JP2016044856A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2016044856A
JP2016044856A JP2014168491A JP2014168491A JP2016044856A JP 2016044856 A JP2016044856 A JP 2016044856A JP 2014168491 A JP2014168491 A JP 2014168491A JP 2014168491 A JP2014168491 A JP 2014168491A JP 2016044856 A JP2016044856 A JP 2016044856A
Authority
JP
Japan
Prior art keywords
air conditioner
heat exchanger
refrigeration cycle
refrigerant
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014168491A
Other languages
Japanese (ja)
Inventor
藤高 章
Akira Fujitaka
章 藤高
川邉 義和
Yoshikazu Kawabe
義和 川邉
一彦 丸本
Kazuhiko Marumoto
一彦 丸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014168491A priority Critical patent/JP2016044856A/en
Publication of JP2016044856A publication Critical patent/JP2016044856A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve reliability of an air conditioner by suppressing liquid compression in a compressor at non-steady time, regarding the air conditioner which uses R32 as a circulating refrigerant in a refrigeration cycle including the compressor, an indoor heat exchanger, expansion means and an outdoor heat exchanger.SOLUTION: In an air conditioner which uses R32 as a circulating refrigerant in a refrigeration cycle including a compressor, an indoor heat exchanger, expansion means, and an outdoor heat exchanger, in the case where a capacity class of the air conditioner is below 4 kW, a filling amount of the R32 with respect to the refrigeration cycle is within a range of 200-300 g per total volume 1 liter of the whole refrigeration cycle, and in the case where the capacity class of the air conditioner is equal to or greater than 4 kW, the filling amount of the R32 with respect to the refrigeration cycle is within a range of 250-350 g per total volume 1 liter of the whole refrigeration cycle.SELECTED DRAWING: Figure 4

Description

本発明は、空気調和機に関し、特に、圧縮機、室内熱交換機、膨張手段、室外熱交換器を含んだ冷凍サイクルにおいて、循環させる冷媒としてR32を使用した空気調和機に関する。   The present invention relates to an air conditioner, and more particularly to an air conditioner using R32 as a refrigerant to be circulated in a refrigeration cycle including a compressor, an indoor heat exchanger, an expansion means, and an outdoor heat exchanger.

空気調和機の冷媒としては従来、R410Aなどが主に用いられていた。一方、近年では、冷媒の温暖化係数を小さくする観点から、温暖化係数の小さいR32の使用が進められている。冷媒としてR32を用いた空気調和機としては例えば、特許文献1の空気調和機がある。   Conventionally, R410A or the like has been mainly used as a refrigerant for an air conditioner. On the other hand, in recent years, use of R32 having a small warming coefficient has been promoted from the viewpoint of reducing the warming coefficient of the refrigerant. As an air conditioner using R32 as a refrigerant, for example, there is an air conditioner disclosed in Patent Document 1.

特許文献1の空気調和機では、地球温暖化対応省エネルギー型の空気調和機を実現すべく、R32の充填割合を所望の範囲に設定することで、定常時における成績係数COP(Coeficient of Performance)を向上させるようにしている。   In the air conditioner of Patent Document 1, in order to realize an energy-saving air conditioner that responds to global warming, by setting the filling ratio of R32 in a desired range, the coefficient of performance COP (Coeficient of Performance) in the steady state is set. I try to improve.

特開2001−194016号公報JP 2001-194016 A

しかしながら、特許文献1で着目されるような定常時におけるCOPの向上以外にも、R32を用いた空気調和機の信頼性をより向上させることが求められている。   However, in addition to the improvement of COP in steady state as noted in Patent Document 1, it is required to further improve the reliability of the air conditioner using R32.

従って、本発明の目的は、信頼性を向上させた空気調和機を提供することにある。   Accordingly, an object of the present invention is to provide an air conditioner with improved reliability.

上記目的を達成するために、本発明は以下のように構成する。   In order to achieve the above object, the present invention is configured as follows.

本発明の一態様によれば、圧縮機、室内熱交換機、膨張手段、室外熱交換器を含んだ冷凍サイクルにおいて、循環させる冷媒としてR32を使用した空気調和機であって、
空気調和機の能力クラスが4kW未満であり、かつ、冷凍サイクルに対するR32の充填量が冷凍サイクル全体の総容積1リットル当たり200−300gの範囲内である、空気調和機を提供する。
According to one aspect of the present invention, in a refrigeration cycle including a compressor, an indoor heat exchanger, an expansion means, and an outdoor heat exchanger, an air conditioner using R32 as a circulating refrigerant,
An air conditioner is provided in which the capacity class of the air conditioner is less than 4 kW and the filling amount of R32 to the refrigeration cycle is in the range of 200 to 300 g per liter of the total volume of the refrigeration cycle.

本発明の一態様によれば、圧縮機、室内熱交換機、膨張手段、室外熱交換器を含んだ冷凍サイクルにおいて、循環させる冷媒としてR32を使用した空気調和機であって、
空気調和機の能力クラスが4kW以上であり、かつ、冷凍サイクルに対するR32の充填量が冷凍サイクル全体の総容積1リットル当たり250−350gの範囲内である、空気調和機を提供する。
According to one aspect of the present invention, in a refrigeration cycle including a compressor, an indoor heat exchanger, an expansion means, and an outdoor heat exchanger, an air conditioner using R32 as a circulating refrigerant,
Provided is an air conditioner in which the capacity class of the air conditioner is 4 kW or more and the filling amount of R32 to the refrigeration cycle is in the range of 250 to 350 g per liter of the total volume of the refrigeration cycle.

本発明によれば、空気調和機の信頼性を向上させることができる。   According to the present invention, the reliability of the air conditioner can be improved.

本発明の実施形態にかかる空気調和機の冷凍サイクルの構成を示す図The figure which shows the structure of the refrigerating cycle of the air conditioner concerning embodiment of this invention. 冷房運転時における冷凍サイクル内の冷媒の流れを説明する図The figure explaining the flow of the refrigerant | coolant in the refrigerating cycle at the time of air_conditionaing | cooling operation 暖房運転時における冷凍サイクル内の冷媒の流れを説明する図The figure explaining the flow of the refrigerant in the refrigerating cycle at the time of heating operation 実施形態にかかる空気調和機を用いて行った実験の結果を示す図The figure which shows the result of the experiment conducted using the air conditioner concerning embodiment. 実施形態にかかる空気調和機を用いて行った実験の結果を示す図The figure which shows the result of the experiment conducted using the air conditioner concerning embodiment. 実施形態にかかる空気調和機を用いて行った実験の結果を示す図The figure which shows the result of the experiment conducted using the air conditioner concerning embodiment.

第1の発明は、圧縮機、室内熱交換機、膨張手段、室外熱交換器を含んだ冷凍サイクルにおいて、循環させる冷媒としてR32を使用した空気調和機であって、
空気調和機の能力クラスが4kW未満であり、かつ、冷凍サイクルに対するR32の充填量が冷凍サイクル全体の総容積1リットル当たり200−300gの範囲内である、空気調和機である。このように、R32の充填量を所望の範囲内とすることで、非定常時における圧縮機での液圧縮を抑制することができ、空気調和機の信頼性を向上させることができる。
The first invention is an air conditioner using R32 as a refrigerant to be circulated in a refrigeration cycle including a compressor, an indoor heat exchanger, expansion means, and an outdoor heat exchanger,
It is an air conditioner in which the capacity class of the air conditioner is less than 4 kW, and the filling amount of R32 to the refrigeration cycle is in the range of 200 to 300 g per liter of the total volume of the refrigeration cycle. In this way, by setting the filling amount of R32 within a desired range, liquid compression in the compressor at the unsteady time can be suppressed, and the reliability of the air conditioner can be improved.

第2の発明は、圧縮機、室内熱交換機、膨張手段、室外熱交換器を含んだ冷凍サイクルにおいて、循環させる冷媒としてR32を使用した空気調和機であって、
空気調和機の能力クラスが4kW以上であり、かつ、冷凍サイクルに対するR32の充填量が冷凍サイクル全体の総容積1リットル当たり250−350gの範囲内である、空気調和機である。このように、R32の充填量を所望の範囲内とすることで、非定常時における圧縮機での液圧縮を抑制することができ、空気調和機の信頼性を向上させることができる。
A second invention is an air conditioner using R32 as a refrigerant to be circulated in a refrigeration cycle including a compressor, an indoor heat exchanger, an expansion means, and an outdoor heat exchanger,
It is an air conditioner in which the capacity class of the air conditioner is 4 kW or more, and the filling amount of R32 for the refrigeration cycle is in the range of 250 to 350 g per liter of the total volume of the refrigeration cycle. In this way, by setting the filling amount of R32 within a desired range, liquid compression in the compressor at the unsteady time can be suppressed, and the reliability of the air conditioner can be improved.

第3の発明は、第1の発明において、冷凍サイクルに対するR32の充填量が室外熱交換器の容積1リットル当たり750g−1100gの範囲内である。このように、R32の充填量を所望の範囲内とすることで、非定常時における圧縮機での液圧縮を抑制することができ、空気調和機の信頼性を向上させることができる。   According to a third invention, in the first invention, the filling amount of R32 with respect to the refrigeration cycle is in the range of 750 g to 1100 g per liter of the volume of the outdoor heat exchanger. In this way, by setting the filling amount of R32 within a desired range, liquid compression in the compressor at the unsteady time can be suppressed, and the reliability of the air conditioner can be improved.

第4の発明は、第2の発明において、冷凍サイクルに対するR32の充填量が室外熱交換器の容積1リットル当たり750g−1200gの範囲内である。このように、R32の充填量を所望の範囲内とすることで、非定常時における圧縮機での液圧縮を抑制することができ、空気調和機の信頼性を向上させることができる。   4th invention WHEREIN: The filling amount of R32 with respect to a refrigerating cycle in 2nd invention exists in the range of 750g-1200g per liter of volumes of an outdoor heat exchanger. In this way, by setting the filling amount of R32 within a desired range, liquid compression in the compressor at the unsteady time can be suppressed, and the reliability of the air conditioner can be improved.

(実施形態)
図1は、実施形態に係る空気調和機1によって構成される冷凍サイクルを示す図である。
(Embodiment)
Drawing 1 is a figure showing the refrigerating cycle constituted by air harmony machine 1 concerning an embodiment.

図1に示すように、本実施形態における空気調和機1は複数の構成部材2−7を備え、これらの構成部材2−7が複数の配管8−14によって接続されることで、冷媒を循環させる冷凍サイクルを構成している。本実施形態では、温暖化係数の小さいR32を冷媒として用いている。   As shown in FIG. 1, the air conditioner 1 in the present embodiment includes a plurality of constituent members 2-7, and these constituent members 2-7 are connected by a plurality of pipes 8-14, thereby circulating the refrigerant. The refrigeration cycle is configured. In the present embodiment, R32 having a small warming coefficient is used as the refrigerant.

図1に示すように、空気調和機1は、圧縮機2と、室内熱交換器3と、膨張手段4と、室外熱交換器5と、切換弁6と、アキュームレータ7とを備える。切換弁6は、冷媒の流路を切り替えるための弁であり、アキュームレータ7は、循環する冷媒の気液分離を行うものである。なお、本実施形態におけるアキュームレータ7には、アキュームレータ7内の冷媒の状態を目視で確認するためのサイトグラス(図示せず)が設けられている。   As shown in FIG. 1, the air conditioner 1 includes a compressor 2, an indoor heat exchanger 3, an expansion means 4, an outdoor heat exchanger 5, a switching valve 6, and an accumulator 7. The switching valve 6 is a valve for switching the refrigerant flow path, and the accumulator 7 performs gas-liquid separation of the circulating refrigerant. In addition, the accumulator 7 in this embodiment is provided with a sight glass (not shown) for visually confirming the state of the refrigerant in the accumulator 7.

上記構成部材を接続している複数の配管8−14は、第1の配管8と、第2の配管9と、第3の配管10と、第4の配管11と、第5の配管12と、第6の配管13と、第7の配管14とを備える。第1の配管8は、圧縮機2と切換弁6を接続し、第2の配管9は、切換弁6と室内熱交換器3を接続し、第3の配管10は、室内熱交換器3と膨張手段4を接続し、第4の配管11は、膨張手段4と室外熱交換器5を接続し、第5の配管12は、室外熱交換器5と切換弁6を接続し、第6の配管13は、切換弁6とアキュームレータ7を接続し、第7の配管14は、アキュームレータ7と圧縮機2を接続する。   The plurality of pipes 8-14 connecting the constituent members include a first pipe 8, a second pipe 9, a third pipe 10, a fourth pipe 11, and a fifth pipe 12. A sixth pipe 13 and a seventh pipe 14 are provided. The first pipe 8 connects the compressor 2 and the switching valve 6, the second pipe 9 connects the switching valve 6 and the indoor heat exchanger 3, and the third pipe 10 connects the indoor heat exchanger 3. And the expansion means 4 are connected, the fourth pipe 11 connects the expansion means 4 and the outdoor heat exchanger 5, the fifth pipe 12 connects the outdoor heat exchanger 5 and the switching valve 6, The pipe 13 connects the switching valve 6 and the accumulator 7, and the seventh pipe 14 connects the accumulator 7 and the compressor 2.

上述した構成部材2−7および複数の配管8−14を備える空気調和機1の冷凍サイクル内の冷媒の流れについて、冷房運転、暖房運転および除霜運転の3つの運転モードに分けて順に説明する。   The flow of the refrigerant in the refrigeration cycle of the air conditioner 1 including the above-described component 2-7 and the plurality of pipes 8-14 will be described in order for the three operation modes of the cooling operation, the heating operation, and the defrosting operation. .

(冷房運転)
空気調和機1の冷房運転時における冷凍サイクル内の冷媒の流れを図2に示す。図2に示すように、冷房運転時には、冷媒は、室内熱交換器3、第2の配管9、切換弁6、第6の配管13、アキュームレータ7、第7の配管14、圧縮機2、第1の配管8、切換弁6、第5の配管12、室外熱交換器5、第4の配管11、膨張手段4、第3の配管10、室内熱交換器3を順に流れる。
(Cooling operation)
The flow of the refrigerant in the refrigeration cycle during the cooling operation of the air conditioner 1 is shown in FIG. As shown in FIG. 2, during the cooling operation, the refrigerant is the indoor heat exchanger 3, the second pipe 9, the switching valve 6, the sixth pipe 13, the accumulator 7, the seventh pipe 14, the compressor 2, the second 1 pipe 8, switching valve 6, fifth pipe 12, outdoor heat exchanger 5, fourth pipe 11, expansion means 4, third pipe 10, and indoor heat exchanger 3.

このような冷媒の流れにより、室内熱交換器3に流れた冷媒が気化するとともに、その際の気化熱によって冷却される空気を室内に供給することで、室内への冷房運転が実施される。   With such a refrigerant flow, the refrigerant flowing into the indoor heat exchanger 3 is vaporized, and the air cooled by the vaporization heat at that time is supplied into the room, so that the cooling operation to the room is performed.

(暖房運転)
空気調和機1の暖房運転時における冷凍サイクル内の冷媒の流れを図3に示す。暖房運転時における冷媒の流れは、上述した冷房運転時と逆向きとなる。具体的には、図3に示すように、冷媒は、室内熱交換器3、第3の配管10、膨張手段4、第4の配管11、室外熱交換器5、第5の配管12、切換弁6、第6の配管13、アキュームレータ7、第7の配管14、圧縮機2、第1の配管8、切換弁6、第2の配管9、室内熱交換器3を順に流れる。
(Heating operation)
The flow of the refrigerant in the refrigeration cycle during the heating operation of the air conditioner 1 is shown in FIG. The refrigerant flow during the heating operation is opposite to that during the cooling operation described above. Specifically, as shown in FIG. 3, the refrigerant includes an indoor heat exchanger 3, a third pipe 10, an expansion means 4, a fourth pipe 11, an outdoor heat exchanger 5, a fifth pipe 12, and switching. The valve 6, the sixth pipe 13, the accumulator 7, the seventh pipe 14, the compressor 2, the first pipe 8, the switching valve 6, the second pipe 9, and the indoor heat exchanger 3 flow in this order.

このような冷媒の流れにより、室内熱交換器3に流れた冷媒が凝縮するとともに、その際の凝縮熱によって加熱される空気を室内に供給することで、室内への暖房運転が実施される。   The refrigerant flowing into the indoor heat exchanger 3 is condensed by such a refrigerant flow, and air heated by the condensation heat at that time is supplied to the room, thereby heating the room indoors.

この暖房運転時において、特に室外の温度が低い場合(例えば、摂氏0℃以下)には、室外と熱交換を行っている室外熱交換器5の表面に霜が付着することがある。この室外熱交換器5に付着した霜を溶かすために、本実施形態における空気調和機1では、暖房運転時から切換弁6を切り替えて除霜運転を実施することができる。   During this heating operation, especially when the outdoor temperature is low (for example, 0 ° C. or less), frost may adhere to the surface of the outdoor heat exchanger 5 that exchanges heat with the outdoor. In order to melt the frost adhering to the outdoor heat exchanger 5, the air conditioner 1 in the present embodiment can perform the defrosting operation by switching the switching valve 6 from the heating operation.

(除霜運転)
本実施形態では、除霜運転時における冷媒の流れは、暖房運転時と逆向き、すなわち冷房運転時と同じ向きである(図2に示す向き)。冷房運転時と異なる点は、冷媒を冷凍サイクルにて循環させるものの、室内熱交換器3で熱交換する空気を室内に吹き出さない点である。このような運転により、室内に対する空調運転を実施せずに、冷房運転時と同じ冷媒の流れにおいて、比較的温度の高い冷媒を室外熱交換器5に流すことで、室外熱交換器5に付着した霜を取り除くことができる。
(Defrosting operation)
In the present embodiment, the refrigerant flow during the defrosting operation is in the opposite direction to that during the heating operation, that is, in the same direction as during the cooling operation (the direction shown in FIG. 2). The difference from the cooling operation is that although the refrigerant is circulated in the refrigeration cycle, the air heat exchanged by the indoor heat exchanger 3 is not blown into the room. By performing such an operation, the refrigerant having a relatively high temperature is allowed to flow through the outdoor heat exchanger 5 in the same refrigerant flow as that during the cooling operation without performing the air conditioning operation for the room, so that it adheres to the outdoor heat exchanger 5. Frost can be removed.

上述した3つの運転モードを実施することができる空気調和機1について、本発明者らは鋭意検討した結果、特に、運転モードを切り替える際、又は停止していた運転を再開する際の過渡期(非定常時)において、圧縮機2に液状の冷媒が戻り、圧縮機2において液圧縮の現象が生じる可能性があることを見出した。液圧縮とは、圧縮機2において液状の冷媒が圧縮される現象のことであり、圧縮機2の故障の原因となりうる。そこで、本発明者らは液圧縮の発生を抑制すべく、各種実験(実施例)を行った。以下に、その実験の内容について説明する。   As a result of diligent study on the air conditioner 1 that can implement the three operation modes described above, the present inventors have particularly studied the transition period (when switching the operation mode or restarting the stopped operation). It was found that in the unsteady state, the liquid refrigerant returns to the compressor 2 and the liquid compression phenomenon may occur in the compressor 2. The liquid compression is a phenomenon in which a liquid refrigerant is compressed in the compressor 2 and can cause a failure of the compressor 2. Therefore, the present inventors conducted various experiments (Examples) in order to suppress the occurrence of liquid compression. The contents of the experiment will be described below.

(実施例)
具体的には、上述した構成と同じ空気調和機1を用いて、以下の条件1、2の下で運転を行うとともに、その際に、圧縮機2にて液圧縮の現象が生じているかどうかを圧縮機2のサイトグラスから目視にて確認した。
(Example)
Specifically, using the same air conditioner 1 as described above, operation is performed under the following conditions 1 and 2, and at that time, whether or not the liquid compression phenomenon occurs in the compressor 2 Was visually confirmed from the sight glass of the compressor 2.

条件1:周囲が高温の際(以下の温度参照)に冷房運転を行うとともに、冷房運転停止後、速やかに冷房運転を再開したとき。
室内乾球温度:32℃
室内湿球温度:22.5℃
室外乾球温度:43℃
室外湿球温度:25.5℃
Condition 1: When the cooling operation is performed when the surroundings are at a high temperature (see the following temperature), and the cooling operation is restarted immediately after the cooling operation is stopped.
Indoor dry bulb temperature: 32 ° C
Indoor wet bulb temperature: 22.5 ° C
Outdoor dry bulb temperature: 43 ° C
Outdoor wet bulb temperature: 25.5 ° C

条件2:周囲が低温の際(以下の温度参照)に暖房運転を行うとともに、その最中に除霜運転に切り替えたとき、およびその後、暖房運転に復帰したとき。
室内乾球温度:20℃
室内湿球温度:―℃
室外乾球温度:2℃
室外湿球温度:1℃
Condition 2: When heating operation is performed when the surroundings are at a low temperature (see the following temperature), switching to the defrosting operation is performed in the middle of the heating operation, and then returning to the heating operation.
Indoor dry bulb temperature: 20 ° C
Indoor wet bulb temperature:-℃
Outdoor dry bulb temperature: 2 ℃
Outdoor wet bulb temperature: 1 ° C

条件1、2に加えて、さらに、空気調和機1のそれぞれの能力クラス(2.2kW、2.8kW、3.6kW、4kW、5kW、7kW)の冷凍サイクル全体における冷媒量(g)を適宜変化させながら、実験を行った。なお、空気調和機1の能力クラスとは、空気調和機1の暖房/冷房能力を表すものであり、本実施形態では、単位時間当たりに室内から取り除くあるいは室内に加える熱エネルギーを意味するが、このような定義に限らず各種の定義付けを行ってもよい。   In addition to the conditions 1 and 2, the refrigerant amount (g) in the entire refrigeration cycle of each capacity class (2.2 kW, 2.8 kW, 3.6 kW, 4 kW, 5 kW, 7 kW) of the air conditioner 1 is appropriately set. The experiment was conducted while changing. The capacity class of the air conditioner 1 represents the heating / cooling capacity of the air conditioner 1, and in this embodiment, means the heat energy removed from the room or applied to the room per unit time. Not only such a definition but various definitions may be made.

これらの条件を総合して得られた実験結果を図4に示す。図4は、縦軸に冷凍サイクル全体の冷媒量(g)/冷凍サイクル全体の総容積(L)を、横軸に空気調和機1の能力クラス(kW)をとっている。図4において、「×1」の表示は、圧縮機2において液圧縮の現象が生じたことを示す。また、「×2」の表示は、圧縮機2において液圧縮の現象が生じなかったが、冷媒量が少ないために、熱交換性能が十分でないことを示す。また、「○」は、圧縮機2において液圧縮の現象が生じず、さらに熱交換性能も十分である好ましいことを示す。   The experimental results obtained by combining these conditions are shown in FIG. In FIG. 4, the vertical axis represents the refrigerant amount (g) of the entire refrigeration cycle / the total volume (L) of the entire refrigeration cycle, and the horizontal axis represents the capacity class (kW) of the air conditioner 1. In FIG. 4, “× 1” indicates that a liquid compression phenomenon has occurred in the compressor 2. In addition, the display of “× 2” indicates that the liquid compression phenomenon did not occur in the compressor 2, but the heat exchange performance is not sufficient because the amount of refrigerant is small. Further, “◯” indicates that the liquid compression phenomenon does not occur in the compressor 2 and that the heat exchange performance is sufficient.

図4に示すように、空気調和機1の能力クラスが2.2、2.8、3.6kWである場合には、冷凍サイクルに対するR32の充填量を冷凍サイクル全体の総容積1リットル当たり200−300gの範囲内にすることで、液圧縮の現象が生じず、かつ熱交換性能も十分であり、好ましいということがわかる。また、空気調和機1の能力クラスが4kW、5kW、7kWである場合には、冷凍サイクルに対するR32の充填量を冷凍サイクル全体の総容積1リットル当たり250−350gの範囲内にすることで、液圧縮の現象が生じず、かつ熱交換性能も十分であり、好ましいということがわかる。   As shown in FIG. 4, when the capacity class of the air conditioner 1 is 2.2, 2.8, 3.6 kW, the R32 filling amount for the refrigeration cycle is set to 200 per liter of the total volume of the refrigeration cycle. It turns out that the phenomenon of liquid compression does not occur and heat exchange performance is sufficient because it is in the range of −300 g. When the capacity class of the air conditioner 1 is 4 kW, 5 kW, or 7 kW, the amount of R32 filled in the refrigeration cycle is set within the range of 250 to 350 g per liter of the total volume of the refrigeration cycle. It turns out that the phenomenon of compression does not occur and the heat exchange performance is sufficient, which is preferable.

すなわち、空気調和機1の能力クラスが4kW未満(例えば、2.2kW、2.8kW3.6kW)の場合には、冷凍サイクルに対するR32の充填量を冷凍サイクル全体の総容積1リットル当たり200−300gの範囲内とし、空気調和機1の能力クラスが4kW以上(例えば、4kW、5kW、7kW)の場合には、冷凍サイクルに対するR32の充填量を冷凍サイクル全体の総容積1リットル当たり250−350gの範囲内とすれば、液圧縮の抑制および熱交換性能の維持という観点で好ましいことがわかる。   That is, when the capacity class of the air conditioner 1 is less than 4 kW (for example, 2.2 kW, 2.8 kW 3.6 kW), the R32 filling amount for the refrigeration cycle is set to 200-300 g per liter of the total volume of the refrigeration cycle. When the capacity class of the air conditioner 1 is 4 kW or more (for example, 4 kW, 5 kW, 7 kW), the filling amount of R32 for the refrigeration cycle is 250-350 g per liter of the total volume of the refrigeration cycle. Within the range, it can be seen that it is preferable from the viewpoint of suppressing liquid compression and maintaining heat exchange performance.

図4で説明した実験に関して、本発明者らはさらに、液圧縮の発生頻度について鋭意検討を行った。その結果、暖房運転を行う条件2よりも、冷房運転を行う条件1の方が液圧縮の現象が起こりやすくなっているということを見出した。   With respect to the experiment described with reference to FIG. 4, the present inventors have further intensively studied the frequency of occurrence of liquid compression. As a result, it has been found that the condition of liquid compression is more likely to occur in the condition 1 in which the cooling operation is performed than in the condition 2 in which the heating operation is performed.

具体的には、室内熱交換器3と室外熱交換器5とでは、室外熱交換器5の方がその内容積が大きいことが通常であり、条件1のような冷房運転時には、その室外熱交器5は、冷媒を凝縮して液状にする凝縮器として機能している。すなわち、条件1のように、冷房運転を行っている際に当該運転を一旦停止し、その後再度、冷房運転に復帰する際には、室外熱交換器5に貯まっていた液状の冷媒が、相対的に容積の小さい室内熱交換器3側に一気に流れることとなる。このように室内熱交換器3側に流れた冷媒のうち、室内熱交換器3にて蒸発されなかった冷媒が圧縮機2に到達することで、圧縮機2にて液圧縮を起こしやすくなる。   Specifically, in the indoor heat exchanger 3 and the outdoor heat exchanger 5, the outdoor heat exchanger 5 usually has a larger internal volume, and during the cooling operation as in condition 1, the outdoor heat exchanger 5 The alternator 5 functions as a condenser that condenses the refrigerant to make it liquid. That is, when the cooling operation is being performed as in Condition 1, the operation is temporarily stopped, and then when the cooling operation is resumed, the liquid refrigerant stored in the outdoor heat exchanger 5 is Therefore, it flows at a stroke toward the indoor heat exchanger 3 having a small volume. Thus, the refrigerant that has not evaporated in the indoor heat exchanger 3 among the refrigerant that has flowed to the indoor heat exchanger 3 side reaches the compressor 2, so that liquid compression is likely to occur in the compressor 2.

本発明者らは、このような液圧縮の起こりやすい条件1であっても液圧縮を起こさないR32の冷媒量の範囲を訴求することで、空気調和機1の信頼性をさらに向上させることができることに着目した。そこで、図4の実験結果の中から特に、条件1に関する代表的な結果を抽出して図5、6のグラフに表した。   The present inventors can further improve the reliability of the air conditioner 1 by appealing the range of the refrigerant amount of R32 that does not cause liquid compression even under such condition 1 where liquid compression is likely to occur. We focused on what we can do. Therefore, in particular, representative results related to the condition 1 are extracted from the experimental results shown in FIG. 4 and shown in the graphs of FIGS.

図5、6では、横軸に冷凍サイクル全体の冷媒量(g)/冷凍サイクル全体の総容積(L)をとり、縦軸に冷凍サイクル全体の冷媒量(g)/室外熱交換器5の容積(L)をとっている。ここで、図5、6の縦軸においては、冷凍サイクル全体の総容積ではなく、室外熱交換器5の容積を抽出している。前述したように、室内熱交換器3よりも室外熱交換器5の方が容積が大きく、液圧縮の発生頻度に大きく関わることから、冷凍サイクルの中でも室外熱交換器5の容積に着目することで、R32の冷媒量と液圧縮の発生の関係をより正確に把握することができる。   5 and 6, the horizontal axis represents the refrigerant amount (g) of the entire refrigeration cycle / the total volume (L) of the entire refrigeration cycle, and the vertical axis represents the refrigerant amount (g) of the entire refrigeration cycle / outdoor heat exchanger 5. The volume (L) is taken. Here, in the vertical axis | shaft of FIG. 5, 6, the volume of the outdoor heat exchanger 5 is extracted instead of the total volume of the whole refrigerating cycle. As described above, since the volume of the outdoor heat exchanger 5 is larger than that of the indoor heat exchanger 3 and greatly affects the frequency of occurrence of liquid compression, attention should be paid to the volume of the outdoor heat exchanger 5 in the refrigeration cycle. Thus, the relationship between the refrigerant amount of R32 and the occurrence of liquid compression can be grasped more accurately.

図5、6を見ると、前述したように、冷凍サイクル全体の冷媒量/総容積は、能力クラスが4kW未満(図5)の場合には200−300g/Lの範囲が好ましく、能力クラスが4kW以上(図6)の場合には250−350g/Lの範囲が好ましいことがわかる。一方で、図5、6の縦軸に着目すると、能力クラスが4kW未満(図5)の場合には、冷凍サイクル全体の冷媒量/室外熱交換器5の容積の値は、750−1100g/Lの範囲が好ましく、能力クラスが4kW以上(図6)の場合には、冷凍サイクル全体の冷媒量/室外熱交換器5の容積の値は、750−1200g/Lの範囲が好ましいということがわかる。すなわち、このような範囲であれば、条件1という厳しい条件下においても液圧縮の現象を抑制することができるため、より確実に液圧縮を抑制し、空気調和機1の信頼性を向上させることができる。   5 and 6, as described above, the refrigerant amount / total volume of the entire refrigeration cycle is preferably in the range of 200 to 300 g / L when the capacity class is less than 4 kW (FIG. 5). In the case of 4 kW or more (FIG. 6), it can be seen that the range of 250-350 g / L is preferable. On the other hand, focusing on the vertical axis of FIGS. 5 and 6, when the capacity class is less than 4 kW (FIG. 5), the value of the refrigerant amount of the entire refrigeration cycle / the volume of the outdoor heat exchanger 5 is 750-1100 g / When the range of L is preferable and the capacity class is 4 kW or more (FIG. 6), the value of the refrigerant amount of the entire refrigeration cycle / the volume of the outdoor heat exchanger 5 is preferably in the range of 750 to 1200 g / L. Recognize. That is, in such a range, since the phenomenon of liquid compression can be suppressed even under the severe condition of Condition 1, the liquid compression is more reliably suppressed and the reliability of the air conditioner 1 is improved. Can do.

なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。   It is to be noted that, by appropriately combining arbitrary embodiments of the various embodiments described above, the effects possessed by them can be produced.

本発明は、圧縮機での非定常時における液圧縮の発生を抑制し、空気調和機の信頼性を向上せることができるため、家庭用や業務用を含めた各種の空気調和機に適用することができる。   INDUSTRIAL APPLICABILITY The present invention can suppress the occurrence of liquid compression during unsteady operation in a compressor and improve the reliability of an air conditioner. Therefore, the present invention is applied to various air conditioners including home use and business use. be able to.

1 空気調和機
2 圧縮機
3 室内熱交換器
4 膨張手段
5 室外熱交換器
6 切換弁
7 アキュームレータ
8 第1の配管
9 第2の配管
10 第3の配管
11 第4の配管
12 第5の配管
13 第6の配管
14 第7の配管
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Compressor 3 Indoor heat exchanger 4 Expansion means 5 Outdoor heat exchanger 6 Switching valve 7 Accumulator 8 1st piping 9 2nd piping 10 3rd piping 11 4th piping 12 5th piping 13 Sixth piping 14 Seventh piping

Claims (4)

圧縮機、室内熱交換機、膨張手段、室外熱交換器を含んだ冷凍サイクルにおいて、循環させる冷媒としてR32を使用した空気調和機であって、
空気調和機の能力クラスが4kW未満であり、かつ、冷凍サイクルに対するR32の充填量が冷凍サイクル全体の総容積1リットル当たり200−300gの範囲内である、空気調和機。
In a refrigeration cycle including a compressor, an indoor heat exchanger, expansion means, and an outdoor heat exchanger, an air conditioner using R32 as a refrigerant to be circulated,
An air conditioner in which the capacity class of the air conditioner is less than 4 kW, and the filling amount of R32 for the refrigeration cycle is in the range of 200 to 300 g per liter of the total volume of the refrigeration cycle.
圧縮機、室内熱交換機、膨張手段、室外熱交換器を含んだ冷凍サイクルにおいて、循環させる冷媒としてR32を使用した空気調和機であって、
空気調和機の能力クラスが4kW以上であり、かつ、冷凍サイクルに対するR32の充填量が冷凍サイクル全体の総容積1リットル当たり250−350gの範囲内である、空気調和機。
In a refrigeration cycle including a compressor, an indoor heat exchanger, expansion means, and an outdoor heat exchanger, an air conditioner using R32 as a refrigerant to be circulated,
An air conditioner in which the capacity class of the air conditioner is 4 kW or more, and the filling amount of R32 for the refrigeration cycle is within a range of 250 to 350 g per liter of the total volume of the refrigeration cycle.
冷凍サイクルに対するR32の充填量が室外熱交換器の容積1リットル当たり750g−1100gの範囲内である、請求項1に記載の空気調和機。   The air conditioner according to claim 1, wherein a filling amount of R32 with respect to the refrigeration cycle is within a range of 750 g to 1100 g per liter of the outdoor heat exchanger. 冷凍サイクルに対するR32の充填量が室外熱交換器の容積1リットル当たり750g−1200gの範囲内である、請求項2に記載の空気調和機。   The air conditioner according to claim 2, wherein a filling amount of R32 with respect to the refrigeration cycle is within a range of 750 g to 1200 g per liter of the outdoor heat exchanger.
JP2014168491A 2014-08-21 2014-08-21 Air conditioner Pending JP2016044856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014168491A JP2016044856A (en) 2014-08-21 2014-08-21 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014168491A JP2016044856A (en) 2014-08-21 2014-08-21 Air conditioner

Publications (1)

Publication Number Publication Date
JP2016044856A true JP2016044856A (en) 2016-04-04

Family

ID=55635588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014168491A Pending JP2016044856A (en) 2014-08-21 2014-08-21 Air conditioner

Country Status (1)

Country Link
JP (1) JP2016044856A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931450A (en) * 1995-07-18 1997-02-04 Daikin Ind Ltd Refrigerator
JP2001133111A (en) * 1999-11-01 2001-05-18 Matsushita Refrig Co Ltd Refrigerator
JP2001194016A (en) * 1999-10-18 2001-07-17 Daikin Ind Ltd Freezing apparatus
JP2003148821A (en) * 2001-11-14 2003-05-21 Sanyo Electric Co Ltd Supercritical refrigerating cycle device and water heater
JP2005147584A (en) * 2003-11-18 2005-06-09 Matsushita Electric Ind Co Ltd Start-up controller and start-up control method for heat pump hot water supply apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931450A (en) * 1995-07-18 1997-02-04 Daikin Ind Ltd Refrigerator
JP2001194016A (en) * 1999-10-18 2001-07-17 Daikin Ind Ltd Freezing apparatus
JP2001133111A (en) * 1999-11-01 2001-05-18 Matsushita Refrig Co Ltd Refrigerator
JP2003148821A (en) * 2001-11-14 2003-05-21 Sanyo Electric Co Ltd Supercritical refrigerating cycle device and water heater
JP2005147584A (en) * 2003-11-18 2005-06-09 Matsushita Electric Ind Co Ltd Start-up controller and start-up control method for heat pump hot water supply apparatus

Similar Documents

Publication Publication Date Title
JP5049888B2 (en) Refrigeration cycle equipment
JP2015131966A5 (en)
WO2013049344A3 (en) High efficiency refrigeration system
JP2014089004A (en) Air conditioning equipment
JP6484950B2 (en) Refrigeration equipment
JP5800909B2 (en) Heat exchanger and refrigeration cycle apparatus using the heat exchanger
JP2014119165A (en) Air conditioner
CN108224837A (en) Air-conditioner system
EP3734193A1 (en) Air conditioner system
US20160131402A1 (en) Heat pump
AU2013257524A1 (en) Heat pump water heater
JP2011196630A (en) Multi-room type air conditioning device
JP2012202581A (en) Refrigeration cycle device and control method thereof
CN104676933A (en) Refrigerating equipment
JP2016033426A5 (en)
JP5765990B2 (en) Indoor unit and air conditioner
CN204438396U (en) There is the air-conditioner set of accumulation of energy function
JP6643627B2 (en) Heat generation unit
JP2015010733A (en) Heat pump air conditioner
JP6242289B2 (en) Refrigeration cycle equipment
JP2016044856A (en) Air conditioner
WO2016056078A1 (en) Air conditioner
JP2012237518A (en) Air conditioner
JP6413447B2 (en) Refrigeration equipment
CN104390380B (en) A kind of edible fat production cooling refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180821