JP3901192B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP3901192B2
JP3901192B2 JP2005034015A JP2005034015A JP3901192B2 JP 3901192 B2 JP3901192 B2 JP 3901192B2 JP 2005034015 A JP2005034015 A JP 2005034015A JP 2005034015 A JP2005034015 A JP 2005034015A JP 3901192 B2 JP3901192 B2 JP 3901192B2
Authority
JP
Japan
Prior art keywords
hot water
heat pump
defrosting
pump circuit
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005034015A
Other languages
Japanese (ja)
Other versions
JP2006220357A (en
Inventor
哲英 倉本
誠一 安木
竹司 渡辺
昌宏 尾浜
立群 毛
一彦 丸本
隆幸 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005034015A priority Critical patent/JP3901192B2/en
Publication of JP2006220357A publication Critical patent/JP2006220357A/en
Application granted granted Critical
Publication of JP3901192B2 publication Critical patent/JP3901192B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、給湯負荷に応じた加熱能力可変型であり、かつ高効率な除霜運転ができるヒートポンプ給湯機に関するものである。   The present invention relates to a heat pump water heater that is of a variable heating capacity according to a hot water supply load and that can perform a highly efficient defrosting operation.

従来、加熱能力可変型のヒートポンプ給湯機として図3に示すものがある(例えば、特許文献1参照)。図3に示すように、このヒートポンプ給湯機は、貯湯装置101とヒートポンプ装置102と暖房装置103と制御装置113とから構成されている。ヒートポンプ装置102は、能力可変型の圧縮機104、除霜時に冷媒流動方向を逆転させる四方弁105、凝縮器として機能し貯湯槽110内の水を加熱する冷媒対水熱交換器106、膨張弁107、蒸発器として機能し室外空気から冷媒に吸熱する冷媒対空気熱交換器108が順次接続され、冷媒対空気熱交換器108に室外空気を供給するファン109が備えられている。また、貯湯装置101は、貯湯槽110、貯湯槽110底部の水を冷媒対水熱交換器106に搬送する水循環ポンプ111、冷媒対水熱交換器106、切換弁112が順次接続されている。暖房装置103は貯湯槽110上部の湯を切換弁112を介して室内に搬送し、室内を暖房した後に貯湯槽110底部に戻す回路を形成している。この時、切換弁112は、貯湯装置101の貯湯単独運転時と、暖房装置103の暖房単独運転時と、貯湯装置101と暖房装置103との貯湯暖房同時運転時とに応じて水流路を切り換える機能を有する。制御装置113は、貯湯槽110の残湯量や室内暖房負荷や外気温度などに応じて、貯湯装置101の貯湯単独運転時または暖房装置103の暖房単独運転時の比較的負荷が小さい場合にはヒートポンプ装置102の能力を小さく、貯湯装置101と暖房装置103との貯湯暖房同時運転時のように負荷が大きい場合にはヒートポンプ装置102を最大能力で運転するように制御するものである。   Conventionally, there is a variable heat capacity type heat pump water heater as shown in FIG. 3 (see, for example, Patent Document 1). As shown in FIG. 3, the heat pump water heater includes a hot water storage device 101, a heat pump device 102, a heating device 103, and a control device 113. The heat pump device 102 includes a variable capacity compressor 104, a four-way valve 105 that reverses the refrigerant flow direction during defrosting, a refrigerant-to-water heat exchanger 106 that functions as a condenser and heats water in the hot water tank 110, an expansion valve 107, a refrigerant-to-air heat exchanger 108 that functions as an evaporator and absorbs heat from outdoor air to the refrigerant is sequentially connected, and a fan 109 that supplies outdoor air to the refrigerant-to-air heat exchanger 108 is provided. Further, the hot water storage device 101 is sequentially connected to a hot water storage tank 110, a water circulation pump 111 that conveys water at the bottom of the hot water storage tank 110 to the refrigerant-to-water heat exchanger 106, the refrigerant-to-water heat exchanger 106, and the switching valve 112. The heating device 103 forms a circuit that conveys hot water in the upper part of the hot water tank 110 into the room via the switching valve 112 and returns the hot water to the bottom of the hot water tank 110 after heating the room. At this time, the switching valve 112 switches the water flow path according to when the hot water storage device 101 is operating alone, when the heating device 103 is operating alone, or when the hot water storage device 101 and the heating device 103 are operating simultaneously. It has a function. The control device 113 is a heat pump when the hot load of the hot water storage device 101 or the heating device 103 is relatively low during the single heating operation of the hot water storage device 101 according to the amount of remaining hot water in the hot water tank 110, the indoor heating load or the outside air temperature. When the load of the apparatus 102 is small and the load is large as in the simultaneous hot water storage / heating operation of the hot water storage apparatus 101 and the heating apparatus 103, the heat pump apparatus 102 is controlled to operate at the maximum capacity.

このため、貯湯単独運転時や暖房単独運転時など比較的負荷が小さい場合にはヒートポンプ装置102の能力を小さくすることで騒音を低く抑えるとともに消費電力を低減でき、貯湯暖房同時運転時はヒートポンプ装置102を最大能力で運転することで貯湯槽110の湯切れや暖房装置103の能力不足を防止することができる。
特開2004−317093号公報
For this reason, when the load is relatively small, such as during hot water storage alone operation or during heating single operation, the capacity of the heat pump device 102 can be reduced to reduce noise and reduce power consumption. By operating 102 at the maximum capacity, it is possible to prevent the hot water tank 110 from running out of heat and the capacity of the heating device 103 to be insufficient.
JP 2004-317093 A

しかしながら、前記従来の構成では、冷媒対空気熱交換器108に着霜する外気温度条件において負荷が増大し、ヒートポンプ装置102の運転を小能力から最大能力に切換えた場合に除霜運転を開始してしまい、ヒートポンプ装置102の加熱運転ができなくなる恐れがあった。ヒートポンプ装置102の除霜運転の開始の判定方法としては、冷媒の蒸発温度(本従来例では冷媒対空気熱交換器108の出口温度)を用いるのが一般的である。即ち、沸上運転中に冷媒対空気熱交換器108の出口温度が除霜開始温度を下回った場合に除霜運転を開始するのである。ここで、その除霜開始温度はヒートポンプ装置102の能力に関係なく一意的に決められているため、小能力運転から最大能力運転への移行に
伴い、蒸発温度(冷媒対空気熱交換器108の出口温度)も除霜開始温度未満に低下して、沸上運転から除霜運転に移行するのである。
However, in the above-described conventional configuration, the defrosting operation is started when the load increases under the outside air temperature condition where the refrigerant-to-air heat exchanger 108 is frosted and the operation of the heat pump device 102 is switched from the small capacity to the maximum capacity. As a result, there is a fear that the heating operation of the heat pump device 102 cannot be performed. As a method for determining the start of the defrosting operation of the heat pump apparatus 102, it is common to use the evaporation temperature of the refrigerant (in this conventional example, the outlet temperature of the refrigerant-to-air heat exchanger 108). That is, the defrosting operation is started when the outlet temperature of the refrigerant-to-air heat exchanger 108 falls below the defrosting start temperature during the boiling operation. Here, since the defrosting start temperature is uniquely determined regardless of the capacity of the heat pump device 102, the evaporating temperature (of the refrigerant-to-air heat exchanger 108 is changed with the shift from the small capacity operation to the maximum capacity operation. The outlet temperature) also falls below the defrosting start temperature, and shifts from the boiling operation to the defrosting operation.

本発明は、前記従来の課題を解決するもので、ヒートポンプ装置の加熱能力が小能力から大能力に切り替わった際にも除霜運転に移行することなく沸上運転を継続することができるヒートポンプ給湯機を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and even when the heating capacity of the heat pump device is switched from a small capacity to a large capacity, the heat pump hot water supply capable of continuing the boiling operation without shifting to the defrosting operation. The purpose is to provide a machine.

前記従来の課題を解決するために、本発明のヒートポンプ給湯機は、圧縮機と給湯熱交換器の冷媒側配管と膨張弁と蒸発器とを環状に接続してこの順に冷媒が循環するヒートポンプ回路と、貯湯タンクと積層ポンプと給湯熱交換器の水側配管とを環状に接続して前記貯湯タンク下部の水を前記給湯熱交換器の水側配管内で加熱した後に前記貯湯タンク上部に戻す貯湯回路と、前記ヒートポンプ回路の加熱能力を設定する沸上モード判定手段と、前記沸上モード判定手段が設定した加熱能力に応じて前記ヒートポンプ回路と前記貯湯回路とを制御する沸上制御手段と、前記ヒートポンプ回路の除霜運転の開始と終了とを検知する除霜判定手段と、前記ヒートポンプ回路の除霜制御手段とを備え、前記除霜判定手段は、前記蒸発器の温度に基づいて除霜開始条件を決定し、前記加熱能力が大きいときには小さいときより、除霜を開始する前記蒸発器の温度を低く設定するものである。 In order to solve the above-mentioned conventional problems, the heat pump water heater of the present invention is a heat pump circuit in which the refrigerant is circulated in this order by connecting the compressor, the refrigerant side piping of the hot water supply heat exchanger, the expansion valve, and the evaporator in an annular shape. And a hot water storage tank, a stacking pump, and a water side pipe of the hot water heat exchanger are connected in an annular shape, and water in the lower part of the hot water storage tank is heated in the water side pipe of the hot water heat exchanger and then returned to the upper part of the hot water storage tank. A hot water storage circuit, a boiling mode determining means for setting the heating capacity of the heat pump circuit, and a boiling control means for controlling the heat pump circuit and the hot water storage circuit according to the heating capacity set by the boiling mode determining means; includes a defrosting determining means for detecting the start and end of the defrosting operation of the heat pump circuit, and a defrosting control unit of the heat pump circuit, the defrosting determination means based on the temperature of the evaporator It determines the defrosting start conditions, than when the small when heating capacity is large, is to set the temperature of the evaporator to initiate defrosting low.

これにより、ヒートポンプ回路の加熱能力が小能力から大能力に切り替わった際にも除霜運転に移行することなく沸上運転を継続することができる。   Thereby, even when the heating capacity of the heat pump circuit is switched from the small capacity to the large capacity, the boiling operation can be continued without shifting to the defrosting operation.

ヒートポンプ回路の加熱能力に応じて除霜開始条件を変化させたことにより、ヒートポンプの加熱能力が小能力から大能力に切り替わった際にも除霜運転に移行することなく沸上運転を継続することができ、ヒートポンプの能力不足や貯湯タンクの湯切れを防止することができる。さらに、ヒートポンプの能力に応じて適切なタイミングで除霜運転に移行することができるので、高効率な運転が可能となり、省エネを図ることができる。   By changing the defrosting start condition according to the heating capacity of the heat pump circuit, even when the heating capacity of the heat pump is switched from small capacity to large capacity, the boiling operation should be continued without shifting to the defrosting operation. It is possible to prevent shortage of heat pump capacity and running out of hot water storage tanks. Furthermore, since it is possible to shift to the defrosting operation at an appropriate timing according to the capacity of the heat pump, it is possible to perform a highly efficient operation and to save energy.

第1の発明は、圧縮機と給湯熱交換器の冷媒側配管と膨張弁と蒸発器とを有するヒートポンプ回路と、貯湯タンクと積層ポンプと給湯熱交換器の水側配管とを接続して前記貯湯タンク下部の水を前記給湯熱交換器の水側配管内で加熱した後に前記貯湯タンク上部に戻す貯湯回路と、前記ヒートポンプ回路の加熱能力を設定する沸上モード判定手段と、前記沸上モード判定手段が設定した加熱能力に応じて前記ヒートポンプ回路と前記貯湯回路とを制御する沸上制御手段と、前記ヒートポンプ回路の除霜運転の開始と終了とを検知する除霜判定手段と、前記ヒートポンプ回路の除霜制御手段とを備え、前記除霜判定手段は、前記蒸発器の温度に基づいて除霜開始条件を決定し、前記加熱能力が大きいときには小さいときより、除霜を開始する前記蒸発器の温度を低く設定することにより、ヒートポンプ回路の加熱能力が小能力から大能力に切り替わった際にも除霜運転に移行することなく沸上運転を継続することができ、ヒートポンプ回路の加熱能力不足や貯湯タンクの湯切れを防止することができる。 1st invention connects the heat pump circuit which has the refrigerant | coolant side piping of the compressor, the hot water supply heat exchanger, the expansion valve, and the evaporator, the hot water storage tank, the lamination pump, and the water side piping of the hot water supply heat exchanger. A hot water storage circuit for heating the water in the lower part of the hot water storage tank in the water-side piping of the hot water supply heat exchanger and then returning it to the upper part of the hot water storage tank; a boiling mode determination means for setting the heating capacity of the heat pump circuit; and the boiling mode Boiling control means for controlling the heat pump circuit and the hot water storage circuit according to the heating capacity set by the judging means, defrosting judging means for detecting the start and end of the defrosting operation of the heat pump circuit, and the heat pump and a defrosting control unit of circuit, the defrosting determining means, on the basis of the evaporator temperature to determine the defrosting start conditions, than when the small when heating capacity is large, before starting the defrosting By setting a low temperature of the evaporator, even when the heating capacity of the heat pump circuit is switched to the large capacity of the small capacity can continue to boiling over operation without shifting to the defrosting operation, the heating of the heat pump circuit Insufficient capacity and running out of hot water storage tank can be prevented.

第2の発明は、特に、第1の発明のヒートポンプ給湯機の除霜判定手段を、ヒートポンプ回路の沸上運転時間が所定時間以上でありかつ蒸発器出口温度センサーで検出した蒸発器出口温度が除霜開始温度以下の場合に除霜運転の開始を検知し、沸上モード判定手段が設定した加熱能力が小さい場合は前記除霜開始温度を高く、前記沸上モード判定手段が設定した加熱能力が大きい場合は前記除霜開始温度を低く設定するようにしたものであり、ヒートポンプ回路の加熱能力に応じて適切なタイミングで除霜運転に移行することができるので、高効率な運転が可能となり、省エネを図ることができる。   In the second invention, in particular, the defrosting determination means of the heat pump water heater according to the first invention has an evaporator outlet temperature detected by the evaporator outlet temperature sensor when the heating operation time of the heat pump circuit is longer than a predetermined time. The defrosting start temperature is detected when the temperature is equal to or lower than the defrosting start temperature, and when the heating capacity set by the boiling mode determination means is small, the defrosting start temperature is increased and the heating capacity set by the boiling mode determination means Is large, the defrosting start temperature is set low, and it is possible to shift to the defrosting operation at an appropriate timing according to the heating capacity of the heat pump circuit. , Can save energy.

第3の発明は、特に、第1または第2のいずれかの発明のヒートポンプ給湯機の沸上モード判定手段を、残湯量センサーで検出した貯湯タンク内の残湯量が所定量以上の場合はヒートポンプ回路の加熱能力を小さく、前記残湯量センサーで検出した貯湯タンク内の残湯量が所定量未満の場合は前記ヒートポンプ回路の加熱能力を大きく設定するようにしたものであり、簡易な構成でヒートポンプ回路の加熱能力制御を精度良く行え、貯湯タンクの湯切れを防止することができる。   The third aspect of the invention relates to the heat pump particularly when the amount of remaining hot water in the hot water storage tank detected by the remaining hot water amount sensor detected by the boiling mode determination means of the heat pump water heater of the first or second aspect of the invention is greater than or equal to a predetermined amount. When the amount of remaining hot water in the hot water storage tank detected by the remaining hot water amount sensor is less than a predetermined amount, the heating capacity of the heat pump circuit is set large, and the heat pump circuit has a simple configuration. It is possible to accurately control the heating capacity of the hot water storage tank and prevent the hot water storage tank from running out.

第4の発明は、特に、第1〜第3のいずれかの発明のヒートポンプ給湯機の除霜制御手段を、除霜弁の一端を圧縮機の吐出配管に、他端を膨張弁の上流または下流側に接続し、前記圧縮機から吐出されるホットガスを前記除霜弁を介して蒸発器にバイパスさせたものであり、除霜運転を速やかに終了して沸上運転に移行することで、ヒートポンプの高効率な運転が可能となる。   In particular, the fourth aspect of the invention relates to the defrosting control means of the heat pump water heater of any one of the first to third aspects of the invention, wherein one end of the defrosting valve is connected to the discharge pipe of the compressor and the other end is upstream of the expansion valve. It is connected to the downstream side, and hot gas discharged from the compressor is bypassed to the evaporator through the defrost valve, and the defrosting operation is promptly terminated to shift to the boiling operation. The heat pump can be operated with high efficiency.

第5の発明は、特に、第1〜4のいずれか1つの発明のヒートポンプ給湯機のヒートポンプ回路を、冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルとし、前記臨界圧力以上に昇圧された冷媒により給湯熱交換器の水側配管内の水を加熱することにより、前記給湯熱交換器の冷媒側配管内の冷媒は臨界圧力以上に加圧されているので、前記給湯熱交換器の水側配管内の水により熱を奪われて温度低下しても凝縮することがない。従って、前記給湯熱交換器の全域で冷媒と水との間の温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高くできる。   In the fifth aspect of the invention, in particular, the heat pump circuit of the heat pump water heater of any one of the first to fourth aspects of the invention is a supercritical heat pump cycle in which the pressure of the refrigerant is equal to or higher than the critical pressure, and the pressure is increased to the critical pressure or higher. By heating the water in the water-side pipe of the hot water supply heat exchanger with the refrigerant, the refrigerant in the refrigerant-side pipe of the hot water supply heat exchanger is pressurized to a critical pressure or higher, so the water in the hot water supply heat exchanger Condensation does not occur even if the temperature is lowered due to the water in the side pipe. Therefore, it becomes easy to form a temperature difference between the refrigerant and the water in the entire area of the hot water heat exchanger, so that hot water can be obtained and the heat exchange efficiency can be increased.

第6の発明は、特に、第5の発明のヒートポンプ給湯機において、使用する冷媒を二酸化炭素としたものであり、比較的安価でかつ安定な二酸化炭素を冷媒に使用することにより、製品コストを抑えるとともに、信頼性を向上させることができる。また、二酸化炭素はオゾン破壊係数がゼロであり、地球温暖化係数も代替冷媒HFC−407Cの約1700分の1と非常に小さいため、地球環境に優しい製品を提供できる。   The sixth invention is the heat pump water heater of the fifth invention, in which the refrigerant to be used is carbon dioxide, and the product cost is reduced by using relatively inexpensive and stable carbon dioxide for the refrigerant. It is possible to reduce the reliability and improve the reliability. In addition, carbon dioxide has an ozone depletion coefficient of zero and a global warming coefficient of about 1/700 of the alternative refrigerant HFC-407C, which is very small.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態のヒートポンプ給湯機の構成図である。
(Embodiment 1)
FIG. 1 is a configuration diagram of a heat pump water heater according to a first embodiment of the present invention.

図1において、圧縮機11と給湯熱交換器の冷媒側配管12aと膨張弁13と蒸発器14とを環状に接続してヒートポンプ回路を形成しており、圧縮機11の吐出冷媒温度を検出する吐出温度センサー17、蒸発器14の出口冷媒温度を検出する蒸発器出口温度センサー18が設置されている。また、ヒートポンプ回路は、除霜弁16の一端を圧縮機11の吐出配管に、他端を給湯熱交換器の冷媒側配管12aと膨張弁13との間に接続し、圧縮機11から吐出されるホットガスを除霜弁16を介して蒸発器14にバイパスさせる除霜回路を備えている。蒸発器14はファン15を有しており、ファン15により蒸発器14に供給された空気と蒸発器14内の冷媒との間で熱交換が行われる。一方、貯湯タンク19と積層ポンプ20と給湯熱交換器の水側配管12bとを環状に接続して、貯湯タンク19下部の水を給湯熱交換器の水側配管12b内で加熱した後に貯湯タンク19上部に戻す貯湯回路を形成しており、給湯熱交換器の水側配管12bの入口水温を検出する入水温度センサー21、給湯熱交換器の水側配管12bの出口水温を検出する出湯温度センサー22、貯湯タンク19の残湯量を検出する残湯量センサー23が設置されている。また、貯湯タンク19には、貯湯タンク19に水を供給する給水配管24と貯湯タンク19内の湯を外部に供給する給湯配管25とが接続されている。   In FIG. 1, a compressor 11, a refrigerant side pipe 12 a of a hot water supply heat exchanger, an expansion valve 13, and an evaporator 14 are annularly connected to form a heat pump circuit, and a discharge refrigerant temperature of the compressor 11 is detected. A discharge temperature sensor 17 and an evaporator outlet temperature sensor 18 for detecting the outlet refrigerant temperature of the evaporator 14 are installed. The heat pump circuit connects one end of the defrost valve 16 to the discharge pipe of the compressor 11 and the other end between the refrigerant side pipe 12a of the hot water supply heat exchanger and the expansion valve 13, and is discharged from the compressor 11. A defrosting circuit for bypassing the hot gas to the evaporator 14 via the defrosting valve 16 is provided. The evaporator 14 has a fan 15, and heat exchange is performed between the air supplied to the evaporator 14 by the fan 15 and the refrigerant in the evaporator 14. On the other hand, the hot water storage tank 19, the laminated pump 20, and the water side pipe 12b of the hot water heat exchanger are connected in an annular shape, and the water in the lower part of the hot water tank 19 is heated in the water side pipe 12b of the hot water heat exchanger and then the hot water storage tank. 19, a hot water storage circuit returning to the upper part is formed, and an incoming water temperature sensor 21 for detecting the inlet water temperature of the water side pipe 12b of the hot water heat exchanger, and a hot water temperature sensor for detecting the outlet water temperature of the water side pipe 12b of the hot water heat exchanger. 22. A remaining hot water amount sensor 23 for detecting the remaining hot water amount in the hot water storage tank 19 is installed. The hot water storage tank 19 is connected to a hot water supply pipe 24 for supplying water to the hot water storage tank 19 and a hot water supply pipe 25 for supplying hot water in the hot water storage tank 19 to the outside.

また、本発明のヒートポンプ給湯機は、沸上運転時のヒートポンプ回路の加熱能力を設定する沸上モード判定手段26と、沸上モード判定手段26が設定した加熱能力に応じてヒートポンプ回路と貯湯回路とを制御する沸上制御手段27と、ヒートポンプ回路の除霜運転の開始と終了とを検知する除霜判定手段28と、ヒートポンプ回路の除霜制御手段29とを備えている。   Further, the heat pump water heater of the present invention includes a boiling mode determination means 26 for setting the heating capacity of the heat pump circuit during the boiling operation, and a heat pump circuit and a hot water storage circuit according to the heating capacity set by the boiling mode determination means 26. And a defrosting determining means 28 for detecting the start and end of the defrosting operation of the heat pump circuit, and a defrosting control means 29 for the heat pump circuit.

沸上モード判定手段26は、残湯量センサー23で検出した貯湯タンク19内の残湯量が所定量以上の場合はヒートポンプ回路の加熱能力を小さく、残湯量センサー23で検出した貯湯タンク19内の残湯量が所定量未満の場合はヒートポンプ回路の加熱能力を大きく設定する。   The boiling mode determination means 26 reduces the heating capacity of the heat pump circuit when the amount of remaining hot water in the hot water storage tank 19 detected by the remaining hot water amount sensor 23 is equal to or greater than a predetermined amount, and the remaining amount in the hot water storage tank 19 detected by the remaining hot water amount sensor 23. When the amount of hot water is less than a predetermined amount, the heating capacity of the heat pump circuit is set large.

除霜判定手段28は、ヒートポンプ回路の沸上運転時間が所定時間以上でありかつ蒸発器出口温度センサー18で検出した蒸発器出口温度が除霜開始温度以下の場合に除霜運転の開始を検知し、沸上モード判定手段26が設定した加熱能力が小さい場合は除霜開始温度を高く、沸上モード判定手段26が設定した加熱能力が大きい場合は除霜開始温度を低く設定する。   The defrost determination means 28 detects the start of the defrost operation when the boiling operation time of the heat pump circuit is equal to or longer than a predetermined time and the evaporator outlet temperature detected by the evaporator outlet temperature sensor 18 is equal to or lower than the defrost start temperature. When the heating capacity set by the boiling mode determination unit 26 is small, the defrosting start temperature is set high. When the heating capacity set by the boiling mode determination unit 26 is large, the defrosting start temperature is set low.

以上のように構成されたヒートポンプ給湯機について、以下その動作、作用を説明する。   About the heat pump water heater comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、貯湯タンク19内の残湯量が所定量以上(例えば、貯湯タンク19中央部の残湯量センサー23の検出温度が45℃以上)の場合には、沸上モード判定手段26によりヒートポンプ回路の加熱能力が定格能力(例えば6kW)に設定される。そしてヒートポンプ回路の加熱能力が定格能力となるように、沸上制御手段27は、圧縮機11の運転周波数,ファン15の回転数を所定の目標値に制御すると共に、吐出温度センサー17で検出した吐出温度が目標吐出温度となるように膨張弁13の開度を制御し、出湯温度センサー22で検出した出湯温度が目標出湯温度となるように積層ポンプ20の流量を制御する。ヒートポンプ回路の加熱能力が定格能力に設定されている場合、ヒートポンプ回路の沸上運転時間が所定時間以上でありかつ蒸発器出口温度センサー18で検出した蒸発器出口温度が第1除霜開始温度(例えば−7℃)以下の場合に除霜運転の開始を検知し、除霜制御手段29により除霜運転を行う。除霜運転時は、ファン15が停止して除霜弁16が開くと共に膨張弁13の開度が全開となり、冷媒は図1中の破線矢印に沿って圧縮機11,除霜弁16,膨張弁13,蒸発器14の順に流れて圧縮機11に戻る。圧縮機11の吐出冷媒(ホットガス)は給湯熱交換器の冷媒側配管12aをバイパスして蒸発器14に流入し、蒸発器14の表面に付着した霜を融解する。   First, when the amount of remaining hot water in the hot water storage tank 19 is equal to or greater than a predetermined amount (for example, the detected temperature of the remaining hot water amount sensor 23 at the center of the hot water storage tank 19 is 45 ° C. or higher), the heating mode determination means 26 heats the heat pump circuit. The capacity is set to the rated capacity (for example, 6 kW). The boiling control means 27 controls the operating frequency of the compressor 11 and the rotation speed of the fan 15 to predetermined target values and detects them by the discharge temperature sensor 17 so that the heating capacity of the heat pump circuit becomes the rated capacity. The opening degree of the expansion valve 13 is controlled so that the discharge temperature becomes the target discharge temperature, and the flow rate of the laminated pump 20 is controlled so that the hot water temperature detected by the hot water temperature sensor 22 becomes the target hot water temperature. When the heating capacity of the heat pump circuit is set to the rated capacity, the boiling operation time of the heat pump circuit is a predetermined time or more and the evaporator outlet temperature detected by the evaporator outlet temperature sensor 18 is the first defrost start temperature ( For example, the start of the defrosting operation is detected in the case of −7 ° C. or lower, and the defrosting control unit 29 performs the defrosting operation. During the defrosting operation, the fan 15 is stopped and the defrosting valve 16 is opened, and the opening degree of the expansion valve 13 is fully opened, and the refrigerant is expanded along the broken line arrow in FIG. The valve 13 and the evaporator 14 flow in this order and return to the compressor 11. The refrigerant (hot gas) discharged from the compressor 11 bypasses the refrigerant-side pipe 12a of the hot water supply heat exchanger and flows into the evaporator 14, and melts frost adhering to the surface of the evaporator 14.

次に、貯湯タンク19内の残湯量が所定量未満(例えば、貯湯タンク19中央部の残湯量センサー23の検出温度が45℃未満)の場合には、沸上モード判定手段26によりヒートポンプ回路の加熱能力が最大能力(例えば10kW)に設定される。そしてヒートポンプ回路の加熱能力が最大能力となるように、沸上制御手段27は、圧縮機11の運転周波数,ファン15の回転数を所定の目標値に制御すると共に、吐出温度センサー17で検出した吐出温度が目標吐出温度となるように膨張弁13の開度を制御し、出湯温度センサー22で検出した出湯温度が目標出湯温度となるように積層ポンプ20の流量を制御して、速やかに貯湯タンク19内に湯を補充する。ヒートポンプ回路の加熱能力が最大能力に設定されている場合、ヒートポンプ回路の沸上運転時間が所定時間以上でありかつ蒸発器出口温度センサー18で検出した蒸発器出口温度が第2除霜開始温度(例えば−10℃)以下の場合に除霜運転の開始を検知し、除霜制御手段29により除霜運転を行う。   Next, when the amount of remaining hot water in the hot water storage tank 19 is less than a predetermined amount (for example, the temperature detected by the remaining hot water amount sensor 23 in the central portion of the hot water storage tank 19 is lower than 45 ° C.), the boiling mode determination means 26 uses the heat pump circuit. The heating capacity is set to the maximum capacity (for example, 10 kW). The elevating control means 27 controls the operating frequency of the compressor 11 and the rotational speed of the fan 15 to predetermined target values and detects them by the discharge temperature sensor 17 so that the heating capacity of the heat pump circuit becomes the maximum capacity. The opening degree of the expansion valve 13 is controlled so that the discharge temperature becomes the target discharge temperature, and the flow rate of the stacking pump 20 is controlled so that the hot water temperature detected by the hot water temperature sensor 22 becomes the target hot water temperature, thereby quickly storing hot water. Refill the tank 19 with hot water. When the heating capacity of the heat pump circuit is set to the maximum capacity, the boiling operation time of the heat pump circuit is a predetermined time or more and the evaporator outlet temperature detected by the evaporator outlet temperature sensor 18 is the second defrost start temperature ( For example, in the case of −10 ° C. or less, the start of the defrosting operation is detected, and the defrosting control unit 29 performs the defrosting operation.

以上のような動作をするヒートポンプ給湯機において、ヒートポンプ回路が定格能力(6kW)で運転している時に、貯湯タンク19内の湯が多量に使用された場合を考えてみ
る。多量の湯が使用されると、やがて残湯量センサー23の検出温度は45℃未満となり、貯湯タンク19内の残湯量が所定量未満であることを検知する。この時、沸上モード判定手段26がヒートポンプ回路の加熱能力を最大能力(10kW)に設定して貯湯タンク19内に速やかに湯を補充するという動作を行う。この時、圧縮機11の周波数が増大するために、蒸発温度(蒸発器出口温度)は低下する。従って、除霜開始温度をヒートポンプ回路の定格能力基準で設定していると、蒸発器出口温度が除霜開始温度以下となって除霜運転の開始を検知する。即ち、貯湯タンク19内に速やかに湯を補充するためにヒートポンプ回路の加熱能力を増大させたことによって逆に除霜運転を開始することになり、貯湯タンク19の湯切れを発生し易くするのである。一方、除霜開始温度をヒートポンプ回路の最大基準で設定していると、ヒートポンプ回路を定格能力で運転している場合の除霜開始タイミングが遅れることとなり、沸上運転及び除霜運転の効率低下を招く。
Consider a case where a large amount of hot water in the hot water storage tank 19 is used when the heat pump circuit is operating at the rated capacity (6 kW) in the heat pump water heater that operates as described above. When a large amount of hot water is used, the detected temperature of the remaining hot water sensor 23 eventually becomes less than 45 ° C., and it is detected that the remaining hot water amount in the hot water storage tank 19 is less than a predetermined amount. At this time, the boiling mode determination means 26 performs the operation of setting the heating capacity of the heat pump circuit to the maximum capacity (10 kW) and quickly refilling the hot water storage tank 19 with hot water. At this time, since the frequency of the compressor 11 increases, the evaporation temperature (evaporator outlet temperature) decreases. Therefore, when the defrosting start temperature is set based on the rated capacity standard of the heat pump circuit, the evaporator outlet temperature becomes equal to or lower than the defrosting start temperature, and the start of the defrosting operation is detected. That is, the defrosting operation is started by increasing the heating capacity of the heat pump circuit in order to quickly replenish hot water into the hot water storage tank 19, and it is easy for the hot water storage tank 19 to run out of hot water. is there. On the other hand, if the defrosting start temperature is set with the maximum standard of the heat pump circuit, the defrosting start timing is delayed when the heat pump circuit is operated at the rated capacity, and the efficiency of the boiling operation and the defrosting operation is reduced. Invite.

従って、ヒートポンプ回路の加熱能力が大きい(最大能力)場合の除霜開始温度(第2除霜開始温度)を、ヒートポンプ回路の加熱能力が小さい(定格能力)場合の除霜開始温度(第1除霜開始温度)よりも低く設定することにより、ヒートポンプ回路の加熱能力が定格能力から最大能力に切り替わった時にも除霜開始を検知することなく沸上運転を継続することができる。さらに、ヒートポンプ回路の加熱能力に応じた適切な除霜開始温度を設定することにより、沸上運転及び除霜運転を効率的に行うことができる。   Therefore, the defrosting start temperature (second defrosting start temperature) when the heating capacity of the heat pump circuit is large (maximum capacity) is the defrosting starting temperature (first removal) when the heating capacity of the heat pump circuit is small (rated capacity). By setting the temperature lower than the frost start temperature), the boiling operation can be continued without detecting the start of the defrost even when the heating capacity of the heat pump circuit is switched from the rated capacity to the maximum capacity. Furthermore, the boiling operation and the defrosting operation can be efficiently performed by setting an appropriate defrosting start temperature corresponding to the heating capacity of the heat pump circuit.

以上のように、本実施の形態1においては、ヒートポンプ回路の加熱能力が定格能力から最大能力に切り替わった時にも除霜運転に入ることなく沸上運転を継続でき、貯湯タンク19の湯切れを防止できるだけでなく、ヒートポンプ回路による高効率な沸上運転及び除霜運転ができ、機器の省エネを図ることができる。   As described above, in the first embodiment, even when the heating capacity of the heat pump circuit is switched from the rated capacity to the maximum capacity, the boiling operation can be continued without entering the defrosting operation, and the hot water tank 19 runs out of water. Not only can it be prevented, but also high-efficiency boiling operation and defrosting operation can be performed by a heat pump circuit, and energy saving of equipment can be achieved.

尚、上記では、ヒートポンプ回路が最大能力で運転している場合を加熱能力が大きいと表現し、ヒートポンプ回路が定格能力で運転している場合を加熱能力が小さいと表現してヒートポンプ装置の動作を説明したが、これはあくまで一例であって、本発明を限定するものではない。要は、ヒートポンプ回路の加熱能力が相対的に増大した場合には除霜開始温度を低く設定し、逆にヒートポンプ回路の加熱能力が相対的に減少した場合には除霜開始温度を高く設定するところにある。   In the above, when the heat pump circuit is operated at the maximum capacity, the heat capacity is expressed as large, and when the heat pump circuit is operated at the rated capacity, the heat capacity is expressed as small. Although described, this is only an example and does not limit the present invention. In short, when the heating capacity of the heat pump circuit is relatively increased, the defrosting start temperature is set low. Conversely, when the heating capacity of the heat pump circuit is relatively decreased, the defrosting start temperature is set high. By the way.

また、図1には示していないが、ヒートポンプ回路で加熱した湯を貯湯タンク19に戻さずに直接カラン(蛇口)やシャワーから給湯する場合においても、本発明は有効である。   Although not shown in FIG. 1, the present invention is also effective when hot water heated by a heat pump circuit is supplied directly from a currant (faucet) or a shower without returning to the hot water storage tank 19.

(実施の形態2)
図2は、本発明の第2の実施の形態のヒートポンプ給湯機の構成図である。図2において、本発明の第1の実施の形態のヒートポンプ給湯機と同様の構成部分については共通の符号を用い、詳細な説明を省略する。
(Embodiment 2)
FIG. 2 is a configuration diagram of a heat pump water heater according to the second embodiment of the present invention. In FIG. 2, the same components as those of the heat pump water heater of the first embodiment of the present invention are denoted by common reference numerals, and detailed description thereof is omitted.

実施の形態1と異なるのはヒートポンプ回路の除霜回路の構成である。図2において除霜運転時は、ファン15が停止して膨張弁13の開度が全開となり、冷媒は図2中の破線矢印に沿って圧縮機11,給湯熱交換器の冷媒側配管12a,膨張弁13,蒸発器14の順に流れて圧縮機11に戻る。圧縮機11の吐出冷媒(ホットガス)は給湯熱交換器の冷媒側配管12aをバイパスせずに蒸発器14に流入し、蒸発器14の表面に付着した霜を融解する。このように、ヒートポンプの除霜回路が異なっていても、除霜判定手段28による除霜開始の判定は、本発明の第1の実施の形態のヒートポンプ給湯機と同様に行うことができる。例えば、本発明の第2の実施例の他の除霜回路構成として、ヒートポンプ回路に冷媒の流動方向を逆転させる四方弁(図示していない)を設けて行う逆サイクル除霜が知られているが、この逆サイクル除霜方式を用いるヒートポンプ給湯機においても本発
明は、本発明の第1または第2の発明と同様の効果を得ることができる。
What is different from the first embodiment is the configuration of the defrosting circuit of the heat pump circuit. In FIG. 2, during the defrosting operation, the fan 15 is stopped and the opening of the expansion valve 13 is fully opened, and the refrigerant is along the broken line arrow in FIG. 2, the compressor 11, the refrigerant side pipe 12 a of the hot water supply heat exchanger, It flows in the order of the expansion valve 13 and the evaporator 14 and returns to the compressor 11. The refrigerant discharged from the compressor 11 (hot gas) flows into the evaporator 14 without bypassing the refrigerant side pipe 12a of the hot water supply heat exchanger, and melts frost adhering to the surface of the evaporator 14. Thus, even if the defrosting circuit of the heat pump is different, the determination of the defrosting start by the defrosting determination means 28 can be performed similarly to the heat pump water heater of the first embodiment of the present invention. For example, as another defrosting circuit configuration of the second embodiment of the present invention, reverse cycle defrosting is performed by providing a heat pump circuit with a four-way valve (not shown) that reverses the flow direction of the refrigerant. However, also in a heat pump water heater using this reverse cycle defrosting method, the present invention can obtain the same effects as the first or second invention of the present invention.

なお、実施の形態1および実施の形態2では、ヒートポンプ回路のサイクルを、冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルとしたが、もちろん一般の臨界圧力以下のヒートポンプサイクルでもよい。またこの場合、冷媒としてはフロンガス、アンモニアなどを用いても良い。   In the first embodiment and the second embodiment, the cycle of the heat pump circuit is a supercritical heat pump cycle in which the pressure of the refrigerant is equal to or higher than the critical pressure. In this case, chlorofluorocarbon, ammonia, or the like may be used as the refrigerant.

以上のように、本発明にかかるヒートポンプ給湯機は、特に能力可変型ヒートポンプサイクルの除霜を効率的に行うのに有効である。   As described above, the heat pump water heater according to the present invention is particularly effective for efficiently performing defrosting in a variable capacity heat pump cycle.

本発明の実施の形態1におけるヒートポンプ給湯機の構成図Configuration diagram of heat pump water heater in Embodiment 1 of the present invention 本発明の実施の形態2におけるヒートポンプ給湯機の構成図The block diagram of the heat pump water heater in Embodiment 2 of this invention 従来のヒートポンプ給湯機の構成図Configuration diagram of conventional heat pump water heater

符号の説明Explanation of symbols

11 圧縮機
12 給湯熱交換器
12a 給湯熱交換器の冷媒側配管
12b 給湯熱交換器の水側配管
13 膨張弁
14 蒸発器
15 ファン
16 除霜弁
17 吐出温度センサー
18 蒸発器出口温度センサー
19 貯湯タンク
20 積層ポンプ
21 入水温度センサー
22 出湯温度センサー
23 残湯量センサー
24 給水配管
25 給湯配管
26 沸上モード判定手段
27 沸上制御手段
28 除霜判定手段
29 除霜制御手段
DESCRIPTION OF SYMBOLS 11 Compressor 12 Hot-water supply heat exchanger 12a Refrigerant-side piping of hot-water supply heat exchanger 12b Water-side piping of hot-water supply heat exchanger 13 Expansion valve 14 Evaporator 15 Fan 16 Defrost valve 17 Discharge temperature sensor 18 Evaporator outlet temperature sensor 19 Hot water storage Tank 20 Laminated pump 21 Incoming water temperature sensor 22 Hot water temperature sensor 23 Remaining hot water amount sensor 24 Water supply pipe 25 Hot water supply pipe 26 Boiling mode determination means 27 Boiling control means 28 Defrosting determination means 29 Defrost control means 29

Claims (6)

圧縮機と給湯熱交換器の冷媒側配管と膨張弁と蒸発器とを有するヒートポンプ回路と、貯湯タンクと積層ポンプと給湯熱交換器の水側配管とを接続して前記貯湯タンク下部の水を前記給湯熱交換器の水側配管内で加熱した後に前記貯湯タンク上部に戻す貯湯回路と、前記ヒートポンプ回路の加熱能力を設定する沸上モード判定手段と、前記沸上モード判定手段が設定した加熱能力に応じて前記ヒートポンプ回路と前記貯湯回路とを制御する沸上制御手段と、前記ヒートポンプ回路の除霜運転の開始と終了とを検知する除霜判定手段と、前記ヒートポンプ回路の除霜制御手段とを備え、前記除霜判定手段は、前記蒸発器の温度に基づいて除霜開始条件を決定し、前記加熱能力が大きいときには小さいときより、除霜を開始する前記蒸発器の温度を低く設定することを特徴とするヒートポンプ給湯機。 A heat pump circuit having a refrigerant side piping, an expansion valve and an evaporator of a compressor, a hot water supply heat exchanger, a hot water storage tank, a stacking pump, and a water side piping of a hot water supply heat exchanger are connected to supply water below the hot water storage tank. A hot water storage circuit that is heated in the water side pipe of the hot water heat exchanger and then returned to the upper part of the hot water storage tank, a boiling mode determination unit that sets a heating capacity of the heat pump circuit, and a heating set by the boiling mode determination unit Boiling control means for controlling the heat pump circuit and the hot water storage circuit according to capacity, defrost determination means for detecting the start and end of the defrosting operation of the heat pump circuit, and defrost control means for the heat pump circuit with the door, the defrosting determining means, the defrosting start condition determined based on the evaporator temperature, than when the small when heating capacity is large, the temperature of the evaporator to start defrosting The heat pump water heater, characterized in that the set lower. 除霜判定手段は、ヒートポンプ回路の沸上運転時間が所定時間以上でありかつ蒸発器出口温度センサーで検出した蒸発器出口温度が除霜開始温度以下の場合に除霜運転の開始を検知し、沸上モード判定手段が設定した加熱能力が小さい場合は前記除霜開始温度を高く、前記沸上モード判定手段が設定した加熱能力が大きい場合は前記除霜開始温度を低く設定することを特徴とする請求項1に記載のヒートポンプ給湯機。 The defrosting determination means detects the start of the defrosting operation when the boiling operation time of the heat pump circuit is a predetermined time or more and the evaporator outlet temperature detected by the evaporator outlet temperature sensor is equal to or lower than the defrosting start temperature, When the heating capacity set by the boiling mode determination means is small, the defrosting start temperature is set high, and when the heating capacity set by the boiling mode determination means is large, the defrosting start temperature is set low. The heat pump water heater according to claim 1. 沸上モード判定手段は、残湯量センサーで検出した貯湯タンク内の残湯量が所定量以上の場合はヒートポンプ回路の加熱能力を小さく、前記残湯量センサーで検出した貯湯タンク内の残湯量が所定量未満の場合は前記ヒートポンプ回路の加熱能力を大きく設定することを特徴とする請求項1または2に記載のヒートポンプ給湯機。 The boiling mode determination means reduces the heating capacity of the heat pump circuit when the amount of remaining hot water in the hot water tank detected by the remaining hot water sensor is greater than or equal to a predetermined amount, and the amount of hot water in the hot water tank detected by the remaining hot water sensor is a predetermined amount. The heat pump water heater according to claim 1 or 2, wherein if it is less than 1, the heating capacity of the heat pump circuit is set large. 除霜制御手段は、除霜弁の一端を圧縮機の吐出配管に、他端を膨張弁の上流または下流側に接続し、前記圧縮機から吐出されるホットガスを前記除霜弁を介して蒸発器にバイパスさせる請求項1〜3のいずれか1項に記載のヒートポンプ給湯機。 The defrosting control means connects one end of the defrosting valve to the discharge pipe of the compressor, the other end to the upstream or downstream side of the expansion valve, and sends hot gas discharged from the compressor via the defrosting valve. The heat pump water heater according to any one of claims 1 to 3, wherein the evaporator is bypassed. ヒートポンプ回路は、高圧側の冷媒圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであり、前記臨界圧力以上に昇圧された冷媒により給湯熱交換器の水側配管内の水を加熱する請求項1〜4のいずれか1項に記載のヒートポンプ給湯機。 The heat pump circuit is a supercritical heat pump cycle in which the refrigerant pressure on the high-pressure side becomes equal to or higher than the critical pressure, and heats water in the water-side piping of the hot water supply heat exchanger with the refrigerant whose pressure is increased to the critical pressure or higher. The heat pump water heater according to any one of 4. 使用する冷媒が二酸化炭素であることを特徴とする請求項5に記載のヒートポンプ給湯機。 The heat pump water heater according to claim 5, wherein the refrigerant to be used is carbon dioxide.
JP2005034015A 2005-02-10 2005-02-10 Heat pump water heater Expired - Fee Related JP3901192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005034015A JP3901192B2 (en) 2005-02-10 2005-02-10 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005034015A JP3901192B2 (en) 2005-02-10 2005-02-10 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2006220357A JP2006220357A (en) 2006-08-24
JP3901192B2 true JP3901192B2 (en) 2007-04-04

Family

ID=36982803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005034015A Expired - Fee Related JP3901192B2 (en) 2005-02-10 2005-02-10 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP3901192B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5353328B2 (en) * 2009-03-12 2013-11-27 ダイキン工業株式会社 Heat pump water heater
JP5577288B2 (en) * 2011-03-30 2014-08-20 リンナイ株式会社 Water heater
JP2014194304A (en) * 2013-03-29 2014-10-09 Hitachi Appliances Inc Refrigerator-freezer unit
CN103344040B (en) * 2013-06-25 2016-03-30 广东美的暖通设备有限公司 Teat pump boiler and defrosting control method thereof
JP6440006B2 (en) * 2014-01-28 2018-12-19 株式会社ノーリツ Heat pump heat source machine
JP6852984B2 (en) * 2016-04-28 2021-03-31 ダイキン工業株式会社 Heat pump system and power limiting system equipped with it
JP7319890B2 (en) * 2019-10-31 2023-08-02 株式会社コロナ Heat pump hot water heating system
CN115773586B (en) * 2022-12-12 2023-07-18 青岛理工大学 Multi-point source heat recovery defrosting system and defrosting method of cascade air source heat pump

Also Published As

Publication number Publication date
JP2006220357A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
JP3901192B2 (en) Heat pump water heater
JP4059616B2 (en) Heat pump water heater
JP2009243793A (en) Heat pump type hot water supply outdoor unit
JP3783711B2 (en) Heat pump water heater
JP2003139392A (en) Water heater
JP2010243111A (en) Heat pump type water heater
JP3659197B2 (en) Heat pump water heater
JP3894190B2 (en) Heat pump water heater
JP4231863B2 (en) Heat pump water heater bathroom heating dryer
JP4726573B2 (en) Heat pump hot water floor heater
JP3737357B2 (en) Water heater
EP3757477B1 (en) Hot water supply device
JP2006097930A (en) Heat pump type heating device
JP3800497B2 (en) Water heater
JP2007113897A (en) Heat pump type water heater
JP3900186B2 (en) Heat pump water heater
JP4021374B2 (en) Heat pump water heater
JP3703995B2 (en) Heat pump water heater
JP2009264716A (en) Heat pump hot water system
JP2007040555A (en) Heat pump type water heater
JP2007113896A (en) Heat pump type water heater
JP4449779B2 (en) Heat pump water heater
JP2013032903A (en) Heat pump water heater
JP2009085476A (en) Heat pump water heater
JP2010054145A (en) Heat pump water heater

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees