JP2013032903A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2013032903A
JP2013032903A JP2012133181A JP2012133181A JP2013032903A JP 2013032903 A JP2013032903 A JP 2013032903A JP 2012133181 A JP2012133181 A JP 2012133181A JP 2012133181 A JP2012133181 A JP 2012133181A JP 2013032903 A JP2013032903 A JP 2013032903A
Authority
JP
Japan
Prior art keywords
hot water
water storage
reheating
temperature
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012133181A
Other languages
Japanese (ja)
Other versions
JP5527360B2 (en
Inventor
Kensaku Hatanaka
謙作 畑中
So Nomoto
宗 野本
Kunihiro Morishita
国博 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012133181A priority Critical patent/JP5527360B2/en
Publication of JP2013032903A publication Critical patent/JP2013032903A/en
Application granted granted Critical
Publication of JP5527360B2 publication Critical patent/JP5527360B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent temperature of hot water stored in a tank from fluctuating off a request when hot water storage operation is performed just after reheating operation.SOLUTION: A heat pump type water heater includes a refrigerant circuit 101, a hot water storage circuit 201 and a reheating circuit 202. In the hot water storage operation, water flowing through the hot water storage circuit 201 is heated by the refrigerant circuit 101, and heated water is stored in a tank 8. In the reheating operation, water heated by the refrigerant circuit 101 is circulated to the reheating circuit 202 to heat bathtub water. If the reheating operation is to be shifted to the hot water storage operation, hot water shift operation is performed, and then the operation is shifted to the hot water storage operation. In the hot water storage shift operation, as for target hot water delivery temperature of a water refrigerant heat exchanger 2, a target value during the reheating operation is switched to a target value during the hot water storage operation, and the reheating operation is continued in this state. Thereby, hot water temperature in the tank 8 can be stabilized during a shift from the reheating operation to the hot water storage operation.

Description

本発明は、ヒートポンプ給湯機に関し、特に、タンク内に湯を貯湯する機能と、浴槽水等の加熱対象水を追焚きする機能とを備えたヒートポンプ給湯機に関する。   The present invention relates to a heat pump water heater, and more particularly, to a heat pump water heater having a function of storing hot water in a tank and a function of pursuing water to be heated such as bath water.

従来技術として、例えば特許文献1に記載されているように、浴槽の湯を追焚きすることが可能なヒートポンプ給湯機などの貯湯式給湯機が知られている。従来の貯湯式給湯機では、浴槽の湯温が低下した場合などに、浴槽水を加熱する追焚き運転を実施する。追焚き運転では、加熱器により加熱された温水と浴槽水とを熱交換器(以下、追焚き熱交換器と称す)に循環させて、加熱器側の温水により浴槽水を加熱する。   As a conventional technique, for example, as described in Patent Document 1, a hot water storage type hot water heater such as a heat pump water heater capable of chasing bath water is known. In the conventional hot water storage type water heater, a reheating operation for heating the bathtub water is performed when the temperature of the bathtub is lowered. In the reheating operation, the hot water heated by the heater and the bathtub water are circulated in a heat exchanger (hereinafter referred to as a reheating heat exchanger), and the bathtub water is heated by the hot water on the heater side.

また、従来技術の貯湯式給湯機では、必要に応じて貯湯タンク内に湯を貯留する貯湯運転を実施する。貯湯運転では、貯湯タンク内の湯を外部に循環させながら、この湯を加熱器により加熱する。そして、従来技術では、追焚き運転時に加熱器から流出する温水の温度(以下、加熱器出口温度と称す)を、貯湯運転時の加熱器出口温度よりも低い温度に設定するようにしている。   Moreover, in the hot water storage type hot water heater of the prior art, a hot water storage operation for storing hot water in a hot water storage tank is performed as necessary. In the hot water storage operation, hot water is heated by a heater while circulating the hot water in the hot water storage tank to the outside. In the prior art, the temperature of hot water flowing out of the heater during the reheating operation (hereinafter referred to as the heater outlet temperature) is set to a temperature lower than the heater outlet temperature during the hot water storage operation.

特許3633054号公報Japanese Patent No. 3633054

特許文献1に記載された従来の貯湯式給湯機は、貯湯運転時に比べて、追焚き運転時の加熱器出口温度が低くなるように制御している。しかし、この制御において、追焚き運転の直後に貯湯運転を実施した場合には、貯湯運転が開始されたときに、追焚き運転時の加熱器出口温度に対応する温度の湯(貯湯タンク内よりも低温の湯)がタンク内に貯湯されることになり、貯湯タンク内の水温分布が壊される。つまり、貯湯タンクの上部に存在する高い温度の湯に対して、加熱器から流出した低い温度の湯が混合されるので、タンク上部の湯温が低下する。   The conventional hot water storage type hot water heater described in Patent Document 1 controls the heater outlet temperature at the time of reheating operation to be lower than that at the time of hot water storage operation. However, in this control, when the hot water storage operation is performed immediately after the reheating operation, when the hot water storage operation is started, hot water having a temperature corresponding to the heater outlet temperature during the reheating operation (from the hot water storage tank). Hot water) is stored in the tank, and the water temperature distribution in the hot water tank is destroyed. That is, since the low temperature hot water that has flowed out of the heater is mixed with the high temperature hot water present in the upper portion of the hot water storage tank, the hot water temperature in the upper portion of the tank is lowered.

このため、従来技術では、給湯機の利用者が追焚き運転の直後に湯を利用すると、貯湯タンクの上部から比較的低い温度の湯が取り出されることになり、必要な温度の湯が利用者に供給されない可能性がある。一方、貯湯運転時に比べて、追焚き運転時の加熱器出口温度が高くなるように制御している場合には、追焚き運転の直後に貯湯運転を実施すると、必要以上に高い温度の湯が貯湯タンクに貯留されることがあり、給湯機の消費電力が増加する可能性がある。   For this reason, in the prior art, when a user of a water heater uses hot water immediately after the chasing operation, hot water having a relatively low temperature is taken out from the upper part of the hot water storage tank, and the hot water having the necessary temperature is removed from the user. May not be supplied. On the other hand, if the heater outlet temperature during reheating operation is controlled to be higher than during hot water storage operation, if hot water storage operation is performed immediately after reheating operation, hot water with a temperature higher than necessary will be generated. It may be stored in a hot water storage tank, which may increase the power consumption of the water heater.

本発明は、上述のような課題を解決するためになされたもので、追焚き運転の直後に貯湯運転を実施する場合でも、タンクに貯留される湯の温度が要求から外れて上下するのを防止し、タンク内の湯温を安定的に保持することが可能なヒートポンプ給湯機を提供することを目的とする。   The present invention has been made to solve the above-described problems. Even when the hot water storage operation is performed immediately after the reheating operation, the temperature of the hot water stored in the tank deviates from the requirement and goes up and down. An object of the present invention is to provide a heat pump water heater capable of preventing and stably maintaining the hot water temperature in a tank.

本発明に係るヒートポンプ給湯機は、圧縮機により冷媒を循環させる水冷媒熱交換器を有し、水冷媒熱交換器に流入した水を加熱して当該水冷媒熱交換器から加熱水を流出させる冷媒回路と、水冷媒熱交換器から流出する加熱水をタンク内に貯湯する貯湯回路と、1次側が水冷媒熱交換器に接続されて2次側が負荷に接続された追焚き熱交換器を有し、水冷媒熱交換器から流出する加熱水の熱を利用して追焚き熱交換器により負荷側の加熱対象水を加熱する追焚き回路と、貯湯回路及び追焚き回路の一部を構成し、貯湯回路及び追焚き回路に水を循環させる循環ポンプと、加熱水の流路を貯湯回路と追焚き回路の何れかに切換える切換機構と、水冷媒熱交換器から流出する加熱水の温度を検出する出湯温度検出手段と、加熱水の温度が目標出湯温度と一致するように制御する温度制御手段と、目標出湯温度を第1の目標値に設定した状態で加熱水を貯湯回路に流通させ、タンク内に貯湯する貯湯運転を実行する第1の運転制御手段と、目標出湯温度を第1の目標値と異なる第2の目標値に設定した状態で加熱水を追焚き回路に流通させ、加熱対象水を加熱する追焚き運転を実行する第2の運転制御手段と、追焚き運転から貯湯運転に移行する要求が生じた場合に、目標出湯温度を第2の目標値から第1の目標値に切換えた状態で加熱水を追焚き回路に流通させる貯湯移行運転を実行し、当該貯湯移行運転の実行後に貯湯運転に移行する第3の運転制御手段と、を備える。   The heat pump water heater according to the present invention has a water-refrigerant heat exchanger that circulates refrigerant by a compressor, heats water that flows into the water-refrigerant heat exchanger, and causes heated water to flow out from the water-refrigerant heat exchanger. A refrigerant circuit, a hot water storage circuit for storing hot water flowing out of the water refrigerant heat exchanger in the tank, and a reheating heat exchanger in which the primary side is connected to the water refrigerant heat exchanger and the secondary side is connected to the load. A heating circuit that heats the water to be heated on the load side by the heating heat exchanger using the heat of the heated water flowing out of the water-refrigerant heat exchanger, and forms a part of the hot water storage circuit and the heating circuit A circulating pump for circulating water in the hot water storage circuit and the reheating circuit, a switching mechanism for switching the flow path of the heating water between the hot water storage circuit and the reheating circuit, and the temperature of the heated water flowing out of the water refrigerant heat exchanger The hot water temperature detection means for detecting the Temperature control means for controlling the temperature to match the temperature, and a first operation for executing a hot water storage operation in which heated water is circulated through the hot water storage circuit with the target hot water temperature set to the first target value and stored in the tank. The control means and a second operation for performing a reheating operation in which the heating water is circulated through the reheating circuit in a state where the target hot water temperature is set to a second target value different from the first target value, and the heating target water is heated. When the operation control means and a request to shift from the reheating operation to the hot water storage operation occur, the heating water is circulated to the reheating circuit in a state where the target hot water temperature is switched from the second target value to the first target value. And a third operation control means for executing the hot water storage transfer operation and shifting to the hot water storage operation after the hot water storage transfer operation is executed.

本発明によれば、追焚き運転の直後に貯湯運転を開始する場合でも、実際の出湯温度が貯湯運転時の目標出湯温度となった状態で貯湯運転に移行することができる。これにより、貯湯運転の開始時には、タンクに貯留される湯の温度が要求から外れて上下するのを防止し、タンク内の湯温を安定的に保持することができる。   According to the present invention, even when the hot water storage operation is started immediately after the reheating operation, it is possible to shift to the hot water storage operation in a state where the actual hot water temperature becomes the target hot water temperature during the hot water storage operation. Thereby, at the start of the hot water storage operation, the temperature of the hot water stored in the tank is prevented from deviating from the requirement, and the hot water temperature in the tank can be stably maintained.

本発明の実施の形態1において、ヒートポンプ給湯機を示す全体構成図である。In Embodiment 1 of this invention, it is a whole block diagram which shows a heat pump water heater. 貯湯運転時の回路構成を示す動作説明図である。It is operation | movement explanatory drawing which shows the circuit structure at the time of hot water storage driving | operation. 追焚き運転時の回路構成を示す動作説明図である。It is operation | movement explanatory drawing which shows the circuit structure at the time of a chasing operation. 本発明の実施の形態1において、追焚き運転、貯湯移行運転及び貯湯運転中の出湯温度と加熱能力とを示すタイミングチャートである。In Embodiment 1 of this invention, it is a timing chart which shows the hot water temperature and heating capability in a reheating operation, a hot water storage transfer operation, and a hot water storage operation. 本発明の実施の形態1の変形例において、追焚き運転、貯湯移行運転及び貯湯運転中の出湯温度と加熱能力とを示すタイミングチャートである。In the modification of Embodiment 1 of this invention, it is a timing chart which shows the tapping temperature, hot water transfer operation | movement, and the tapping temperature and heating capability in hot water storage operation. 追焚き運転から貯湯運転に移行するときの動作パターンを示すタイミングチャートである。It is a timing chart which shows an operation pattern when changing from chasing operation to hot water storage operation.

実施の形態1
以下、図1乃至図6を参照して、本発明の実施の形態1について説明する。なお、各図においては、共通する要素に同一の符号を付し、重複する説明を省略するものとする。図1は、本発明の実施の形態1において、ヒートポンプ給湯機を示す全体構成図である。この図に示すように、ヒートポンプ式給湯機は、ヒートポンプユニット100、タンクユニット200、浴槽ユニット300等を備えている。ヒートポンプユニット100は、圧縮機1、水冷媒熱交換器2、膨張弁3及び空気熱交換器4等の機器を有している。これらの機器は配管等により環状に接続され、圧縮機1により冷媒を循環させる冷媒回路(冷凍サイクル)101を構成している。水冷媒熱交換器2は、水と冷媒との熱交換を行うもので、水の流入口及び流出口を有している。そして、水冷媒熱交換器2は、流入口から流入した水を冷媒により加熱し、流出口から加熱水を流出させる。また、空気熱交換器4は、空気と冷媒との熱交換を行うもので、外気を送風するファン5が付設されている。
Embodiment 1
Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS. In each drawing, common elements are denoted by the same reference numerals, and redundant description is omitted. FIG. 1 is an overall configuration diagram showing a heat pump water heater in Embodiment 1 of the present invention. As shown in this figure, the heat pump type water heater includes a heat pump unit 100, a tank unit 200, a bathtub unit 300, and the like. The heat pump unit 100 includes devices such as the compressor 1, the water / refrigerant heat exchanger 2, the expansion valve 3, and the air heat exchanger 4. These devices are connected in a ring shape by piping or the like, and constitute a refrigerant circuit (refrigeration cycle) 101 in which the compressor 1 circulates the refrigerant. The water-refrigerant heat exchanger 2 performs heat exchange between water and the refrigerant, and has a water inlet and outlet. And the water refrigerant | coolant heat exchanger 2 heats the water which flowed in from the inflow port with a refrigerant | coolant, and makes a heating water flow out from an outflow port. The air heat exchanger 4 performs heat exchange between the air and the refrigerant, and is provided with a fan 5 that blows outside air.

タンクユニット200には、循環ポンプ6a、追焚き用ポンプ6b、切換弁7及びタンク8を備えている。循環ポンプ6aは、後述の貯湯回路201及び追焚き回路202に水(加熱水を含む)を循環させ、水冷媒熱交換器2の流入口に向けて水を送るもので、これらの回路201,202の一部を構成している。追焚き用ポンプ6bは、後述する追焚き熱交換器12の1次側の流出口からタンク8の戻し口8cに向けて水を送るものである。切換弁7は、例えば3つのポートA,B,Cを有する電磁駆動式の三方弁等により構成され、水冷媒熱交換器2の流出口から流出する加熱水の流路を貯湯回路201と追焚き回路202の何れかに切換える切換機構を構成している。また、タンク8は、加熱水を貯留するもので、その上部側に位置する貯湯口8aと、タンク8の底部に位置する取水口8bと、タンク8の下部側に位置する戻し口8cとを備えている。また、タンクユニット200に搭載された各機器と、水冷媒熱交換器2と、浴槽ユニット300の追焚き交換器12とは、配管9a〜9hを介して相互に接続されている。   The tank unit 200 includes a circulation pump 6a, a reheating pump 6b, a switching valve 7 and a tank 8. The circulation pump 6a circulates water (including heated water) in the hot water storage circuit 201 and the reheating circuit 202, which will be described later, and sends water toward the inlet of the water-refrigerant heat exchanger 2, and these circuits 201, Part of 202 is configured. The reheating pump 6b sends water from the outlet on the primary side of the reheating heat exchanger 12, which will be described later, toward the return port 8c of the tank 8. The switching valve 7 is configured by, for example, an electromagnetically driven three-way valve having three ports A, B, and C. The switching valve 7 and the hot water storage circuit 201 are added to the passage of the heated water flowing out from the outlet of the water-refrigerant heat exchanger 2. A switching mechanism for switching to any one of the firing circuits 202 is configured. The tank 8 stores heated water, and includes a hot water storage port 8 a positioned on the upper side, a water intake port 8 b positioned on the bottom of the tank 8, and a return port 8 c positioned on the lower side of the tank 8. I have. Moreover, each apparatus mounted in the tank unit 200, the water-refrigerant heat exchanger 2, and the reheating exchanger 12 of the bathtub unit 300 are connected to each other via pipes 9a to 9h.

詳しく述べると、水冷媒熱交換器2の流出口は、配管9a,9bを介して切換弁7のポートAに接続されている。切換弁7のポートBは、配管9cを介して追焚き熱交換器12の1次側の流入口に接続されており、追焚き熱交換器12の1次側の流出口は、配管9d,9eを介して循環ポンプ6aの吸込口に接続されている。なお、配管9eは、配管9dだけでなく、タンク8の取水口8bにも接続されている。循環ポンプ6aの吐出口は、配管9fを介して水冷媒熱交換器2の流入口に接続されている。また、切換弁7のポートCは、配管9gを介してタンク8の貯湯口8aに接続されている。さらに、追焚き熱交換器12の1次側の流出口は、配管9hを介してタンク8の戻し口8cに接続されており、配管9hの途中には追焚き用ポンプ6bが配置されている。   More specifically, the outlet of the water-refrigerant heat exchanger 2 is connected to the port A of the switching valve 7 via pipes 9a and 9b. The port B of the switching valve 7 is connected to the primary inlet of the reheating heat exchanger 12 via a pipe 9c, and the primary outlet of the reheating heat exchanger 12 is connected to the piping 9d, 9e is connected to the suction port of the circulation pump 6a. The pipe 9e is connected not only to the pipe 9d but also to the water intake 8b of the tank 8. The discharge port of the circulation pump 6a is connected to the inflow port of the water-refrigerant heat exchanger 2 through a pipe 9f. Moreover, the port C of the switching valve 7 is connected to the hot water storage port 8a of the tank 8 through the piping 9g. Further, the outlet on the primary side of the reheating heat exchanger 12 is connected to the return port 8c of the tank 8 through the pipe 9h, and the reheating pump 6b is disposed in the middle of the pipe 9h. .

上記タンクユニット200の構成において、循環ポンプ6a、タンク8及び配管9a,9b,9e,9f,9gは、水冷媒熱交換器2から流出する加熱水をタンク内に貯湯する貯湯回路201を構成している。また、循環ポンプ6a、追焚き熱交換器12及び配管9a〜9fは、水冷媒熱交換器2から流出する加熱水の熱を利用して追焚き熱交換器12により負荷側の加熱対象水を加熱する追焚き回路202を構成している。なお、本実施の形態では、負荷が後述の追焚き負荷側回路301であり、加熱対象水が浴槽水である場合を例示している。また、追焚き用ポンプ6b及び配管9c,9g,9hは、タンク8内の湯を利用して浴槽水を加熱するタンク側加熱回路203を構成している。なお、循環ポンプ6aは、必ずしもタンクユニット200に設置する必要はなく、ヒートポンプユニット100側に搭載してもよい。   In the configuration of the tank unit 200, the circulation pump 6a, the tank 8, and the pipes 9a, 9b, 9e, 9f, and 9g constitute a hot water storage circuit 201 that stores the heated water flowing out from the water-refrigerant heat exchanger 2 in the tank. ing. Further, the circulation pump 6a, the reheating heat exchanger 12 and the pipes 9a to 9f use the heat of the heating water flowing out from the water / refrigerant heat exchanger 2 to heat the heating target water on the load side by the reheating heat exchanger 12. A reheating circuit 202 for heating is configured. In addition, in this Embodiment, the load is the after-mentioned additional load side circuit 301, and the case where heating object water is bathtub water is illustrated. The reheating pump 6b and the pipes 9c, 9g, and 9h constitute a tank side heating circuit 203 that heats the bath water using hot water in the tank 8. The circulation pump 6a is not necessarily installed in the tank unit 200, and may be mounted on the heat pump unit 100 side.

一方、浴槽ユニット300には、浴槽水が溜められた浴槽10と、浴槽水を循環させる負荷側ポンプとしての浴槽循環ポンプ11と、水冷媒熱交換器2の流出口から流出する加熱水と浴槽水との熱交換を行う追焚き熱交換器12とが搭載され、これらの機器は配管9i〜9kにより環状に接続されている。また、浴槽10、浴槽循環ポンプ11及び配管9i〜9kは、浴槽水が循環する追焚き負荷側回路301を構成している。追焚き熱交換器12は、1次側が水冷媒熱交換器2に接続され、2次側が追焚き負荷側回路301に接続されている。   On the other hand, the bathtub unit 300 includes a bathtub 10 in which bathtub water is stored, a bathtub circulation pump 11 as a load-side pump that circulates the bathtub water, and heated water and a bathtub that flow out from the outlet of the water-refrigerant heat exchanger 2. A reheating heat exchanger 12 that performs heat exchange with water is mounted, and these devices are connected in a ring shape by pipes 9i to 9k. Moreover, the bathtub 10, the bathtub circulation pump 11, and the piping 9i-9k comprise the additional load side circuit 301 through which bathtub water circulates. The tracking heat exchanger 12 has a primary side connected to the water-refrigerant heat exchanger 2 and a secondary side connected to the tracking load side circuit 301.

なお、図1では、例えばタンク8に貯湯した湯を浴室等に供給する給湯装置や、貯湯回路201に水を供給する給水回路等の図示を省略している。また、圧縮機1は、例えばインバータ制御式のDCブラシレスモータ等を備えた駆動装置(図示せず)により駆動され、この駆動装置は、圧縮機1から吐出する冷媒の圧力や温度を可変とする機能を有している。しかし、本発明では、このような駆動装置を用いなくても、例えばヒートポンプユニット100に複数台の圧縮機1を搭載し、該各圧縮機のうち稼動する圧縮機の台数を切換えることで冷媒の圧力や温度を可変とする構成としてもよい。また、圧縮機1には、その吸込側に配置されて冷媒音を低減させるサクションマフラーのような容器や、圧縮機1の吐出側に流出した潤滑油を回収する装置など、他の目的の構造を付加してもよい。さらに、ヒートポンプユニット100の冷媒としては、例えば二酸化炭素、R410A、プロパン、プロピレンなどのように、高温出湯が可能な冷媒を用いるのが好ましいが、本発明は、これらの冷媒に限定されるものではない。   In FIG. 1, for example, a hot water supply device that supplies hot water stored in the tank 8 to a bathroom or the like, and a water supply circuit that supplies water to the hot water storage circuit 201 are omitted. The compressor 1 is driven by a drive device (not shown) including, for example, an inverter-controlled DC brushless motor, and the drive device makes the pressure and temperature of the refrigerant discharged from the compressor 1 variable. It has a function. However, in the present invention, without using such a drive device, for example, a plurality of compressors 1 are mounted on the heat pump unit 100, and the number of compressors operating among the compressors is switched to change the refrigerant. The pressure and temperature may be variable. Further, the compressor 1 has a structure for other purposes such as a container such as a suction muffler that is disposed on the suction side to reduce refrigerant noise, and a device that collects lubricating oil that has flowed out to the discharge side of the compressor 1. May be added. Further, as the refrigerant of the heat pump unit 100, it is preferable to use a refrigerant capable of high temperature hot water such as carbon dioxide, R410A, propane, propylene, etc., but the present invention is not limited to these refrigerants. Absent.

次に、ヒートポンプ給湯機の制御系統について説明する。まず、ヒートポンプユニット100は、水冷媒熱交換器2に流入する水の温度を検出する入水温度センサ13aと、水冷媒熱交換器2から流出する加熱水の温度を検出する出湯温度センサ13bと、ヒートポンプユニット100の周囲の外気温度を検出する外気温度センサ13cとを備えている。出湯温度センサ13bは、水冷媒熱交換器2の流入口近傍における加熱水の温度(以下、出湯温度と称す)を検出する出湯温度検出手段を構成している。また、冷媒回路101は、圧縮機1から吐出される冷媒の温度を検出する吐出温度センサ13dと、圧縮機1に吸込まれる冷媒の温度を検出する吸込温度センサ13eと、空気熱交換器4の入口から中間部となる位置で冷媒の温度を検出する蒸発温度センサ13fとを備えている。   Next, the control system of the heat pump water heater will be described. First, the heat pump unit 100 includes an incoming water temperature sensor 13a that detects the temperature of water flowing into the water-refrigerant heat exchanger 2, a hot water temperature sensor 13b that detects the temperature of heated water flowing out of the water-refrigerant heat exchanger 2, The outside air temperature sensor 13c which detects the outside temperature around the heat pump unit 100 is provided. The tapping temperature sensor 13b constitutes tapping temperature detecting means for detecting the temperature of the heated water in the vicinity of the inlet of the water-refrigerant heat exchanger 2 (hereinafter referred to as tapping temperature). The refrigerant circuit 101 includes a discharge temperature sensor 13 d that detects the temperature of the refrigerant discharged from the compressor 1, a suction temperature sensor 13 e that detects the temperature of the refrigerant sucked into the compressor 1, and the air heat exchanger 4. And an evaporating temperature sensor 13f that detects the temperature of the refrigerant at a position that is an intermediate portion from the inlet.

一方、タンクユニット200には、タンク8の各部に設置され、それぞれの設置場所でタンク8内の水温を検出する複数の貯湯温度センサ13g〜13jが搭載されている。また、浴槽ユニット300には、浴槽10内の水温を検出する浴槽水温センサ13kと、追焚き熱交換器12の2次側に流入する水の温度を検出する水熱交換器入水温度センサ13lと、追焚き熱交換器12の2次側から流出する水の温度を検出する水熱交換器出湯温度センサ13mとが設けられている。   On the other hand, the tank unit 200 is provided with a plurality of hot water storage temperature sensors 13g to 13j that are installed in the respective portions of the tank 8 and detect the water temperature in the tank 8 at the respective installation locations. The bathtub unit 300 includes a bathtub water temperature sensor 13k that detects the water temperature in the bathtub 10, a water heat exchanger incoming temperature sensor 13l that detects the temperature of the water flowing into the secondary side of the reheating heat exchanger 12, and A water heat exchanger tapping temperature sensor 13m for detecting the temperature of water flowing out from the secondary side of the reheating heat exchanger 12 is provided.

また、ヒートポンプ式給湯機は、マイクロコンピュータ等が搭載された制御装置14を備えている。制御装置14には、各温度センサ13a〜13mの出力や、給湯機の使用者により操作されるリモコン装置(リモートコントローラ)の操作内容等が入力される。制御装置14は、これらの入力情報に基いて各ユニット100,200,300をそれぞれ制御する。具体的には、圧縮機1、循環ポンプ6a、追焚き用ポンプ6b及び浴槽循環ポンプ11の運転状態や、膨張弁3の開度、切換弁7の流路方向(切換位置)等を制御する。また、制御装置14は、後述のように、貯湯運転、追焚き運転、貯湯移行運転等を実行しつつ、これらの運転中に出湯温度の温度制御と冷媒回路101の加熱能力制御とを実行する。   Moreover, the heat pump type hot water heater includes a control device 14 on which a microcomputer or the like is mounted. The control device 14 receives outputs from the temperature sensors 13a to 13m, operation details of a remote control device (remote controller) operated by a user of the water heater, and the like. The control device 14 controls each unit 100, 200, 300 based on these input information. Specifically, the operating state of the compressor 1, the circulation pump 6a, the reheating pump 6b, and the bathtub circulation pump 11, the opening degree of the expansion valve 3, the flow path direction (switching position) of the switching valve 7 and the like are controlled. . Further, as will be described later, the control device 14 performs hot water storage operation, reheating operation, hot water transfer operation and the like, and performs temperature control of the hot water temperature and heating capacity control of the refrigerant circuit 101 during these operations. .

(貯湯運転)
次に、図2及び図3を参照しつつ、ヒートポンプ式給湯機の運転動作について説明する。まず、図2は、貯湯運転時の回路構成を示す動作説明図である。この図に示すように、貯湯運転(沸き上げ運転)とは、冷媒回路101と貯湯回路201とを作動させることにより、タンク8の底部の取水口8bから流出させた低温水を冷媒回路101により加熱し、水冷媒熱交換器2の流出口から流出する高温の加熱水をタンク8の上部の貯湯口8aからタンク8内に戻すものである。
(Hot water storage operation)
Next, the operation of the heat pump type water heater will be described with reference to FIGS. 2 and 3. First, FIG. 2 is an operation explanatory diagram showing a circuit configuration during hot water storage operation. As shown in this figure, the hot water storage operation (boiling operation) is the operation of the refrigerant circuit 101 and the hot water storage circuit 201, whereby the low-temperature water that has flowed out of the water intake 8 b at the bottom of the tank 8 is caused to flow through the refrigerant circuit 101. Heated hot water flowing out from the outlet of the water-refrigerant heat exchanger 2 is returned into the tank 8 from the hot water storage port 8 a at the upper part of the tank 8.

詳しく述べると、冷媒回路101では、圧縮機1から吐出された高温高圧のガス冷媒が水冷媒熱交換器2を流通する水に放熱しながら温度低下する。このとき、高圧側冷媒圧力が臨界圧以下であれば、冷媒は液化しながら放熱する。また、水冷媒熱交換器2から流出した高圧低温の冷媒は、膨張弁3を通過することにより低圧気液二相の状態に減圧される。そして、この冷媒は、空気熱交換器4内を流通しつつ外気から吸熱することにより、蒸発してガス化される。空気熱交換器4から流出した低圧冷媒は、圧縮機1に吸込まれて循環するので、この循環により冷凍サイクルが形成される。   More specifically, in the refrigerant circuit 101, the temperature of the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 decreases while releasing heat to the water flowing through the water-refrigerant heat exchanger 2. At this time, if the high-pressure side refrigerant pressure is equal to or lower than the critical pressure, the refrigerant dissipates heat while liquefying. The high-pressure and low-temperature refrigerant that has flowed out of the water-refrigerant heat exchanger 2 is reduced in pressure to a low-pressure gas-liquid two-phase state by passing through the expansion valve 3. The refrigerant is evaporated and gasified by absorbing heat from the outside air while circulating in the air heat exchanger 4. Since the low-pressure refrigerant flowing out of the air heat exchanger 4 is sucked into the compressor 1 and circulates, a refrigeration cycle is formed by this circulation.

また、貯湯回路201側では、まず、切換弁7により配管9b,9gが相互に接続され、加熱水の流路が貯湯回路201に切換えられる。そして、循環ポンプ6aが作動すると、タンク8内の水は、タンク底部の取水口8bから接続配管9e,9fを介して水冷媒熱交換器2に導入される。そして、この水は、水冷媒熱交換器2内でガス冷媒により加熱(沸き上げ)され、加熱水となって水冷媒熱交換器2から流出する。この加熱水は、配管9a,9b、切換弁7及び配管9gを通過して、タンク上部の貯湯口8aからタンク8内に流入する。このように、貯湯運転が実行されると、タンク8の上部が高温水となり下部が低温水となる温度分布状態を維持しつつ、貯湯が実行される。   On the hot water storage circuit 201 side, first, the switching valves 7 connect the pipes 9b and 9g to each other, and the flow path of the heated water is switched to the hot water storage circuit 201. When the circulation pump 6a is activated, the water in the tank 8 is introduced into the water / refrigerant heat exchanger 2 through the connection pipes 9e and 9f from the water intake 8b at the bottom of the tank. Then, this water is heated (boiling up) by the gas refrigerant in the water refrigerant heat exchanger 2 and flows out of the water refrigerant heat exchanger 2 as heated water. The heated water passes through the pipes 9a and 9b, the switching valve 7 and the pipe 9g, and flows into the tank 8 from the hot water storage port 8a at the upper part of the tank. As described above, when the hot water storage operation is executed, hot water storage is executed while maintaining a temperature distribution state in which the upper portion of the tank 8 is high-temperature water and the lower portion is low-temperature water.

次に、貯湯運転時に実行される加熱水の温度制御及び冷媒回路101の加熱能力制御について説明する。まず、温度制御とは、出湯温度センサ13bにより検出される水冷媒熱交換器2の出湯温度が所定の目標出湯温度と一致するように、循環ポンプ6aの回転数をフィードバック制御するものである。このフィードバック制御は、一定の時間間隔t2で周期的に実行される。貯湯運転では、目標出湯温度を所定の貯湯目標出湯温度(第1の目標値)に設定した状態で貯湯を実行する。貯湯目標出湯温度は、前記リモコン装置の操作内容等に基いて設定されるか、または過去の給湯使用量から算出される蓄熱エネルギ(貯湯量)を確保できるように設定されるもので、予め定められた範囲内(例えば、65〜90℃)に収まるように設定される。なお、目標出湯温度の設定は、制御装置14とリモコン装置の何れで行ってもよい。   Next, the temperature control of the heating water and the heating capacity control of the refrigerant circuit 101 executed during the hot water storage operation will be described. First, temperature control is feedback control of the rotational speed of the circulation pump 6a so that the hot water temperature of the water refrigerant heat exchanger 2 detected by the hot water temperature sensor 13b matches a predetermined target hot water temperature. This feedback control is periodically executed at a constant time interval t2. In the hot water storage operation, hot water storage is performed in a state where the target hot water temperature is set to a predetermined hot water storage target hot water temperature (first target value). The hot water storage target hot water temperature is set based on the operation content of the remote control device or the like, or is set so as to ensure the heat storage energy (hot water storage amount) calculated from the past hot water use amount. It is set so as to be within the specified range (for example, 65 to 90 ° C.). The target hot water temperature may be set by either the control device 14 or the remote control device.

上記温度制御では、水冷媒熱交換器2に出入りする加熱水の流量を制御するだけなので、温度制御により実現される出湯温度の最高値は、冷媒回路101の加熱能力に依存している。従って、冷媒回路101には、目標出湯温度が前記設定範囲内の最大値(上記例では、90℃)に設定された場合でも、これを実現できるだけの加熱能力が要求される。このため、加熱能力制御では、例えば外気温度、給水温度等に基いて上記要求を満たす加熱能力の目標値(目標加熱能力)を設定し、冷媒回路101の実際の加熱能力が目標加熱能力と一致するように、圧縮機1の回転数等を制御する。このように加熱能力を制御すれば、目標出湯温度の設定や外部条件がどのように変化した場合でも、給湯機として要求される湯の温度を安定的に確保することができる。なお、加熱能力制御は、一定の時間間隔t1で周期的に実行される。また、圧縮機1の回転数には、耐久性の観点から上限回転数及び下限回転数が設けられている。   Since the temperature control only controls the flow rate of the heating water entering and exiting the water-refrigerant heat exchanger 2, the maximum value of the tapping temperature realized by the temperature control depends on the heating capacity of the refrigerant circuit 101. Accordingly, the refrigerant circuit 101 is required to have a heating capacity sufficient to realize this even when the target hot water temperature is set to the maximum value (90 ° C. in the above example) within the set range. For this reason, in the heating capacity control, for example, a target value (target heating capacity) of the heating capacity that satisfies the above requirements is set based on the outside air temperature, the feed water temperature, etc., and the actual heating capacity of the refrigerant circuit 101 matches the target heating capacity. Thus, the rotational speed of the compressor 1 is controlled. By controlling the heating capacity in this way, it is possible to stably ensure the temperature of hot water required as a water heater regardless of how the target hot water temperature setting and external conditions change. The heating capacity control is periodically executed at a constant time interval t1. In addition, the rotation speed of the compressor 1 is provided with an upper limit rotation speed and a lower limit rotation speed from the viewpoint of durability.

また、加熱能力制御では、圧縮機1の回転数に加えて、膨張弁3の開度を制御してもよい。この場合、膨張弁3の開度は、冷媒の吐出温度が所定の目標吐出温度と一致するように制御される。目標吐出温度は、目標出湯温度を実現することができるように、目標出湯温度に対して所定の余裕代分だけ高い温度として設定される。このように、目標出湯温度に応じて目標吐出温度を設定し、更に温度制御により出湯温度が目標出湯温度となるように循環ポンプ6aの回転数を制御することで、要求された出湯温度を実現することができる。なお、冷媒の吐出温度には、圧縮機1や冷凍機油の耐久性等の観点から上限温度が設けられている。   Further, in the heating capacity control, the opening degree of the expansion valve 3 may be controlled in addition to the rotation speed of the compressor 1. In this case, the opening degree of the expansion valve 3 is controlled such that the refrigerant discharge temperature coincides with a predetermined target discharge temperature. The target discharge temperature is set as a temperature higher by a predetermined margin than the target hot water temperature so that the target hot water temperature can be realized. Thus, the required discharge temperature is realized by setting the target discharge temperature in accordance with the target discharge temperature and further controlling the rotation speed of the circulation pump 6a so that the discharge temperature becomes the target discharge temperature by temperature control. can do. The refrigerant discharge temperature is provided with an upper limit temperature from the viewpoint of the durability of the compressor 1 and the refrigerating machine oil.

(追焚き運転)
次に、図3を参照して、追焚き運転(ヒートポンプ追焚き運転)について説明する。図3は、追焚き運転時の回路構成を示す動作説明図である。追焚き運転とは、冷媒回路101、追焚き回路202及び負荷側回路301を作動させることにより、水冷媒熱交換器2から流出する加熱水の熱を利用して浴槽水を加熱するものである。詳しく述べると、追焚き運転では、まず、切換弁7により配管9b,9cが相互に接続され、加熱水の流路が追焚き回路202に切換えられる。また、冷媒回路101は、貯湯運転の場合と同様に作動する。そして、循環ポンプ6aが作動すると、当該ポンプから吐出された水が水冷媒熱交換器2、追焚き熱交換器12及び配管9a〜9fを循環しつつ、水冷媒熱交換器2で冷媒により加熱されて加熱水となる。一方、追焚き負荷側回路301では、浴槽循環ポンプ11が駆動され、浴槽10内の水が追焚き負荷側回路301を循環する。これにより、浴槽水は、追焚き熱交換器12を流通する加熱水と熱交換して加熱され、浴槽10に還流される。また、追焚き運転は、例えば追焚き運転の運転時間や浴槽水の温度等に基いて設定される所定の運転終了条件が成立した場合に終了される。
(Driving operation)
Next, with reference to FIG. 3, a reheating operation (heat pump reheating operation) will be described. FIG. 3 is an operation explanatory diagram illustrating a circuit configuration during the chasing operation. The reheating operation is to heat the bath water using the heat of the heating water flowing out from the water / refrigerant heat exchanger 2 by operating the refrigerant circuit 101, the reheating circuit 202, and the load side circuit 301. . More specifically, in the reheating operation, first, the pipes 9b and 9c are connected to each other by the switching valve 7, and the flow path of the heating water is switched to the reheating circuit 202. The refrigerant circuit 101 operates in the same manner as in the hot water storage operation. When the circulation pump 6a is activated, the water discharged from the pump circulates through the water refrigerant heat exchanger 2, the reheating heat exchanger 12, and the pipes 9a to 9f, and is heated by the refrigerant in the water refrigerant heat exchanger 2. It becomes heated water. On the other hand, in the reheating load side circuit 301, the bathtub circulation pump 11 is driven, and the water in the bathtub 10 circulates in the reheating load side circuit 301. As a result, the bathtub water is heated by exchanging heat with the heated water flowing through the reheating heat exchanger 12, and is returned to the bathtub 10. Further, the chasing operation is terminated when a predetermined operation ending condition set based on, for example, the chasing operation time or the temperature of the bath water is satisfied.

次に、追焚き運転時に実行される温度制御及び加熱能力制御について説明する。これらの制御は、基本的に貯湯運転時と同様に実行されるが、追焚き運転時には、目標出湯温度を前記貯湯目標出湯温度よりも低い所定の追焚き目標出湯温度(第2の目標値)に設定した状態で、浴槽水を加熱する。追焚き目標出湯温度は、前記リモコン装置の操作内容等に基いて設定されるか、または外気温度センサ13cにより検出した外気温度等に基いて、制御装置14やリモコン装置に予め記憶させたデータマップを参照することにより設定される。なお、追焚き目標出湯温度は、予め定められた範囲内(例えば、40〜90℃)に収まるように設定される。一方、加熱能力制御では、冷媒回路101の加熱能力が予め設定された追焚き運転時の目標加熱能力と一致するように、圧縮機1の運転容量(回転数等)を制御する。   Next, temperature control and heating capacity control executed during the chasing operation will be described. These controls are basically executed in the same manner as in the hot water storage operation, but during the reheating operation, a predetermined reheating target hot water temperature (second target value) in which the target hot water temperature is lower than the hot water storage target hot water temperature. In the state set to, bath water is heated. The reheating target hot water temperature is set based on the operation content of the remote control device or the like, or based on the outside air temperature detected by the outside air temperature sensor 13c or the like, a data map stored in the control device 14 or the remote control device in advance. Is set by referring to. The reheating target hot water temperature is set so as to be within a predetermined range (for example, 40 to 90 ° C.). On the other hand, in the heating capacity control, the operating capacity (the number of revolutions, etc.) of the compressor 1 is controlled so that the heating capacity of the refrigerant circuit 101 coincides with a preset target heating capacity during the follow-up operation.

(貯湯追焚き運転)
ヒートポンプ式給湯機は、上記追焚き運転と同様の機能を有する運転として、貯湯追焚き運転を実行する。貯湯追焚き運転とは、タンク側加熱回路203及び負荷側回路301を作動させ、タンク8に貯湯された湯により浴槽水を加熱するものである。貯湯追焚き運転では、切換弁7により配管9c,9gが相互に接続され、水の流路がタンク側加熱回路203に切換えられる。また、追焚き用ポンプ6b及び浴槽循環ポンプ11が駆動され、冷媒回路101及び循環ポンプ6aが停止される。これにより、タンク8に貯湯された湯は貯湯口8aから流出し、切換弁7、追焚き熱交換器12、追焚き用ポンプ6b及び配管9c,9g,9hを流通した後に、戻し口8cからタンク8に還流される。このとき、負荷側回路301を循環する浴槽水は、追焚き熱交換器12を流通する湯と熱交換して加熱され、浴槽10に戻される。
(Hot water storage operation)
The heat pump type hot water heater executes a hot water storage reheating operation as an operation having the same function as the reheating operation. The hot water reheating operation is to operate the tank side heating circuit 203 and the load side circuit 301 to heat the bath water with the hot water stored in the tank 8. In the hot water reheating operation, the switching valves 7 connect the pipes 9 c and 9 g to each other, and the water flow path is switched to the tank side heating circuit 203. Further, the reheating pump 6b and the bathtub circulation pump 11 are driven, and the refrigerant circuit 101 and the circulation pump 6a are stopped. Thereby, the hot water stored in the tank 8 flows out from the hot water storage port 8a, and after flowing through the switching valve 7, the additional heat exchanger 12, the additional pump 6b, and the pipes 9c, 9g, and 9h, from the return port 8c. It returns to the tank 8. At this time, the bathtub water circulating through the load side circuit 301 is heated by exchanging heat with hot water flowing through the reheating heat exchanger 12 and returned to the bathtub 10.

なお、貯湯追焚き運転時には、追焚き用ポンプ6bの回転数が一定となるように制御される。この回転数の目標値は、前記リモコン装置の操作内容等に基いて、予め記憶されたデータマップを参照することにより設定される。また、浴槽循環ポンプ11の回転数は、一定となるように制御されるか、または水熱交換器入水温度センサ13lにより検出した追焚き熱交換器12の流入口における浴槽水の温度と、水熱交換器出湯温度センサ13mにより検出した追焚き熱交換器12の流出口における浴槽の水温との温度差が所定の目標温度差内に収まるように制御される。この目標温度差は、例えば3〜10℃の温度範囲として予め設定されている。目標温度差を設定することにより、浴槽水が過熱状態となるのを防止することができる。   During the hot water reheating operation, the revolving speed of the reheating pump 6b is controlled to be constant. The target value of the rotational speed is set by referring to a previously stored data map based on the operation content of the remote control device. The number of revolutions of the bathtub circulation pump 11 is controlled to be constant, or the temperature of the bathtub water at the inlet of the reheating heat exchanger 12 detected by the water heat exchanger incoming temperature sensor 13l and the water Control is performed so that the temperature difference with the water temperature of the bathtub at the outlet of the reheating heat exchanger 12 detected by the heat exchanger hot water temperature sensor 13m falls within a predetermined target temperature difference. This target temperature difference is preset as a temperature range of 3 to 10 ° C., for example. By setting the target temperature difference, the bath water can be prevented from being overheated.

(貯湯移行運転)
次に、本実施の形態1における貯湯移行運転について説明する。貯湯移行運転とは、追焚き運転の実行中(運転開始時を含む)に貯湯運転に移行する要求が生じた場合に、水冷媒熱交換器2の出湯温度をタンク8内の上部の湯温まで上昇させる運転として定義される。詳しく述べると、貯湯移行運転は、上記要求が生じた場合に、水冷媒熱交換器2の目標出湯温度を前記追焚き目標出湯温度から前記貯湯目標出湯温度に切換えると共に、この状態で水冷媒熱交換器2の流出口から流出する加熱水を追焚き回路202に流通させるものである。なお、貯湯移行運転の終了時期は、後述の図6に示すように、追焚き運転の終了と同時期か、または追焚き運転の終了よりも遅くなるように設定される。そして、貯湯移行運転の終了後には、貯湯運転が開始される。貯湯移行運転中には、少なくとも冷媒回路101及び追焚き回路202が作動した状態に保持され、目標出湯温度は追焚き運転中と異なる値に設定される。このとき、追焚き負荷側回路301は、追焚き運転の継続状態に応じて作動または停止した状態に保持され、同回路の作動時には、加熱水を利用した浴槽水の加熱動作が追焚き運転中と同様に実行される。
(Hot storage transfer operation)
Next, the hot water storage transfer operation in the first embodiment will be described. The hot water transfer operation refers to the hot water temperature of the water / refrigerant heat exchanger 2 in the upper temperature of the tank 8 when a request to shift to the hot water storage operation occurs during the reheating operation (including when the operation is started). Defined as driving up to. More specifically, in the hot water storage transfer operation, when the above request occurs, the target hot water temperature of the water refrigerant heat exchanger 2 is switched from the reheating target hot water temperature to the hot water storage target hot water temperature, and in this state, Heated water flowing out from the outlet of the exchanger 2 is circulated through the tracking circuit 202. Note that, as shown in FIG. 6 described later, the end time of the hot water storage transfer operation is set to be the same time as the end of the chasing operation or to be later than the chasing operation. Then, after the hot water storage transition operation is completed, the hot water storage operation is started. During the hot water storage transfer operation, at least the refrigerant circuit 101 and the reheating circuit 202 are held in operation, and the target hot water temperature is set to a value different from that during the reheating operation. At this time, the follow-up load side circuit 301 is held in an activated or stopped state according to the continuation state of the follow-up operation, and when the circuit is activated, the bath water heating operation using the heated water is in the follow-up operation. Is executed in the same way as

図4は、追焚き運転、貯湯移行運転及び貯湯運転中の出湯温度と加熱能力とを示すタイミングチャートである。なお、この図では、追焚き運転中に貯湯移行運転を実行し、該各運転を同時に終了してから貯湯運転に移行する場合を例示している。また、図4では、追焚き目標出湯温度が60℃に設定され、貯湯目標出湯温度が追焚き目標出湯温度よりも高い90℃に設定された場合を例示している。このため、追焚き運転中及び貯湯運転中の出湯温度は、温度制御によりそれぞれの目標出湯温度と一致した状態に制御されている。また、図4では、追焚き運転時における冷媒回路101の目標加熱能力が2.5kWに設定され、貯湯運転時の目標加熱能力が追焚き運転時よりも大きい6.0kWに設定された場合を例示している。このため、追焚き運転中及び貯湯運転中の加熱能力は、加熱能力制御によりそれぞれの目標加熱能力と一致した状態に制御されている。なお、上記目標出湯温度及び目標加熱能力の具体値は、本実施の形態に示す一例に過ぎず、本発明を限定するものではない。   FIG. 4 is a timing chart showing the tapping temperature, the hot water transfer operation, and the hot water temperature and the heating capacity during the hot water storage operation. In addition, in this figure, the hot water storage transfer operation | movement is performed during a chasing operation, and the case where it transfers to a hot water storage operation after ending each operation simultaneously is illustrated. FIG. 4 illustrates a case where the reheating target hot water temperature is set to 60 ° C. and the hot water storage target hot water temperature is set to 90 ° C., which is higher than the reheating target hot water temperature. For this reason, the hot water temperature during the reheating operation and the hot water storage operation is controlled by the temperature control so as to coincide with each target hot water temperature. Further, in FIG. 4, the case where the target heating capacity of the refrigerant circuit 101 during the chasing operation is set to 2.5 kW, and the target heating capacity during the hot water storage operation is set to 6.0 kW which is larger than that during the chasing operation. Illustrated. For this reason, the heating capacity during the reheating operation and the hot water storage operation is controlled to be in a state that matches each target heating capacity by the heating capacity control. In addition, the specific value of the said target hot water temperature and target heating capability is only an example shown to this Embodiment, and does not limit this invention.

追焚き運転中にタンク8内の貯湯量が不足すると予測された場合には、貯湯運転要求が発生する。そして、貯湯運転要求の発生時には、追焚き運転の運転時間が所定の基準時間に達した場合、または追焚き運転により加熱された浴槽水の温度が目標温度に対して所定の温度だけ低い許容温度まで上昇した場合に、貯湯移行運転が開始される。ここで、基準時間とは、例えば浴槽水の温度を維持するために最低限必要な追焚き運転の運転時間に対応して設定される。また、許容温度とは、例えば追焚き運転の停止時に生じる浴槽水の温度のオーバーシュート量に対応して設定されるもので、浴槽水の温度が許容温度に達していれば、追焚き運転を終了しても、浴槽水の温度が目標温度に到達する。   If it is predicted that the amount of hot water stored in the tank 8 will be insufficient during the chasing operation, a hot water storage operation request is generated. When the hot water storage operation request occurs, the allowable temperature when the operation time of the reheating operation reaches a predetermined reference time or the temperature of the bath water heated by the reheating operation is lower than the target temperature by a predetermined temperature. When it rises to the hot water storage operation, the hot water storage transfer operation is started. Here, the reference time is set, for example, corresponding to the operation time of the chasing operation that is the minimum necessary for maintaining the temperature of the bath water. The allowable temperature is set in accordance with, for example, the amount of overshoot of the bath water temperature that occurs when the chasing operation is stopped, and if the bath water temperature reaches the tolerable temperature, the chasing operation is performed. Even if it ends, the temperature of the bath water reaches the target temperature.

図4に例示した貯湯移行運転では、追焚き運転を継続しつつ、目標出湯温度が追焚き目標出湯温度から貯湯目標出湯温度に切換えられる(上記例では、60℃から90℃に切換)。この結果、実際の出湯温度は、図4に示すように、前記温度制御の作用により目標出湯温度の変化に追従して徐々に上昇し、最終的に貯湯目標出湯温度と一致する。この例に示すように、実際の出湯温度は、貯湯移行運転の運転期間中(貯湯運転が開始されるまでの期間中)に貯湯目標出湯温度に到達すればよく、目標出湯温度の切換時に急激に変化させる必要はない。そして、貯湯移行運転の実行後に、追焚き運転の運転終了条件が成立した場合には、貯湯移行運転が終了され、貯湯運転が開始される。この時点では、水冷媒熱交換器2の出湯温度が貯湯目標出湯温度に到達した状態となっている。   In the hot water storage transition operation illustrated in FIG. 4, the target hot water temperature is switched from the additional target hot water temperature to the hot water target hot water temperature while continuing the reheating operation (in the above example, switching from 60 ° C. to 90 ° C.). As a result, as shown in FIG. 4, the actual hot water temperature gradually increases following the change in the target hot water temperature by the action of the temperature control, and finally coincides with the hot water storage target hot water temperature. As shown in this example, the actual hot water temperature only needs to reach the hot water storage target hot water temperature during the operation of the hot water transfer operation (during the period until the hot water storage operation is started). There is no need to change it. Then, after the hot water storage transition operation is executed, when the operation end condition of the chasing operation is satisfied, the hot water storage transition operation is ended and the hot water storage operation is started. At this time, the hot water temperature of the water-refrigerant heat exchanger 2 has reached the hot water storage target hot water temperature.

従って、本実施の形態によれば、追焚き運転の直後に貯湯運転を開始する場合でも、追焚き運転中に水冷媒熱交換器2の目標出湯温度を追焚き目標出湯温度から貯湯目標出湯温度に予め切換えておくことができ、実際の出湯温度が貯湯目標出湯温度となった状態で貯湯運転に移行することができる。これにより、貯湯運転の開始時には、当初から高温の加熱水をタンク8の上部に流入させることができ、タンク上部の水温が低下するのを防止することができる。従って、タンク8内の水温分布を安定的に保持することができ、タンク8の上部から外部に給湯する場合でも、必要な温度の湯を円滑に給湯することができる。   Therefore, according to the present embodiment, even when the hot water storage operation is started immediately after the reheating operation, the target hot water temperature of the water / refrigerant heat exchanger 2 is determined during the reheating operation, and the target hot water temperature is determined from the target hot water temperature. It is possible to switch to the hot water storage operation in a state where the actual hot water temperature becomes the hot water storage target hot water temperature. Thereby, at the start of the hot water storage operation, high-temperature heated water can be caused to flow into the upper portion of the tank 8 from the beginning, and the water temperature at the upper portion of the tank can be prevented from decreasing. Therefore, the water temperature distribution in the tank 8 can be stably maintained, and even when hot water is supplied from the upper part of the tank 8 to the outside, hot water having a necessary temperature can be smoothly supplied.

また、本実施の形態では、貯湯移行運転の実行中に、冷媒回路101の目標加熱能力を追焚き運転時の目標値から貯湯運転時の目標値に変更する(図4に示す例では、2.5kWから6.0kWに切換)。この切換は、目標出湯温度を高く変更したことに対応して冷媒回路101の蓄熱量を確保するために実行される。この結果、実際の加熱能力は、前記加熱能力制御の作用により目標加熱能力の変化に追従して徐々に増加し、最終的に貯湯運転時の目標加熱能力と一致する。この制御によれば、貯湯移行運転中に目標加熱能力を速やかに変更することができるので、貯湯運転の開始直後から十分な蓄熱量を安定的に確保することができ、利用者に必要な湯量を短時間で貯留することができる。   Further, in the present embodiment, during execution of the hot water transfer operation, the target heating capacity of the refrigerant circuit 101 is changed from the target value during the chasing operation to the target value during the hot water operation (in the example shown in FIG. 4, 2 Switching from 5 kW to 6.0 kW). This switching is executed in order to ensure the amount of heat stored in the refrigerant circuit 101 in response to changing the target hot water temperature to a high level. As a result, the actual heating capacity gradually increases following the change in the target heating capacity by the action of the heating capacity control, and finally coincides with the target heating capacity during the hot water storage operation. According to this control, the target heating capacity can be quickly changed during the hot water transfer operation, so that a sufficient amount of heat storage can be stably secured immediately after the start of the hot water operation, and the amount of hot water required by the user. Can be stored in a short time.

なお、目標加熱能力を切換えるタイミングは、図5に示す変形例のように設定してもよい。図5は、実施の形態1の変形例において、追焚き運転、貯湯移行運転及び貯湯運転中の出湯温度と加熱能力とを示すタイミングチャートである。この変形例では、貯湯移行運転が終了した後の貯湯運転時中に、冷媒回路101の目標加熱能力を追焚き運転時の目標値から貯湯運転時の目標値に変更する。この制御によれば、貯湯移行運転中に継続されている浴槽の追焚き動作により、浴槽水の温度が急激に変化するのを防止することができ、給湯機の利便性を向上させることができる。   In addition, you may set the timing which switches target heating capability like the modification shown in FIG. FIG. 5 is a timing chart showing the hot water temperature and the heating capacity during the chasing operation, the hot water transfer operation, and the hot water storage operation in the modification of the first embodiment. In this modification, during the hot water storage operation after the hot water storage transition operation ends, the target heating capacity of the refrigerant circuit 101 is changed from the target value during the chasing operation to the target value during the hot water storage operation. According to this control, it is possible to prevent the temperature of the bath water from changing abruptly by the reheating operation of the bathtub that is continued during the hot water storage transfer operation, and it is possible to improve the convenience of the water heater. .

また、本実施の形態では、前記加熱能力制御により冷媒回路101の加熱能力が目標加熱能力を満たすように圧縮機1を制御する時間間隔t1と比較して、前記温度制御により水冷媒熱交換器2の出湯温度が目標出湯温度を満たすように循環ポンプ6aを制御する時間間隔t2を短く設定する(t1>t2)。これにより、貯湯移行運転時には、冷媒回路101の作動が不安定な状態で出湯温度を変化させることがないので、温度制御を安定的に実行することができ、追焚き目標出湯温度から貯湯目標出湯温度への切換を短時間で行うことができる。   Moreover, in this Embodiment, compared with the time interval t1 which controls the compressor 1 so that the heating capability of the refrigerant circuit 101 may satisfy | fill a target heating capability by the said heating capability control, a water refrigerant heat exchanger by the said temperature control The time interval t2 for controlling the circulation pump 6a is set short (t1> t2) so that the hot water temperature 2 satisfies the target hot water temperature. As a result, during the hot water transfer operation, since the temperature of the hot water is not changed while the operation of the refrigerant circuit 101 is unstable, the temperature control can be stably performed, and the target hot water temperature for hot water storage is determined from the additional target hot water temperature. Switching to temperature can be performed in a short time.

なお、本実施の形態では、追焚き運転と貯湯移行運転とを同時に終了して貯湯運転に移行する動作パターンを例示したが、追焚き運転から貯湯運転への移行時には、上記動作パターンを含めて、例えば図6に示す3つの動作パターン1,2,3を採用することができる。図6は、追焚き運転から貯湯運転に移行するときの動作パターンを示すタイミングチャートである。この図において、「ON」は機器が作動している状態を示し、「OFF」は機器が停止した状態を示す。また、ヒートポンプユニット100(冷媒回路101)において、「ON」は圧縮機1及びファン5が作動している状態を示し、「OFF」はこれらの機器が停止した状態を示している。また、動作パターン1,2,3の何れにおいても、ヒートポンプユニット100及び循環ポンプ6aは、追焚き運転から貯湯運転に至るまで常にONとなっているので、動作パターン2,3では、ヒートポンプユニット100及び循環ポンプ6aの記載を省略している。また、各動作パターンを構成する貯湯運転、追焚き運転及び貯湯移行運転は、以下のように定義される。   In the present embodiment, the operation pattern in which the reheating operation and the hot water storage transition operation are simultaneously completed and the hot water storage operation is shifted is illustrated, but the above operation pattern is included in the transition from the reheating operation to the hot water storage operation. For example, three operation patterns 1, 2, and 3 shown in FIG. 6 can be employed. FIG. 6 is a timing chart showing an operation pattern when shifting from the chasing operation to the hot water storage operation. In this figure, “ON” indicates a state where the device is operating, and “OFF” indicates a state where the device is stopped. In the heat pump unit 100 (refrigerant circuit 101), “ON” indicates a state where the compressor 1 and the fan 5 are operating, and “OFF” indicates a state where these devices are stopped. In any of the operation patterns 1, 2 and 3, the heat pump unit 100 and the circulation pump 6a are always ON from the reheating operation to the hot water storage operation. And the description of the circulation pump 6a is omitted. In addition, the hot water storage operation, the chasing operation, and the hot water transfer operation constituting each operation pattern are defined as follows.

まず、貯湯運転は、水冷媒熱交換器2から流出する高温水をタンク8の上部に流入させる運転として定義され、貯湯運転時には、各機器の作動状態が以下のように制御される。
ヒートポンプユニット100 :ON
循環ポンプ6a :ON
浴槽循環ポンプ11 :OFF
切換弁7 :貯湯回路201側に切換(配管9b,9gを接続)
First, the hot water storage operation is defined as an operation in which high-temperature water flowing out from the water-refrigerant heat exchanger 2 flows into the upper portion of the tank 8, and during hot water storage operation, the operating state of each device is controlled as follows.
Heat pump unit 100: ON
Circulation pump 6a: ON
Bath circulation pump 11: OFF
Switching valve 7: switching to the hot water storage circuit 201 side (connecting pipes 9b and 9g)

追焚き運転は、浴槽循環ポンプ11が作動している運転状態として定義され、追焚き運転時には、各機器の作動状態が以下のように制御される。
ヒートポンプユニット100 :ON
循環ポンプ6a :ON
浴槽循環ポンプ11 :ON
切換弁7 :追焚き回路202側に切換(配管9b,9cを接続)
The chasing operation is defined as an operating state in which the bathtub circulation pump 11 is operating, and during chasing operation, the operating state of each device is controlled as follows.
Heat pump unit 100: ON
Circulation pump 6a: ON
Bath circulation pump 11: ON
Switching valve 7: switching to the tracking circuit 202 side (connecting pipes 9b and 9c)

貯湯移行運転は、追焚き運転から貯湯運転に移行する要求(以下、運転移行要求と表記)が生じた場合に、水冷媒熱交換器2の出湯温度をタンク8内の上部の湯温まで上昇させる運転として定義される。貯湯移行運転時には、各機器の作動状態が以下のように制御される。
ヒートポンプユニット100 :ON
循環ポンプ6a :ON
浴槽循環ポンプ11 :ONまたはOFF(動作パターンによる)
切換弁7 :追焚き回路202側に切換(配管9b,9cを接続)
In the hot water storage transfer operation, when a request for shifting from a reheating operation to a hot water storage operation (hereinafter referred to as an operation transfer request) occurs, the hot water temperature of the water-refrigerant heat exchanger 2 is raised to the hot water temperature in the upper part of the tank 8. Defined as driving During the hot water storage transfer operation, the operating state of each device is controlled as follows.
Heat pump unit 100: ON
Circulation pump 6a: ON
Bath circulation pump 11: ON or OFF (depending on operation pattern)
Switching valve 7: switching to the tracking circuit 202 side (connecting pipes 9b and 9c)

次に、図6を参照しつつ、個々の動作パターンについて説明する。まず、図6(A)に示す動作パターン1では、運転移行要求が生じた場合に、追焚き運転を終了してから貯湯移行運転を開始し、次に、貯湯移行運転を終了してから貯湯運転を開始する。動作パターン1にれば、追焚き運転の終了と共に浴槽循環ポンプ11を停止してから、貯湯移行運転を実行することができる。これにより、貯湯移行運転中に加熱水から浴槽水に移動する熱量を抑制し、貯湯移行運転を効率よく行うことができる。   Next, each operation pattern will be described with reference to FIG. First, in the operation pattern 1 shown in FIG. 6A, when an operation shift request is generated, the hot water storage transfer operation is started after the chasing operation is ended, and then the hot water storage operation is ended. Start driving. If it is the operation pattern 1, after stopping the bathtub circulation pump 11 with the completion | finish of a chasing operation, hot water storage transfer operation | movement can be performed. Thereby, the amount of heat transferred from the heated water to the bath water during the hot water storage transfer operation can be suppressed, and the hot water transfer operation can be performed efficiently.

図6(B)に示す動作パターン2では、運転移行要求が生じた場合に、まず、追焚き運転の実行中に貯湯移行運転を実行し、追焚き運転及び貯湯移行運転を同時に終了してから貯湯運転を開始する。動作パターン2によれば、追焚き運転中に移行運転を実行するので、動作パターン1と比較して、追焚き運転を開始してから貯湯運転に移行するまでに必要な時間を短縮することができる。即ち、追焚き運転を開始してから貯湯に十分な熱量を確保するまでに必要な時間を短縮することができるので、貯湯運転に速やかに移行することができる。   In the operation pattern 2 shown in FIG. 6 (B), when an operation shift request is generated, first, the hot water storage transfer operation is executed during the execution of the reheating operation, and then the reheating operation and the hot water transfer operation are simultaneously terminated. Start hot water storage operation. According to the operation pattern 2, since the transition operation is performed during the chasing operation, the time required from the start of the chasing operation to the hot water storage operation can be shortened as compared with the operation pattern 1. it can. That is, since it is possible to shorten the time required from the start of the chasing operation to securing a sufficient amount of heat in the hot water storage, it is possible to quickly shift to the hot water storage operation.

図6(C)に示す動作パターン3では、運転移行要求が生じた場合に、まず、追焚き運転の実行中に貯湯移行運転を開始し、追焚き運転を終了した後にも貯湯移行運転を継続する。そして、貯湯移行運転を終了してから貯湯運転を開始する。動作パターン3の場合にも、動作パターン2と同様に、追焚き運転中に移行運転を実行するので、動作パターン1と比較して、追焚き運転を開始してから貯湯に十分な熱量を確保するまでに必要な時間を短縮することができる。   In the operation pattern 3 shown in FIG. 6 (C), when an operation shift request is generated, the hot water storage transfer operation is first started during the execution of the reheating operation, and the hot water transfer operation is continued even after the renewal operation is completed. To do. The hot water storage operation is started after the hot water storage transfer operation is completed. In the case of the operation pattern 3, as in the operation pattern 2, since the transition operation is executed during the follow-up operation, a sufficient amount of heat is secured for the hot water storage after the start-up operation is started, compared to the operation pattern 1. The time required to do this can be shortened.

また、本実施の形態では、図4及び図5に示すように、貯湯運転時の加熱能力を追焚き運転時の加熱能力よりも高く設定するものとした。これにより、高温水の貯湯を速やかに進行させることができる。一方、本発明では、貯湯運転時の加熱能力を追焚き運転時の加熱能力よりも低く設定する構成としてもよい。この構成によれば、後述のように、加熱能力の設定が異なる仕様のヒートポンプ給湯機にも適応することができる。また、前記運転移行要求が生じた場合に、追焚き運転から貯湯運転への移行を短時間で実現することができる。   Moreover, in this Embodiment, as shown in FIG.4 and FIG.5, the heating capability at the time of hot water storage operation shall be set higher than the heating capability at the time of a chasing operation. Thereby, hot water storage can be rapidly advanced. On the other hand, in this invention, it is good also as a structure which sets the heating capability at the time of hot water storage operation lower than the heating capability at the time of a chasing operation. According to this configuration, as will be described later, it can be applied to a heat pump water heater having different specifications for heating capacity. Moreover, when the said operation transfer request | requirement arises, the transfer from a chasing operation to hot water storage operation can be implement | achieved in a short time.

また、上記動作パターン1乃至3において、追焚き運転と貯湯運転とで加熱能力を変更する場合には、以下に示す2通りの変更方法が存在する。
(1)貯湯移行運転時(追焚き運転の実行中及び終了後を含む)に加熱能力を変更する
(2)貯湯運転時に加熱能力を変更する。
Moreover, in the said operation patterns 1 thru | or 3, when changing a heating capability by a chasing operation and a hot water storage operation, the following two change methods exist.
(1) Change heating capacity during hot water transfer operation (including during and after chasing operation) (2) Change heating capacity during hot water storage operation.

上記(1)の変更方法によれば、前述したように、貯湯運転の開始直後から十分な蓄熱量を安定的に確保することができる。また、(2)の変更方法によれば、追焚き熱交換器12に加熱水が流通している状態で加熱能力が変更されることにより浴槽水の温度が急激に変化するのを防止することができる。なお、貯湯移行運転中に加熱能力の目標値を追焚き運転時の目標値から貯湯運転時の目標値に変更する場合には、追焚き熱交換器12の2次側の出口水温が一定となるように、浴槽循環ポンプ11の回転数を制御するのが好ましい。これにより、貯湯移行運転中に浴槽水の温度が変化するのを防止し、給湯機の利便性を向上させることができる。   According to the changing method of (1) above, as described above, a sufficient amount of heat storage can be stably secured immediately after the start of the hot water storage operation. Moreover, according to the change method of (2), it prevents that the temperature of bathtub water changes rapidly by changing a heating capability in the state in which the heating water is distribute | circulating to the reheating heat exchanger 12. Can do. In addition, when the target value of the heating capacity is changed from the target value during the hot water operation to the target value during the hot water storage operation during the hot water transfer operation, the outlet water temperature on the secondary side of the hot heat exchanger 12 is constant. It is preferable to control the rotation speed of the bathtub circulation pump 11. Thereby, it can prevent that the temperature of bathtub water changes during hot water storage transfer operation, and can improve the convenience of a water heater.

また、加熱能力の目標値を変更する場合には、これを短時間(または1回)の変更動作で行うことにより、貯湯移行運転の実行時間を短縮し、貯湯熱量を短時間で増加させる構成としてもよい。一方、目標値を徐々に変更することにより、追焚き熱交換器12の2次側の出口水温が急変するのを防止し、給湯機の利便性を確保する構成としてもよい。   In addition, when changing the target value of the heating capacity, this is performed in a short time (or once) changing operation, thereby shortening the execution time of the hot water transfer operation and increasing the amount of stored hot water in a short time. It is good. On the other hand, by gradually changing the target value, the outlet water temperature on the secondary side of the reheating heat exchanger 12 can be prevented from changing suddenly and the convenience of the water heater can be secured.

さらに、前記実施の形態1では、図6(A)及び(C)に示す如く、貯湯移行運転から貯湯運転に移行する場合に、浴槽循環ポンプ11を停止してから、切換弁7を貯湯回路201側に切換えるものとした。この結果、貯湯移行運転により加熱水の温度が上昇しても、その影響で浴槽水の温度が想定外に上昇するのを抑制し、浴槽水の温度を安定させることができる。一方、本発明では、貯湯移行運転から貯湯運転に移行する場合に、切換弁7を貯湯回路201側に切換えてから、浴槽循環ポンプ11を停止する構成としてもよい。この構成によれば、例えば浴槽水の温度が想定よりも低い場合には、貯湯運転を開始してからも、追焚き回路202(追焚き熱交換器12)側の余熱を利用して浴槽水の加熱(保温)を行うことができる。   Furthermore, in the first embodiment, as shown in FIGS. 6A and 6C, when the hot water transfer operation is shifted to the hot water storage operation, the bathtub circulation pump 11 is stopped and the switching valve 7 is then connected to the hot water storage circuit. Switching to the 201 side is assumed. As a result, even if the temperature of the heated water rises due to the hot water storage transfer operation, the temperature of the bath water can be prevented from rising unexpectedly due to the influence, and the temperature of the bath water can be stabilized. On the other hand, in the present invention, when the hot water transfer operation is shifted to the hot water storage operation, the tub circulation pump 11 may be stopped after the switching valve 7 is switched to the hot water storage circuit 201 side. According to this configuration, for example, when the temperature of the bathtub water is lower than expected, the bathtub water is utilized using the remaining heat on the side of the reheating circuit 202 (reheating heat exchanger 12) even after the hot water storage operation is started. Can be heated (insulated).

なお、前記実施の形態では、図4及び図5の左側部分が「貯湯運転」を実行する第1の運転制御手段の具体例を示し、前記各図の右側部分が「追焚き運転」を実行する第2の運転制御手段の具体例を示し、前記各図の中央部が「貯湯移行運転」を実行する第3の運転制御手段の具体例を示している。   In the above-described embodiment, the left part of FIGS. 4 and 5 shows a specific example of the first operation control means for executing the “hot water storage operation”, and the right part of each of the drawings performs the “chase operation”. The specific example of the 2nd operation control means to perform is shown, and the center part of each figure shows the specific example of the 3rd operation control means which performs "hot water storage transfer operation".

また、前記実施の形態では、貯湯目標出湯温度(第1の目標値)を追焚き目標出湯温度(第2の目標値)よりも高い温度に設定し、貯湯運転時の目標加熱能力を追焚き運転時の目標加熱能力よりも高い値に設定する場合を例示した。しかし、本発明はこれに限らず、貯湯目標出湯温度を追焚き目標出湯温度よりも低い温度に設定する構成としてもよく、また、貯湯運転時の目標加熱能力を追焚き運転時の目標加熱能力よりも低い値に設定する構成としてもよい。即ち、ヒートポンプ給湯機の仕様等によっては、追焚き運転時に要求される出湯温度よりも貯湯運転時に要求される出湯温度を低く設定したい場合がある。このような場合には、貯湯目標出湯温度を追焚き目標出湯温度よりも低い温度に設定し、貯湯移行運転時には、水冷媒熱交換器2の目標出湯温度を追焚き目標出湯温度から低下させて貯湯目標出湯温度に切換える構成としてもよい。この構成によれば、例えば追焚き運転の直後に貯湯運転を実施した場合でも、必要以上に高い温度の湯が貯湯タンクに貯留されるのを防止し、給湯機の消費電力抑制することができる。   In the above embodiment, the hot water storage target hot water temperature (first target value) is set to a temperature higher than the target hot water temperature (second target value), and the target heating capacity during hot water storage operation is tracked. The case where it set to the value higher than the target heating capability at the time of operation was illustrated. However, the present invention is not limited to this, and the hot water storage target hot water temperature may be set to a temperature lower than the target hot water temperature, and the target heating capacity during the hot water storage operation may be set as the target heating capacity during the hot water operation. It is good also as a structure set to a lower value than this. That is, depending on the specifications of the heat pump water heater, it may be desired to set the hot water temperature required during the hot water storage operation lower than the hot water temperature required during the hot water operation. In such a case, the hot water storage target hot water temperature is set to a temperature lower than the target hot water temperature, and at the time of hot water transfer operation, the target hot water temperature of the water-refrigerant heat exchanger 2 is reduced from the additional hot water temperature. It is good also as a structure switched to hot water storage target hot water temperature. According to this configuration, for example, even when the hot water storage operation is performed immediately after the chasing operation, hot water having a temperature higher than necessary can be prevented from being stored in the hot water storage tank, and the power consumption of the water heater can be suppressed. .

また、前記実施の形態では、加熱対象水として浴槽水を採用し、追焚き運転等により浴槽水を加熱するものとした。しかし、本発明はこれに限らず、例えば給湯用の水栓に供給される湯や、外部の暖房機器等に供給する暖房用循環水を加熱対象水として採用し、追焚き運転等により水洗への給湯や暖房運転を行う構成としてもよい。   Moreover, in the said embodiment, bathtub water was employ | adopted as heating object water, and the bathtub water shall be heated by a chasing operation. However, the present invention is not limited to this. For example, hot water supplied to a faucet for hot water supply or circulating water for heating supplied to an external heating device or the like is adopted as water to be heated, and the water is washed by reheating operation or the like. It is good also as a structure which performs hot water supply and heating operation.

また、本発明では、ヒートポンプユニット100として、例えば冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプユニットだけでなく、臨界圧力以下で作動するヒートポンプユニットを用いてもよい。この場合、冷媒としてはフロンガス、アンモニア等を用いてもよい。   In the present invention, as the heat pump unit 100, for example, not only a supercritical heat pump unit in which the refrigerant pressure is equal to or higher than the critical pressure, but also a heat pump unit that operates below the critical pressure may be used. In this case, chlorofluorocarbon gas, ammonia or the like may be used as the refrigerant.

1 圧縮機
2 水冷媒熱交換器
6a 循環ポンプ
7 切換弁(切換機構)
8 タンク
11 浴槽循環ポンプ(負荷側ポンプ)
12 追焚き熱交換器
13b 出湯温度センサ(出湯温度検出手段)
14 制御装置
101 冷媒回路
201 貯湯回路
202 追焚き回路
301 追焚き負荷側回路(負荷)
DESCRIPTION OF SYMBOLS 1 Compressor 2 Water refrigerant heat exchanger 6a Circulation pump 7 Switching valve (switching mechanism)
8 Tank 11 Bath circulation pump (load side pump)
12 Reheating heat exchanger 13b Hot water temperature sensor (hot water temperature detection means)
14 Control Device 101 Refrigerant Circuit 201 Hot Water Storage Circuit 202 Additional Circuit 301 Additional Load Side Circuit (Load)

Claims (13)

圧縮機により冷媒を循環させる水冷媒熱交換器を有し、前記水冷媒熱交換器に流入した水を加熱して当該水冷媒熱交換器から加熱水を流出させる冷媒回路と、
前記水冷媒熱交換器から流出する加熱水をタンク内に貯湯する貯湯回路と、
1次側が前記水冷媒熱交換器に接続されて2次側が負荷に接続された追焚き熱交換器を有し、前記水冷媒熱交換器から流出する加熱水の熱を利用して前記追焚き熱交換器により前記負荷側の加熱対象水を加熱する追焚き回路と、
前記貯湯回路及び前記追焚き回路の一部を構成し、前記貯湯回路及び前記追焚き回路に水を循環させる循環ポンプと、
前記加熱水の流路を前記貯湯回路と前記追焚き回路の何れかに切換える切換機構と、
前記水冷媒熱交換器から流出する加熱水の温度を検出する出湯温度検出手段と、
前記加熱水の温度が目標出湯温度と一致するように制御する温度制御手段と、
前記目標出湯温度を第1の目標値に設定した状態で前記加熱水を前記貯湯回路に流通させ、前記タンク内に貯湯する貯湯運転を実行する第1の運転制御手段と、
前記目標出湯温度を前記第1の目標値と異なる第2の目標値に設定した状態で前記加熱水を前記追焚き回路に流通させ、前記加熱対象水を加熱する追焚き運転を実行する第2の運転制御手段と、
前記追焚き運転から前記貯湯運転に移行する要求が生じた場合に、前記目標出湯温度を前記第2の目標値から前記第1の目標値に切換えた状態で前記加熱水を前記追焚き回路に流通させる貯湯移行運転を実行し、当該貯湯移行運転の実行後に前記貯湯運転に移行する第3の運転制御手段と、
を備えたヒートポンプ給湯機。
A refrigerant circuit having a water-refrigerant heat exchanger for circulating refrigerant through a compressor, heating water flowing into the water-refrigerant heat exchanger, and flowing out the heated water from the water-refrigerant heat exchanger;
A hot water storage circuit for storing hot water flowing out of the water refrigerant heat exchanger in a tank;
A reheating heat exchanger having a primary side connected to the water refrigerant heat exchanger and a secondary side connected to a load, and utilizing the heat of the heated water flowing out of the water refrigerant heat exchanger A reheating circuit for heating the water to be heated on the load side by a heat exchanger;
A circulation pump that constitutes part of the hot water storage circuit and the reheating circuit, and circulates water through the hot water storage circuit and the reheating circuit;
A switching mechanism for switching the flow path of the heated water to either the hot water storage circuit or the reheating circuit;
Tapping temperature detecting means for detecting the temperature of heated water flowing out of the water-refrigerant heat exchanger;
Temperature control means for controlling the temperature of the heated water so as to match the target tapping temperature;
First operation control means for performing a hot water storage operation for circulating the heated water through the hot water storage circuit in a state where the target hot water temperature is set to a first target value and storing the hot water in the tank;
The heating water is circulated through the reheating circuit in a state where the target hot water temperature is set to a second target value different from the first target value, and a reheating operation for heating the heating target water is executed. Operation control means,
When a request to shift from the reheating operation to the hot water storage operation occurs, the heating water is supplied to the reheating circuit in a state where the target hot water temperature is switched from the second target value to the first target value. A third operation control means for performing a hot water storage transition operation to be circulated, and transitioning to the hot water storage operation after the hot water storage transition operation is performed
Heat pump water heater equipped with.
前記第3の運転制御手段は、前記貯湯移行運転の実行中に、前記冷媒回路の加熱能力の目標値を前記追焚き運転時の目標値から前記貯湯運転時の目標値に変更する構成としてなる請求項1に記載のヒートポンプ給湯機。   The third operation control means is configured to change the target value of the heating capacity of the refrigerant circuit from the target value during the reheating operation to the target value during the hot water storage operation during execution of the hot water transfer operation. The heat pump water heater according to claim 1. 前記第3の運転制御手段は、前記貯湯移行運転が終了した後の前記貯湯運転時中に、前記冷媒回路の加熱能力の目標値を前記追焚き運転時の目標値から前記貯湯運転時の目標値に変更する構成としてなる請求項1に記載のヒートポンプ給湯機。   The third operation control means is configured to change a target value of the heating capacity of the refrigerant circuit from a target value during the reheating operation to a target during the hot water storage operation during the hot water storage operation after the hot water storage transition operation is completed. The heat pump water heater according to claim 1, wherein the heat pump water heater is configured to be changed to a value. 前記温度制御手段により前記加熱水の温度を制御する時間間隔を、前記第3の運転制御手段により前記冷媒回路の加熱能力を制御する時間間隔よりも短く設定する構成としてなる請求項1乃至3のうち何れか1項に記載のヒートポンプ給湯機。   The time interval for controlling the temperature of the heated water by the temperature control means is set to be shorter than the time interval for controlling the heating capacity of the refrigerant circuit by the third operation control means. The heat pump water heater according to any one of the above. 前記貯湯運転時の加熱能力は、前記追焚き運転時の加熱能力よりも高く設定する構成としてなる請求項1乃至4のうち何れか1項に記載のヒートポンプ給湯機。   The heat pump water heater according to any one of claims 1 to 4, wherein the heating capacity during the hot water storage operation is set higher than the heating capacity during the chasing operation. 前記貯湯運転時の加熱能力は、前記追焚き運転時の加熱能力よりも低く設定する構成としてなる請求項1乃至4のうち何れか1項に記載のヒートポンプ給湯機。   The heat pump water heater according to any one of claims 1 to 4, wherein a heating capacity during the hot water storage operation is set to be lower than a heating capacity during the chasing operation. 前記貯湯移行運転から前記貯湯運転への移行時には、前記切換機構を前記貯湯回路側に切換えた後に、前記負荷側に加熱対象水を循環させる負荷側ポンプを停止させる構成としてなる請求項1乃至6のうち何れか1項に記載のヒートポンプ給湯機。   The structure is such that, at the time of transition from the hot water transfer operation to the hot water storage operation, the load side pump for circulating the heating target water to the load side is stopped after the switching mechanism is switched to the hot water storage circuit side. The heat pump water heater according to any one of the above. 前記貯湯移行運転から前記貯湯運転への移行時には、前記負荷側に加熱対象水を循環させる負荷側ポンプを停止させた後に、前記切換機構を前記貯湯回路側に切換える構成としてなる請求項1乃至6のうち何れか1項に記載のヒートポンプ給湯機。   7. The configuration is such that, at the time of transition from the hot water storage transition operation to the hot water storage operation, the switching mechanism is switched to the hot water storage circuit side after stopping the load side pump that circulates the water to be heated to the load side. The heat pump water heater according to any one of the above. 前記貯湯移行運転の実行中に前記冷媒回路の加熱能力の目標値を前記追焚き運転時の目標値から前記貯湯運転時の目標値に変更する場合には、前記追焚き熱交換器の2次側の出口水温が一定となるように、前記負荷側に加熱対象水を循環させる負荷側ポンプの回転数を制御する構成としてなる請求項2に記載のヒートポンプ給湯機。   When the target value of the heating capacity of the refrigerant circuit is changed from the target value during the reheating operation to the target value during the hot water storage operation during execution of the hot water transfer operation, the secondary heat exchanger The heat pump water heater according to claim 2, wherein the number of revolutions of a load-side pump that circulates water to be heated on the load side is controlled so that a side outlet water temperature is constant. 前記貯湯運転は、前記冷媒回路と前記循環ポンプとが作動すると共に、前記追焚き回路の負荷側に前記加熱対象水を循環させる負荷側ポンプが停止し、かつ、前記切換機構が前記貯湯回路側に切換えられた運転状態であり、
前記追焚き運転は、前記冷媒回路、前記循環ポンプ及び前記負荷側ポンプが作動し、かつ、前記切換機構が前記追焚き回路側に切換えられた運転状態であり、
前記貯湯移行運転は、前記冷媒回路と前記循環ポンプとが作動し、かつ、前記切換機構が前記追焚き回路側に切換えられた運転状態である請求項1乃至9のうち何れか1項に記載のヒートポンプ給湯機。
In the hot water storage operation, the refrigerant circuit and the circulation pump are operated, the load side pump for circulating the heating target water to the load side of the reheating circuit is stopped, and the switching mechanism is on the hot water storage circuit side. The operation state has been switched to
The chasing operation is an operating state in which the refrigerant circuit, the circulation pump and the load side pump are operated, and the switching mechanism is switched to the chasing circuit side,
10. The hot water storage transfer operation according to claim 1, wherein the refrigerant circuit and the circulation pump are operated, and the switching mechanism is switched to the follow-up circuit side. Heat pump water heater.
前記追焚き運転から前記貯湯運転に移行する要求が生じた場合に、前記追焚き運転を終了してから前記貯湯移行運転を開始し、前記貯湯移行運転を終了してから前記貯湯運転を開始する構成としてなる請求項10に記載のヒートポンプ給湯機。   When a request for shifting from the reheating operation to the hot water storage operation occurs, the hot water storage operation is started after finishing the reheating operation, and the hot water storage operation is started after the hot water storage operation is ended. The heat pump water heater according to claim 10, which is configured. 前記追焚き運転から前記貯湯運転に移行する要求が生じた場合に、前記追焚き運転の実行中に前記貯湯移行運転を実行し、前記追焚き運転及び前記貯湯移行運転を終了してから前記貯湯運転を開始する構成としてなる請求項10に記載のヒートポンプ給湯機。   When a request to shift from the reheating operation to the hot water storage operation occurs, the hot water storage transition operation is executed during execution of the reheating operation, and the hot water storage operation is terminated after the reheating operation and the hot water storage transition operation are completed. The heat pump water heater according to claim 10, wherein the heat pump water heater is configured to start operation. 前記追焚き運転から前記貯湯運転に移行する要求が生じた場合に、前記追焚き運転の実行中に前記貯湯移行運転を開始し、前記追焚き運転を終了した後にも前記貯湯移行運転を継続し、前記貯湯移行運転を終了してから前記貯湯運転を開始する構成としてなる請求項10に記載のヒートポンプ給湯機。   When a request to shift from the reheating operation to the hot water storage operation occurs, the hot water storage shifting operation is started during the execution of the reheating operation, and the hot water storage shifting operation is continued even after the renewal operation is finished. The heat pump water heater according to claim 10, wherein the hot water storage operation is started after the hot water storage transition operation is completed.
JP2012133181A 2011-06-27 2012-06-12 Heat pump water heater Active JP5527360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012133181A JP5527360B2 (en) 2011-06-27 2012-06-12 Heat pump water heater

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011141764 2011-06-27
JP2011141764 2011-06-27
JP2012133181A JP5527360B2 (en) 2011-06-27 2012-06-12 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2013032903A true JP2013032903A (en) 2013-02-14
JP5527360B2 JP5527360B2 (en) 2014-06-18

Family

ID=47788910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012133181A Active JP5527360B2 (en) 2011-06-27 2012-06-12 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP5527360B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190724A (en) * 2014-03-28 2015-11-02 ダイキン工業株式会社 water heater
JP2015232425A (en) * 2014-06-10 2015-12-24 三菱電機株式会社 Hot water storage type water heater
CN114234453A (en) * 2021-09-26 2022-03-25 华帝股份有限公司 Fluctuating temperature control method of gas water heater and gas water heater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092323A (en) * 2007-10-10 2009-04-30 Panasonic Corp Heat pump water heater
JP2010223451A (en) * 2009-03-19 2010-10-07 Mitsubishi Electric Corp Storage water heater
JP2011021828A (en) * 2009-07-16 2011-02-03 Mitsubishi Electric Corp Heat pump water heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092323A (en) * 2007-10-10 2009-04-30 Panasonic Corp Heat pump water heater
JP2010223451A (en) * 2009-03-19 2010-10-07 Mitsubishi Electric Corp Storage water heater
JP2011021828A (en) * 2009-07-16 2011-02-03 Mitsubishi Electric Corp Heat pump water heater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190724A (en) * 2014-03-28 2015-11-02 ダイキン工業株式会社 water heater
JP2015232425A (en) * 2014-06-10 2015-12-24 三菱電機株式会社 Hot water storage type water heater
CN114234453A (en) * 2021-09-26 2022-03-25 华帝股份有限公司 Fluctuating temperature control method of gas water heater and gas water heater
CN114234453B (en) * 2021-09-26 2023-03-07 华帝股份有限公司 Fluctuating temperature control method of gas water heater and gas water heater

Also Published As

Publication number Publication date
JP5527360B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP5580658B2 (en) Heat medium supply device
WO2016001980A1 (en) Heating and hot water supply system
JP2010261665A (en) Heat pump type water heater
JP3901192B2 (en) Heat pump water heater
JP5494703B2 (en) Heat pump water heater
JP5423514B2 (en) Hot water storage water heater
JP5527360B2 (en) Heat pump water heater
JP5585358B2 (en) Hot water storage water heater
JP2008032291A (en) Heat pump type hot water supply heating device
JP5434955B2 (en) Heat pump water heater
JP4816712B2 (en) Heat pump water heater
JP5553059B2 (en) Hot water storage water heater
JP5655695B2 (en) Hot water storage water heater
JP6428478B2 (en) Hot water storage type heat pump water heater
JP2012072949A (en) Water heater
JP5835113B2 (en) Hot water storage water heater
JP4950004B2 (en) Heat pump type water heater
JP5741256B2 (en) Hot water storage water heater
JP6119499B2 (en) Hot water storage water heater
JP2017198383A (en) Heat pump type water heater
JP6834494B2 (en) Hot water storage type water heater
JP5168344B2 (en) Heat pump water heater
JP5556696B2 (en) Hot water storage water heater
JP5173469B2 (en) Heat pump water heater
JP6391414B2 (en) Heating and hot water supply equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5527360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250