 is activated by the controller 215, and the activation step 400 is performed.
  • a signal is sent from the controller 215 to the radiator capacity controller 8 and the evaporator capacity controller 10 to stop the heat radiator fan 9 and the evaporator fan 11 and to open the throttle valve 7 Is appropriately controlled, and the process proceeds to Step 410.
  • the expansion energy is not recovered by the expander 3 (the expander 3 is in a stopped state), and the refrigeration cycle operation in which the expansion valve 7 performs isenthalpy expansion.
  • step 410 the controller 215 detects the current value A 1 flowing through the generator 4 from the ammeter 16, and proceeds to step 420.
  • step 420 the current value A1 flowing through the generator 4 is compared with a preset current value AX (eg, 0 amperes). The current value A1 flowing through the generator 4 is If it is smaller than the preset current value AX, it is determined that the generator 4 has not started generating power, that is, the expander 3 is not driven, and the current value A1 flowing through the generator 4 is preset.
  • the start step 400 is maintained until the current value exceeds AX.
  • the generator 4 When the current value A1 flowing through the generator 4 is greater than or equal to the preset current value AX, it is determined that the generator 4 has started generating power, that is, the expander 3 is operating, and the normal operation step 430 Then, a signal is sent from the controller 215 to the radiator capacity controller 8 and the evaporator capacity controller 10 to operate the radiator fan 9 and the evaporator fan 11, and the expansion valve 7 is fully closed. In addition, the capacity of the evaporator 5 is increased, and the refrigerant is supplied only to the expander 3 side to recover the expansion energy.
  • step 440 when an indoor temperature detection means (not shown) detects a set temperature or higher, the process proceeds to step 440, and the compressor 1, the radiator fan 9, and the evaporator fan 11 are stopped by the controller 215.
  • FIG. 14 shows a schematic diagram of the refrigeration cycle apparatus in the fourth embodiment.
  • the same components as those in Embodiments 1 to 3 are denoted by the same reference numerals.
  • the refrigeration cycle apparatus of the fourth embodiment includes a primary side refrigerant circuit 17 and a secondary side refrigerant circuit 18.
  • the primary refrigerant circuit 17 includes a compressor 1, a water-cooled radiator 2 having, for example, a double pipe specification, an expander 3 that recovers power by converting expansion energy of the refrigerant into mechanical energy, and an evaporator 5 Are sequentially connected in series, and a bypass circuit 6 for bypassing the expander 3 is provided, and an expansion valve 7 is provided in the bypass circuit 6 as a pressure reducing means.
  • the secondary refrigerant circuit 18 includes a hot water storage tank 19, a radiator 2, and a circulation pump 20 for circulating water.
  • the radiator capacity controller 8 includes a circulation pump 20 and a circulation pump control unit 33 that supplies voltage to the circulation pump 20.
  • the amount of water flowing through the secondary refrigerant circuit 18 is variable by the action of the circulation pump 20. Especially This makes it possible to control the capacity of radiator 2.
  • the radiator 2 is configured such that the refrigerant flows in the primary side refrigerant circuit 17 and the secondary side refrigerant circuit 18 are opposed to each other.
  • the hot water storage tank 19 is configured to supply tap water from the lower part and supply hot water that has become hot due to the action of the radiator 2 from the upper part to the use side circuit 21. Is supplied to the bath tub 23 through the hot-water tap 22 for use.
  • the hot water storage tank 19 is provided with a hot water storage tank water temperature thermometer 24 (for example, a thermistor) that detects the water temperature in the hot water storage tank 19.
  • a controller (controller) 216 having a built-in timer 226 for controlling the start and stop, as well as the opening degree of the expansion valve 7, the radiator capacity controller 8, and the evaporator capacity controller 10 is provided.
  • step 500 when the hot water tank water temperature TB (° C) detected by the hot water tank water temperature thermometer 24 detects that the temperature is lower than the set temperature TL (° C), the process proceeds to step 510, and the controller 216 At the same time, timer 226 integration starts.
  • start-up step 520 a signal is sent from the controller 216 to the radiator capacity controller 8 and the evaporator capacity controller 10, and the circulation pump 20 and the evaporator fan 11 are stopped (or kept stopped), and the expansion valve Adjust the throttle opening of 7 as appropriate, and go to Step 530.
  • the expansion energy is not recovered by the expander 3 (the expander 3 is in a stopped state), and the refrigeration cycle operation in which the expansion valve 7 performs isenthalpy expansion is performed.
  • step 530 the integrated value TA of timer 226 is compared with preset time TX2. In step 530, until the accumulated value TA of the timer 226 exceeds the set time TX2, the process returns to the start step 520, and the operation state of the start step 520 is maintained until the accumulated value TA of the timer 226 becomes larger than the set time TX2.
  • the routine proceeds to normal operation step 540, and a signal is sent from the controller 216 to the radiator capacity controller 8 and the evaporator capacity controller 10, and the circulation pump 20 and Normal operation in which the evaporator fan 11 is operated and the expansion valve 7 is fully closed to increase the capacity of the radiator 2 and the evaporator 5 and the refrigerant is supplied only to the expander 3 side to recover the expansion energy. It becomes a state. At this time, the integrated value TA of the timer 226 is reset.
  • step 550 when the hot water storage tank water temperature TB (° C) detected by the hot water storage tank water temperature thermometer 24 in step 550 detects the set temperature TH (° C) or more, the process proceeds to step 560 and the controller 216 The compressor 1, the circulation pump 20, and the evaporator fan 11 are stopped.
  • the pressure change at the inlet / outlet of the expander 3 when the compressor 1 is activated is indicated by a solid line
  • the differential pressure at the inlet / outlet of the expander 3 is indicated by a broken line.
  • the operation proceeds from step 530 to the normal operation step 540, and at the same time the expander 3 is driven, the controller 216 operates the circulation pump 20 and the evaporator fan 11 and the expansion valve 7 is fully closed, and the radiator 2 And the capacity of the evaporator 5 can be increased.
  • the configuration includes the bypass circuit 6 that bypasses the expander 3.
  • the compressor 1 can be started even when the bypass circuit 6 that bypasses the expander 3 is not provided.
  • the expander 3 can be driven quickly.
  • the force that is supposed to stop the circulation pump 20 when the compressor 1 is started is made smaller than that during normal operation, and the secondary refrigerant flows into the radiator 2 more than during normal operation.
  • the applied voltage to the circulation pump 20 is made smaller than that during normal operation, and the secondary refrigerant flows into the radiator 2 more than during normal operation.
  • a freezing cycle using hot water such as a water heater. Since the high pressure in the refrigeration cycle can also be quickly increased in the air flow device, the differential pressure necessary for driving the expander 3 can be quickly secured, and the time until the expander 3 is driven. Therefore, the power recovery port of the expander 3 when the compressor 1 is started can be reduced.
  • Embodiments 1 to 4 it is desirable to use carbon dioxide as the refrigerant.
  • At the time of starting up the compressor at least one of the cooling means of the radiator 2 and the heating means of the evaporator 5 is maintained for a predetermined time during normal operation.
  • By controlling to reduce the capacity it is possible to reduce the power recovery loss of the expander at the time of starting the compressor, so hot water heaters, air conditioning and air conditioning equipment, vending machines, household refrigerators, commercial use It can be applied to a wide range of equipment such as refrigerators and ice makers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A method of operating a refrigeration cycle device where a compressor (1), a radiator (2), an expansion device (3), and an evaporator (5) are sequentially connected to circulate a refrigerant. The radiator (2) is provided at either an outdoor unit or an indoor unit, and the evaporator (5) is provided at the other. Capacity of an outdoor fan is set lower at the time of the start of the compressor (1) for a predetermined time period than that in normal operation, and after the predetermined time period has passed, the outdoor fan is operated at a preset speed for the normal operation.

Description

冷凍サイクル装置及びその運転方法  Refrigeration cycle apparatus and operation method thereof
技術分野  Technical field
[0001] 本発明は、膨張機を利用した冷凍サイクル装置及びその運転方法に関するもので ある。  [0001] The present invention relates to a refrigeration cycle apparatus using an expander and an operation method thereof.
背景技術  Background art
[0002] 近年、冷凍サイクルの更なる高効率化を図る手段として、膨張弁に代えて膨張機を 備え、冷媒が膨張する過程でその圧力エネルギーを膨張機によって電力又は動力 の形で回収し、その回収分だけ圧縮機の入力を低減する動力回収サイクルが提案さ れている(例えば、特許文献 1参照)。  [0002] In recent years, as a means for further improving the efficiency of the refrigeration cycle, an expansion machine is provided instead of the expansion valve, and in the process of expansion of the refrigerant, the pressure energy is recovered in the form of electric power or power by the expansion machine, A power recovery cycle has been proposed in which the input of the compressor is reduced by that recovery amount (see, for example, Patent Document 1).
[0003] 図 17は、特許文献 1に記載された従来の冷凍サイクル装置を示すものである。圧 縮機 1は走行用エンジン等の図示しない駆動手段により駆動されて冷媒を吸入圧縮 するものであり、圧縮機 1にて吐出された冷媒は放熱器 2にて冷却される。放熱器 2か ら流出した冷媒は、膨張機 3へと流入して冷媒の膨張エネルギーを機械エネルギー( 回転エネルギー)に変換回収し、その回収した機械エネルギー(回転エネルギー)を 発電機 4に供給して電力を発生させるようにしたものである。膨張機 3にて減圧膨張し た冷媒は蒸発器 5で蒸発気化した後、再び圧縮機 1へと吸入される。  FIG. 17 shows a conventional refrigeration cycle apparatus described in Patent Document 1. Compressors 1 are those driven by driving means (not shown) such as a traveling engine for sucking and compressing the refrigerant, the refrigerant discharged by the compressor 1 is cooled by the radiator 2. The refrigerant flowing out of the radiator 2 flows into the expander 3 to convert and recover the expansion energy of the refrigerant into mechanical energy (rotational energy), and supplies the recovered mechanical energy (rotational energy) to the generator 4. Power is generated. The refrigerant expanded under reduced pressure in the expander 3 evaporates and evaporates in the evaporator 5 and then sucked into the compressor 1 again.
[0004] 膨張機 3にて膨張エネルギーを機械エネルギーに変換しながら冷媒を減圧するの で、放熱器 2から流出した冷媒は、図 18に示すように、等エントロピ線 (c→d)に沿つ て相変化しながらェンタルピを低下させていく。したがって、冷媒の減圧時に膨張仕 事をすることなく単純に断熱膨張させる場合 (等ェンタルピ変化させる場合)と比較し て、膨張仕事 Aiexp分だけ蒸発器 5のェンタルピを増大させることができるので、冷 凍能力を増大させることが可能となる。また、膨張仕事 Aiexp分だけ発電機 4に機械 エネルギー(回転エネルギー)を供給できるので、発電機 4にて Aiexp分の電力を発 生することが可能となる。その電力を圧縮機 1へ供給することにより圧縮機 1の駆動に 必要な電力を低減することができるので、冷凍サイクルの COP (成績係数)を向上さ せることが可能となる。 特許文献 1:特開 2000— 329416号公報 [0004] Since the refrigerant is decompressed while the expansion energy is converted into mechanical energy by the expander 3, the refrigerant flowing out of the radiator 2 follows an isentropic line ( c → d) as shown in Fig. 18. Therefore, the enthalpy is lowered while changing the phase. Therefore, the enthalpy of the evaporator 5 can be increased by the amount of expansion work Aiexp, compared to the case of simply adiabatic expansion without performing expansion work when the refrigerant is depressurized (when changing the isenthalpy). It becomes possible to increase the freezing capacity. In addition, since mechanical energy (rotational energy) can be supplied to the generator 4 by the expansion work Aiexp, the generator 4 can generate Aiexp power. By supplying the electric power to the compressor 1, it is possible to reduce the electric power necessary for driving the compressor 1, so that the COP (coefficient of performance) of the refrigeration cycle can be improved. Patent Document 1: Japanese Unexamined Patent Publication No. 2000-329416
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、膨張機 3は冷凍サイクル内の高低圧差を利用して駆動するものであ るので、上記従来の構成では、圧縮機 1の起動時等の冷凍サイクルが安定しておら ず、高低圧差が十分に確保されていない状態では、膨張機 3を駆動するのに必要な トルクが不足し、膨張機 3が駆動しない状態で圧縮機 1が運転し続けることとなる。こ のとき、膨張機 3は停止しているので動力回収はされず、圧縮機 1と膨張機 3がー軸 で直結されている場合は逆に圧縮機 1の負荷が大きくなり、消費電力が増大するとい つた課題があった。また、冷凍サイクルは膨張機 3の前後で閉塞した状態となるので 、冷凍サイクルの低圧が異常低下して圧縮機 1に冷媒が供給されな 、状態となって 冷媒による圧縮機 1の冷却効果が得られず、圧縮機 1を損傷する恐れや、スクロール 方式の圧縮機 1の場合は、正常な公転運動が損なわれて、冷媒の漏れによる効率低 下や、羽根への過度な荷重による羽根の磨耗促進等の不具合が生じる恐れがあつ た。 [0005] However, since the expander 3 is driven by utilizing the high-low pressure difference in the refrigeration cycle, the refrigeration cycle at the time of starting up the compressor 1 is stable in the conventional configuration. Needless to say, in a state where the high / low pressure difference is not sufficiently secured, the torque required to drive the expander 3 is insufficient, and the compressor 1 continues to operate without the expander 3 being driven. At this time, since the expander 3 is stopped, the power is not recovered, and when the compressor 1 and the expander 3 are directly connected to each other by the shaft, the load on the compressor 1 is increased and the power consumption is reduced. There was a problem that it would increase. In addition, since the refrigeration cycle is closed before and after the expander 3, the low pressure of the refrigeration cycle is abnormally reduced and refrigerant is not supplied to the compressor 1, and the cooling effect of the compressor 1 by the refrigerant is reached. In the case of the scroll type compressor 1, the normal revolving motion is impaired, and the efficiency due to refrigerant leakage is reduced. There was a risk of problems such as accelerated wear.
[0006] 本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、圧縮 機の起動時は、放熱器あるいは蒸発器の能力を制御することで、速やかに膨張機が 駆動するのに必要な差圧を確保し、圧縮機起動時の動力回収ロスを最小限に抑え、 且つ圧縮機の信頼性を向上した冷凍サイクル装置及びその運転方法を提供すること を目的としている。  [0006] The present invention has been made in view of the above-described problems of the prior art, and when starting up the compressor, the capacity of the expander can be quickly increased by controlling the capacity of the radiator or the evaporator. An object of the present invention is to provide a refrigeration cycle apparatus that secures a differential pressure necessary for driving, minimizes power recovery loss at the start of the compressor, and improves the reliability of the compressor, and an operation method thereof. .
課題を解決するための手段  Means for solving the problem
[0007] 上記目的を達成するため、本発明は、圧縮機と放熱器と膨張機と蒸発器とを順次 接続して冷媒を循環させる冷凍サイクル装置の運転方法であって、前記放熱器は室 外機及び室内機のいずれか一方に設けられるとともに、前記蒸発器は室外機及び 室内機の他方に設けられ、前記圧縮機の起動時に室外ファンの能力を所定の時間 、通常運転時より低減し、所定の時間経過後、前記室外ファンを通常運転時の設定 速度で運転するようにしたことを特徴とする。  In order to achieve the above object, the present invention provides a method for operating a refrigeration cycle apparatus in which a compressor, a radiator, an expander, and an evaporator are sequentially connected to circulate a refrigerant, and the radiator is a chamber. The evaporator is provided in one of the outdoor unit and the indoor unit, and the evaporator is provided in the other of the outdoor unit and the indoor unit. When the compressor is started, the capacity of the outdoor fan is reduced for a predetermined time than during normal operation. The outdoor fan is operated at a set speed during normal operation after a predetermined time has elapsed.
[0008] また、本発明は、圧縮機と放熱器と膨張機と蒸発器とを順次接続して冷媒を循環さ せる冷凍サイクル装置であって、前記放熱器は室外機及び室内機の 、ずれか一方 に設けられるとともに、前記蒸発器は室外機及び室内機の他方に設けられ、前記冷 凍サイクル装置は、室外ファンの能力を制御する制御器をさらに備え、前記圧縮機 の起動時に、前記制御器は前記室外ファンの能力を所定の時間、通常運転時より低 減するように制御するようにしたことを特徴とする。 [0008] Further, the present invention circulates refrigerant by sequentially connecting a compressor, a radiator, an expander, and an evaporator. The radiator is provided in one of the outdoor unit and the indoor unit, the evaporator is provided in the other of the outdoor unit and the indoor unit, and the refrigeration cycle device is provided in the outdoor unit. A controller for controlling the capacity of the fan is further provided, and when the compressor is started, the controller controls the capacity of the outdoor fan to be reduced for a predetermined time from that during normal operation. And
[0009] あるいは、前記圧縮機の起動時に、前記制御器は前記室外ファンの能力を通常運 転時より低減するように制御し、前記膨張機の入口圧力と出口圧力との差圧が所定 値以上になると、前記制御器は前記室外ファンを通常運転時の設定速度で運転す るように制御するようにしてもょ 、。  [0009] Alternatively, at the start of the compressor, wherein the controller the outdoor fan capacity usually controlled to be reduced from the time OPERATION, the expander inlet pressure and the differential pressure exceeds a predetermined value the outlet pressure At this point, the controller may control the outdoor fan to operate at a set speed during normal operation.
[0010] 上記構成により、速やかに膨張機が駆動するのに必要な差圧を確保することができ るので、膨張機が駆動するまでの時間を短縮できる。  [0010] With the above configuration, it is possible to secure the differential pressure necessary for the expander to be driven quickly, so that the time until the expander is driven can be shortened.
[0011] また、冷凍サイクル装置は、膨張機をバイパスする膨張弁を有するバイパス回路を 備え、圧縮機の起動時は、ノ ィパス回路側に冷媒を流入させるとともに、放熱器能力 と蒸発器能力の少なくとも一方を所定の時間、通常運転時より能力を低減するように 制御したものである。  [0011] Further, the refrigeration cycle apparatus includes a bypass circuit having an expansion valve that bypasses the expander. When the compressor is started, the refrigerant flows into the nopass circuit side, and the radiator capacity and the evaporator capacity are At least one of them is controlled so as to reduce the capacity for a predetermined time from the normal operation.
[0012] これにより、圧縮機起動時に冷凍サイクルが閉塞することはないので、冷凍サイクル の低圧の異常低下を回避することができる。  [0012] Thereby, since the refrigeration cycle is not blocked when the compressor is started, an abnormal drop in the low pressure of the refrigeration cycle can be avoided.
発明の効果  The invention's effect
[0013] 本発明の冷凍サイクル装置あるいはその運転方法によれば、圧縮機の起動時は、 放熱器と蒸発器の能力を制御することにより、速やかに膨張機が駆動するのに必要 な差圧を確保することができるので、膨張機が駆動するまでの時間を短縮でき、圧縮 機起動時の動力回収ロスを最小限に抑え、且つ、圧縮機の信頼性を向上することが できる。  [0013] According to the refrigeration cycle apparatus of the present invention or the operation method thereof, the differential pressure necessary for promptly driving the expander by controlling the capabilities of the radiator and the evaporator when the compressor is started up. it is possible to secure a can shorten the time until the expander is driven to minimize the power recovery loss of the compressor startup, and it is possible to improve the reliability of the compressor.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]図 1は本発明の実施の形態 1における冷凍サイクル装置の構成図 FIG. 1 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
[図 2]図 2は本発明の実施の形態 1における別の冷凍サイクル装置の構成図  FIG. 2 is a configuration diagram of another refrigeration cycle apparatus according to Embodiment 1 of the present invention.
[図 3]図 3は本発明の実施の形態 1における冷凍サイクル装置のモリエル線図  FIG. 3 is a Mollier diagram of the refrigeration cycle apparatus in Embodiment 1 of the present invention.
[図 4]図 4は本発明の実施の形態 1における冷凍サイクル装置のフローチャート [図 5]図 5は本発明の実施の形態 1における冷凍サイクル装置の圧力変化線図FIG. 4 is a flowchart of the refrigeration cycle apparatus in Embodiment 1 of the present invention. FIG. 5 is a pressure change diagram of the refrigeration cycle apparatus in Embodiment 1 of the present invention.
[図 6]図 6は本発明の実施の形態 1における別の冷凍サイクル装置の構成図 FIG. 6 is a configuration diagram of another refrigeration cycle apparatus according to Embodiment 1 of the present invention.
[図 7]図 7は本発明の実施の形態 2における冷凍サイクル装置の構成図  FIG. 7 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 2 of the present invention.
[図 8]図 8は本発明の実施の形態 2における冷凍サイクル装置のフローチャート FIG. 8 is a flowchart of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
[図 9]図 9は本発明の実施の形態 2の変形例における冷凍サイクル装置の構成図FIG. 9 is a configuration diagram of a refrigeration cycle apparatus according to a modification of the second embodiment of the present invention.
[図 10]図 10は本発明の実施の形態 2の変形例における冷凍サイクル装置のフロー チャート FIG. 10 is a flowchart of a refrigeration cycle apparatus in a modification of the second embodiment of the present invention.
[図 11]図 11は本発明の実施の形態 2の別の変形例における冷凍サイクル装置の構 成図  FIG. 11 is a configuration diagram of a refrigeration cycle apparatus according to another modification of the second embodiment of the present invention.
[図 12]図 12は本発明の実施の形態 3における冷凍サイクル装置の構成図  FIG. 12 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 3 of the present invention.
[図 13]図 13は本発明の実施の形態 3における冷凍サイクル装置のフローチャート FIG. 13 is a flowchart of the refrigeration cycle apparatus in Embodiment 3 of the present invention.
[図 14]図 14は本発明の実施の形態 4における冷凍サイクル装置の構成図 FIG. 14 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 4 of the present invention.
[図 15]図 15は本発明の実施の形態 4における冷凍サイクル装置のフローチャート FIG. 15 is a flowchart of the refrigeration cycle apparatus in Embodiment 4 of the present invention.
[図 16]図 16は本発明の実施の形態 4における冷凍サイクル装置の圧力変化線図FIG. 16 is a pressure change diagram of the refrigeration cycle apparatus in Embodiment 4 of the present invention.
[図 17]図 17は従来の冷凍サイクル装置の構成図 [FIG. 17] FIG. 17 is a configuration diagram of a conventional refrigeration cycle apparatus.
[図 18]図 18は従来の冷凍サイクル装置のモリエル線図  [Figure 18] Figure 18 shows the Mollier diagram of a conventional refrigeration cycle system.
符号の説明 Explanation of symbols
1 圧縮機  1 Compressor
2, 2a, 2b 放熱器  2, 2a, 2b radiator
3 膨張機  3 Expander
4 発電機  4 Generator
5 蒸発器  5 Evaporator
6 バイパス回路  6 Bypass circuit
7 膨張弁  7 Expansion valve
8 放熱器能力制御器  8 Radiator capacity controller
9 放熱器用ファン  9 Fan for radiator
10 蒸発器能力制御器  10 Evaporator capacity controller
11 蒸発器用ファン 12 第一の圧力計 11 Evaporator fan 12 First pressure gauge
13 第二の圧力計  13 Second pressure gauge
14 第一の温度計  14 First thermometer
15 第二の温度計  15 Second thermometer
16 電流十  16 Current 10
17 一次側冷媒回路  17 Primary refrigerant circuit
18 二次側冷媒回路  18 Secondary refrigerant circuit
19 貯湯タンク  19 Hot water storage tank
20 循環ポンプ  20 Circulation pump
21 利用側回路  21 User circuit
22 給湯栓  22 Hot water tap
23 風呂釜  23 Bath
24 貯湯タンク水温温度計  24 Hot water storage tank water temperature thermometer
31 放熱器用ファン制御部  31 Fan controller for radiator
32 蒸発器用ファン制御部  32 Evaporator fan controller
33 循環ポンプ制御部  33 Circulation pump controller
211、 212、 213、 214、 215、 216 コントローラ  211, 212, 213, 214, 215, 216 Controller
221、 226 タイマー  221, 226 timer
301、 302 開閉弁  301, 302 On-off valve
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
実施の形態 1.  Embodiment 1.
本実施の形態 1の冷凍サイクル装置は、図 1に示すように、圧縮機 1と放熱器 2と膨 張機 3と蒸発器 5とが順次接続されて、冷媒が循環する冷凍サイクルを備え、さらに、 放熱器 2の能力を制御する放熱器能力制御器 8、または、蒸発器 5の能力を制御す る蒸発器能力制御器 10の 、ずれかを備えて 、る。  As shown in FIG. 1, the refrigeration cycle apparatus of the first embodiment includes a refrigeration cycle in which a compressor 1, a radiator 2, an expander 3, and an evaporator 5 are sequentially connected to circulate refrigerant. In addition, a radiator capacity controller 8 that controls the capacity of the radiator 2 or an evaporator capacity controller 10 that controls the capacity of the evaporator 5 is provided.
[0017] 冷凍サイクル装置は、望ましくは膨張機 3に接続した発電機 4も有している。膨張機 3は、冷媒の膨張エネルギーを機械エネルギーに変換して動力を回収するものであ る。膨張機 3で冷媒の膨張エネルギーを機械エネルギー(回転エネルギー)に変換し て回収し、回収した機械エネルギー(回転エネルギー)を発電機 4に供給して電力を 発生させる。発生した電力は、例えば圧縮機 1の駆動源等に利用される。膨張機 3に て回収された膨張エネルギーが供給されることで電力を発生する発電機 4を備えるこ とにより、圧縮機 1と膨張機 3がー軸で直結されている場合と比較して、起動時の圧縮 機の負荷を低減することができるので、消費電力の低減が可能となる。 [0017] The refrigeration cycle apparatus preferably also includes a generator 4 connected to the expander 3. The expander 3 recovers power by converting the expansion energy of the refrigerant into mechanical energy. The The expansion machine 3 converts the expansion energy of the refrigerant into mechanical energy (rotational energy) and recovers it, and supplies the recovered mechanical energy (rotational energy) to the generator 4 to generate electric power. The generated electric power is used, for example, as a drive source for the compressor 1. Compared to the case where the compressor 1 and the expander 3 are directly connected to each other by providing the generator 4 that generates electric power by supplying the expansion energy recovered by the expander 3, Since it is possible to reduce the load on the compressor at startup, it is possible to reduce power consumption.
[0018] 次に、放熱器 2および放熱器能力制御器 8について説明する。  Next, the radiator 2 and the radiator capacity controller 8 will be described.
[0019] 放熱器 2としては、空冷式と水冷式のものがある。  [0019] The radiator 2 includes an air cooling type and a water cooling type.
[0020] 放熱器能力制御器 8は、放熱器能力、すなわち放熱器 2の放熱量を制御するため のもので、放熱器 2の冷却手段を備えている。冷却手段には、放熱器用ファンによつ て放熱器に空気を送って熱交換させるもの(空冷式)や、水あるいはその他の流体に よって熱交換させるもの (水冷式など)等がある。本実施の形態 1では、放熱器 2は空 冷式熱交換器であり、放熱器能力制御器 8は、電動式の放熱器用ファン 9と放熱器 用ファン 9へ電圧を供給する放熱器用ファン制御部 31とで構成されている。  The radiator capacity controller 8 is for controlling the radiator capacity, that is, the heat radiation amount of the radiator 2, and includes a cooling means for the radiator 2. Cooling means include those that exchange heat by sending air to the radiator using a radiator fan (air-cooled), and those that exchange heat using water or other fluids (such as water-cooled). In the first embodiment, the radiator 2 is an air-cooled heat exchanger, and the radiator capacity controller 8 is a radiator fan control that supplies voltage to the electric radiator fan 9 and the radiator fan 9. It consists of part 31.
[0021] 本実施の形態 1の特徴の一つに、冷房運転時の室外機に設けられた放熱器用ファ ン 9の能力を放熱器用ファン制御部 31により低減することがあり、圧縮機 1の起動時 に、放熱器用ファン 9の能力を低減することによって、放熱器 2の温度は速やかに上 昇する。これにより、膨張機 3の入口での高圧を上昇させることができ、膨張機 3を速 やかに駆動させることができる。  [0021] One of the features of the first embodiment is that the ability of the radiator fan 9 provided in the outdoor unit during the cooling operation is reduced by the radiator fan control unit 31. By reducing the capacity of the radiator fan 9 at startup, the temperature of the radiator 2 rises quickly. Thereby, the high pressure at the inlet of the expander 3 can be increased, and the expander 3 can be driven quickly.
[0022] 一般に、放熱器能力は下記 (数 1)で表される。  [0022] Generally, the heat sink capability is expressed by the following (Equation 1).
[0023] (数 1) Q (W) =K (W/m2K) X A (m2) X ΔΤ (K) [0023] (Equation 1) Q (W) = K (W / m 2 K) XA (m 2 ) X ΔΤ (K)
但し、 Q (W) :放熱器能力  Where Q (W): Heat sink capability
K(W/m2K):熱通過率 K (W / m 2 K): Heat transfer rate
A (m2) :放熱器の表面積 A (m 2 ): Radiator surface area
△T(K): (放熱器温度-空気または水温度)とする。  △ T (K): (heatsink temperature-air or water temperature).
[0024] 膨張機 3を速やかに駆動させるためには、膨張機 3の入口と出口で、高低圧差を速 やかに大きくすれば解決できる。そのためには、膨張機入口の高圧を上昇させるか、 膨張機出口の低圧を低下させればよい。 [0025] 膨張機入口の高圧を上昇させるためには、冷媒の物性より放熱器 2の温度を上昇 させればよい。つまり、(数 1)より AT(K)を増加させるように冷凍サイクルを動作させ ればよぐ K (W/m2K)か A (m2)を減少させればよ!、。 K (W/m2K)を減少させる には、空冷式放熱器ではファン風量低減、水冷式放熱器では水側循環ポンプの流 量を低減すればよい。また、 A (m2)を減少させるには、図 2に示すような並列に接続 された複数の放熱器 2a、 2bを有する場合は、例えば開閉弁 301、 302の開閉動作 により使用する放熱器の数量を減らせばょ 、。 [0024] In order to drive the expander 3 quickly, the problem can be solved by quickly increasing the high-low pressure difference between the inlet and the outlet of the expander 3. This can be achieved by increasing the high pressure at the expander inlet or decreasing the low pressure at the expander outlet. [0025] In order to increase the high pressure at the expander inlet, the temperature of the radiator 2 may be increased due to the physical properties of the refrigerant. In other words, if you operate the refrigeration cycle to increase AT (K) from (Equation 1), you should decrease K (W / m 2 K) or A (m 2 )! In order to reduce K (W / m 2 K), it is only necessary to reduce the fan air volume with an air-cooled radiator and reduce the flow rate of the water-side circulation pump with a water-cooled radiator. Further, in order to reduce A (m 2 ), when a plurality of radiators 2a and 2b connected in parallel as shown in FIG. 2 are provided, the radiator used by the opening / closing operation of the on-off valves 301 and 302, for example. If you reduce the quantity,
[0026] 次に、蒸発器 5および蒸発器能力制御器 10について説明する。  Next, the evaporator 5 and the evaporator capacity controller 10 will be described.
[0027] 蒸発器能力制御器 10は、蒸発器 5の吸熱量を制御するためのもので、蒸発器 5の 加熱手段を備えている。本実施の形態 1では、蒸発器 5も空冷式熱交換器である。蒸 発器能力制御器 10は、電動式の蒸発器用ファン 11と蒸発器用ファン 11へ電圧を供 給する蒸発器用ファン制御部 32とで構成されており、蒸発器用ファン 11によって送 風することで、空気と蒸発器 5で熱交換させる。  The evaporator capacity controller 10 is for controlling the amount of heat absorbed by the evaporator 5, and includes heating means for the evaporator 5. In Embodiment 1, the evaporator 5 is also an air-cooled heat exchanger. The evaporator capacity controller 10 includes an electric evaporator fan 11 and an evaporator fan controller 32 that supplies voltage to the evaporator fan 11. Heat exchange with air and evaporator 5.
[0028] 本実施の形態 1の別の特徴に、暖房運転時の室外機に設けられた蒸発器用ファン 11の能力を蒸発器用ファン制御部 32により低減することがあり、前述したように、膨 張機 3が駆動するまでの時間を短縮するためには、膨張機 3の出入口での高低圧差 を速やかに確保する必要がある。そのための一つの方法は、膨張機 3の出口の低圧 を速やかに低下させること、すなわち、蒸発器 5の温度を速やかに低下させることで ある。圧縮機 1の起動時に、蒸発器用ファン 11の能力を低減することにより、速やか に蒸発器 5の温度は低下する。これにより、膨張機 3の出口での低圧を低下させるこ とができ、速やかに膨張機 3を駆動させることができる。  [0028] Another feature of the first embodiment is that the ability of the evaporator fan 11 provided in the outdoor unit during the heating operation is reduced by the evaporator fan control unit 32. In order to shorten the time until the tension machine 3 is driven, it is necessary to quickly ensure the high-low pressure difference at the inlet / outlet of the expander 3. One method for this is to quickly reduce the low pressure at the outlet of the expander 3, that is, to quickly reduce the temperature of the evaporator 5. By reducing the capacity of the evaporator fan 11 when the compressor 1 starts up, the temperature of the evaporator 5 quickly decreases. Thereby, the low pressure at the outlet of the expander 3 can be reduced, and the expander 3 can be driven quickly.
[0029] 本実施の形態 1の冷凍サイクル装置には、図 1に示すように望ましくはさらに、膨張 機 3をバイパスするバイパス回路 6を設けるともに、バイパス回路 6内に減圧手段とし て膨張弁 7を有する。圧縮機 1の起動時は、バイパス回路 6側に冷媒を流入させると ともに、放熱器用ファン 9と蒸発器用ファン 11の少なくとも一方の能力を所定の時間( 例えば、 3分以上)、通常運転時より低減するように制御することが望ましい。これによ り、圧縮機 1の起動時に冷凍サイクルが閉塞することはないので、冷凍サイクルの低 圧の異常低下を回避することが可能となり、圧縮機 1の信頼性向上と、圧縮機 1起動 時の膨張機 3の動力回収ロス低減を両立することができる。 [0029] As shown in FIG. 1, the refrigeration cycle apparatus of Embodiment 1 desirably further includes a bypass circuit 6 that bypasses the expander 3, and an expansion valve 7 as a decompression means in the bypass circuit 6. Have When the compressor 1 is started, the refrigerant flows into the bypass circuit 6 side, and at least one of the heat sink fan 9 and the evaporator fan 11 has a capacity for a predetermined time (for example, 3 minutes or more) during normal operation. It is desirable to control to reduce. This prevents the refrigeration cycle from being blocked when the compressor 1 is started, so it is possible to avoid an abnormal drop in the low pressure of the refrigeration cycle, improving the reliability of the compressor 1 and starting the compressor 1. At the same time, the power recovery loss of the expander 3 can be reduced.
[0030] また、本実施の形態 1の冷凍サイクル装置は、圧縮機 1の起動と停止、膨張弁 7の 開度、放熱器能力制御器 8、蒸発器能力制御器 10を制御するコントローラ (制御器) 211を有している。コントローラ 211には、タイマー 221が内蔵されている。このタイマ 一 221は、図 1ではコントローラ 211に内蔵して設けられている力 コントローラ 211の 外部にコントローラ 211と接続して設けられていてもよい。後述するように、タイマー 2 21によって、圧縮機 1の起動時の冷凍サイクル装置の制御から、通常運転時の制御 に移行することによって、簡便で、低コストなシステムの構築が可能になる。  [0030] Further, the refrigeration cycle apparatus of the first embodiment includes a controller (control) that controls the start and stop of the compressor 1, the opening of the expansion valve 7, the radiator capacity controller 8, and the evaporator capacity controller 10. Instrument) 211. The controller 211 includes a timer 221. The timer 221 may be provided in connection with the controller 211 outside the force controller 211 provided in the controller 211 in FIG. As will be described later, it is possible to construct a simple and low-cost system by shifting from the control of the refrigeration cycle apparatus when the compressor 1 is started to the control during normal operation by the timer 222.
[0031] 次に、以上のように構成される冷凍サイクル装置の通常運転時の冷媒のエネルギ 一状態の変化を、家庭用空調機を例に取り図 3に示すモリエル線図を参照して説明 する。  Next, the change in the energy state of the refrigerant during the normal operation of the refrigeration cycle apparatus configured as described above will be described with reference to the Mollier diagram shown in FIG. 3, taking a home air conditioner as an example. To do.
[0032] 低温低圧の冷媒は、圧縮機 1の動作により圧縮されて高温高圧の冷媒となり、吐出 される(A→B)。  [0032] The low-temperature and low-pressure refrigerant is compressed by the operation of the compressor 1, becomes a high-temperature and high-pressure refrigerant, and is discharged (A → B).
[0033] 吐出された冷媒は、放熱器 2にて放熱用器ファン 9の作用により、冷房運転時は室 外、暖房運転時は室内の空気と熱交換し、膨張機 3へ流入する (B→C)。  [0033] The discharged refrigerant exchanges heat with the outdoor air during the cooling operation and indoor air during the heating operation and flows into the expander 3 by the action of the radiator fan 9 in the radiator 2 (B → C).
[0034] 膨張機 3において等エントロピ膨張を行い、機械エネルギーを発生しながら減圧さ れ、蒸発器 5に至る。この時、制御器 211により膨張弁 7は全閉状態となっている(C →D)。  [0034] Isentropic expansion is performed in the expander 3, the pressure is reduced while generating mechanical energy, and the vapor reaches the evaporator 5. At this time, the expansion valve 7 is fully closed by the controller 211 (C → D).
[0035] 蒸発器 5内にて蒸発器用ファン 11の作用により、冷房運転時は室内、暖房運転時 は室外の空気と熱交換した冷媒はガス状となり、その後、図示しない吸込配管を通つ て圧縮機 1へと吸い込まれる(D→A)。  [0035] Due to the action of the evaporator fan 11 in the evaporator 5, the refrigerant exchanged heat with the indoor air during the cooling operation and with the outdoor air during the heating operation becomes a gaseous state, and then passes through a suction pipe (not shown). Sucked into compressor 1 (D → A).
[0036] これにより、放熱器 2を暖房機、自動販売機等の加熱源として使用する場合は、発 電機 4で発生した電力を圧縮機 1の駆動源として利用すると、成績係数 COP= (IB -iC) / ( (iB-iA) - (iE— iD) )となり、従来の膨張弁やキヤビラリチューブ等で等 ェンタルピ膨張させる冷凍サイクル装置と比較して、圧縮機 1の所要動力を低減する ことができるので効率が向上する。  [0036] As a result, when the radiator 2 is used as a heating source for a heater, a vending machine, etc., the coefficient of performance COP = (IB -iC) / ((iB-iA)-(iE— iD)), reducing the required power of the compressor 1 compared to a refrigeration cycle system that is enthalpy-expanded with a conventional expansion valve, a capillary tube, etc. Can improve efficiency.
[0037] なお、蒸発器 5を冷房機、家庭用冷蔵庫、業務用冷蔵庫、製氷機、自動販売機等 の冷却源で使用する場合は、発電機 4で発生した電力を圧縮機 1の駆動源として利 用すると、成績係数 COP= ( (iA—iE) + (iE-iD) ) / ( (iB-iA)一(iE— iD) )とな り、従来の膨張弁やキヤビラリチューブ等で等ェンタルピ膨張させる冷凍サイクル装 置と比較して、圧縮機 1の所要動力を低減し、且つ冷凍効果が増加するのでさらに 効率が向上する。 [0037] When the evaporator 5 is used as a cooling source for an air conditioner, a home refrigerator, a commercial refrigerator, an ice maker, a vending machine, etc., the electric power generated by the generator 4 is used as a drive source for the compressor 1. As interest The coefficient of performance COP = ((iA—iE) + (iE-iD)) / ((iB-iA) one (iE— iD)), and so on with conventional expansion valves, cylindrical tubes, etc. Compared with the refrigeration cycle device that expands by enthalpy, the required power of the compressor 1 is reduced and the refrigeration effect is increased, so that the efficiency is further improved.
[0038] 次に、本実施の形態 1の冷凍サイクル装置の運転方法について、図 4のフローチヤ ートを用いて説明する。ここでは、暖房機として用いる場合を例にとって説明する。  [0038] Next, an operation method of the refrigeration cycle apparatus of the first embodiment will be described with reference to the flowchart of FIG. Here, the case where it is used as a heater will be described as an example.
[0039] 暖房機の場合、図示しない室内温度検知手段が設定温度以下を検知すると、コン トローラ (制御器) 211により圧縮機 1が起動するとともに、タイマー 221の積算力 Sスタ ートし、起動ステップ 100に移る。起動ステップ 100で制御器 211より放熱器能力制 御器 8、蒸発器能力制御器 10に信号が送られ、放熱器用ファン 9および蒸発器用フ アン 11を停止する (あるいは、停止状態を続ける)とともに、膨張弁 7の絞り開度を適 宜制御し、ステップ 110に移る。この時、膨張機 3にて膨張エネルギーの回収は行わ れず (膨張機 3は停止状態)、膨張弁 7にて等ェンタルピ膨張する冷凍サイクル運転 となる。  [0039] In the case of a heater, when an indoor temperature detection means (not shown) detects a temperature lower than a set temperature, the controller (controller) 211 starts the compressor 1 and starts the accumulated power S of the timer 221 and starts it. Go to step 100. At start-up step 100, controller 211 sends a signal to radiator capacity controller 8 and evaporator capacity controller 10 to stop radiator fan 9 and evaporator fan 11 (or keep it stopped). Then, control the throttle opening of the expansion valve 7 appropriately, and proceed to Step 110. At this time, the expansion energy is not recovered by the expander 3 (the expander 3 is in a stopped state), and the refrigerating cycle operation in which the expansion valve 7 performs isenthalpy expansion is performed.
[0040] ステップ 110では、タイマー 221の積算値 TAと予め設定された設定時間 TX1が比 較される。タイマー 221の積算値 TAが設定時間 TX1より小さい場合は、冷凍サイク ルの閉塞を回避するために起動ステップ 100に戻り、タイマー 221の積算値 TAが設 定時間 TX1以上になるまで、起動ステップ 100の運転状態を維持する。タイマー 22 1の積算値 TAが設定時間 TX1以上の場合は、通常運転ステップ 120に移り、制御 器 211より放熱器能力制御器 8、蒸発器能力制御器 10に信号が送られ、放熱器用 ファン 9および蒸発器用ファン 11を通常運転に適した設定速度で運転するとともに膨 張弁 7を全閉とし、放熱器 2および蒸発器 5の能力を最大限に引き上げるとともに、膨 張機 3側のみに冷媒を供給して膨張エネルギーを回収する、通常運転状態となる。 また、このときタイマー 221の積算値 TAはリセットされる。  [0040] In step 110, the integrated value TA of the timer 221 is compared with a preset set time TX1. If the accumulated value TA of timer 221 is smaller than the set time TX1, return to start step 100 to avoid blockage of the freezing cycle, and start step 100 until the accumulated value TA of timer 221 reaches the set time TX1 or more. Maintain the operating state of. If the accumulated value TA of timer 22 1 is equal to or greater than the set time TX1, the operation proceeds to normal operation step 120, and a signal is sent from the controller 211 to the radiator capacity controller 8 and the evaporator capacity controller 10, and the fan for the radiator 9 In addition, the evaporator fan 11 is operated at a set speed suitable for normal operation, the expansion valve 7 is fully closed, the capacity of the radiator 2 and the evaporator 5 is maximized, and the refrigerant is applied only to the expander 3 side. To recover the expansion energy. At this time, the integrated value TA of the timer 221 is reset.
[0041] 通常運転ステップ 120を続けているとき、例えば、図示しない室内温度検知手段が 設定温度以上を検知すると、ステップ 130に移り、制御器 211により圧縮機 1、放熱 器用ファン 9、蒸発器用ファン 11が停止する。  [0041] When the normal operation step 120 is continued, for example, when an indoor temperature detection means (not shown) detects a set temperature or higher, the routine proceeds to step 130, where the controller 211 controls the compressor 1, the radiator fan 9, and the evaporator fan. 11 stops.
[0042] 以上は、暖房機の場合について説明したが、冷房機の場合も同様である。 [0043] 図 5では、圧縮機 1が起動して力 の膨張機 3の出入口の圧力変化を実線で、膨張 機 3の出入口の差圧を破線で示している。圧縮機 1起動前は、膨張機 3の出入口の 圧力はバランスのとれた状態であるので差圧はほぼ OMPaである。 [0042] Although the case of the heater has been described above, the same applies to the case of the air conditioner. In FIG. 5, the pressure change at the inlet / outlet of the expander 3 is shown by a solid line, and the differential pressure at the inlet / outlet of the expander 3 is shown by a broken line when the compressor 1 is activated. Before the compressor 1 is started, the pressure at the inlet / outlet of the expander 3 is in a balanced state, so the differential pressure is almost OMPa.
[0044] 圧縮機 1が起動すると、放熱器用ファン 9および蒸発器用ファン 11を停止している ので、放熱器 2の温度は速やかに上昇し、蒸発器 5の温度は速やかに下降し、その 結果として、膨張機 3の入口圧力 PGは速やかに上昇し、膨張機 3の出口圧力 PEは 速やかに下降する。また、膨張機 3の出入口の差圧は速やかに増加し、差圧 A (PG — PE)が膨張機 3の起動トルク、すなわち起動差圧である ΔΡΧとなると、例えば膨張 機 3がスクロール膨張機の場合は図示しない可動スクロールが回転し始め、冷媒を 減圧膨張すると共に、膨張エネルギーが回収される。そこで、圧縮機 1が起動してか らの積算時間 (設定時間 TX1)と膨張機 3が駆動するのに必要な差圧 ΔΡΧの関係を 実験的に求めておくと、図 4のフローチャートで示したように、ステップ 110から通常 運転ステップ 120に移り、膨張機 3が駆動すると同時に、制御器 211により、放熱器 用ファン 9および蒸発器用ファン 11を運転するとともに膨張弁 7を全閉とし、放熱器 2 および蒸発器 5の能力を引き上げることが可能となる。  [0044] When the compressor 1 is started, the radiator fan 9 and the evaporator fan 11 are stopped. Therefore, the temperature of the radiator 2 rises quickly, and the temperature of the evaporator 5 falls quickly. As a result, the inlet pressure PG of the expander 3 rises quickly, and the outlet pressure PE of the expander 3 falls quickly. In addition, the differential pressure at the inlet / outlet of the expander 3 quickly increases, and when the differential pressure A (PG — PE) reaches the starting torque of the expander 3, that is, ΔΡΧ that is the starting differential pressure, for example, the expander 3 becomes the scroll expander. In this case, the movable scroll (not shown) starts rotating, and the refrigerant is decompressed and expanded, and the expansion energy is recovered. Therefore, experimentally determining the relationship between the accumulated time (set time TX1) from when the compressor 1 is started and the differential pressure ΔΡΧ required to drive the expander 3 is shown in the flowchart of FIG. As shown in the figure, the routine proceeds from step 110 to the normal operation step 120, and at the same time the expander 3 is driven, the controller 211 operates the radiator fan 9 and the evaporator fan 11 and fully closes the expansion valve 7 to dissipate heat. It is possible to increase the capacity of the evaporator 2 and the evaporator 5.
[0045] また、圧縮機 1の起動時はバイパス回路 6側に冷媒を通過させるように制御し、膨張 機 3の出入口の差圧を十分に確保して力 膨張機 3側への冷媒の供給を開始するこ とにより、冷凍サイクルが閉塞することはないので、冷凍サイクルの低圧の異常低下 を回避することができ、圧縮機 1の信頼性を向上することが可能となる。  [0045] Further, when the compressor 1 is started, control is performed so that the refrigerant passes through the bypass circuit 6 side, and a sufficient differential pressure at the inlet / outlet of the expander 3 is secured to supply the refrigerant to the force expander 3 side. By starting the operation, the refrigeration cycle is not blocked, so that an abnormal drop in the low pressure of the refrigeration cycle can be avoided and the reliability of the compressor 1 can be improved.
[0046] なお、本実施の形態 1の冷凍サイクル装置は、膨張機 3をバイパスするバイパス回 路 6を備えた構成としたが、図 6に示すように、膨張機 3をバイパスするバイパス回路 6 力 い構成としても、圧縮機 1の起動時に放熱器用ファン 9もしくは蒸発器用ファン 1 1を停止することで、放熱器用ファン 9又は蒸発器用ファン 11を通常運転した場合よ りも、速やかに膨張機 3を駆動することが可能となる。  Note that the refrigeration cycle apparatus of the first embodiment is configured to include the bypass circuit 6 that bypasses the expander 3, but as shown in FIG. 6, the bypass circuit 6 that bypasses the expander 3. Even when the compressor 1 is started, the radiator fan 9 or the evaporator fan 11 1 is stopped when the compressor 1 is started, so that the expander can be operated more quickly than when the radiator fan 9 or the evaporator fan 11 is normally operated. 3 can be driven.
[0047] また、圧縮機 1の起動時に放熱器用ファン 9と蒸発器用ファン 11を停止するとした 力 各ファンへの印加電圧を通常運転時より小さくして、通常運転時よりも放熱器 2お よび蒸発器 5を通過する風量を低減することにより、圧縮比の過度の増大を防止でき るので、圧縮機 1の信頼性を確保しつつ、膨張機 3を速やかに駆動することにより動 力回収ロスを低減することが可能となる。 [0047] Further, when the compressor 1 is started, the radiator fan 9 and the evaporator fan 11 are stopped. The applied voltage to each fan is smaller than that during normal operation, and the radiator 2 and By reducing the amount of air passing through the evaporator 5, it is possible to prevent an excessive increase in the compression ratio, so that the reliability of the compressor 1 can be ensured while the expander 3 is driven quickly to operate. Power recovery loss can be reduced.
[0048] 以上の説明では、圧縮機 1の起動時に放熱器用ファン 9および蒸発器用ファン 11 を停止あるいは減速運転する場合について説明したが、本発明の要旨は、冷房機等 における圧縮機の起動時、室外機に設けられた放熱器用ファンを停止あるいは減速 運転したり、暖房機等における圧縮機の起動時、室外機に設けられた蒸発器用ファ ンを停止あるいは減速運転することにあり、換言すれば、圧縮機の起動時において、 特に室外ファンを停止あるいは減速制御することにある。  [0048] In the above description, the case where the radiator fan 9 and the evaporator fan 11 are stopped or decelerated when the compressor 1 is started has been described. However, the gist of the present invention is that when the compressor is started in the air conditioner or the like. In other words, the radiator fan provided in the outdoor unit is stopped or decelerated, or the evaporator fan provided in the outdoor unit is stopped or decelerated when starting the compressor in a heater or the like. For example, when the compressor is started, the outdoor fan is particularly stopped or decelerated.
[0049] また、上述した実施の形態 1は、図 1の暖房機あるいは冷房機を例にとり説明したが 、本発明は、冷媒の流れを切り替える四方弁を備えた空気調和機にも勿論適用可能 であり、以下に説明する実施の形態においても同様である。  [0049] Although the above-described first embodiment has been described by taking the heater or the air conditioner of Fig. 1 as an example, the present invention is naturally applicable to an air conditioner including a four-way valve for switching the refrigerant flow. The same applies to the embodiments described below.
[0050] なお、圧縮機の起動時に室外ファン及び室内ファンの両方とも停止した場合に、効 果が大きいのは明らかである力 一方のみ停止した場合、または、一方のみ風量を 低減した場合等も、両方とも通常運転する場合よりは、膨張機 3を速やかに駆動する ことができる。また、放熱器用ファン 9又は蒸発器用ファン 11の一方のみを備えてい る冷凍サイクル装置 (例えば、後述する実施の形態 4参照)でも、そのファンの停止又 は風量低減により、本発明の効果は得られる。  [0050] It should be noted that when both the outdoor fan and the indoor fan are stopped at the time of starting the compressor, it is obvious that the effect is large. When only one of them is stopped, or when only one of the airflows is reduced, etc. In both cases, the expander 3 can be driven more quickly than in the case of normal operation. In addition, even in a refrigeration cycle apparatus (see, for example, Embodiment 4 to be described later) having only one of the radiator fan 9 or the evaporator fan 11, the effect of the present invention can be obtained by stopping the fan or reducing the air volume. It is done.
[0051] 実施の形態 2.  [0051] Embodiment 2.
本実施の形態 2の冷凍サイクル装置は、図 7に示すように、図 1に示す冷凍サイクル 装置に加えて、膨張機 3の入口圧力を検出する第一の圧力計 12を膨張機 3の入口 側配管に、膨張機 3の出口圧力を検出する第二の圧力計 13を膨張機 3の出口側配 管に配設し、第一の圧力計 12および第二の圧力計 13からの信号により、膨張弁 7の 開度、放熱器能力制御器 8、蒸発器能力制御器 10を制御するコントローラ (制御器) 212を有している。  As shown in FIG. 7, the refrigeration cycle apparatus of Embodiment 2 includes a first pressure gauge 12 that detects the inlet pressure of the expander 3 in addition to the refrigeration cycle apparatus shown in FIG. A second pressure gauge 13 for detecting the outlet pressure of the expander 3 is arranged in the outlet pipe of the expander 3 on the side pipe, and the signals from the first pressure gauge 12 and the second pressure gauge 13 are And a controller (controller) 212 for controlling the opening degree of the expansion valve 7, the radiator capacity controller 8, and the evaporator capacity controller 10.
[0052] 本実施の形態 2の冷凍サイクル装置の運転方法は、実施の形態 1でタイマーによつ て行って!/、た起動ステップ力も通常運転ステップへの移行を、第一の圧力計 12と第 二の圧力計 13が検知する圧力の差が設定値以上となることにより制御する方法であ る。このような運転方法により、膨張機 3が駆動するのに適正な差圧が確保されてい る力を最も正確に判断することができ、より確実に膨張機 3により動力回収を開始する と同時に、放熱器 2と蒸発器 5の能力を引き上げる通常運転状態へ速やかに移行す ることが可能となる。 [0052] The operation method of the refrigeration cycle apparatus of the second embodiment is performed by the timer in the first embodiment! /, And the start step force also shifts to the normal operation step. This is a control method in which the difference between the pressure detected by the second pressure gauge 13 and the second pressure gauge 13 exceeds a set value. By such an operation method, it is possible to most accurately determine the force with which an appropriate differential pressure is secured to drive the expander 3, and the power recovery is started more reliably by the expander 3. At the same time, it is possible to promptly shift to a normal operation state in which the capabilities of the radiator 2 and the evaporator 5 are increased.
[0053] 第一の圧力計 12の配置位置としては、図 7に示すように、膨張機 3の入口側が最も 適切であるが、冷凍サイクルの圧縮機 1の吐出側から放熱器 2の出口に至る位置で あれば、同様の役割を果たすことができる。第二の圧力計 13の配置位置としては、 図 7に示すように、膨張機 3の出口側の配管が最も適切であるが、冷凍サイクルの膨 張機 3の出口側から、圧縮機 1の吸込側であれば、同様の役割を果たすことができる  [0053] As shown in FIG. 7, the arrangement position of the first pressure gauge 12 is most suitable on the inlet side of the expander 3, but from the discharge side of the compressor 1 of the refrigeration cycle to the outlet of the radiator 2. The same role can be played everywhere. As shown in FIG. 7, the piping on the outlet side of the expander 3 is most appropriate as the position of the second pressure gauge 13, but from the outlet side of the expander 3 of the refrigeration cycle, the compressor 1 If the suction side, can play the same role
[0054] 次に、本実施の形態 2の冷凍サイクル装置の運転方法について、図 8のフローチヤ ートを基に詳細に説明する。 Next, the operation method of the refrigeration cycle apparatus of the second embodiment will be described in detail based on the flow chart of FIG.
[0055] 例えば、暖房機の場合、図示しない室内温度検知手段が設定温度以下を検知す ると、制御器 212により圧縮機 1が起動し、起動ステップ 200に移る。起動ステップ 20 0で制御器 212より放熱器能力制御器 8、蒸発器能力制御器 10に信号が送られ、放 熱器用ファン 9および蒸発器用ファン 11を停止状態にする (または停止状態を続ける )とともに、膨張弁 7の絞り開度を適宜制御し、ステップ 210に移る。この時、膨張機 3 にて膨張エネルギーの回収は行われず (膨張機 3は停止状態)、膨張弁 7にて等ェ ンタルピ膨張する冷凍サイクル運転となる。  [0055] For example, in the case of a heater, when an indoor temperature detection means (not shown) detects a temperature equal to or lower than a set temperature, the compressor 212 is started by the controller 212, and the start step 200 is performed. At the start step 200 0, a signal is sent from the controller 212 to the radiator capacity controller 8 and the evaporator capacity controller 10 to stop the heat radiator fan 9 and the evaporator fan 11 (or continue the stopped state). At the same time, the throttle opening degree of the expansion valve 7 is appropriately controlled, and the routine proceeds to step 210. At this time, expansion energy is not collected by the expander 3 (the expander 3 is in a stopped state), and the refrigeration cycle operation in which the expansion valve 7 performs isenthalpy expansion is performed.
[0056] ステップ 210では、制御器 212は第一の圧力計 12の検出値 PG (入口圧力)と、第 二の圧力計 13の検出値 PE (出口圧力)の差分 A (PG— PE)を演算するとともに、差 分△ (PG— PE)と予め設定された差圧値 ΔΡΧを比較する。差分△ (PG— PE)が差 圧値 ΔΡΧより小さい場合は、起動ステップ 200に戻り、差分 A (PG— PE)が差圧値 △PX以上になるまで、起動ステップ 200の運転状態を維持する。差分 A (PG— PE) が差圧値 ΔΡΧ以上になると、通常運転ステップ 220に移り、制御器 212により放熱 器能力制御器 8、蒸発器能力制御器 10に信号が送られ、放熱器用ファン 9および蒸 発器用ファン 11を運転するとともに膨張弁 7を全閉とし、放熱器 2および蒸発器 5の 能力を引き上げるとともに、膨張機 3側のみに冷媒を供給して膨張エネルギーを回収 する、通常運転状態となる。  [0056] In step 210, the controller 212 calculates a difference A (PG-PE) between the detected value PG (inlet pressure) of the first pressure gauge 12 and the detected value PE (outlet pressure) of the second pressure gauge 13. While calculating, the difference Δ (PG-PE) is compared with the preset differential pressure value ΔΡΧ. If the difference △ (PG-PE) is smaller than the differential pressure value ΔΡΧ, the operation returns to the start step 200, and the operation state of the start step 200 is maintained until the difference A (PG-PE) exceeds the differential pressure value △ PX. . When the difference A (PG—PE) exceeds the differential pressure value ΔΡΧ, the operation proceeds to the normal operation step 220, and the controller 212 sends a signal to the radiator capacity controller 8 and the evaporator capacity controller 10, and the radiator fan 9 And the evaporator fan 11 and the expansion valve 7 are fully closed, the capacity of the radiator 2 and the evaporator 5 is increased, and the refrigerant is supplied only to the expander 3 side to recover the expansion energy. It becomes a state.
[0057] 次に、図示しない室内温度検知手段が設定温度以上を検知すると、ステップ 230 に移り、制御器 212により圧縮機 1、放熱器用ファン 9、蒸発器用ファン 11が停止する [0057] Next, when an indoor temperature detection means (not shown) detects a set temperature or higher, step 230 is performed. The controller 212 stops the compressor 1, the radiator fan 9, and the evaporator fan 11 by the controller 212.
[0058] このように、膨張機 3の出入口の圧力を検知することにより、膨張機 3が駆動するの に適正な差圧が確保されているかどうかを最も正確に判断することが可能となり、より 確実に膨張機 3により動力回収を開始すると同時に、放熱器 2と蒸発器 5の能力を引 き上げる通常運転状態へ速やかに移行することが可能となる。これにより、圧縮機 1 の起動時に膨張機 3をバイパスし、放熱器用ファン 9と蒸発器用ファン 11を停止する 時間を最小限にすることができるので、圧縮機 1の起動時の動力回収ロスを最小限 に抑えることが可能となる。 [0058] Thus, by detecting the pressure at the inlet / outlet of the expander 3, it is possible to most accurately determine whether or not an appropriate differential pressure is secured for driving the expander 3. The power recovery by the expander 3 is surely started, and at the same time, it is possible to promptly shift to the normal operation state in which the capacity of the radiator 2 and the evaporator 5 is increased. As a result, it is possible to bypass the expander 3 when the compressor 1 starts up and to minimize the time during which the radiator fan 9 and the evaporator fan 11 are stopped. It can be minimized.
[0059] 図 9は、上述した実施の形態 2の変形例としての冷凍サイクル装置を示しており、第 二の圧力計 13の代わりに、蒸発器 5の温度を検知する第一の温度計 14 (例えば、サ 一ミスタ)を備えている。第一の圧力計 12により検知された圧力値と、第一の温度計 1 4により検知された温度により、圧縮機 1の起動ステップから、通常運転ステップに移 行することにより、正確かつ低コストでステップの移行が実現できる。  FIG. 9 shows a refrigeration cycle apparatus as a modified example of the above-described second embodiment. Instead of the second pressure gauge 13, a first thermometer 14 that detects the temperature of the evaporator 5 is shown. (For example, a thermistor). By moving from the startup step of the compressor 1 to the normal operation step based on the pressure value detected by the first pressure gauge 12 and the temperature detected by the first thermometer 14, accurate and low-cost The step transition can be realized.
[0060] 第一の温度計 14は、蒸発器 5の温度を検知できる位置であればょ 、。具体的には 、膨張機 3の出口力 蒸発器 5の出口に至る配管に設置されていればよい。  [0060] The first thermometer 14 is in a position where the temperature of the evaporator 5 can be detected. Specifically, the outlet force of the expander 3 may be installed in a pipe leading to the outlet of the evaporator 5.
[0061] この冷凍サイクル装置は、より望ましくは、図 9に示すように、放熱器能力制御器 8、 蒸発器能力制御器 10、膨張弁 7の開度を制御するコントローラ (制御器) 213を備え ている。コントローラ 213には、第一の温度計 14により検知された温度を基に、使用 冷媒の物性力 飽和圧力、すなわち膨張機 3の出口側の圧力を演算する膨張機出 口圧力演算手段が備えられて ヽる。  More preferably, the refrigeration cycle apparatus includes a controller (controller) 213 for controlling the opening degree of the radiator capacity controller 8, the evaporator capacity controller 10, and the expansion valve 7, as shown in FIG. It has. The controller 213 is provided with expander outlet pressure calculating means for calculating the physical force saturation pressure of the refrigerant used, that is, the pressure on the outlet side of the expander 3, based on the temperature detected by the first thermometer 14. Speak.
[0062] 以上のように構成される冷凍サイクル装置の圧縮機 1の起動時の制御方法につ!、 て、図 10のフローチャートを基に説明する。  [0062] A control method at the time of starting the compressor 1 of the refrigeration cycle apparatus configured as described above will be described based on the flowchart of FIG.
[0063] 例えば、暖房機の場合、図示しない室内温度検知手段が設定温度以下を検知す ると、コントローラ (制御器) 213により圧縮機 1が起動し、起動ステップ 300に移る。起 動ステップ 300で制御器 213より放熱器能力制御器 8、蒸発器能力制御器 10に信 号が送られ、放熱器用ファン 9および蒸発器用ファン 11を停止状態にするとともに、 膨張弁 7の絞り開度を適宜制御し、ステップ 310に移る。なお、制御器 213に備えら れた膨張機出口圧力演算手段により第一の温度計 14の検出値力 膨張機 3の出口 圧力 PE'を常時、演算している。この時、膨張機 3にて膨張エネルギーの回収は行わ れず (膨張機 3は停止状態)、膨張弁 7にて等ェンタルピ膨張する冷凍サイクル運転 となる。 For example, in the case of a heater, when an indoor temperature detection means (not shown) detects a temperature equal to or lower than a set temperature, the controller (controller) 213 starts up the compressor 1 and proceeds to the start step 300. In starting step 300, signals are sent from the controller 213 to the radiator capacity controller 8 and the evaporator capacity controller 10 to stop the radiator fan 9 and the evaporator fan 11 and to stop the expansion valve 7 Adjust the opening appropriately, and go to Step 310. The controller 213 is equipped with The detected value force of the first thermometer 14 and the outlet pressure PE ′ of the expander 3 are always calculated by the expanded expander outlet pressure calculation means. At this time, the expansion energy is not recovered by the expander 3 (the expander 3 is in a stopped state), and the refrigerating cycle operation in which the expansion valve 7 performs isenthalpy expansion is performed.
[0064] ステップ 310では、制御器 213は第一の圧力計 12の検出値 PG (入口圧力)と、第 一の温度計 14の検出値力も推定した膨張機 3の出口圧力 PE'の差分 A (PG— PE' )を演算するとともに、差分△ (PG— PE' )と予め設定された差圧値 ΔΡΧを比較する 。差分 A (PG— ΡΕ' )が差圧値 ΔΡΧより小さい場合は、起動ステップ 300に戻り、差 分△ (PG— PE' )が差圧値 ΔΡΧより大きくなるまで、起動ステップ 300の運転状態を 維持する。差分 A (PG— PE' )が差圧値 ΔΡΧより大きい場合は、通常運転ステップ 320に移り、制御器 213により放熱器能力制御器 8、蒸発器能力制御器 10に信号が 送られ、放熱器用ファン 9および蒸発器用ファン 11を運転するとともに膨張弁 7を全 閉とし、放熱器 2および蒸発器 5の能力を引き上げるとともに、膨張機 3側のみに冷媒 を供給して膨張エネルギーを回収する、通常運転状態となる。  [0064] In step 310, the controller 213 determines the difference A between the detected value PG (inlet pressure) of the first pressure gauge 12 and the outlet pressure PE 'of the expander 3 that also estimates the detected value force of the first thermometer 14. (PG−PE ′) is calculated and the difference Δ (PG−PE ′) is compared with a preset differential pressure value ΔΡΧ. If the difference A (PG—ΡΕ ′) is smaller than the differential pressure value ΔΡΧ, the process returns to the start step 300, and the operating state of the start step 300 is changed until the differential Δ (PG—PE ′) becomes greater than the differential pressure value ΔΡΧ. maintain. If the difference A (PG-PE ') is greater than the differential pressure value ΔΡΧ, the operation proceeds to the normal operation step 320, and the controller 213 sends a signal to the radiator capacity controller 8 and the evaporator capacity controller 10 for the radiator. Operate fan 9 and evaporator fan 11 and fully expand expansion valve 7 to increase the capacity of radiator 2 and evaporator 5 and supply refrigerant only to expander 3 side to recover expansion energy. It becomes a driving state.
[0065] 次に、図示しない室内温度検知手段が設定温度以上を検知すると、ステップ 330 に移り、制御器 213により圧縮機 1、放熱器用ファン 9、蒸発器用ファン 11が停止する  Next, when an indoor temperature detection means (not shown) detects a set temperature or higher, the routine proceeds to step 330, where the controller 1, the compressor 1, the radiator fan 9, and the evaporator fan 11 are stopped by the controller 213.
[0066] これにより、膨張機 3が駆動するのに適正な差圧が確保されているかどうかを、膨張 機 3の出口圧力を第二の圧力計 13で検出する場合と比較して、正確且つ低コストで 推定することが可能となる。 [0066] As a result, whether or not the differential pressure appropriate for driving the expander 3 is ensured is more accurate than when the second pressure gauge 13 detects the outlet pressure of the expander 3. It is possible to estimate at low cost.
[0067] なお、膨張機 3の出入口の圧力差は膨張機 3の入口側の圧力への依存度が大き!/、 ので、第一の圧力計 12の検出値のみで、膨張機 3が駆動するのに適正な差圧が確 保されている力否力を大まかに推定することも可能である。この場合、第二の圧力計 13または第一の温度計 14を設けなくてもよくなるので、さらに安価な冷凍サイクルの 提供が可能となる。  [0067] Since the pressure difference at the inlet / outlet of the expander 3 is highly dependent on the pressure on the inlet side of the expander 3! /, The expander 3 is driven only by the detected value of the first pressure gauge 12. It is also possible to roughly estimate the force force that ensures a proper differential pressure. In this case, it is not necessary to provide the second pressure gauge 13 or the first thermometer 14, so that it is possible to provide a more inexpensive refrigeration cycle.
[0068] 図 11は、上述した実施の形態 2の別の変形例としての冷凍サイクル装置を示して おり、圧力計は用いないで、圧縮機 1の吐出側から放熱器 2の入口に至る配管の温 度を検知する第二の温度計 15を用いた構成である。膨張機 3の入口圧力と圧縮機 1 の吐出側力 放熱器 2の入口に至る配管の温度とは相関関係があるので、圧縮機 1 の吐き出し温度を測定することにより、膨張機 3の入口圧力を推定し、さらにこの入口 圧力に基づ 、て膨張機 3前後の差圧を推定することができる。 FIG. 11 shows a refrigeration cycle apparatus as another modification of the above-described second embodiment, and a pipe extending from the discharge side of the compressor 1 to the inlet of the radiator 2 without using a pressure gauge. This is a configuration using a second thermometer 15 that detects the temperature. Inlet machine 3 inlet pressure and compressor 1 The discharge side force of the radiator has a correlation with the temperature of the pipe leading to the inlet of the radiator 2, so by measuring the discharge temperature of the compressor 1, the inlet pressure of the expander 3 is estimated, and based on this inlet pressure Therefore, the differential pressure across the expander 3 can be estimated.
[0069] この変形例では、第二の温度計 15が設定温度以上を検知すると、コントローラ (制 御器) 214により放熱器能力制御器 8、蒸発器能力制御器 10に信号が送られ、放熱 器用ファン 9および蒸発器用ファン 11を運転するとともに膨張弁 7を全閉とし、放熱器 2および蒸発器 5の能力を引き上げるとともに、膨張機 3側のみに冷媒を供給して膨 張エネルギーを回収する通常運転状態への移行をさらに低コストで実現することが 可能となる。 [0069] In this modification, when the second thermometer 15 detects a set temperature or higher, a signal is sent from the controller (controller) 214 to the radiator capacity controller 8 and the evaporator capacity controller 10 to dissipate heat. The fan 9 and the evaporator fan 11 are operated and the expansion valve 7 is fully closed, the capacity of the radiator 2 and the evaporator 5 is increased, and the refrigerant is supplied only to the expander 3 side to recover the expansion energy. The transition to the normal operation state can be realized at a lower cost.
[0070] 実施の形態 3. [0070] Embodiment 3.
図 12は、本実施の形態 3における冷凍サイクル装置の概略図を示すものである。な お、実施の形態 1と同一構成については同一符号を付す。  FIG. 12 shows a schematic diagram of the refrigeration cycle apparatus in the third embodiment. The same components as those in the first embodiment are given the same reference numerals.
[0071] 図 12において、本実施の形態 3の冷凍サイクル装置は、発電機 4を流れる電流を 検知する電流計 16を配設し、電流計 16の信号により、膨張弁 7の開度、放熱器能力 制御器 8、蒸発器能力制御器 10を制御するコントローラ (制御器) 215が設けられて いる。 In FIG. 12, the refrigeration cycle apparatus of the third embodiment is provided with an ammeter 16 for detecting the current flowing through the generator 4, and the opening of the expansion valve 7, the heat dissipation by the signal of the ammeter 16. A controller (controller) 215 for controlling the vessel capacity controller 8 and the evaporator capacity controller 10 is provided.
[0072] 以上のように構成される冷凍サイクル装置の圧縮機 1の起動時の制御方法につ!、 て、図 13のフローチャートを基に説明する。  A control method at the time of starting the compressor 1 of the refrigeration cycle apparatus configured as described above will be described based on the flowchart of FIG.
[0073] 例えば、暖房機の場合、図示しない室内温度検知手段が設定温度以下を検知す ると、制御器 215により圧縮機 1が起動し、起動ステップ 400に移る。起動ステップ 40 0で制御器 215より放熱器能力制御器 8、蒸発器能力制御器 10に信号が送られ、放 熱器用ファン 9および蒸発器用ファン 11を停止するとともに、膨張弁 7の絞り開度を 適宜制御し、ステップ 410に移る。この時、膨張機 3にて膨張エネルギーの回収は行 われず (膨張機 3は停止状態)、膨張弁 7にて等ェンタルピ膨張する冷凍サイクル運 転となる。  [0073] For example, in the case of a heater, when an indoor temperature detection means (not shown) detects a temperature equal to or lower than a set temperature, the compressor 1 is activated by the controller 215, and the activation step 400 is performed. At start-up step 400, a signal is sent from the controller 215 to the radiator capacity controller 8 and the evaporator capacity controller 10 to stop the heat radiator fan 9 and the evaporator fan 11 and to open the throttle valve 7 Is appropriately controlled, and the process proceeds to Step 410. At this time, the expansion energy is not recovered by the expander 3 (the expander 3 is in a stopped state), and the refrigeration cycle operation in which the expansion valve 7 performs isenthalpy expansion.
[0074] ステップ 410では、制御器 215は、電流計 16より発電機 4を流れる電流値 A1を検 知し、ステップ 420へ移る。ステップ 420では発電機 4を流れる電流値 A1と予め設定 された電流値 AX (例えば、 0アンペア)が比較される。発電機 4を流れる電流値 A1が 予め設定された電流値 AXより小さい場合は、発電機 4が発電を開始していない、す なわち膨張機 3が駆動していないと判断し、発電機 4を流れる電流値 A1が予め設定 された電流値 AX以上になるまで、起動ステップ 400の状態を維持する。発電機 4を 流れる電流値 A1が予め設定された電流値 AX以上の場合は、発電機 4が発電を開 始している、すなわち膨張機 3が駆動していると判断し、通常運転ステップ 430に移り 、制御器 215より放熱器能力制御器 8、蒸発器能力制御器 10に信号が送られ、放熱 器用ファン 9および蒸発器用ファン 11を運転するとともに膨張弁 7を全閉とし、放熱器 2および蒸発器 5の能力を引き上げるとともに、膨張機 3側のみに冷媒を供給して膨 張エネルギーを回収する、通常運転状態となる。 In step 410, the controller 215 detects the current value A 1 flowing through the generator 4 from the ammeter 16, and proceeds to step 420. In step 420, the current value A1 flowing through the generator 4 is compared with a preset current value AX (eg, 0 amperes). The current value A1 flowing through the generator 4 is If it is smaller than the preset current value AX, it is determined that the generator 4 has not started generating power, that is, the expander 3 is not driven, and the current value A1 flowing through the generator 4 is preset. The start step 400 is maintained until the current value exceeds AX. When the current value A1 flowing through the generator 4 is greater than or equal to the preset current value AX, it is determined that the generator 4 has started generating power, that is, the expander 3 is operating, and the normal operation step 430 Then, a signal is sent from the controller 215 to the radiator capacity controller 8 and the evaporator capacity controller 10 to operate the radiator fan 9 and the evaporator fan 11, and the expansion valve 7 is fully closed. In addition, the capacity of the evaporator 5 is increased, and the refrigerant is supplied only to the expander 3 side to recover the expansion energy.
[0075] 次に、図示しない室内温度検知手段が設定温度以上を検知すると、ステップ 440 に移り、制御器 215により圧縮機 1、放熱器用ファン 9、蒸発器用ファン 11が停止する [0075] Next, when an indoor temperature detection means (not shown) detects a set temperature or higher, the process proceeds to step 440, and the compressor 1, the radiator fan 9, and the evaporator fan 11 are stopped by the controller 215.
[0076] このように、発電機 4の電流値を検出することにより、膨張機 3が駆動したことを正確 に把握でき、膨張機 3により動力回収が開始されると同時に、放熱器 2と蒸発器 5の 能力を引き上げる通常運転状態へ速やかに移行することが可能となるので、圧縮機 1起動時の膨張機 3の動力回収ロスを最小限に抑えることができる。 Thus, by detecting the current value of the generator 4, it is possible to accurately grasp that the expander 3 has been driven, and at the same time that the power recovery is started by the expander 3, the radiator 2 and the evaporator 2 are evaporated. Since it is possible to quickly shift to the normal operation state in which the capacity of the compressor 5 is increased, the power recovery loss of the expander 3 when the compressor 1 is started can be minimized.
[0077] 実施の形態 4.  [0077] Embodiment 4.
図 14は、本実施の形態 4における冷凍サイクル装置の概略図を示すものである。な お、実施の形態 1〜3と同一構成については同一符号を付す。  FIG. 14 shows a schematic diagram of the refrigeration cycle apparatus in the fourth embodiment. The same components as those in Embodiments 1 to 3 are denoted by the same reference numerals.
[0078] 図 14において、本実施の形態 4の冷凍サイクル装置は、一次側冷媒回路 17と二次 側冷媒回路 18とで構成されている。一次側冷媒回路 17は、圧縮機 1と、例えば二重 管仕様である水冷式の放熱器 2と、冷媒の膨張エネルギーを機械エネルギーに変換 して動力を回収する膨張機 3と、蒸発器 5を順次直列に接続し、膨張機 3をバイパス するバイパス回路 6を設けるともに、バイパス回路 6内に減圧手段として膨張弁 7を配 設した構成となっている。また、二次側冷媒回路 18は、貯湯タンク 19と、放熱器 2と、 水を循環させるための循環ポンプ 20とで構成されている。放熱器能力制御器 8は、 循環ポンプ 20と循環ポンプ 20へ電圧を供給する循環ポンプ制御部 33とで構成され 、循環ポンプ 20の作用により、二次側冷媒回路 18を流れる水量を可変とすることに より、放熱器 2の能力制御を可能としている。なお、放熱器 2は、一次側冷媒回路 17 と二次側冷媒回路 18の冷媒の流れが対向流となるように構成されている。また、貯 湯タンク 19は下部より水道水を流入し、上部より放熱器 2の作用により高温となった 温水を利用側回路 21へ供給する構成となっており、利用側回路 21を通過した温水 は、給湯栓 22を介して風呂釜 23等へ供給されて利用される。また、貯湯タンク 19内 には、貯湯タンク 19内の水温を検知する貯湯タンク水温温度計 24 (例えば、サーミス タ)が設けられており、貯湯タンク水温温度計 24からの信号により圧縮機 1の起動と 停止を制御するとともに、膨張弁 7の開度、放熱器能力制御器 8、蒸発器能力制御器 10を制御するタイマー 226を内蔵したコントローラ(制御器) 216が設けられている。 In FIG. 14, the refrigeration cycle apparatus of the fourth embodiment includes a primary side refrigerant circuit 17 and a secondary side refrigerant circuit 18. The primary refrigerant circuit 17 includes a compressor 1, a water-cooled radiator 2 having, for example, a double pipe specification, an expander 3 that recovers power by converting expansion energy of the refrigerant into mechanical energy, and an evaporator 5 Are sequentially connected in series, and a bypass circuit 6 for bypassing the expander 3 is provided, and an expansion valve 7 is provided in the bypass circuit 6 as a pressure reducing means. The secondary refrigerant circuit 18 includes a hot water storage tank 19, a radiator 2, and a circulation pump 20 for circulating water. The radiator capacity controller 8 includes a circulation pump 20 and a circulation pump control unit 33 that supplies voltage to the circulation pump 20. The amount of water flowing through the secondary refrigerant circuit 18 is variable by the action of the circulation pump 20. Especially This makes it possible to control the capacity of radiator 2. The radiator 2 is configured such that the refrigerant flows in the primary side refrigerant circuit 17 and the secondary side refrigerant circuit 18 are opposed to each other. In addition, the hot water storage tank 19 is configured to supply tap water from the lower part and supply hot water that has become hot due to the action of the radiator 2 from the upper part to the use side circuit 21. Is supplied to the bath tub 23 through the hot-water tap 22 for use. The hot water storage tank 19 is provided with a hot water storage tank water temperature thermometer 24 (for example, a thermistor) that detects the water temperature in the hot water storage tank 19. A controller (controller) 216 having a built-in timer 226 for controlling the start and stop, as well as the opening degree of the expansion valve 7, the radiator capacity controller 8, and the evaporator capacity controller 10 is provided.
[0079] 以上のように構成される冷凍サイクル装置の圧縮機 1の起動時の制御方法につ!、 て、図 15のフローチャートを基に説明する。  [0079] A control method at the time of starting the compressor 1 of the refrigeration cycle apparatus configured as described above will be described with reference to the flowchart of FIG.
[0080] ステップ 500において、貯湯タンク水温温度計 24により検出された貯湯タンク水温 TB (°C)が設定温度 TL (°C)以下を検知するとステップ 510に移り、制御器 216により 圧縮機 1が起動するとともに、タイマー 226の積算がスタートする。起動ステップ 520 で制御器 216より放熱器能力制御器 8、蒸発器能力制御器 10に信号が送られ、循 環ポンプ 20および蒸発器用ファン 11を停止する(又は停止状態を続ける)とともに、 膨張弁 7の絞り開度を適宜制御し、ステップ 530に移る。この時、膨張機 3にて膨張ェ ネルギ一の回収は行われず (膨張機 3は停止状態)、膨張弁 7にて等ェンタルピ膨張 する冷凍サイクル運転となる。  [0080] In step 500, when the hot water tank water temperature TB (° C) detected by the hot water tank water temperature thermometer 24 detects that the temperature is lower than the set temperature TL (° C), the process proceeds to step 510, and the controller 216 At the same time, timer 226 integration starts. In start-up step 520, a signal is sent from the controller 216 to the radiator capacity controller 8 and the evaporator capacity controller 10, and the circulation pump 20 and the evaporator fan 11 are stopped (or kept stopped), and the expansion valve Adjust the throttle opening of 7 as appropriate, and go to Step 530. At this time, the expansion energy is not recovered by the expander 3 (the expander 3 is in a stopped state), and the refrigeration cycle operation in which the expansion valve 7 performs isenthalpy expansion is performed.
[0081] ステップ 530では、タイマー 226の積算値 TAと予め設定された設定時間 TX2が比 較される。ステップ 530で、タイマー 226の積算値 TAが設定時間 TX2を超えるまで は、起動ステップ 520に戻り、タイマー 226の積算値 TAが設定時間 TX2より大きくな るまで起動ステップ 520の運転状態を維持する。タイマー 226の積算値 TAが設定時 間 TX2より大きくなると、通常運転ステップ 540に移り、制御器 216より放熱器能力制 御器 8、蒸発器能力制御器 10に信号が送られ、循環ポンプ 20および蒸発器用ファ ン 11を運転するとともに膨張弁 7を全閉とし、放熱器 2および蒸発器 5の能力を引き 上げるとともに、膨張機 3側のみに冷媒を供給して膨張エネルギーを回収する、通常 運転状態となる。また、このときタイマー 226の積算値 TAはリセットされる。 [0082] 次に、ステップ 550で貯湯タンク水温温度計 24により検出された貯湯タンク水温 T B (°C)が設定温度 TH (°C)以上を検知すると、ステップ 560に移り、制御器 216によ り圧縮機 1、循環ポンプ 20、蒸発器用ファン 11が停止する。 [0081] In step 530, the integrated value TA of timer 226 is compared with preset time TX2. In step 530, until the accumulated value TA of the timer 226 exceeds the set time TX2, the process returns to the start step 520, and the operation state of the start step 520 is maintained until the accumulated value TA of the timer 226 becomes larger than the set time TX2. When the accumulated value TA of timer 226 becomes larger than the set time TX2, the routine proceeds to normal operation step 540, and a signal is sent from the controller 216 to the radiator capacity controller 8 and the evaporator capacity controller 10, and the circulation pump 20 and Normal operation in which the evaporator fan 11 is operated and the expansion valve 7 is fully closed to increase the capacity of the radiator 2 and the evaporator 5 and the refrigerant is supplied only to the expander 3 side to recover the expansion energy. It becomes a state. At this time, the integrated value TA of the timer 226 is reset. [0082] Next, when the hot water storage tank water temperature TB (° C) detected by the hot water storage tank water temperature thermometer 24 in step 550 detects the set temperature TH (° C) or more, the process proceeds to step 560 and the controller 216 The compressor 1, the circulation pump 20, and the evaporator fan 11 are stopped.
[0083] 図 16では、圧縮機 1が起動して力もの膨張機 3の出入口の圧力変化を実線で、膨 張機 3の出入口の差圧を破線で示している。圧縮機 1起動前は、膨張機 3の出入口 の圧力はバランスのとれた状態であるので差圧はほぼ OMPaである。  In FIG. 16, the pressure change at the inlet / outlet of the expander 3 when the compressor 1 is activated is indicated by a solid line, and the differential pressure at the inlet / outlet of the expander 3 is indicated by a broken line. Before the compressor 1 is started, the pressure at the inlet / outlet of the expander 3 is in a balanced state, so the differential pressure is almost OMPa.
[0084] 圧縮機 1が起動すると、循環ポンプ 20および蒸発器用ファン 11を停止しているの で、放熱器 2の温度は速やかに上昇し、蒸発器 5の温度は速やかに下降し、その結 果として、膨張機 3の入口圧力 PGは速やかに上昇し、膨張機 3の出口圧力 PEは速 やかに下降する。また、膨張機 3の出入口の差圧は速やかに増加し、差圧 A (PG— PE)が膨張機 3の起動トルク、すなわち起動差圧である ΔΡΧとなると、例えば膨張機 3がスクロール膨張機の場合は図示しない可動スクロールが回転し始め、冷媒を減 圧膨張すると共に、膨張エネルギーが回収される。そこで、圧縮機 1が起動してから の積算時間 (設定時間 TX2)と膨張機 3が駆動するのに必要な差圧 ΔΡΧの関係を 実験的に求めておくと、図 15のフローチャートで示したように、ステップ 530から通常 運転ステップ 540に移り、膨張機 3が駆動すると同時に、制御器 216により、循環ボン プ 20および蒸発器用ファン 11を運転するとともに膨張弁 7を全閉とし、放熱器 2およ び蒸発器 5の能力を引き上げることが可能となる。  [0084] When the compressor 1 is started, the circulation pump 20 and the evaporator fan 11 are stopped. Therefore, the temperature of the radiator 2 rises quickly, and the temperature of the evaporator 5 falls quickly, and the result As a result, the inlet pressure PG of the expander 3 quickly increases, and the outlet pressure PE of the expander 3 quickly decreases. In addition, the differential pressure at the inlet / outlet of the expander 3 quickly increases, and when the differential pressure A (PG-PE) reaches the starting torque of the expander 3, that is, ΔΡΧ which is the starting differential pressure, for example, the expander 3 becomes the scroll expander. In this case, the movable scroll (not shown) starts to rotate, decompressing and expanding the refrigerant, and recovering the expansion energy. Therefore, when the relationship between the accumulated time (set time TX2) after the compressor 1 is started and the differential pressure ΔΡΧ required to drive the expander 3 is experimentally determined, it is shown in the flowchart of FIG. Thus, the operation proceeds from step 530 to the normal operation step 540, and at the same time the expander 3 is driven, the controller 216 operates the circulation pump 20 and the evaporator fan 11 and the expansion valve 7 is fully closed, and the radiator 2 And the capacity of the evaporator 5 can be increased.
[0085] なお、実施の形態 1と同様に、膨張機 3をバイパスするバイパス回路 6を備えた構成 としたが、膨張機 3をバイパスするバイパス回路 6がない構成としても、圧縮機 1の起 動時に循環ポンプ 20もしくは蒸発器用ファン 11を停止することで、速やかに膨張機 3を駆動することが可能となる。  [0085] As in the first embodiment, the configuration includes the bypass circuit 6 that bypasses the expander 3. However, the compressor 1 can be started even when the bypass circuit 6 that bypasses the expander 3 is not provided. By stopping the circulation pump 20 or the evaporator fan 11 during operation, the expander 3 can be driven quickly.
[0086] また、圧縮機 1の起動時に循環ポンプ 20を停止するとした力 循環ポンプ 20への 印加電圧を通常運転時より小さくして、通常運転時よりも放熱器 2に流入する二次側 冷媒回路 18の水量を低減することにより、圧縮比の過度の増大を防止できるので、 圧縮機 1の信頼性を確保しつつ、膨張機 3を速やかに駆動することにより動力回収口 スを低減することが可能となる。  [0086] Further, the force that is supposed to stop the circulation pump 20 when the compressor 1 is started. The applied voltage to the circulation pump 20 is made smaller than that during normal operation, and the secondary refrigerant flows into the radiator 2 more than during normal operation. By reducing the amount of water in the circuit 18, an excessive increase in the compression ratio can be prevented, so that the reliability of the compressor 1 can be secured and the power recovery port can be reduced by driving the expander 3 quickly. Is possible.
[0087] 上述したように、実施の形態 1〜3と同様に、給湯機等の温水を利用する冷凍サイク ル装置においても、冷凍サイクルの高圧を速やかに上昇させることができるので、膨 張機 3が駆動するのに必要な差圧を速やかに確保することができ、膨張機 3が駆動 するまでの時間の短縮が可能となるので、圧縮機 1起動時の膨張機 3の動力回収口 スを低減することができる。 [0087] As described above, as in the first to third embodiments, a freezing cycle using hot water such as a water heater. Since the high pressure in the refrigeration cycle can also be quickly increased in the air flow device, the differential pressure necessary for driving the expander 3 can be quickly secured, and the time until the expander 3 is driven. Therefore, the power recovery port of the expander 3 when the compressor 1 is started can be reduced.
[0088] また、実施の形態 1〜4において、冷媒として、二酸ィ匕炭素を用いるのが望ましい。 [0088] In Embodiments 1 to 4, it is desirable to use carbon dioxide as the refrigerant.
二酸化炭素を冷媒として使用し、高圧側を超臨界状態にして運転することにより、冷 凍サイクル内での膨張機 3の出入口の高低圧差が大きくなるので、膨張機 3を回転さ せるのに必要な圧力差 (トルク)をより速やかに得ることが可能となり、圧縮機 1の起動 時に放熱器用ファン 9と蒸発器用ファン 11を停止する時間を短縮できるので、圧縮 機 1起動時の動力回収ロスを最小限に抑えることが可能となる。  Necessary to rotate the expander 3 because the difference between the high and low pressures at the inlet and outlet of the expander 3 in the refrigeration cycle is increased by using carbon dioxide as the refrigerant and operating with the high pressure side in the supercritical state. Pressure difference (torque) can be obtained more quickly, and the time to stop the radiator fan 9 and the evaporator fan 11 when the compressor 1 is started can be shortened. It can be minimized.
産業上の利用可能性  Industrial applicability
[0089] 以上のように、本発明にカゝかる冷凍サイクル装置は、圧縮機の起動時は放熱器 2の 冷却手段と蒸発器 5の加熱手段の少なくとも一方を所定の時間、通常運転時より能 力を低減するように制御することにより、圧縮機起動時の膨張機の動力回収ロスを低 減することができるので、給湯機、冷暖房空調機器、自動販売機、家庭用冷蔵庫、業 務用冷蔵庫、製氷機等、幅広い機器への用途にも適用できる。 As described above, in the refrigeration cycle apparatus according to the present invention, at the time of starting up the compressor, at least one of the cooling means of the radiator 2 and the heating means of the evaporator 5 is maintained for a predetermined time during normal operation. By controlling to reduce the capacity, it is possible to reduce the power recovery loss of the expander at the time of starting the compressor, so hot water heaters, air conditioning and air conditioning equipment, vending machines, household refrigerators, commercial use It can be applied to a wide range of equipment such as refrigerators and ice makers.

Claims

請求の範囲 The scope of the claims
[1] 圧縮機と放熱器と膨張機と蒸発器とを順次接続して冷媒を循環させる冷凍サイクル 装置の運転方法であって、  [1] A method for operating a refrigeration cycle apparatus in which a refrigerant, a radiator, an expander, and an evaporator are connected in order to circulate refrigerant.
前記放熱器は室外機及び室内機のいずれか一方に設けられるとともに、前記蒸発 器は室外機及び室内機の他方に設けられ、  The radiator is provided in one of the outdoor unit and the indoor unit, and the evaporator is provided in the other of the outdoor unit and the indoor unit,
前記圧縮機の起動時に室外ファンの能力を所定の時間、通常運転時より低減し、 所定の時間経過後、前記室外ファンを通常運転時の設定速度で運転するようにした 冷凍サイクル装置の運転方法。  A method of operating a refrigeration cycle apparatus in which the capacity of an outdoor fan is reduced for a predetermined time during normal operation when the compressor is started, and the outdoor fan is operated at a set speed during normal operation after a predetermined time has elapsed. .
[2] 前記室外ファンは前記放熱器に設けられ、冷房運転における前記圧縮機の起動時 、前記室外ファンによる風量を前記所定の時間、通常運転時における風量より低減 することにより前記放熱器の能力を低減するようにした請求項 1に記載の冷凍サイク ル装置の運転方法。 [2] The outdoor fan is provided in the radiator, and when the compressor is started in a cooling operation, the capacity of the radiator is reduced by reducing the air volume by the outdoor fan from the air volume in the normal operation for the predetermined time. 2. The method of operating a refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus is reduced.
[3] 前記室外ファンは前記蒸発器に設けられ、暖房運転における前記圧縮機の起動時 、前記室外ファンによる風量を前記所定の時間、通常運転時における風量より低減 することにより前記蒸発器の能力を低減するようにした請求項 1に記載の冷凍サイク ル装置の運転方法。  [3] The outdoor fan is provided in the evaporator, and the capacity of the evaporator is reduced by reducing the amount of air from the outdoor fan during the predetermined time for a predetermined time during startup of the compressor in heating operation. 2. The method of operating a refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus is reduced.
[4] 前記圧縮機の起動時、前記膨張機をバイパスするバイパス回路に冷媒を流入させる ようにした請求項 1に記載の冷凍サイクル装置の運転方法。  4. The operation method of the refrigeration cycle apparatus according to claim 1, wherein when the compressor is started, the refrigerant is caused to flow into a bypass circuit that bypasses the expander.
[5] 前記所定の時間は、前記圧縮機の起動時から前記膨張機の入口圧力と出口圧力と の差圧が所定値以上になるまでの時間である請求項 1に記載の冷凍サイクル装置の 運転方法。 [5] The refrigeration cycle apparatus according to claim 1, wherein the predetermined time is a time from when the compressor is started until a differential pressure between an inlet pressure and an outlet pressure of the expander becomes a predetermined value or more. how to drive.
[6] 圧縮機と放熱器と膨張機と蒸発器とを順次接続して冷媒を循環させる冷凍サイクル 装置であって、  [6] A refrigeration cycle device for circulating a refrigerant by sequentially connecting a compressor, a radiator, an expander, and an evaporator,
前記放熱器は室外機及び室内機のいずれか一方に設けられるとともに、前記蒸発 器は室外機及び室内機の他方に設けられ、  The radiator is provided in one of the outdoor unit and the indoor unit, and the evaporator is provided in the other of the outdoor unit and the indoor unit,
前記冷凍サイクル装置は、室外ファンの能力を制御する制御器をさらに備え、 前記圧縮機の起動時に、前記制御器は前記室外ファンの能力を所定の時間、通 常運転時より低減するように制御する冷凍サイクル装置。 The refrigeration cycle apparatus further includes a controller that controls the capacity of the outdoor fan, and when the compressor is started, the controller controls the capacity of the outdoor fan to be reduced for a predetermined time from that during normal operation. Refrigeration cycle equipment.
[7] 前記室外ファンは前記放熱器に設けられ、前記制御器は、冷房運転における前記 圧縮機の起動時、前記室外ファンによる風量を前記所定の時間、通常運転時におけ る風量より低減することにより前記放熱器の能力を低減するように制御する請求項 6 に記載の冷凍サイクル装置。 [7] The outdoor fan is provided in the radiator, and the controller reduces the air volume of the outdoor fan from the air volume during normal operation for the predetermined time when the compressor is started in cooling operation. The refrigeration cycle apparatus according to claim 6, wherein the refrigeration cycle apparatus is controlled to reduce the capacity of the radiator.
[8] 前記室外ファンは前記蒸発器に設けられ、前記制御器は、暖房運転における前記 圧縮機の起動時、前記室外ファンによる風量を前記所定の時間、通常運転時におけ る風量より低減することにより前記蒸発器の能力を低減するように制御する請求項 6 に記載の冷凍サイクル装置。  [8] The outdoor fan is provided in the evaporator, and the controller reduces the air volume of the outdoor fan from the air volume during normal operation for the predetermined time when the compressor is started in heating operation. The refrigeration cycle apparatus according to claim 6, wherein the refrigeration cycle apparatus is controlled to reduce the capacity of the evaporator.
[9] 前記膨張機をバイパスする膨張弁を備えたバイパス回路をさらに備え、前記圧縮機 の起動時、前記バイパス回路に冷媒を流入させるようにした請求項 6に記載の冷凍 サイクル装置。  [9] The refrigeration cycle device according to claim 6, further comprising a bypass circuit including an expansion valve that bypasses the expander, wherein a refrigerant is caused to flow into the bypass circuit when the compressor is started.
[10] タイマーをさらに備え、前記圧縮機の起動時、前記圧縮機が起動してから前記タイマ 一をスタートさせ、前記タイマーが設定時間に達すると、通常運転に移行するようにし た請求項 6に記載の冷凍サイクル装置。  [10] The system according to claim 6, further comprising a timer, wherein when the compressor is started, the timer is started after the compressor is started, and when the timer reaches a set time, the normal operation is started. The refrigeration cycle apparatus described in 1.
[11] 前記膨張機にて回収された膨張エネルギーが供給されることにより電力を発生する 発電機をさらに備えた請求項 6に記載の冷凍サイクル装置。 11. The refrigeration cycle apparatus according to claim 6, further comprising a generator that generates electric power when supplied with expansion energy recovered by the expander.
[12] 前記発電機を流れる電流を検知する電流計をさらに備え、前記圧縮機の起動後に、 前記電流計が設定値以上を検知すると、通常運転に移行するようにした請求項 11に 記載の冷凍サイクル装置。 [12] The method according to claim 11, further comprising an ammeter that detects a current flowing through the generator, wherein when the ammeter detects a set value or more after the compressor is started, the operation is shifted to a normal operation. Refrigeration cycle equipment.
[13] 前記放熱器は水冷式放熱器である請求項 6に記載の冷凍サイクル装置。 13. The refrigeration cycle apparatus according to claim 6, wherein the radiator is a water-cooled radiator.
[14] 前記制御器は、電動式の循環ポンプと前記循環ポンプを駆動するための制御部とで 構成され、前記圧縮機の起動時、前記放熱器と熱交換する水量を前記所定の時間[14] The controller includes an electric circulation pump and a control unit for driving the circulation pump. When the compressor is started, the amount of water exchanged with the radiator is determined for the predetermined time.
、通常運転時の水量より低減するようにした請求項 13に記載の冷凍サイクル装置。 14. The refrigeration cycle apparatus according to claim 13, wherein the refrigeration cycle apparatus is configured to reduce the amount of water during normal operation.
[15] 前記冷媒は二酸化炭素である請求項 6に記載の冷凍サイクル装置。 15. The refrigeration cycle apparatus according to claim 6, wherein the refrigerant is carbon dioxide.
[16] 圧縮機と放熱器と膨張機と蒸発器とを順次接続して冷媒を循環させる冷凍サイクル 装置であって、 [16] A refrigeration cycle device for circulating a refrigerant by sequentially connecting a compressor, a radiator, an expander, and an evaporator,
前記放熱器は室外機及び室内機のいずれか一方に設けられるとともに、前記蒸発 器は室外機及び室内機の他方に設けられ、 前記冷凍サイクル装置は、室外ファンの能力を制御する制御器をさらに備え、 前記圧縮機の起動時に、前記制御器は前記室外ファンの能力を通常運転時より低 減するように制御し、前記膨張機の入口圧力と出口圧力との差圧が所定値以上にな ると、前記制御器は前記室外ファンを通常運転時の設定速度で運転するように制御 する冷凍サイクル装置。 The radiator is provided in one of the outdoor unit and the indoor unit, and the evaporator is provided in the other of the outdoor unit and the indoor unit, The refrigeration cycle apparatus further includes a controller that controls the capacity of the outdoor fan, and when the compressor is started, the controller controls the capacity of the outdoor fan to be lower than that during normal operation, and the expansion The refrigeration cycle apparatus that controls the controller to operate the outdoor fan at a set speed during normal operation when a differential pressure between the inlet pressure and the outlet pressure of the machine becomes a predetermined value or more.
[17] 前記圧縮機の吐出側から前記放熱器の出口に至る配管に配設された圧力計をさら に備え、前記圧縮機の起動後に、前記圧力計の検出値により前記差圧を推定するよ うにした請求項 16に記載の冷凍サイクル装置。  [17] A pressure gauge disposed in a pipe from the discharge side of the compressor to the outlet of the radiator is further provided, and the differential pressure is estimated from a detected value of the pressure gauge after the compressor is started. The refrigeration cycle apparatus according to claim 16, wherein the refrigeration cycle apparatus is configured as described above.
[18] 前記圧縮機の吐出側から前記放熱器の出口に至る配管に配設された第一の圧力計 と、前記膨張機の出口力 前記圧縮機の吸込側に至る配管に配設された第二の圧 力計とをさらに備え、前記圧縮機の起動後に、前記第一の圧力計と前記第二の圧力 計が検知する圧力値とにより前記差圧を検知するようにした請求項 16に記載の冷凍 サイクル装置。  [18] A first pressure gauge disposed in a pipe extending from the discharge side of the compressor to an outlet of the radiator, and an outlet force of the expander disposed in a pipe extending to the suction side of the compressor 17. The apparatus according to claim 16, further comprising a second pressure gauge, wherein the differential pressure is detected by a pressure value detected by the first pressure gauge and the second pressure gauge after the compressor is started. The refrigeration cycle apparatus described in 1.
[19] 前記圧縮機の吐出側から前記放熱器の出口に至る配管に配設された圧力計と、前 記膨張機の出口から前記蒸発器の出口に至る配管に配設された温度計とをさら〖こ 備え、前記圧縮機の起動後に、前記圧力計が検知する圧力値と、前記温度計により 検知された温度に基づいて演算された圧力値とにより前記差圧を検知するようにした 請求項 16に記載の冷凍サイクル装置。  [19] A pressure gauge disposed in a pipe from the discharge side of the compressor to the outlet of the radiator, and a thermometer disposed in a pipe from the outlet of the expander to the outlet of the evaporator; The differential pressure is detected by the pressure value detected by the pressure gauge and the pressure value calculated based on the temperature detected by the thermometer after the compressor is started. The refrigeration cycle apparatus according to claim 16.
[20] 前記圧縮機の吐出側から前記放熱器の入口に至る配管の温度を検知する温度計を さらに備え、前記圧縮機の起動後に、前記温度計により検知された温度に基づいて 前記差圧を推定するようにした請求項 16に記載の冷凍サイクル装置。  [20] The apparatus further includes a thermometer that detects a temperature of a pipe from the discharge side of the compressor to an inlet of the radiator, and the differential pressure based on the temperature detected by the thermometer after the compressor is started. The refrigeration cycle apparatus according to claim 16, wherein the refrigeration cycle apparatus is estimated.
[21] 前記膨張機にて回収された膨張エネルギーが供給されることにより電力を発生する 発電機をさらに備えた請求項 16に記載の冷凍サイクル装置。  21. The refrigeration cycle apparatus according to claim 16, further comprising a generator that generates electric power when supplied with expansion energy recovered by the expander.
[22] 前記放熱器は水冷式放熱器である請求項 16に記載の冷凍サイクル装置。  22. The refrigeration cycle apparatus according to claim 16, wherein the radiator is a water-cooled radiator.
[23] 前記制御器は、電動式の循環ポンプと前記循環ポンプを駆動するための制御部とで 構成され、前記圧縮機の起動時、前記放熱器と熱交換する水量を前記所定の時間 、通常運転時の水量より低減するようにした請求項 22に記載の冷凍サイクル装置。  [23] The controller is composed of an electric circulation pump and a control unit for driving the circulation pump, and at the time of starting the compressor, the amount of water to be exchanged with the radiator during the predetermined time, 23. The refrigeration cycle apparatus according to claim 22, wherein the refrigeration cycle apparatus reduces the amount of water during normal operation.
[24] 前記冷媒は二酸化炭素である請求項 16に記載の冷凍サイクル装置。  24. The refrigeration cycle apparatus according to claim 16, wherein the refrigerant is carbon dioxide.
PCT/JP2006/303870 2005-04-14 2006-03-01 Refrigeration cycle device and method of operating the same WO2006112157A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-116840 2005-04-14
JP2005116840A JP2008175402A (en) 2005-04-14 2005-04-14 Operating method of refrigerating cycle device

Publications (1)

Publication Number Publication Date
WO2006112157A1 true WO2006112157A1 (en) 2006-10-26

Family

ID=37114893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303870 WO2006112157A1 (en) 2005-04-14 2006-03-01 Refrigeration cycle device and method of operating the same

Country Status (2)

Country Link
JP (1) JP2008175402A (en)
WO (1) WO2006112157A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012092274A1 (en) * 2010-12-30 2012-07-05 Scherer John S Refrigeration system controlled by refrigerant quality within evaporator
WO2012107959A1 (en) * 2011-02-09 2012-08-16 三菱電機株式会社 Refrigeration and air-conditioning device
US9791188B2 (en) 2014-02-07 2017-10-17 Pdx Technologies Llc Refrigeration system with separate feedstreams to multiple evaporator zones
WO2018010708A1 (en) * 2016-07-15 2018-01-18 Zefira Consulting, SE Cooling circuit for cooling medium circulation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140075941A1 (en) 2012-09-14 2014-03-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Power generating apparatus and operation method thereof
WO2016147291A1 (en) * 2015-03-16 2016-09-22 三菱電機株式会社 Refrigeration device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001116371A (en) * 1999-10-20 2001-04-27 Daikin Ind Ltd Air conditioner
JP2003042574A (en) * 2001-08-01 2003-02-13 Denso Corp Vapor compression refrigerator
JP2004060989A (en) * 2002-07-29 2004-02-26 Denso Corp Vapor compression type refrigerator and expander-integrated compressor
JP2004144399A (en) * 2002-10-25 2004-05-20 Matsushita Electric Ind Co Ltd Refrigeration cycle device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001116371A (en) * 1999-10-20 2001-04-27 Daikin Ind Ltd Air conditioner
JP2003042574A (en) * 2001-08-01 2003-02-13 Denso Corp Vapor compression refrigerator
JP2004060989A (en) * 2002-07-29 2004-02-26 Denso Corp Vapor compression type refrigerator and expander-integrated compressor
JP2004144399A (en) * 2002-10-25 2004-05-20 Matsushita Electric Ind Co Ltd Refrigeration cycle device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012092274A1 (en) * 2010-12-30 2012-07-05 Scherer John S Refrigeration system controlled by refrigerant quality within evaporator
US8646286B2 (en) 2010-12-30 2014-02-11 Pdx Technologies Llc Refrigeration system controlled by refrigerant quality within evaporator
US10365018B2 (en) 2010-12-30 2019-07-30 Pdx Technologies Llc Refrigeration system controlled by refrigerant quality within evaporator
WO2012107959A1 (en) * 2011-02-09 2012-08-16 三菱電機株式会社 Refrigeration and air-conditioning device
JP5484604B2 (en) * 2011-02-09 2014-05-07 三菱電機株式会社 Refrigeration air conditioner
US9791188B2 (en) 2014-02-07 2017-10-17 Pdx Technologies Llc Refrigeration system with separate feedstreams to multiple evaporator zones
US11306951B2 (en) 2014-02-07 2022-04-19 Pdx Technologies Llc Refrigeration system with separate feedstreams to multiple evaporator zones
WO2018010708A1 (en) * 2016-07-15 2018-01-18 Zefira Consulting, SE Cooling circuit for cooling medium circulation

Also Published As

Publication number Publication date
JP2008175402A (en) 2008-07-31

Similar Documents

Publication Publication Date Title
JP4053082B2 (en) Refrigeration cycle equipment
JP4912308B2 (en) Refrigeration cycle equipment
US9341393B2 (en) Refrigerating cycle apparatus having an injection circuit and operating with refrigerant in supercritical state
JP5018496B2 (en) Refrigeration equipment
WO2012128229A1 (en) Binary refrigeration cycle device
WO2007110908A9 (en) Refrigeration air conditioning device
WO2014024837A1 (en) Cascade refrigeration equipment
JP2008175476A (en) Refrigerating air conditioner
JPWO2009047898A1 (en) Refrigeration cycle equipment
WO2015045247A1 (en) Heat pump system, and heat pump water heater
JP2012088005A (en) Heat pump apparatus
JP4317793B2 (en) Cooling system
WO2006112157A1 (en) Refrigeration cycle device and method of operating the same
JP2004354017A (en) Cooling device
JP2004354019A (en) Cooling device
JP2011133210A (en) Refrigerating apparatus
JP4665736B2 (en) Control method for refrigeration cycle apparatus and refrigeration cycle apparatus using the same
JP2006226589A (en) Refrigeration cycle device and its operation method
JP2003074990A (en) Refrigerating unit
JP6206787B2 (en) Refrigeration equipment
JP2004003692A (en) Refrigerating device
JP2005214442A (en) Refrigerator
JP4286064B2 (en) Cooling system
JP2006162186A (en) Refrigerating cycle device
JP6037601B2 (en) Heat pump system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06714988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP