JP2007040555A - Heat pump type water heater - Google Patents

Heat pump type water heater Download PDF

Info

Publication number
JP2007040555A
JP2007040555A JP2005222374A JP2005222374A JP2007040555A JP 2007040555 A JP2007040555 A JP 2007040555A JP 2005222374 A JP2005222374 A JP 2005222374A JP 2005222374 A JP2005222374 A JP 2005222374A JP 2007040555 A JP2007040555 A JP 2007040555A
Authority
JP
Japan
Prior art keywords
hot water
compressor
heat pump
water supply
pump type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005222374A
Other languages
Japanese (ja)
Inventor
Kenji Shirai
健二 白井
Yasushi Watabe
安司 渡部
Masayuki Hamada
真左行 濱田
Bunji Hayashi
文次 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005222374A priority Critical patent/JP2007040555A/en
Publication of JP2007040555A publication Critical patent/JP2007040555A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reliable heat pump type water heater. <P>SOLUTION: The heat pump type water heater is provided with a heat pump circuit sequentially connecting a compressor 11, a hot water supply heat exchanger 12, a solenoid expansion valve 13, and an evaporator 14 by a refrigerant pipe arrangement 15, a hot water supply circuit producing hot water in the hot water supply heat exchanger 12, and a control means for controlling operation of the compressor 11. The reliable heat pump type water heater is provided by not operating the compressor 11 at a maximum operation frequency of hot water supply operation for a predetermined time after finishing defrosting operation of the evaporator 14. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、除霜運転時の冷凍サイクルおよび制御技術に関するものである。 The present invention relates to a refrigeration cycle and control technology during a defrosting operation.

従来、この種のヒートポンプ式給湯機は、蒸発器に着霜すると、除霜運転を行う(例えば、特許文献1参照)。以下図面を用いて、従来のヒートポンプ式給湯機を説明する。   Conventionally, this type of heat pump type hot water heater performs a defrosting operation when the evaporator is frosted (see, for example, Patent Document 1). A conventional heat pump type water heater will be described below with reference to the drawings.

図7は、従来のヒートポンプ式給湯機の構成を示す図である。図7に示すように、ヒートポンプ式給湯機100は、タンクユニット101とヒートポンプユニット102から構成される。   FIG. 7 is a diagram illustrating a configuration of a conventional heat pump type hot water heater. As shown in FIG. 7, the heat pump type water heater 100 includes a tank unit 101 and a heat pump unit 102.

タンクユニット101は、貯湯槽103、循環ポンプ104、混合弁105、流量調整弁106で構成されている。貯湯槽103の底部配管から、流量調整弁106を介して水道管などの水供給配管に接続されている。また貯湯槽103の底部配管から、循環ポンプ104を介して給湯用熱交換器107の水用配管の流入側と接続されている。また、貯湯槽103の上部循環用配管は、水用配管の流出側と接続されている。   The tank unit 101 includes a hot water tank 103, a circulation pump 104, a mixing valve 105, and a flow rate adjustment valve 106. The bottom pipe of the hot water storage tank 103 is connected to a water supply pipe such as a water pipe through a flow rate adjusting valve 106. Further, the hot water storage tank 103 is connected to the inflow side of the water piping of the hot water supply heat exchanger 107 through the circulation pump 104 from the bottom piping. The upper circulation pipe of the hot water storage tank 103 is connected to the outflow side of the water pipe.

ヒートポンプユニット102は、給湯用熱交換器107、膨張弁108A、キャピラリチューブ108B、蒸発器109、圧縮機110を順次冷媒配管111で接続して構成されている。また、蒸発器109の吸入空気の温度を検出する温度センサ112、蒸発器109の出口付近の温度を検知する温度センサ113が配設されている。   The heat pump unit 102 is configured by sequentially connecting a hot water supply heat exchanger 107, an expansion valve 108A, a capillary tube 108B, an evaporator 109, and a compressor 110 through a refrigerant pipe 111. Further, a temperature sensor 112 for detecting the temperature of the intake air of the evaporator 109 and a temperature sensor 113 for detecting the temperature near the outlet of the evaporator 109 are provided.

このように構成された、従来のヒートポンプ式給湯機100の給湯運転の動作について以下に説明する。   The operation of the hot water supply operation of the conventional heat pump type hot water heater 100 configured as described above will be described below.

貯湯槽103からの運転信号を受信してヒートポンプユニット102の運転が開始される。ヒートポンプユニット102では、圧縮機110で圧縮された冷媒は、給湯用熱交換器107で放熱し、膨張弁108Aおよびキャピラリチューブ108Bで減圧された後、蒸発器109にて吸熱し、ガス状態で圧縮機110に吸入される。   The operation signal from the hot water storage tank 103 is received, and the operation of the heat pump unit 102 is started. In the heat pump unit 102, the refrigerant compressed by the compressor 110 dissipates heat in the hot water supply heat exchanger 107, is decompressed by the expansion valve 108A and the capillary tube 108B, absorbs heat in the evaporator 109, and is compressed in a gas state. Inhaled into machine 110.

一方、循環ポンプ104の運転により、貯湯槽103内の水は、底部配管を通って水用配管に導かれ、水用配管で加熱された温水は、上部循環用配管を通って貯湯槽103に戻される。   On the other hand, by the operation of the circulation pump 104, the water in the hot water storage tank 103 is led to the water pipe through the bottom pipe, and the hot water heated by the water pipe passes through the upper circulation pipe to the hot water storage tank 103. Returned.

次に、従来のヒートポンプ式給湯機100の除霜運転の動作について説明する。   Next, the operation of the defrosting operation of the conventional heat pump type hot water heater 100 will be described.

除霜運転開始後、循環ポンプ104で制御する流量は、小流量とし、給湯用熱交換器107で除霜用の熱量を放熱しないようにしている。その後、膨張弁108Aを最大開度にして、圧縮機110の運転周波数を高くして運転している。そして温度センサ113の状況に応じて、除霜運転を終了し、通常の給湯運転を再開する。
特開2005−147609号公報
After the defrosting operation is started, the flow rate controlled by the circulation pump 104 is set to a small flow rate so that the heat amount for defrosting is not dissipated by the hot water supply heat exchanger 107. Thereafter, the expansion valve 108A is set to the maximum opening, and the operation frequency of the compressor 110 is increased. And according to the condition of the temperature sensor 113, a defrost operation is complete | finished and a normal hot water supply operation is restarted.
JP-A-2005-147609

しかしながら、前記従来の技術のような除霜運転終了後には、急速にヒートポンプ式給湯機の能力を立ち上げなければならない。急速にヒートポンプ式給湯機の能力を立ち上げるためには、給湯運転時の最高運転周波数で圧縮機を運転することが考えられるが、除霜
運転終了後すぐに、最高運転周波数で運転を開始すると、圧縮機から吐出される冷媒の圧力が上昇し、設計圧力を超えてしまうという課題があった。
However, after the defrosting operation as in the prior art is completed, the capability of the heat pump type hot water heater must be rapidly increased. In order to quickly start up the capacity of the heat pump type hot water heater, it is conceivable to operate the compressor at the maximum operating frequency during hot water supply operation, but if the operation is started at the maximum operating frequency immediately after the defrosting operation is completed. There has been a problem that the pressure of the refrigerant discharged from the compressor rises and exceeds the design pressure.

本発明は、前記従来の課題を解決するもので、信頼性の高いヒートポンプ式給湯機を提供することを目的とする。   This invention solves the said conventional subject, and it aims at providing a reliable heat pump type hot water heater.

前記従来の課題を解決するために、本発明のヒートポンプ式給湯機は、圧縮機、給湯用熱交換器、減圧手段、蒸発器を冷媒配管で順次接続したヒートポンプ回路と、前記給湯用熱交換器にて湯を生成する給湯回路と、前記圧縮機の動作を制御する制御手段とを備え、前記蒸発器の除霜運転終了後、前記圧縮機は、所定時間だけ給湯運転時の最高運転周波数では運転しないものである。   In order to solve the conventional problems, a heat pump type hot water heater of the present invention includes a compressor, a hot water heat exchanger, a decompression means, a heat pump circuit in which an evaporator is sequentially connected by a refrigerant pipe, and the hot water heat exchanger. A hot water supply circuit for generating hot water and a control means for controlling the operation of the compressor, and after the defrosting operation of the evaporator, the compressor has a maximum operating frequency during a hot water supply operation for a predetermined time. I don't drive.

これによって、ヒートポンプ式給湯機が、除霜運転終了後に通常運転を開始した時、通常運転時の圧縮機の周波数が、除霜運転時の圧縮機の周波数よりも高く設定されている場合でも、圧縮機から吐出される冷媒の圧力の上昇を抑制することができる。   Thereby, when the heat pump type hot water heater starts normal operation after completion of the defrosting operation, even when the frequency of the compressor during normal operation is set higher than the frequency of the compressor during defrosting operation, An increase in the pressure of the refrigerant discharged from the compressor can be suppressed.

本発明は、信頼性の高いヒートポンプ式給湯機を提供することができる。   The present invention can provide a heat pump type hot water heater with high reliability.

第1の発明は、圧縮機、給湯用熱交換器、減圧手段、蒸発器を冷媒配管で順次接続したヒートポンプ回路と、前記給湯用熱交換器にて湯を生成する給湯回路と、前記圧縮機の動作を制御する制御手段とを備え、
前記蒸発器の除霜運転終了後、前記圧縮機は、所定時間だけ給湯運転時の最高運転周波数では運転しないことを特徴とするものである。これによって、ヒートポンプ式給湯機が、除霜運転終了後に通常運転を開始した時に、通常運転時の圧縮機の周波数が、除霜運転時の圧縮機の周波数よりも高く設定されている場合でも、圧縮機から吐出される冷媒の圧力の上昇を抑制することができるので、圧縮機を構成する部品の磨耗などを防ぎ、信頼性を向上させることができる。
A first invention includes a heat pump circuit in which a compressor, a hot water supply heat exchanger, a decompression unit, and an evaporator are sequentially connected by a refrigerant pipe, a hot water supply circuit that generates hot water in the hot water supply heat exchanger, and the compressor Control means for controlling the operation of
After the defrosting operation of the evaporator, the compressor does not operate at a maximum operation frequency during a hot water supply operation for a predetermined time. Thereby, when the heat pump water heater starts normal operation after completion of the defrosting operation, even when the frequency of the compressor during normal operation is set higher than the frequency of the compressor during defrosting operation, Since an increase in the pressure of the refrigerant discharged from the compressor can be suppressed, wear of parts constituting the compressor can be prevented and reliability can be improved.

第2の発明は、特に第1の発明において、圧縮機の運転周波数の上限値を、段階的に上昇させることを特徴とするものである。これによって、圧縮機を構成する部品の磨耗などを防ぎ、かつ除霜運転終了後の給湯運転能力の立ち上がりが早くなる。   The second invention is characterized in that, in particular, in the first invention, the upper limit value of the operating frequency of the compressor is increased stepwise. As a result, wear of parts constituting the compressor is prevented, and the hot water supply operation capacity rises quickly after the defrosting operation is completed.

第3の発明は、特に第1もしくは2の発明において、ヒートポンプ回路で使用される冷媒が、二酸化炭素であることを特徴とするものである。これによって、水または空気を加熱するために、給湯用熱交換器内の冷媒は臨界圧力以上に加圧されているので、給湯用熱交換器内の水により熱を奪われても、凝縮することがない。したがって、給湯用熱交換器の全域で冷媒と水との間の温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高くすることができる。   The third invention is characterized in that, in particular, in the first or second invention, the refrigerant used in the heat pump circuit is carbon dioxide. As a result, the refrigerant in the hot water supply heat exchanger is pressurized to a critical pressure or higher in order to heat water or air, so it will condense even if heat is taken away by the water in the hot water supply heat exchanger. There is nothing. Therefore, it becomes easy to form a temperature difference between the refrigerant and water over the entire area of the heat exchanger for hot water supply, high-temperature hot water can be obtained, and heat exchange efficiency can be increased.

しかしながら、冷媒に二酸化炭素を用いることで、給湯用熱交換器内の冷媒は臨界圧力以上に加圧される。そのため、上記第1、第2の発明を用いることで、冷媒が臨界圧力以上に加圧されたとしても、圧縮機を構成する部品の磨耗などを防ぎ、信頼性を向上させることができる。   However, by using carbon dioxide as the refrigerant, the refrigerant in the hot water heat exchanger is pressurized to a critical pressure or higher. Therefore, by using the first and second inventions described above, even if the refrigerant is pressurized to a critical pressure or higher, it is possible to prevent wear of components constituting the compressor and improve reliability.

また比較的安価であり安定な二酸化炭素を冷媒に使用することで、製品コストを抑えるとともに、信頼性を向上させることができる。さらに二酸化炭素は、オゾン破壊係数がゼロであり、地球温暖化係数も代替冷媒HFC−407Cの約1700分の1と非常に小さ
いため、地球環境に優しい製品を提供することができる。
In addition, by using relatively inexpensive and stable carbon dioxide for the refrigerant, it is possible to reduce the product cost and improve the reliability. Furthermore, since carbon dioxide has an ozone depletion coefficient of zero and a global warming coefficient of about 1/700 of the alternative refrigerant HFC-407C, it can provide a product that is friendly to the global environment.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1におけるヒートポンプ式給湯機の構成を表す図であり、図2は、本発明の実施の形態1におけるヒートポンプ式給湯機の制御を表す図である。
(Embodiment 1)
FIG. 1 is a diagram illustrating a configuration of a heat pump type hot water heater in Embodiment 1 of the present invention, and FIG. 2 is a diagram illustrating control of the heat pump type hot water heater in Embodiment 1 of the present invention.

図1において、ヒートポンプ式給湯機は、貯湯槽16、ウォータポンプ17、給湯用熱交換器12を配管18で順次環状に接続した循環回路と、圧縮機11、給湯用熱交換器12、減圧手段である電磁膨張弁13、蒸発器14を冷媒配管15で順次環状に接続したヒートポンプ回路で構成され、圧縮機11から吐出する冷媒の温度を検出する第1の温度検出手段である温度センサ31と、蒸発器14の出口付近の冷媒の温度を検出する第2の温度検出手段である温度センサ32がヒートポンプ回路上に配設されている。また、温度センサ31および32、電磁膨張弁13はマイクロコンピュータ30によって制御される。また、圧縮機11は、アキュームレータのない構成であるので、小型かつ軽量である。また、ヒートポンプ回路に流通させる冷媒は二酸化炭素を用いている。   In FIG. 1, a heat pump type water heater includes a hot water storage tank 16, a water pump 17, a heat exchanger 12 for hot water supply connected in a circular fashion by a pipe 18, a compressor 11, a heat exchanger 12 for hot water supply, a pressure reducing means. A temperature sensor 31 that is a first temperature detection means that detects the temperature of the refrigerant discharged from the compressor 11, and is constituted by a heat pump circuit in which the electromagnetic expansion valve 13 and the evaporator 14 that are A temperature sensor 32 as second temperature detecting means for detecting the temperature of the refrigerant in the vicinity of the outlet of the evaporator 14 is disposed on the heat pump circuit. The temperature sensors 31 and 32 and the electromagnetic expansion valve 13 are controlled by the microcomputer 30. Moreover, since the compressor 11 is a structure without an accumulator, it is small and lightweight. In addition, carbon dioxide is used as the refrigerant circulating in the heat pump circuit.

なお、本実施の形態において、減圧手段を電磁膨張弁としているが、これに限ることなく、温度に応じて開度を決定できるような減圧手段であればよい。また、使用する冷媒も二酸化炭素に限るものではなく、臨界圧力以上に加圧される冷媒であれば同様の効果を奏する。また、温度センサ31および32、電磁膨張弁13は、マイクロコンピュータ30によって制御されているが、マイクロコンピュータ30は、ひとつに限らず、複数のマイクロコンピュータを用いて制御してもよい。また、本実施の形態では蒸発器の冷媒の温度を検出するのに、蒸発器14の出口付近の冷媒の温度を検出しているが、低圧であることを検知できればよいため、蒸発器14の出口に限定されることはなく、蒸発器14の中間地点や入口の冷媒の温度を検出してもよい。   In this embodiment, the pressure reducing means is an electromagnetic expansion valve. However, the pressure reducing means is not limited to this, and any pressure reducing means that can determine the opening degree according to the temperature may be used. Further, the refrigerant to be used is not limited to carbon dioxide, and the same effect can be obtained as long as the refrigerant is pressurized to a critical pressure or higher. Further, the temperature sensors 31 and 32 and the electromagnetic expansion valve 13 are controlled by the microcomputer 30, but the microcomputer 30 is not limited to one and may be controlled by using a plurality of microcomputers. In the present embodiment, the temperature of the refrigerant in the vicinity of the outlet of the evaporator 14 is detected to detect the temperature of the refrigerant in the evaporator. The temperature of the refrigerant at the intermediate point of the evaporator 14 or the inlet may be detected without being limited to the outlet.

次に、図2を用いて、ヒートポンプ式給湯機の制御について説明する。前記温度センサ31で検出される圧縮機11から吐出する冷媒の温度を、所望の温度に制御するため、温度センサ31で検出される温度に基づいて、電磁膨張弁13の開度が減圧装置制御手段33によって制御される。また前記温度センサ32で検出される温度に基づいて、電磁膨張弁13の開度が減圧装置制御手段33によって制御され、圧縮機11の運転が圧縮機運転周波数制御手段34によって制御される。なお、減圧装置制御手段33および圧縮機運転周波数制御手段34には、マイクロコンピュータ30を用いている。   Next, the control of the heat pump type hot water heater will be described with reference to FIG. In order to control the temperature of the refrigerant discharged from the compressor 11 detected by the temperature sensor 31 to a desired temperature, the opening degree of the electromagnetic expansion valve 13 is controlled by the pressure reducing device based on the temperature detected by the temperature sensor 31. Controlled by means 33. Further, based on the temperature detected by the temperature sensor 32, the opening degree of the electromagnetic expansion valve 13 is controlled by the pressure reducing device control means 33, and the operation of the compressor 11 is controlled by the compressor operating frequency control means 34. A microcomputer 30 is used for the decompression device control means 33 and the compressor operating frequency control means 34.

以上のように構成された、ヒートポンプ式給湯機について、以下その動作、作用を説明する。   The operation and action of the heat pump type water heater configured as described above will be described below.

図3は、本発明の実施の形態1におけるヒートポンプ式給湯機の圧縮機の周波数制御の流れを示すフローチャートである。まずステップ1において、ヒートポンプ式給湯機の除霜運転終了後、圧縮機11の目標運転周波数が上昇する等の制御開始条件が成立した場合に、圧縮機11の最高運転周波数を、ある所定時間だけ所定値に制限する制御を行う。   FIG. 3 is a flowchart showing a flow of frequency control of the compressor of the heat pump type hot water heater in Embodiment 1 of the present invention. First, in step 1, after completion of the defrosting operation of the heat pump type hot water heater, when a control start condition such as an increase in the target operating frequency of the compressor 11 is satisfied, the maximum operating frequency of the compressor 11 is set to a predetermined time. Control to limit to a predetermined value is performed.

ステップ2において、タイマーをスタートするとともに、圧縮機11の運転周波数に上限値を設け、圧縮機11の運転周波数の上昇を所定時間抑制する。つまり圧縮機11が、給湯運転時に最高運転周波数で運転しないように、ある所定時間だけ抑制する。   In step 2, a timer is started and an upper limit value is set for the operating frequency of the compressor 11 to suppress an increase in the operating frequency of the compressor 11 for a predetermined time. That is, the compressor 11 is suppressed for a predetermined time so as not to operate at the maximum operation frequency during the hot water supply operation.

ステップ3において、タイマーが所定時間経過したかどうかの判断を行い、所定時間経
過していなければ、ステップ2に戻り本制御を継続させるが、所定時間経過していれば、ステップ4に進み、本制御を終了し、通常の給湯運転に戻る。
In step 3, it is determined whether or not a predetermined time has elapsed. If the predetermined time has not elapsed, the process returns to step 2 to continue the present control. The control is terminated and the normal hot water supply operation is resumed.

図4は、本発明の実施の形態1におけるヒートポンプ式給湯機の圧縮機の動作を示すグラフであり、点線を従来制御、実線を本制御として、比較している。図4において、従来技術では、圧縮機11からの吐出冷媒の圧力が設計圧力を超えて、システムがダウンしていたものが、本発明の制御を用いることで、圧縮機11の運転周波数の上限値を抑制しているので、吐出圧力も、設計圧力を超えていない。
よって本発明を用いることで、圧縮機11からの吐出冷媒の温度および圧力のオーバーシュートを防いでいることが分かる。また従来は、圧縮機からの吐出冷媒の温度および圧力が上昇することで圧縮機が停止し、圧縮機が再起動する時間を要すると共に、圧縮機の熱容量が減少するため立ち上がりに長時間が必要となり、給湯効率が悪化するといった課題があったが、その課題も解消され、除霜運転終了後にスムーズに給湯運転への移行が可能となる。
FIG. 4 is a graph showing the operation of the compressor of the heat pump type hot water heater according to Embodiment 1 of the present invention. The dotted line is compared with the conventional control, and the solid line is compared with the main control. In FIG. 4, in the prior art, the pressure of the refrigerant discharged from the compressor 11 exceeds the design pressure and the system is down. By using the control of the present invention, the upper limit of the operating frequency of the compressor 11 is achieved. Since the value is suppressed, the discharge pressure does not exceed the design pressure.
Therefore, it turns out that the overshoot of the temperature and pressure of the refrigerant | coolant discharged from the compressor 11 is prevented by using this invention. Conventionally, the temperature and pressure of refrigerant discharged from the compressor rises, the compressor stops, and it takes time for the compressor to restart, and the heat capacity of the compressor decreases, so it takes a long time to start up. Thus, there is a problem that the hot water supply efficiency is deteriorated, but the problem is also solved, and the transition to the hot water supply operation can be smoothly performed after the defrosting operation is completed.

以上のように、本発明の実施の形態1においては、除霜運転終了後に、圧縮機11の運転周波数に上限値を設けて所定時間運転することで、除霜時の運転周波数よりも高い運転周波数で運転する場合でも、圧縮機から吐出される冷媒の圧力上昇を防止し、圧縮機モータ過電流による圧縮機停止を防止でき、圧縮機の磨耗などを防ぎ、冷凍サイクルを構成する機器の保護が可能となる。   As described above, in the first embodiment of the present invention, after the defrosting operation is completed, the operation frequency higher than the operation frequency at the time of defrosting is set by providing an upper limit value for the operation frequency of the compressor 11 and operating for a predetermined time. Even when operating at a frequency, the pressure of the refrigerant discharged from the compressor can be prevented, the compressor can be stopped due to overcurrent of the compressor motor, the compressor can be prevented from being worn, and the equipment constituting the refrigeration cycle can be protected Is possible.

(実施の形態2)
本発明の実施の形態2におけるヒートポンプ式給湯機は、実施の形態1と同じ構成であり、同じ部位には同じ記号を付して、その説明を省略する。以下、実施の形態2における動作、作用について説明する。
(Embodiment 2)
The heat pump type water heater in the second embodiment of the present invention has the same configuration as that of the first embodiment, and the same parts are denoted by the same reference symbols and description thereof is omitted. Hereinafter, the operation and action in the second embodiment will be described.

図5は、本発明の実施の形態2におけるヒートポンプ式給湯機の圧縮機の周波数制御の流れを示すフローチャートである。まずステップ1において、ヒートポンプ式給湯機の除霜運転終了後、圧縮機11の目標運転周波数が上昇する等の制御開始条件が成立した場合に、圧縮機11の運転周波数を、ある所定時間だけ所定値に制限する制御を行う。   FIG. 5 is a flowchart showing a flow of frequency control of the compressor of the heat pump type hot water heater in Embodiment 2 of the present invention. First, in step 1, after completion of the defrosting operation of the heat pump type hot water heater, when a control start condition such as an increase in the target operating frequency of the compressor 11 is satisfied, the operating frequency of the compressor 11 is determined for a predetermined time. Control to limit to the value.

ステップ2において、タイマーをスタートするとともに、現在の圧縮機11の運転周波数をαとして記憶し、タイマーのカウントがある所定時間Tに達するまで、圧縮機11の最高運転周波数をα+βとして運転する。つまりある所定時間Tの間は、圧縮機11の最高運転周波数がα+βに制限され、それ以上では運転しないように、抑制されている。   In step 2, the timer is started, the current operating frequency of the compressor 11 is stored as α, and the compressor 11 is operated with the maximum operating frequency as α + β until the timer count reaches a predetermined time T. That is, during a predetermined time T, the maximum operating frequency of the compressor 11 is limited to α + β, and is suppressed so as not to be operated beyond that.

ステップ3において、タイマーのカウントが所定時間Tを経過したかどうかの判断を行い、所定時間Tを経過していなければ、圧縮機11の最高運転周波数をα+βのまま運転を継続させるが、所定時間Tを経過していれば、ステップ4に進む。   In step 3, it is determined whether the count of the timer has passed a predetermined time T. If the predetermined time T has not passed, the operation is continued with the maximum operating frequency of the compressor 11 being α + β. If T has elapsed, go to Step 4.

ステップ4において、現在の圧縮機11の運転周波数が、目標運転周波数に達しているかどうかを判断し、目標運転周波数に達していなければ、ステップ2に戻り、新たにβだけ上限値を増加させ、本制御を継続するが、目標運転周波数に達していれば、本制御は終了し、通常の給湯運転に戻る。   In Step 4, it is determined whether or not the current operating frequency of the compressor 11 has reached the target operating frequency. If the target operating frequency has not been reached, the process returns to Step 2 to newly increase the upper limit value by β, This control is continued, but if the target operating frequency has been reached, this control ends and returns to the normal hot water supply operation.

図6は、本発明の実施の形態2におけるヒートポンプ式給湯機の圧縮機の動作を示すグラフであり、点線を従来制御、実線を本制御として、比較している。図6において、従来技術では、圧縮機11からの吐出冷媒の圧力が設計圧力を超えて、システムがダウンしていたものが、本制御では、所定時間Tごとに圧縮機11の周波数をαしか上昇させていないため、圧縮機の吐出圧力も、設計圧力を超えていない。   FIG. 6 is a graph showing the operation of the compressor of the heat pump type hot water heater according to Embodiment 2 of the present invention, and the dotted line is compared with the conventional control, and the solid line is compared with the main control. In FIG. 6, in the conventional technology, the pressure of the refrigerant discharged from the compressor 11 exceeds the design pressure and the system is down. In this control, the frequency of the compressor 11 is set to α only at a predetermined time T. Since the pressure is not increased, the discharge pressure of the compressor does not exceed the design pressure.

よって本発明を用いることで、圧縮機11からの吐出冷媒の温度および圧力のオーバーシュートを防いでいることが分かる。また従来は、圧縮機からの吐出冷媒の温度および圧力が上昇することで圧縮機が停止し、圧縮機が再起動する時間を要すると共に、圧縮機の熱容量が減少するため立ち上がりに長時間が必要となり、給湯効率が悪化するといった課題があったが、その課題も解消され、除霜運転終了後にスムーズに給湯運転への移行が可能となる。   Therefore, it turns out that the overshoot of the temperature and pressure of the refrigerant | coolant discharged from the compressor 11 is prevented by using this invention. Conventionally, the temperature and pressure of refrigerant discharged from the compressor rises, the compressor stops, and it takes time for the compressor to restart, and the heat capacity of the compressor decreases, so it takes a long time to start up. Thus, there is a problem that the hot water supply efficiency is deteriorated, but the problem is also solved, and the transition to the hot water supply operation can be smoothly performed after the defrosting operation is completed.

以上のように、本発明の実施の形態2においては、除霜運転終了後に、圧縮機11の運転周波数の上限値を段階的に設けて所定時間運転することで、除霜時の運転周波数よりも高い運転周波数で運転する場合でも、圧縮機から吐出される冷媒の圧力上昇を防止し、圧縮機モータ過電流による圧縮機停止を防止でき、圧縮機の磨耗などを防ぎ、冷凍サイクルを構成する機器の保護が可能となる。   As described above, in the second embodiment of the present invention, after the defrosting operation is completed, the upper limit value of the operation frequency of the compressor 11 is provided in a stepwise manner and operated for a predetermined time, so that the operation frequency at the time of defrosting is obtained. Even when operating at a high operating frequency, it is possible to prevent an increase in the pressure of refrigerant discharged from the compressor, to prevent the compressor from being stopped due to an overcurrent of the compressor motor, to prevent wear of the compressor, and to configure a refrigeration cycle Equipment can be protected.

以上のように、本発明にかかるヒートポンプ式給湯機は、圧縮機から吐出される冷媒の圧力上昇を防止し、冷凍サイクルを構成する機器の保護が可能となるので、ヒートポンプ式給湯機だけに限らず、冷凍サイクルを用いるものであれば、本発明は適用できる。   As described above, the heat pump type hot water heater according to the present invention prevents an increase in the pressure of the refrigerant discharged from the compressor and can protect the equipment constituting the refrigeration cycle, and thus is limited to the heat pump type hot water heater. However, the present invention can be applied as long as it uses a refrigeration cycle.

本発明の実施の形態1におけるヒートポンプ式給湯機の構成図The block diagram of the heat pump type water heater in Embodiment 1 of this invention 同ヒートポンプ式給湯機の制御図Control diagram of the heat pump water heater 同ヒートポンプ式給湯機の除霜運転終了後のフローチャートFlow chart after completion of defrosting operation of the same heat pump type water heater 同ヒートポンプ式給湯機の圧縮機の動作の従来方法との比較図Comparison of the operation of the compressor of the heat pump type hot water heater with the conventional method 本発明の実施の形態2におけるヒートポンプ式給湯機の除霜運転終了後のフローチャートThe flowchart after completion | finish of the defrost operation of the heat pump type water heater in Embodiment 2 of this invention 同ヒートポンプ式給湯機の圧縮機の動作の従来方法との比較図Comparison of the operation of the compressor of the heat pump type hot water heater with the conventional method 従来のヒートポンプ式給湯機の構成図Configuration diagram of conventional heat pump water heater

符号の説明Explanation of symbols

11 圧縮機
12 給湯用熱交換器
13 電磁膨張弁
14 蒸発器
15 冷媒配管
16 貯湯槽
17 ウォータポンプ
18 配管
30 マイクロコンピュータ
31 温度センサ
32 温度センサ
DESCRIPTION OF SYMBOLS 11 Compressor 12 Heat exchanger for hot water supply 13 Electromagnetic expansion valve 14 Evaporator 15 Refrigerant piping 16 Hot water storage tank 17 Water pump 18 Piping 30 Microcomputer 31 Temperature sensor 32 Temperature sensor

Claims (3)

圧縮機、給湯用熱交換器、減圧手段、蒸発器を冷媒配管で順次接続したヒートポンプ回路と、前記給湯用熱交換器にて湯を生成する給湯回路と、前記圧縮機の動作を制御する制御手段とを備え、前記蒸発器の除霜運転終了後、前記圧縮機は、所定時間だけ給湯運転時の最高運転周波数では運転しないことを特徴とするヒートポンプ式給湯機。 A heat pump circuit in which a compressor, a hot water supply heat exchanger, a decompression means, and an evaporator are sequentially connected by a refrigerant pipe, a hot water supply circuit that generates hot water in the hot water supply heat exchanger, and a control that controls the operation of the compressor And the compressor is not operated at the maximum operating frequency during the hot water supply operation for a predetermined time after the defrosting operation of the evaporator is completed. 圧縮機の運転周波数の上限値を、段階的に上昇させることを特徴とする請求項1に記載のヒートポンプ式給湯機。 The heat pump type hot water heater according to claim 1, wherein the upper limit value of the operating frequency of the compressor is increased stepwise. 冷媒が、二酸化炭素であることを特徴とする請求項1または2に記載のヒートポンプ式給湯機。 The heat pump type water heater according to claim 1 or 2, wherein the refrigerant is carbon dioxide.
JP2005222374A 2005-08-01 2005-08-01 Heat pump type water heater Pending JP2007040555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005222374A JP2007040555A (en) 2005-08-01 2005-08-01 Heat pump type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005222374A JP2007040555A (en) 2005-08-01 2005-08-01 Heat pump type water heater

Publications (1)

Publication Number Publication Date
JP2007040555A true JP2007040555A (en) 2007-02-15

Family

ID=37798714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005222374A Pending JP2007040555A (en) 2005-08-01 2005-08-01 Heat pump type water heater

Country Status (1)

Country Link
JP (1) JP2007040555A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025493A (en) * 2008-07-23 2010-02-04 Sanden Corp Heat pump type hot water supply device
JP2012007851A (en) * 2010-06-28 2012-01-12 Fujitsu General Ltd Heat pump cycle device
JP2016102604A (en) * 2014-11-27 2016-06-02 株式会社富士通ゼネラル Heat pump type heating and water heater
CN106766219A (en) * 2016-12-14 2017-05-31 珠海格力电器股份有限公司 Heat pump water dispenser antifreeze control method, apparatus and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01107056A (en) * 1987-10-21 1989-04-24 Toshiba Corp Air conditioner
JP2003097847A (en) * 2001-09-21 2003-04-03 Mitsubishi Electric Corp Heat pump-type hot water supply device
JP2005147584A (en) * 2003-11-18 2005-06-09 Matsushita Electric Ind Co Ltd Start-up controller and start-up control method for heat pump hot water supply apparatus
JP2005188863A (en) * 2003-12-26 2005-07-14 Daikin Ind Ltd Heat pump type hot water supplier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01107056A (en) * 1987-10-21 1989-04-24 Toshiba Corp Air conditioner
JP2003097847A (en) * 2001-09-21 2003-04-03 Mitsubishi Electric Corp Heat pump-type hot water supply device
JP2005147584A (en) * 2003-11-18 2005-06-09 Matsushita Electric Ind Co Ltd Start-up controller and start-up control method for heat pump hot water supply apparatus
JP2005188863A (en) * 2003-12-26 2005-07-14 Daikin Ind Ltd Heat pump type hot water supplier

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025493A (en) * 2008-07-23 2010-02-04 Sanden Corp Heat pump type hot water supply device
JP2012007851A (en) * 2010-06-28 2012-01-12 Fujitsu General Ltd Heat pump cycle device
JP2016102604A (en) * 2014-11-27 2016-06-02 株式会社富士通ゼネラル Heat pump type heating and water heater
CN106766219A (en) * 2016-12-14 2017-05-31 珠海格力电器股份有限公司 Heat pump water dispenser antifreeze control method, apparatus and system
CN106766219B (en) * 2016-12-14 2019-09-20 珠海格力电器股份有限公司 Heat pump water dispenser antifreeze control method, apparatus and system

Similar Documents

Publication Publication Date Title
JP4059616B2 (en) Heat pump water heater
JP3783711B2 (en) Heat pump water heater
EP1650508A2 (en) Heat-pump type hot water supply system
WO2006006578A1 (en) Heat pump-type hot-water supply device
JP2006234375A (en) Heat pump type water heater
JP3915770B2 (en) Heat pump water heater
JP3894190B2 (en) Heat pump water heater
JP5034367B2 (en) Heat pump water heater
JP2008057910A (en) Heat pump hot water supply device
JP3901192B2 (en) Heat pump water heater
JP5003542B2 (en) Refrigeration cycle equipment
JP2007040555A (en) Heat pump type water heater
JP2009092258A (en) Refrigerating cycle device
JP2007139415A (en) Heat pump water heater
JP5115283B2 (en) Heat pump type water heater
JP2008275199A (en) Heat pump type water heater
JP4874138B2 (en) Heat pump type water heater
JP2008241176A (en) Refrigerating cycle device
JP2006317038A (en) Heat pump type water heater
JP2005188863A (en) Heat pump type hot water supplier
JP2011102678A (en) Heat pump device
JP2011052872A (en) Heat pump cycle device
JP5401913B2 (en) Heat pump water heater
JP2006132888A (en) Heat pump hot water supply apparatus
JP2005188923A (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080724

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208