JP2008032291A - Heat pump type hot water supply heating device - Google Patents

Heat pump type hot water supply heating device Download PDF

Info

Publication number
JP2008032291A
JP2008032291A JP2006204735A JP2006204735A JP2008032291A JP 2008032291 A JP2008032291 A JP 2008032291A JP 2006204735 A JP2006204735 A JP 2006204735A JP 2006204735 A JP2006204735 A JP 2006204735A JP 2008032291 A JP2008032291 A JP 2008032291A
Authority
JP
Japan
Prior art keywords
hot water
temperature
heat pump
heating
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006204735A
Other languages
Japanese (ja)
Other versions
JP4867514B2 (en
Inventor
Akira Suzuki
彰 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006204735A priority Critical patent/JP4867514B2/en
Publication of JP2008032291A publication Critical patent/JP2008032291A/en
Application granted granted Critical
Publication of JP4867514B2 publication Critical patent/JP4867514B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve both of COP in a direct heating operation and COP in a high-temperature hot water storage operation, in a heat pump type hot water supply heating device. <P>SOLUTION: Intermediate-temperature direct heating is executed when a H/P water supply temperature T1 is lower than a reference water supply temperature, and high-temperature direct heating is executed when the H/P water supply temperature T1 is higher than the reference water supply temperature in the direct heating operation. When the H/P water supply temperature T1 is low, COP can be increased by lowering a boiling-up temperature. When the H/P water supply temperature T1 is high, the boiling-up temperature is increased as the COP difference with respect to high and low boiling-up temperatures is small when the H/P water supply temperature T1 is high. Thus the hot water is stored in a hot water storage tank 5 in the direct heating operation, and a ratio of the water of intermediate temperature is decreased. As the ratio of the water of intermediate temperature in the hot water storage tank 5 is decreased, COP can be increased in performing the high temperature hot water storage operation. Further as the ratio of hot water in the hot water storage tank 5 is increased, power consumption in the high temperature hot water storage operation can be reduced. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ヒートポンプサイクルにより貯湯タンク内の給湯水を加熱するとともに、ヒートポンプサイクルにより加熱された給湯水の熱、あるいは貯湯タンクに蓄えられた給湯水の熱を用いて暖房運転を行うヒートポンプ式給湯暖房装置に関する。   The present invention heats hot water in a hot water storage tank by a heat pump cycle, and performs heat operation using the heat of hot water heated by the heat pump cycle or the hot water stored in the hot water tank. It relates to a heating device.

ヒートポンプサイクルにより加熱された給湯水の熱、あるいは貯湯タンクに蓄えられた給湯水の熱を用いて暖房運転を行うヒートポンプ式給湯暖房装置が知られている(例えば、特許文献1参照)。
ヒートポンプ式給湯暖房装置による暖房運転には、(1)ヒートポンプサイクルで加熱された給湯水により、直接、暖房用のブラインを加熱する「直暖運転」と、(2)貯湯タンクに蓄えられた給湯水により、暖房用のブラインを加熱する「蓄暖運転」とがある。この直暖運転と蓄暖運転を、ヒートポンプ式給湯暖房装置の運転条件に応じて切り替えることが提案されている。
2. Description of the Related Art A heat pump hot water supply / room heating apparatus that performs a heating operation using the heat of hot water heated by a heat pump cycle or the heat of hot water stored in a hot water storage tank is known (see, for example, Patent Document 1).
The heating operation by the heat pump hot water supply / heating device includes (1) “direct heating operation” in which heating brine is directly heated by hot water heated in a heat pump cycle, and (2) hot water stored in a hot water storage tank. There is a “heat storage operation” in which brine for heating is heated with water. It has been proposed to switch between the direct warming operation and the heat accumulating operation according to the operating conditions of the heat pump hot water supply / room heating device.

ここで、直暖運転時に、暖房装置側がブラインの加熱量を多く要求する場合(例えば、暖房運転始動時など)と、ブラインの加熱量を多く要求しない場合(例えば、定常運転時など)とがある。そこで、暖房装置側がブラインの加熱量を多く要求する場合には、ヒートポンプサイクルで加熱する給湯水の沸き上げ温度を高く(例えば90℃)してブラインの加熱量を多くし、暖房装置側がブラインの加熱量を多く要求しない場合には、ヒートポンプサイクルで加熱する給湯水の沸き上げ温度を低く(例えば65℃)してヒートポンプサイクルのCOP(成績係数)を高める提案がなされている。   Here, during the direct warming operation, the heating device side requests a large amount of brine heating (for example, when the heating operation is started) and does not require a large amount of brine heating (for example, during steady operation). is there. Therefore, when the heating device side requires a large amount of heating of the brine, the boiling temperature of the hot water heated in the heat pump cycle is increased (for example, 90 ° C.) to increase the heating amount of the brine, and the heating device side is In the case where a large amount of heating is not required, proposals have been made to increase the COP (coefficient of performance) of the heat pump cycle by lowering the boiling temperature of hot water heated in the heat pump cycle (for example, 65 ° C.).

また、直暖運転時には、ヒートポンプサイクルで加熱された給湯水(沸き上げられた給湯水)の全てが暖房用のブラインを加熱するための水/ブライン熱交換器に導かれる訳でなく、沸き上げられた給湯水の余剰分が貯湯タンクに戻され、貯湯タンクがバッファとして用いられる。
このため、直暖運転時で、暖房装置側がブラインの加熱量を多く要求しない運転状態(定常運転など)が続くほど、貯湯タンクの内部には、ヒートポンプサイクルで低めに加熱された中温の給湯水(中温水:例えば65℃)が多く蓄えられる。
In addition, during the direct warming operation, not all of the hot water heated in the heat pump cycle (boiling hot water) is led to the water / brine heat exchanger for heating the heating brine, The excess hot water supplied is returned to the hot water storage tank, and the hot water storage tank is used as a buffer.
For this reason, the medium temperature hot water heated in the heat pump cycle is lower in the hot water storage tank as the operation state (such as steady operation) in which the heating device does not require a large amount of brine heating during the direct warm operation continues. A lot of (medium temperature water: for example, 65 ° C.) is stored.

一方、ヒートポンプ式給湯暖房装置は、深夜などの電気料金が安い時間帯に、貯湯タンク内の給湯水を、高温の給湯水(熱水:例えば90℃)に沸き上げる高温貯湯運転を行う。この高温貯湯運転時において、中温水を熱水に沸き上げる運転は、ヒートポンプサイクルのCOPが低くなってしまう。
しかし、上述したように、直暖運転時で、暖房装置側がブラインの加熱量を多く要求しない運転状態(定常運転など)が続くことで、貯湯タンクの内部にはヒートポンプサイクルで低めに加熱された中温水が多く蓄えられることとなるため、深夜等において高温貯湯運転を行う際にCOPが低下する不具合が生じる。
特開2004−286292号公報
On the other hand, the heat pump hot water heater / heater performs a high temperature hot water storage operation in which hot water in a hot water storage tank is boiled to high temperature hot water (hot water: for example, 90 ° C.) in a time zone where electricity charges are low such as midnight. In this high temperature hot water storage operation, the operation of boiling the medium temperature water into hot water results in a low COP of the heat pump cycle.
However, as described above, during the direct warming operation, the heating device side is continuously operated in a state where it does not require a large amount of brine heating (steady operation or the like), so that the inside of the hot water storage tank is heated at a low temperature by a heat pump cycle. Since a large amount of medium-temperature water is stored, there is a problem that the COP is lowered when a high-temperature hot water storage operation is performed at midnight or the like.
JP 2004-286292 A

本発明は上記の事情に鑑みてなされたものであり、その目的は、直暖運転時におけるCOPと、高温貯湯運転時におけるCOPとを、共に高めることのできるヒートポンプ式給湯暖房装置の提供にある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a heat pump hot water supply / room heating device capable of increasing both COP during direct warming operation and COP during high temperature hot water storage operation. .

[請求項1の手段]
請求項1の手段を採用するヒートポンプ式給湯暖房装置の制御装置(4)は、直暖運転時において、H/P給水温度(T1)が低い時に、ヒートポンプサイクル(R)による給湯水の沸き上げ温度を低温側に制御し、H/P給水温度(T1)が高い時に、ヒートポンプサイクル(R)による給湯水の沸き上げ温度を高温側に制御する。
H/P給水温度(T1)が低い時は、沸き上げ温度を高くするよりも、沸き上げ温度を低くした方がヒートポンプサイクル(R)のCOPを高くできるため、直暖運転時におけるCOPを高くできる。
[Means of claim 1]
The control device (4) of the heat pump hot water supply / room heating device adopting the means of claim 1 raises the hot water supply by the heat pump cycle (R) when the H / P feed water temperature (T1) is low during the direct warming operation. The temperature is controlled to the low temperature side, and when the H / P feed water temperature (T1) is high, the boiling temperature of the hot water by the heat pump cycle (R) is controlled to the high temperature side.
When the H / P feed water temperature (T1) is low, the COP of the heat pump cycle (R) can be increased by lowering the boiling temperature than by raising the boiling temperature. it can.

一方、H/P給水温度(T1)が高い時は、沸き上げ温度を高くしても、沸き上げ温度を低くしても、ヒートポンプサイクル(R)のCOPの差が小さい。そこで、H/P給水温度(T1)が高い時は、沸き上げ温度を高くすることで、直暖運転時に貯湯タンク(5)へ導かれる余剰の給湯水を熱水にすることができる。この結果、直暖運転時に貯湯タンク(5)内に熱水が蓄えられることになり、直暖運転時に貯湯タンク(5)内に中温水が蓄えられることを抑えることができる。即ち、貯湯タンク(5)内の中温水の割合が抑えられ、逆に貯湯タンク(5)内の熱水の割合が増える。
このように、貯湯タンク(5)内の中温水の割合が抑えられるため、深夜等に高温貯湯運転を行う際、中温水を熱水に沸き上げる運転(COPの低い運転)を減らすことができる。即ち、高温貯湯運転時のCOPを高めることができる。
また、貯湯タンク(5)内の熱水の割合が増えるため、深夜等に貯湯タンク(5)内を熱水に沸き上げる高温貯湯運転の運転時間を短縮することができ、高温貯湯運転に要する消費電力を抑えることができる。
On the other hand, when the H / P feed water temperature (T1) is high, the difference in the COP of the heat pump cycle (R) is small even if the boiling temperature is raised or lowered. Therefore, when the H / P feed water temperature (T1) is high, the boiling water temperature is raised, so that the excess hot water supplied to the hot water storage tank (5) during the direct warming operation can be used as hot water. As a result, hot water is stored in the hot water storage tank (5) during the direct warming operation, and it is possible to prevent intermediate hot water from being stored in the hot water storage tank (5) during the direct warming operation. That is, the ratio of the medium temperature water in the hot water storage tank (5) is suppressed, and conversely, the ratio of hot water in the hot water storage tank (5) increases.
Thus, since the ratio of the medium temperature water in the hot water storage tank (5) is suppressed, when performing the high temperature hot water storage operation at midnight or the like, it is possible to reduce the operation for boiling the medium temperature water into hot water (operation with a low COP). . That is, COP at the time of high temperature hot water storage operation can be increased.
In addition, since the ratio of hot water in the hot water storage tank (5) increases, the operation time of the high temperature hot water storage operation in which the hot water storage tank (5) is heated to hot water at midnight can be shortened, which is necessary for the high temperature hot water storage operation. Power consumption can be reduced.

[請求項2の手段]
請求項2の手段を採用するヒートポンプ式給湯暖房装置の制御装置(4)は、直暖運転時にヒートポンプサイクル(R)による給湯水の沸き上げ温度を低温側に制御する際、ヒートポンプサイクル(R)で加熱された給湯水の余剰分を、貯湯タンク(5)の上下方向の中間部に戻し、直暖運転時にヒートポンプサイクル(R)による給湯水の沸き上げ温度を高温側に制御する際、ヒートポンプサイクル(R)で加熱された給湯水の余剰分を、貯湯タンク(5)の上下方向の上部に戻す。
即ち、直暖運転時に、熱水が貯湯タンク(5)の上部に戻され、中温水が貯湯タンク(5)の中間部に戻される。
これにより、貯湯タンク(5)内において熱水と中温水とが混ざり合う不具合が生じない。
[Means of claim 2]
The control device (4) of the heat pump type hot water supply and heating device adopting the means of claim 2 is configured to control the heating temperature of the hot water supply by the heat pump cycle (R) to the low temperature side during the direct warming operation. When the hot water heated in step S is returned to the intermediate portion in the vertical direction of the hot water storage tank (5) and the boiling temperature of the hot water in the heat pump cycle (R) is controlled to the high temperature side during direct warming operation, The surplus portion of the hot water heated in the cycle (R) is returned to the upper part of the hot water storage tank (5) in the vertical direction.
That is, during the direct warming operation, hot water is returned to the upper part of the hot water storage tank (5), and intermediate hot water is returned to the intermediate part of the hot water storage tank (5).
Thereby, the malfunction which hot water and medium temperature water mix in the hot water storage tank (5) does not arise.

[請求項3の手段]
請求項3の手段を採用するヒートポンプ式給湯暖房装置の制御装置(4)は、暖房運転時に所定の運転条件が成立した際に、貯湯タンク(5)における上下方向の中間部に蓄えられた中温水を水/ブライン熱交換器(34)に導いて暖房運転を実施する。
これにより、暖房運転時、貯湯タンク(5)内に蓄えられた中温水を消費することができ、結果的に貯湯タンク(5)内における熱水以外の給湯水温度を下げることができる。 このように、貯湯タンク(5)内における熱水以外の給湯水温度を下げることができるため、深夜等に高温貯湯運転を行う際のCOPを高めることができる。
[Means of claim 3]
The control device (4) of the heat pump hot water supply / room heating device adopting the means of claim 3 is stored in the intermediate portion in the vertical direction of the hot water storage tank (5) when a predetermined operation condition is established during the heating operation. The hot water is led to the water / brine heat exchanger (34) to perform the heating operation.
Thereby, the middle temperature water stored in the hot water storage tank (5) can be consumed during the heating operation, and as a result, the temperature of hot water other than hot water in the hot water storage tank (5) can be lowered. Thus, since the hot water supply temperature other than hot water in the hot water storage tank (5) can be lowered, the COP at the time of performing the high temperature hot water storage operation at midnight or the like can be increased.

[請求項4の手段]
請求項4の手段を採用するヒートポンプ式給湯暖房装置の制御装置(4)は、暖房運転中に貯湯タンク(5)における上下方向の中間部の貯湯温度が所定温度より高い時に、貯湯タンク(5)における上下方向の中間部に蓄えられた中温水を水/ブライン熱交換器(34)に導いて暖房運転を実施する。
[Means of claim 4]
The control device (4) of the heat pump type hot water supply and heating device adopting the means of claim 4 is provided with a hot water storage tank (5) when the hot water storage temperature in the vertical middle portion of the hot water storage tank (5) is higher than a predetermined temperature during the heating operation. The medium temperature water stored in the intermediate portion in the vertical direction in (1) is guided to the water / brine heat exchanger (34) to perform the heating operation.

最良の形態1のヒートポンプ式給湯暖房装置は、加熱された給湯水を蓄える貯湯タンク(5)と、冷媒の放熱を行う放熱器(22)を備えたヒートポンプサイクル(R)と、放熱器(22)における冷媒の放熱によって貯湯タンク(5)内の給湯水を加熱する冷媒/水熱交換器(26)と、貯湯タンク(5)内に蓄えられた給湯水の熱、あるいはヒートポンプサイクル(R)により加熱された給湯水の熱によって、暖房用のブラインを加熱する水/ブライン熱交換器(34)と、ヒートポンプサイクル(R)によって加熱される給湯水の温度を制御する制御装置(4)とを具備する。
このヒートポンプ式給湯暖房装置は、直暖運転時に、ヒートポンプサイクル(R)で加熱された給湯水の余剰分を貯湯タンク(5)に戻す構造を採用している。
The heat pump hot water supply and heating apparatus of the best mode 1 includes a hot water storage tank (5) for storing heated hot water supply, a heat pump cycle (R) including a radiator (22) for radiating refrigerant, and a radiator (22 The refrigerant / water heat exchanger (26) that heats the hot water in the hot water storage tank (5) by the heat release of the refrigerant in the heat source), the heat of the hot water stored in the hot water storage tank (5), or the heat pump cycle (R) A water / brine heat exchanger (34) that heats the brine for heating by the heat of the hot water heated by, and a control device (4) that controls the temperature of the hot water heated by the heat pump cycle (R), It comprises.
This heat pump type hot water supply and heating device employs a structure that returns an excess amount of hot water heated in the heat pump cycle (R) to the hot water storage tank (5) during direct heating operation.

制御装置(4)は、直暖運転時に、H/P給水温度(T1)が予め設定された基準給水温度より低い時に、ヒートポンプサイクル(R)による給湯水の沸き上げ温度を低温側に制御し、H/P給水温度(T1)が予め設定された基準給水温度より高い時に、ヒートポンプサイクル(R)による給湯水の沸き上げ温度を高温側に制御する「沸き上げ温度切替手段(制御プログラム)」を備える。
この沸き上げ温度切替手段が実行されることにより、H/P給水温度(T1)が低い時は沸き上げ温度が低く、COPを高くできる。
また、H/P給水温度(T1)が高い時は沸き上げ温度が高く、貯湯タンク(5)内の中温水の割合が抑えられ、高温貯湯運転を行う際にCOPの低い運転を減らすことができる。即ち、高温貯湯運転時のCOPを高めることができる。
さらに、H/P給水温度(T1)が高い時は沸き上げ温度が高くて貯湯タンク(5)内の熱水の割合が増えるため、高温貯湯運転の運転時間を短縮でき、消費電力を抑えることができる。
When the H / P feed water temperature (T1) is lower than a preset reference feed water temperature during the direct warming operation, the control device (4) controls the boiling temperature of the hot water supply by the heat pump cycle (R) to the low temperature side. When the H / P feed water temperature (T1) is higher than a preset reference feed water temperature, the “boiling temperature switching means (control program)” controls the hot water boiling temperature by the heat pump cycle (R) to the high temperature side. Is provided.
By executing this boiling temperature switching means, when the H / P feed water temperature (T1) is low, the boiling temperature is low and the COP can be increased.
In addition, when the H / P feed water temperature (T1) is high, the boiling temperature is high, the ratio of the medium temperature water in the hot water storage tank (5) is suppressed, and the operation with low COP is reduced when performing the high temperature hot water storage operation. it can. That is, COP at the time of high temperature hot water storage operation can be increased.
Furthermore, when the H / P feed water temperature (T1) is high, the boiling temperature is high and the proportion of hot water in the hot water storage tank (5) increases, so the operation time of the high temperature hot water storage operation can be shortened and the power consumption can be reduced. Can do.

なお、上記各手段の括弧内の符号は、後述する実施例の具体的な手段との対向関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows opposing relationship with the specific means of the Example mentioned later.

本発明をヒートポンプ式給湯暖房装置に適用した実施例1を、図1〜図5を参照して説明する。
ヒートポンプ式給湯暖房装置は、タンク装置1、ヒートポンプ熱源装置2および温水式暖房装置3を備え、制御装置4によって運転が制御される。
なお、以下では、貯湯タンク5内に蓄えられる水を「給湯水」と称し、給湯水のうち貯湯タンク5の上部に蓄えられる高温の水(例えば、75〜90℃の水)を「熱水」と称し、給湯水のうち貯湯タンク5の上下方向の中間部に蓄えられ、熱水より温度の低い水(例えば、40〜75℃の水)を「中温水」と称し、給湯水のうち貯湯タンク5の下部に蓄えられ、中温水より温度の低い水(例えば、40℃未満の水)、あるいは上水道から直接供給される水を「冷水」と称して説明する。
A first embodiment in which the present invention is applied to a heat pump hot water supply / room heating apparatus will be described with reference to FIGS.
The heat pump type hot water supply and heating device includes a tank device 1, a heat pump heat source device 2, and a hot water type heating device 3, and the operation is controlled by the control device 4.
Hereinafter, water stored in the hot water storage tank 5 is referred to as “hot water”, and high-temperature water (for example, water at 75 to 90 ° C.) stored in the upper portion of the hot water storage tank 5 is referred to as “hot water”. The hot water stored in the middle of the hot water storage tank 5 and having a temperature lower than that of hot water (for example, water at 40 to 75 ° C.) is referred to as “medium hot water”. The water stored in the lower part of the hot water storage tank 5 and having a temperature lower than the medium temperature water (for example, water below 40 ° C.) or directly supplied from the water supply will be referred to as “cold water”.

(タンク装置1の説明)
タンク装置1は、給湯水を蓄える貯湯タンク5を搭載する。この貯湯タンク5は、熱水を長時間保温した状態で蓄えることのできる所定容量の断熱容器であり、耐腐食性に優れた材料(例えば、ステンレス等)よりなる。
貯湯タンク5の下部には、上水道に接続される給水配管6が接続されている。この給水配管6には、図示しない逆止弁および電動開閉弁(例えば、常開弁)が設けられており、上水道に接続された状態で、且つ電動開閉弁が開かれた状態において、上水道から供給される水道水が水道圧によって貯湯タンク5の下部に供給される。
(Description of tank device 1)
The tank device 1 is equipped with a hot water storage tank 5 that stores hot water. The hot water storage tank 5 is a heat insulating container having a predetermined capacity capable of storing hot water in a state where it is kept warm for a long time, and is made of a material (for example, stainless steel) having excellent corrosion resistance.
A water supply pipe 6 connected to the water supply is connected to the lower part of the hot water storage tank 5. The water supply pipe 6 is provided with a check valve (not shown) and an electric open / close valve (for example, a normally open valve), which are connected to the water supply and are opened from the water supply in a state where the electric open / close valve is opened. The supplied tap water is supplied to the lower part of the hot water storage tank 5 by the tap pressure.

貯湯タンク5の上部には、貯湯タンク5の上部に蓄えられている熱水を外部に給湯するための給湯配管7が接続されている。
貯湯タンク5の中間部には、貯湯タンク5の中間部に蓄えられている中温水を外部に給湯するための中温水配管8が接続されている。この中温水配管8の下流端は、給湯配管7の途中に設けられた第1電動三方弁11(熱水/中温水切替三方弁)に接続されており、第1電動三方弁11を切り替えることにより、熱水または中温水が出水可能に設けられている。
A hot water supply pipe 7 for supplying hot water stored in the upper part of the hot water storage tank 5 to the outside is connected to the upper part of the hot water storage tank 5.
An intermediate portion of the hot water storage tank 5 is connected to an intermediate hot water pipe 8 for supplying hot water of the intermediate temperature stored in the intermediate portion of the hot water storage tank 5 to the outside. The downstream end of the intermediate hot water pipe 8 is connected to a first electric three-way valve 11 (hot water / medium hot water switching three-way valve) provided in the middle of the hot water supply pipe 7 to switch the first electric three-way valve 11. Therefore, hot water or medium-temperature water is provided so that it can be discharged.

第1電動三方弁11の下流側の給湯配管7には、第2電動三方弁12(給湯/冷水切替三方弁)が設けられている。この第2電動三方弁12の一方には、給水配管6から分岐したバイパス給水配管13が接続されており、第2電動三方弁12を切り替えることにより、貯湯タンク5内の給湯水(熱水または中温水)あるいは冷水(水道水)が出水可能になっている。   The hot water supply pipe 7 on the downstream side of the first electric three-way valve 11 is provided with a second electric three-way valve 12 (hot water / cold water switching three-way valve). A bypass water supply pipe 13 branched from the water supply pipe 6 is connected to one side of the second electric three-way valve 12, and hot water (hot water or hot water) in the hot water storage tank 5 is switched by switching the second electric three-way valve 12. Middle temperature water) or cold water (tap water) can be discharged.

(給湯水加熱回路K0および暖房用1次回路K1の説明)
貯湯タンク5は、上記配管類とは別に、内部に貯溜する給湯水を加熱するための給湯水加熱回路K0と、内部に貯溜する給湯水によって暖房用のブラインを加熱するための暖房用1次回路K1とが接続される。先ず、給湯水加熱回路K0および暖房用1次回路K1の基本構成を説明する。
(Description of hot water heating circuit K0 and heating primary circuit K1)
The hot water storage tank 5 is provided with a hot water heating circuit K0 for heating hot water stored inside, and a heating primary for heating a heating brine by hot water stored inside, separately from the above-mentioned pipes. The circuit K1 is connected. First, basic configurations of the hot water supply heating circuit K0 and the heating primary circuit K1 will be described.

給湯水加熱回路K0は、貯湯タンク5の下部の給湯水をヒートポンプ熱源装置2により加熱し、貯湯タンク5の上部へ戻す還流回路である。この給湯水加熱回路K0には、水側熱交換器14が設けられており、後述するヒートポンプサイクルRの放熱器22を通過する冷媒と熱交換することによって、水側熱交換器14を通過する給湯水が加熱される。水側熱交換器14の上流側には貯湯用ポンプP0が設けられており、制御装置4から運転指示が与えられると、貯湯タンク5の下部→水側熱交換器14→貯湯タンク5の上部に至る水流を発生させる。   The hot water supply heating circuit K 0 is a reflux circuit that heats hot water in the lower part of the hot water storage tank 5 by the heat pump heat source device 2 and returns it to the upper part of the hot water storage tank 5. The hot water heating circuit K0 is provided with a water-side heat exchanger 14 and passes through the water-side heat exchanger 14 by exchanging heat with a refrigerant passing through a radiator 22 of a heat pump cycle R described later. Hot water is heated. A hot water storage pump P0 is provided on the upstream side of the water side heat exchanger 14, and when an operation instruction is given from the control device 4, the lower part of the hot water tank 5 → the water side heat exchanger 14 → the upper part of the hot water tank 5. A water stream that leads to

暖房用1次回路K1は、貯湯タンク5の上部の熱水を暖房用水側熱交換器16(後述する暖房用ブライン側熱交換器31とともに水/ブライン熱交換器34を成す)を介して貯湯タンク5の下部に戻す還流回路である。この暖房用1次回路K1の途中には、暖房用1次ポンプP1が設けられている。この暖房用1次ポンプP1は電動ポンプであり、制御装置4から運転指示が与えられると、貯湯タンク5の上部→暖房用水側熱交換器16→貯湯タンク5の下部に至る水流を発生させる。   The heating primary circuit K1 stores hot water in the upper part of the hot water storage tank 5 via a heating water side heat exchanger 16 (which forms a water / brine heat exchanger 34 together with a heating brine side heat exchanger 31 described later). A reflux circuit for returning to the lower part of the tank 5. A heating primary pump P1 is provided in the middle of the heating primary circuit K1. This heating primary pump P <b> 1 is an electric pump and generates a water flow from the upper part of the hot water storage tank 5 to the lower part of the hot water storage heat exchanger 16 → the lower part of the hot water storage tank 5 when an operation instruction is given from the control device 4.

また、この実施例の給湯水加熱回路K0および暖房用1次回路K1は、上記基本構成に加え、(1)ヒートポンプ熱源装置2の作動時に水側熱交換器14で加熱された給湯水を、貯湯タンク5の上部の他に、貯湯タンク5の中間部に戻すことが可能に設けられるとともに、(2)温水式暖房装置3の作動時に水側熱交換器14で加熱された給湯水を直接的に暖房用水側熱交換器16に供給可能に設けられ、(3)さらに貯湯タンク5の中間部に蓄えられた中温水を暖房用水側熱交換器16に供給可能に設けられる。   Moreover, the hot water supply heating circuit K0 and the heating primary circuit K1 of this embodiment include (1) hot water heated by the water-side heat exchanger 14 when the heat pump heat source device 2 is operated, In addition to the upper part of the hot water storage tank 5, it is provided so that it can be returned to the intermediate part of the hot water storage tank 5. (2) The heating water side heat exchanger 16 can be supplied to the heating water side heat exchanger 16, and (3) the intermediate warm water stored in the intermediate portion of the hot water storage tank 5 can be supplied to the heating water side heat exchanger 16.

具体的に、この実施例の給湯水加熱回路K0および暖房用1次回路K1は、第3、第4電動三方弁18、19を用いた水回路を採用し、
(1)水側熱交換器14で加熱された『熱水』を貯湯タンク5の上部に供給する「高温貯湯運転{図2(a)参照}」、
(2)貯湯タンク5の上部の『熱水』を暖房用水側熱交換器16に導く「高温蓄熱利用の床暖房運転(高温蓄暖){図2(b)参照}」、
(3)貯湯タンク5の中間部の『中温水』を暖房用水側熱交換器16に導く「中温蓄熱利用の床暖房運転(中温蓄暖){図2(c)参照}」、
(4)水側熱交換器14で加熱された『熱水』を直接的に暖房用水側熱交換器16に導く「高温直接暖房運転(高温直暖:この時、水側熱交換器14で加熱された熱水の余剰分は貯湯タンク5の上部へ戻される){図2(d)参照}」、
(5)水側熱交換器14で加熱された『中温水』を直接的に暖房用水側熱交換器16に導く「中温直接暖房運転(中温直暖:この時、水側熱交換器14で加熱された中温水の余剰分は貯湯タンク5の中間部へ戻される){図2(e)参照}」など、運転状況に応じて種々の運転が可能となっている。
上記(4)、(5)により、貯湯タンク5内において熱水と中温水とが混ざり合う不具合が生じない。
なお、給湯水加熱回路K0および暖房用1次回路K1の水回路構成は、機能等に応じて種々変更可能なものである。
Specifically, the hot water supply heating circuit K0 and the heating primary circuit K1 of this embodiment employ a water circuit using the third and fourth electric three-way valves 18, 19,
(1) “High temperature hot water storage operation {see FIG. 2 (a)}” for supplying “hot water” heated by the water-side heat exchanger 14 to the upper part of the hot water storage tank 5.
(2) “Hot water” in the upper part of the hot water storage tank 5 to the heating water side heat exchanger 16 “floor heating operation using high temperature heat storage (high temperature heat storage) {see FIG. 2 (b)}”
(3) “Medium temperature water” in the middle of the hot water storage tank 5 is led to the heating water-side heat exchanger 16 “floor heating operation using intermediate temperature heat storage (medium temperature storage) {see FIG. 2 (c)}”
(4) “High-temperature direct heating operation (high-temperature direct heating: at this time, the water-side heat exchanger 14 is used to guide the“ hot water ”heated by the water-side heat exchanger 14” directly to the water-side heat exchanger 16 for heating. The surplus of heated hot water is returned to the upper part of the hot water storage tank 5) {see FIG. 2 (d)},
(5) "Medium temperature water" heated by the water side heat exchanger 14 is directly guided to the heating water side heat exchanger 16 "Medium temperature direct heating operation (Medium temperature direct warming: At this time, the water side heat exchanger 14 The surplus of the heated medium-temperature water is returned to the intermediate part of the hot water storage tank 5) {see FIG. 2 (e)}, etc., and various operations are possible depending on the operation state.
Due to the above (4) and (5), there is no problem that hot water and medium temperature water are mixed in the hot water storage tank 5.
It should be noted that the water circuit configurations of the hot water supply heating circuit K0 and the heating primary circuit K1 can be variously changed according to functions and the like.

(ヒートポンプ熱源装置2の説明)
ヒートポンプ熱源装置2は、上述した給湯水加熱回路K0を用いて貯湯タンク5内の給湯水を加熱する熱源ユニットであり、給湯水加熱回路K0によって水側熱交換器14に導かれた給湯水を加熱するためのヒートポンプサイクルRを搭載する。
ヒートポンプサイクルRは、貯湯タンク5内の給湯水を高温(例えば、90℃)の熱水に加熱する超臨界ヒートポンプサイクルを採用している。ここで、超臨界ヒートポンプサイクルとは、高圧側の冷媒圧力が冷媒の臨界圧力以上となるヒートポンプサイクルを言い、例えば、二酸化炭素、エチレン、エタン、酸化窒素などを冷媒とするヒートポンプサイクルである。
(Description of heat pump heat source device 2)
The heat pump heat source device 2 is a heat source unit that heats the hot water in the hot water storage tank 5 using the hot water heating circuit K0 described above. The hot water supplied to the water-side heat exchanger 14 by the hot water heating circuit K0 A heat pump cycle R for heating is mounted.
The heat pump cycle R employs a supercritical heat pump cycle that heats hot water in the hot water storage tank 5 to hot water (eg, 90 ° C.). Here, the supercritical heat pump cycle refers to a heat pump cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant. For example, the heat pump cycle uses carbon dioxide, ethylene, ethane, nitrogen oxide, or the like as the refrigerant.

この実施例のヒートポンプサイクルRは、冷媒圧縮機21→放熱器22→膨張装置23→冷媒蒸発器24→アキュムレータ25→再び冷媒圧縮機21の順で冷媒を循環させる閉回路を成す。
冷媒圧縮機21は、冷媒(この実施例では二酸化炭素)の吸入、圧縮、吐出を行うものであり、この冷媒圧縮機21は、図示しない電動モータによって駆動される。なお、冷媒圧縮機21は、電動モータと一体型のものであっても良いし、電動モータと別体のものであっても良い。
The heat pump cycle R of this embodiment forms a closed circuit for circulating the refrigerant in the order of the refrigerant compressor 21 → the radiator 22 → the expansion device 23 → the refrigerant evaporator 24 → the accumulator 25 → the refrigerant compressor 21 again.
The refrigerant compressor 21 performs suction, compression, and discharge of refrigerant (carbon dioxide in this embodiment), and the refrigerant compressor 21 is driven by an electric motor (not shown). The refrigerant compressor 21 may be integrated with the electric motor, or may be separate from the electric motor.

放熱器22は、水側熱交換器14と組み合わされて冷媒/水熱交換器26を構成するものであり、放熱器22に供給された高温高圧の冷媒によって、水側熱交換器14内を通過する給湯水を加熱する。具体的に、冷媒/水熱交換器26では、放熱器22を流れる冷媒の流れ方向と、水側熱交換器14内を流れる給湯水の流れ方向とが対向するように設けられている。   The radiator 22 is combined with the water-side heat exchanger 14 to form a refrigerant / water heat exchanger 26. The inside of the water-side heat exchanger 14 is circulated by the high-temperature and high-pressure refrigerant supplied to the radiator 22. Heat the passing hot water. Specifically, the refrigerant / water heat exchanger 26 is provided so that the flow direction of the refrigerant flowing through the radiator 22 and the flow direction of hot water flowing through the water-side heat exchanger 14 face each other.

膨張装置23は、放熱器22を通過した冷媒を断熱膨張させる減圧器であり、電動アクチュエータによって減圧量を可変できる電気式膨張弁を採用している。
冷媒蒸発器24は、膨張装置23を通過して減圧された冷媒と大気とを熱交換させて、冷媒の熱エネルギーを上昇させる。なお、冷媒蒸発器24には、冷媒と大気との熱交換を促進させる電動ファン27が設けられている。
アキュムレータ25は、ヒートポンプサイクルRの余剰冷媒を蓄えるとともに、ガス冷媒のみを冷媒圧縮機21に導く気液分離器である。
The expansion device 23 is a pressure reducer that adiabatically expands the refrigerant that has passed through the radiator 22, and employs an electric expansion valve that can vary the amount of pressure reduction by an electric actuator.
The refrigerant evaporator 24 exchanges heat between the refrigerant that has passed through the expansion device 23 and has been decompressed, and the atmosphere, and increases the thermal energy of the refrigerant. The refrigerant evaporator 24 is provided with an electric fan 27 that promotes heat exchange between the refrigerant and the atmosphere.
The accumulator 25 is a gas-liquid separator that stores surplus refrigerant in the heat pump cycle R and guides only the gas refrigerant to the refrigerant compressor 21.

(温水式暖房装置3の説明)
温水式暖房装置3は、上述した暖房用1次回路K1を用いて暖房用のブラインを加熱し、加熱されたブラインを用いて床暖房を行うものであり、給湯水の熱をブラインが受ける暖房用ブライン側熱交換器31と、暖房用ブライン側熱交換器31で加熱されたブラインの熱を放熱させる床暖房パネル32と、暖房用ブライン側熱交換器31で加熱されたブラインを床暖房パネル32を通して再び暖房用ブライン側熱交換器31に戻す暖房用2次回路K2と、この暖房用2次回路K2においてブラインを循環駆動する暖房用2次ポンプP2とを備える。
(Description of the hot water heater 3)
The hot water heating device 3 heats the heating brine using the heating primary circuit K1, and performs floor heating using the heated brine, and the brine receives the heat of the hot water supply water. Brine side heat exchanger 31, floor heating panel 32 that radiates the heat of the brine heated by heating brine side heat exchanger 31, and the floor heated panel that heats the brine heated by heating brine side heat exchanger 31 A heating secondary circuit K2 that returns to the heating brine side heat exchanger 31 again through 32 and a heating secondary pump P2 that circulates and drives the brine in the heating secondary circuit K2 are provided.

暖房用ブライン側熱交換器31は、暖房用水側熱交換器16と一体的に設けられ、暖房用水側熱交換器16を通過する給湯水と、暖房用ブライン側熱交換器31を通過するブラインとを熱交換する。即ち、暖房用ブライン側熱交換器31は、暖房用水側熱交換器16と組み合わされて水/ブライン熱交換器34を構成する。具体的に水/ブライン熱交換器34では、暖房用水側熱交換器16内を流れる給湯水の流れ方向と、暖房用ブライン側熱交換器31内を流れるブラインの流れ方向とが対向するように設けられている。   The heating brine side heat exchanger 31 is provided integrally with the heating water side heat exchanger 16, hot water passing through the heating water side heat exchanger 16, and brine passing through the heating brine side heat exchanger 31. And heat exchange. That is, the heating brine side heat exchanger 31 is combined with the heating water side heat exchanger 16 to constitute a water / brine heat exchanger 34. Specifically, in the water / brine heat exchanger 34, the flow direction of hot water flowing in the heating water side heat exchanger 16 and the flow direction of the brine flowing in the heating brine side heat exchanger 31 are opposed to each other. Is provided.

床暖房パネル32は、床面に設置されるものであり、加熱されたブラインを流すことで床面を加熱して床暖房を行う。
暖房用2次回路K2は、水/ブライン熱交換器34で加熱されたブラインを床暖房パネル32に導くとともに、床暖房パネル32を通過した放熱後のブラインを再び水/ブライン熱交換器34に戻す循環回路である。
暖房用2次ポンプP2は電動ポンプであり、制御装置4から運転指示が与えられると、水/ブライン熱交換器34→床暖房パネル32→再び水/ブライン熱交換器34の順でブラインを循環させる。
The floor heating panel 32 is installed on the floor surface, and heats the floor surface by flowing heated brine to perform floor heating.
The heating secondary circuit K2 guides the brine heated by the water / brine heat exchanger 34 to the floor heating panel 32, and again discharges the brine that has passed through the floor heating panel 32 to the water / brine heat exchanger 34. It is a circulating circuit to return.
The secondary pump P2 for heating is an electric pump. When an operation instruction is given from the control device 4, the brine is circulated in the order of the water / brine heat exchanger 34 → the floor heating panel 32 → the water / brine heat exchanger 34 again. Let

(制御装置4の説明)
制御装置4は、制御処理、演算処理を行うCPU、各種プログラムおよびデータを保存するメモリ(ROM、スタンバイRAM、EEPROM、RAM等)、入力回路、出力回路、電源回路などを含んで構成される周知のコンピュータである。
制御装置4は、読み込まれたセンサ類の信号(運転指示信号、温度設定信号、ヒートポンプ式給湯暖房装置の運転状態など)に基づいて各種の演算処理を行い、ヒートポンプ式給湯暖房装置に搭載された各種電気機能部品(各ポンプ類、各電動バルブ類、冷媒圧縮機21の電動モータ、電動ファン27など)の通電制御を実施する。
(Description of the control device 4)
The control device 4 includes a CPU for performing control processing and arithmetic processing, a memory for storing various programs and data (ROM, standby RAM, EEPROM, RAM, etc.), an input circuit, an output circuit, a power supply circuit, and the like. Computer.
The control device 4 performs various arithmetic processes based on the read signals of the sensors (operation instruction signal, temperature setting signal, operation state of the heat pump type hot water supply and heating device, etc.), and is mounted on the heat pump type hot water supply and heating device. Energization control of various electric functional parts (each pump, each electric valve, the electric motor of the refrigerant compressor 21, the electric fan 27, etc.) is performed.

制御装置4に接続されるセンサ類は、ヒートポンプ式給湯暖房装置の操作盤(メインスイッチ、床暖房の運転指示スイッチ、床暖房の温度設定器等を備える:図示しない)の他に、貯湯タンク5内の上下方向の温度分布を検出する複数の貯湯サーミスタ41〜46、貯湯タンク5から冷媒/水熱交換器26に導かれる給湯水の温度(H/P給水温度T1)を検出するH/P給水温度センサ47、冷媒/水熱交換器26で加熱された給湯水の温度(沸き上げ温度T2)を検出する沸き上げ温度センサ48、暖房用ブライン側熱交換器31を通過したブラインの温度(往き温度)を検出する往き温度センサ49、床暖房パネル32を通過したブラインの温度(戻り温度)を検出する戻り温度センサ50、外気温度センサ(図示しない)などがある。   The sensors connected to the control device 4 include an operation panel (including a main switch, an operation instruction switch for floor heating, a temperature setting device for floor heating, etc .: not shown) of the heat pump hot water heater / heater, and a hot water storage tank 5 A plurality of hot water storage thermistors 41 to 46 that detect the temperature distribution in the vertical direction of the inside, H / P that detects the temperature of hot water supplied from the hot water storage tank 5 to the refrigerant / water heat exchanger 26 (H / P water supply temperature T1) A feed water temperature sensor 47, a boiling temperature sensor 48 for detecting the temperature of the hot water heated by the refrigerant / water heat exchanger 26 (boiling temperature T2), and the temperature of the brine that has passed through the heating brine side heat exchanger 31 ( A forward temperature sensor 49 for detecting the forward temperature), a return temperature sensor 50 for detecting the temperature (return temperature) of the brine that has passed through the floor heating panel 32, an outside air temperature sensor (not shown), and the like.

(暖房用1次ポンプP1の制御例)
暖房用1次ポンプP1の回転数は、内蔵する電動モータの通電量に応じて可変制御される。制御装置4は、暖房運転中に暖房用1次ポンプP1の回転数を可変制御する。
制御装置4は、暖房運転中、往き温度センサ49で検出された往き温度が、予め設定された目標往き温度となるように、暖房用1次ポンプP1の回転数をフィードバック制御する。
(Control example of heating primary pump P1)
The rotation speed of the primary pump P1 for heating is variably controlled according to the energization amount of the built-in electric motor. The control device 4 variably controls the rotation speed of the heating primary pump P1 during the heating operation.
During the heating operation, the control device 4 feedback-controls the rotation speed of the heating primary pump P1 so that the forward temperature detected by the forward temperature sensor 49 becomes the preset target forward temperature.

(暖房用2次ポンプP2の制御例)
暖房用2次ポンプP2の回転数は、内蔵する電動モータの通電量に応じて可変制御可能に設けられている。この暖房用2次ポンプP2の回転数は、施工時に所定の初期回転数(定常回転数)に設定される。
(Control example of secondary pump P2 for heating)
The rotation speed of the secondary pump P2 for heating is provided so as to be variably controllable according to the energization amount of the built-in electric motor. The rotation speed of the heating secondary pump P2 is set to a predetermined initial rotation speed (steady rotation speed) at the time of construction.

(ヒートポンプサイクルRによる給湯水の沸き上げ温度制御の説明)
ヒートポンプ式給湯暖房装置は、ヒートポンプサイクルRによる給湯水の沸き上げ温度を可変する「沸き上げ温度可変手段」を備える。
この実施例における沸き上げ温度可変手段は、冷媒/水熱交換器26を通過した給湯水の温度を熱水または中温水の一方に切り替えるものである。
具体的にこの実施例では、貯湯用ポンプP0の回転数を可変することで、冷媒/水熱交換器26を通過した給湯水の温度を熱水または中温水に切り替えように設けられている。
(Explanation of boiling water boiling temperature control by heat pump cycle R)
The heat pump hot water supply / room heating device includes “boiling temperature variable means” for changing the boiling temperature of hot water supplied by the heat pump cycle R.
The boiling temperature varying means in this embodiment switches the temperature of the hot water passing through the refrigerant / water heat exchanger 26 to one of hot water and medium temperature water.
Specifically, in this embodiment, the temperature of hot water passing through the refrigerant / water heat exchanger 26 is switched to hot water or medium temperature water by changing the rotation speed of the hot water storage pump P0.

さらに具体的に説明すると、貯湯用ポンプP0の回転数は、内蔵する電動モータの通電量に応じて可変制御される。制御装置4は、ヒートポンプサイクルRの運転中に貯湯用ポンプP0の回転数を可変制御する。
制御装置4は、運転状態に応じて、ヒートポンプサイクルRによる給湯水の沸き上げ温度を、熱水または中温水の一方に決定する「沸き上げ温度決定手段」を備えており、制御装置4が熱水の沸き上げを決定している際は、沸き上げ温度センサ48で検出された沸き上げ温度T2が熱水(例えば、90℃)となるように、貯湯用ポンプP0の回転数をフィードバック制御し、制御装置4が中温水の沸き上げを決定している際は、沸き上げ温度センサ48で検出された沸き上げ温度T2が中温(例えば、65℃)となるように、貯湯用ポンプP0の回転数をフィードバック制御する。
More specifically, the rotational speed of the hot water storage pump P0 is variably controlled according to the energization amount of the built-in electric motor. The control device 4 variably controls the rotation speed of the hot water storage pump P0 during the operation of the heat pump cycle R.
The control device 4 includes “boiling temperature determining means” that determines the boiling temperature of hot water supplied by the heat pump cycle R as either hot water or medium temperature water according to the operating state. When the boiling of water is determined, the rotational speed of the hot water storage pump P0 is feedback controlled so that the boiling temperature T2 detected by the boiling temperature sensor 48 becomes hot water (for example, 90 ° C.). When the controller 4 determines to boil up the medium-temperature water, the hot water storage pump P0 is rotated so that the boiling temperature T2 detected by the boiling temperature sensor 48 becomes a medium temperature (for example, 65 ° C.). Feedback control the number.

(ヒートポンプ式給湯暖房装置の運転機能)
制御装置4には、上述したポンプ制御の他に、(1)暖房用1次回路K1と暖房用2次回路K2を作動させて床暖房を実行する「暖房運転制御機能(制御プログラム)」と、(2)給湯水加熱回路K0とヒートポンプ熱源装置2を作動させて貯湯タンク5内に高温の熱水を貯湯する「貯湯運転制御機能(制御プログラム)」と、(3)外気温度が低い時に、給湯水が停滞する給湯水加熱回路K0および暖房用1次回路K1の凍結を防止する「凍結防止制御機能(制御プログラム)」とが搭載されている。
(Operation function of heat pump type hot water heater / heater)
In addition to the pump control described above, the control device 4 includes (1) a “heating operation control function (control program)” that operates the primary circuit K1 for heating and the secondary circuit K2 for heating to perform floor heating. (2) “Hot water storage operation control function (control program)” for operating hot water supply heating circuit K0 and heat pump heat source device 2 to store hot hot water in hot water storage tank 5, and (3) When outside air temperature is low Further, a “freezing prevention control function (control program)” for preventing freezing of the hot water heating circuit K0 and the heating primary circuit K1 in which hot water is stagnant is mounted.

(暖房運転制御機能の説明)
次に、暖房運転制御機能の制御例を、図3のフローチャートを参照して説明する。
この制御ルーチンに侵入すると(スタート)、先ず図示しない暖房運転スイッチがONされたか否かの判断を行う(ステップS1)。この判断結果がNOの場合(OFF)は、ステップS1へ戻り待機する。
ステップS1の判断結果がYESの場合(ON)は、貯湯サーミスタ41〜46で検出した貯湯タンク5の中間部近傍の給湯水の温度が、所定温度(例えば、40℃)より低いか否かの判断を行う(ステップS2)。
(Explanation of heating operation control function)
Next, a control example of the heating operation control function will be described with reference to the flowchart of FIG.
When the control routine is entered (start), it is first determined whether or not a heating operation switch (not shown) is turned on (step S1). If this determination is NO (OFF), the process returns to step S1 and waits.
If the determination result in step S1 is YES (ON), whether or not the temperature of the hot water near the intermediate portion of the hot water storage tank 5 detected by the hot water storage thermistors 41 to 46 is lower than a predetermined temperature (for example, 40 ° C.). A determination is made (step S2).

ステップS2の判断結果がNOの場合(中間部近傍の温度が40℃以上)は、暖房運転の運転開始初期(暖房立ち上げ)であるか否かの判断を行う(ステップS3)。具体的にステップS3では、往き温度センサ49で検出されたブラインの温度が所定温度(例えば、35℃)未満の場合、あるいは往き温度センサ49で検出されたブラインの温度変化が過渡状態であれば、暖房運転の運転開始初期状態であると判断し、往き温度センサ49で検出されたブラインの温度が所定温度以上の場合、あるいは温度変化が安定状態であれば、暖房運転の運転開始初期でないと判断する。   If the determination result in step S2 is NO (the temperature in the vicinity of the intermediate portion is 40 ° C. or higher), it is determined whether or not it is the initial operation start (heating start-up) of the heating operation (step S3). Specifically, in step S3, if the brine temperature detected by the forward temperature sensor 49 is lower than a predetermined temperature (for example, 35 ° C.), or if the temperature change of the brine detected by the forward temperature sensor 49 is in a transient state. If the temperature of the brine detected by the going-out temperature sensor 49 is equal to or higher than the predetermined temperature, or if the temperature change is in a stable state, it is not the initial stage of the heating operation. to decide.

ステップS3の判断結果がYES(運転開始初期)の場合は、貯湯タンク5の上部の熱水を暖房用水側熱交換器16に導く「高温蓄熱利用の床暖房運転」を実施し(ステップS4)、その後ステップS2へ戻る。
一方、ステップS3の判断結果がNO(運転開始初期でない)の場合は、貯湯タンク5の中間部の中温水を暖房用水側熱交換器16に導く「中温蓄熱利用の床暖房運転」を実施し(ステップS5)、その後ステップS2へ戻る。なお、ステップS2およびステップS5の制御は、中温蓄暖実行手段による制御機能に相当するものである。
When the determination result in step S3 is YES (initial operation start), a “floor heating operation using high-temperature heat storage” is performed to guide the hot water in the upper part of the hot water storage tank 5 to the heating water-side heat exchanger 16 (step S4). Then, the process returns to step S2.
On the other hand, if the determination result in step S3 is NO (not the initial stage of operation start), “floor heating operation using intermediate temperature heat storage” is performed to guide the intermediate temperature water of the hot water storage tank 5 to the heating water side heat exchanger 16. (Step S5), and then returns to Step S2. In addition, control of step S2 and step S5 is corresponded to the control function by an intermediate temperature storage execution means.

上記ステップS2の判断結果がYESの場合(中間部近傍の温度が40℃未満)は、上記ステップS3と同様の手段によって、暖房運転の運転開始初期(暖房立ち上げ)であるか否かの判断を行う(ステップS6)。
ステップS6の判断結果がYES(運転開始初期)の場合は、ヒートポンプ熱源装置2を作動させて水側熱交換器14で加熱された熱水を直接的に暖房用水側熱交換器16に導く「高温直接暖房運転(高温直暖)」を実施し(ステップS7)、その後ステップS2へ戻る。
If the determination result in step S2 is YES (the temperature in the vicinity of the intermediate portion is less than 40 ° C.), it is determined whether or not it is the start of heating operation (heating start-up) by the same means as in step S3. (Step S6).
If the determination result in step S6 is YES (initial operation start), the heat pump heat source device 2 is operated to direct the hot water heated by the water-side heat exchanger 14 directly to the heating water-side heat exchanger 16. "High temperature direct heating operation (high temperature direct warm)" is performed (step S7), and then the process returns to step S2.

次に、ステップS6の判断結果がNO(定常運転時)の場合について、具体的に説明する。
ステップS6の判断結果がNOの場合(定常運転時)は、H/P給水温度センサ47の検出するH/P給水温度T1に応じて、高温直暖{図2(d)参照}と、中温直暖{図2(e)参照}とを切り替える(ステップS8:沸き上げ温度切替手段の機能)。
具体的には、H/P給水温度センサ47の検出するH/P給水温度T1が予め設定された基準給水温度(例えば30℃)以下の場合に、ヒートポンプサイクルRによる給湯水の沸き上げ温度を低温側(即ち、中温沸き上げ)に制御した中温直暖{図2(e)参照}を実行し、H/P給水温度センサ47の検出するH/P給水温度T1が予め設定された基準給水温度(例えば30℃)より高い場合に、ヒートポンプサイクルRによる給湯水の沸き上げ温度を高温側(即ち、高温沸き上げ)に制御した高温直暖{図2(d)参照}を実行する。
Next, the case where the determination result in step S6 is NO (during steady operation) will be specifically described.
If the determination result in step S6 is NO (during steady operation), the temperature is directly warmed {see FIG. 2 (d)} and the medium temperature according to the H / P feed water temperature T1 detected by the H / P feed water temperature sensor 47 Switching between direct warming {see FIG. 2 (e)} (step S8: function of boiling temperature switching means).
Specifically, when the H / P feed water temperature T1 detected by the H / P feed water temperature sensor 47 is equal to or lower than a preset reference feed water temperature (for example, 30 ° C.), the boiling temperature of the hot water by the heat pump cycle R is set. Medium temperature direct warming {refer to FIG. 2 (e)} controlled to the low temperature side (that is, medium temperature boiling) is executed, and the H / P feed water temperature T1 detected by the H / P feed water temperature sensor 47 is set in advance as a reference feed water When the temperature is higher than the temperature (for example, 30 ° C.), high temperature direct warming {see FIG. 2 (d)} is performed in which the boiling temperature of the hot water supply by the heat pump cycle R is controlled to the high temperature side (that is, high temperature boiling).

このステップS8の制御例を、図4のフローチャートに示す。
この制御ルーチンに侵入すると、先ずH/P給水温度T1が基準給水温度(例えば30℃)以下であるか否かの判断を行う(ステップS11)。
このステップS11の判断結果がYES(H/P給水温度T1が低い)の場合は、中温直暖{図2(e)参照}を実行し(ステップS12)、ステップS2へ戻る。
上記ステップS11の判断結果がNO(H/P給水温度T1が高い)の場合は、高温直暖{図2(d)参照}を実行し(ステップS13)、ステップS2へ戻る。
An example of the control in step S8 is shown in the flowchart of FIG.
When the control routine is entered, it is first determined whether or not the H / P feed water temperature T1 is equal to or lower than a reference feed water temperature (for example, 30 ° C.) (step S11).
If the determination result in step S11 is YES (H / P feed water temperature T1 is low), medium temperature direct warming {see FIG. 2 (e)} is executed (step S12), and the process returns to step S2.
If the determination result in step S11 is NO (H / P feed water temperature T1 is high), high temperature direct warming {see FIG. 2 (d)} is executed (step S13), and the process returns to step S2.

(実施例1の効果1)
ここで、高温沸き上げ時と中温沸き上げ時におけるヒートポンプサイクルRのCOPを図5を参照して説明する。この図5では、H/P給水温度T1の変化に対する高温沸き上げのCOPの変化を実線Aに示し、H/P給水温度T1の変化に対する中温沸き上げのCOPの変化を破線Bに示す。
この図5から読み取れるように、H/P給水温度T1が低くなるほど、高温沸き上げより中温沸き上げのCOPが高くなるが、逆にH/P給水温度T1が高くなると共にCOPが低くなり、COPの差が小さくなる。
(Effect 1 of Example 1)
Here, the COP of the heat pump cycle R at the time of high temperature boiling and at the time of medium temperature boiling will be described with reference to FIG. In FIG. 5, the change in high temperature boiling COP with respect to the change in the H / P feed water temperature T1 is shown by a solid line A, and the change in medium temperature boiling COP with respect to the change in the H / P feed water temperature T1 is shown in a broken line B.
As can be seen from FIG. 5, the lower the H / P feed water temperature T1, the higher the COP of the medium temperature boiling than the high temperature boiling, but conversely the COP decreases as the H / P feed water temperature T1 rises. The difference of becomes smaller.

そこでこの実施例1のヒートポンプ式給湯暖房装置は、上述したように、貯湯タンク5の中間部近傍の給湯水の温度が、所定温度(例えば、40℃)より低く、且つ定常運転の場合は、H/P給水温度T1が基準給水温度(例えば30℃)以下の時に中温直暖{図2(e)参照}を実行し、H/P給水温度T1が基準給水温度(例えば30℃)より高い時に高温直暖{図2(d)参照}を実行する。
H/P給水温度T1が低い時は、図5に示すように、沸き上げ温度を高くするよりも、沸き上げ温度を低くした方がヒートポンプサイクルRのCOPを高くできる。即ち、直暖運転時のCOPを高くできる。
Therefore, as described above, in the heat pump hot water supply / room heating device of the first embodiment, the temperature of the hot water supply near the intermediate portion of the hot water storage tank 5 is lower than a predetermined temperature (for example, 40 ° C.) and is in a steady operation. When the H / P feed water temperature T1 is equal to or lower than the reference feed water temperature (for example, 30 ° C.), the intermediate temperature is directly warmed {see FIG. 2 (e)}, and the H / P feed water temperature T1 is higher than the reference feed water temperature (for example, 30 ° C.). Sometimes high temperature direct warming {see FIG. 2 (d)} is performed.
When the H / P feed water temperature T1 is low, as shown in FIG. 5, the COP of the heat pump cycle R can be increased by lowering the boiling temperature than by raising the boiling temperature. That is, the COP during the direct warming operation can be increased.

一方、H/P給水温度T1が高い時は、図5に示すように、沸き上げ温度を高くしても、沸き上げ温度を低くしても、COPの差が小さい。そこで、H/P給水温度T1が高い時は、沸き上げ温度を高くすることで、直暖運転時に貯湯タンク5へ導かれる余剰の給湯水を熱水にすることができる。この結果、直暖運転時に貯湯タンク5内に熱水が蓄えられることになり、直暖運転時に貯湯タンク5内に中温水が蓄えられることを抑えることができる。即ち、貯湯タンク5内の中温水の割合が抑えられ、逆に貯湯タンク5内の熱水の割合が増える。
このように、貯湯タンク5内の中温水の割合が抑えられるため、深夜等に高温貯湯運転を行う際に、中温水を熱水に沸き上げる運転(COPの低い運転)を減らすことができる。即ち、高温貯湯運転時のCOPを高めることができる。
また、貯湯タンク5内の熱水の割合が増えるため、深夜等に貯湯タンク5内を熱水に沸き上げる高温貯湯運転の運転時間を短縮することができ、高温貯湯運転に要する消費電力を抑えることができる。
On the other hand, when the H / P feed water temperature T1 is high, the difference in COP is small regardless of whether the boiling temperature is high or low, as shown in FIG. Therefore, when the H / P feed water temperature T1 is high, by raising the boiling temperature, surplus hot water supplied to the hot water storage tank 5 during the direct warming operation can be made hot water. As a result, hot water is stored in the hot water storage tank 5 during the direct warming operation, and it is possible to prevent intermediate hot water from being stored in the hot water storage tank 5 during the direct warming operation. That is, the ratio of the medium temperature water in the hot water storage tank 5 is suppressed, and conversely, the ratio of the hot water in the hot water storage tank 5 increases.
Thus, since the ratio of the medium temperature water in the hot water storage tank 5 is suppressed, when performing the high temperature hot water storage operation at midnight or the like, it is possible to reduce the operation for boiling the medium temperature water into hot water (operation with a low COP). That is, COP at the time of high temperature hot water storage operation can be increased.
Moreover, since the ratio of hot water in the hot water storage tank 5 increases, the operation time of the high temperature hot water storage operation in which the hot water storage tank 5 is heated to hot water at midnight can be shortened, and the power consumption required for the high temperature hot water storage operation can be reduced. be able to.

(実施例1の効果2)
この実施例1のヒートポンプ式給湯暖房装置は、上述したように、暖房運転中に貯湯タンク5における上下方向の中間部の貯湯温度が所定温度より高い時に、貯湯タンク5の中間部に蓄えられた中温水を水/ブライン熱交換器34に導いて「中温蓄熱利用の床暖房運転」を実施する。
これにより、暖房運転時、貯湯タンク5内に蓄えられた中温水を消費することができ、結果的に貯湯タンク5内における熱水以外の給湯水温度を下げることができる。このように、貯湯タンク5内における熱水以外の給湯水温度を下げることができるため、深夜等に高温貯湯運転を行う際のCOPを高めることができる。
(Effect 2 of Example 1)
As described above, the heat pump hot water supply / room heating device of the first embodiment is stored in the intermediate portion of the hot water storage tank 5 when the hot water storage temperature in the vertical intermediate portion of the hot water storage tank 5 is higher than a predetermined temperature during the heating operation. The medium temperature water is led to the water / brine heat exchanger 34 and the “floor heating operation using medium temperature heat storage” is performed.
Thereby, the medium temperature water stored in the hot water storage tank 5 can be consumed during the heating operation, and as a result, the temperature of hot water supply water other than hot water in the hot water storage tank 5 can be lowered. As described above, since the temperature of hot water other than hot water in the hot water storage tank 5 can be lowered, the COP when performing a high temperature hot water storage operation at midnight or the like can be increased.

〔変形例〕
上記実施例で示した各数値は、実施例説明のための一例であって、仕様等に応じて適宜変更可能なものである。
上記の実施例では、高温直暖と中温直暖とを切り替えるH/P給水温度T1の温度(基準給水温度)を一定値に設ける例を示したが、ヒステリシスを持たせても良い。
上記の実施例では、ヒートポンプサイクルRによる沸き上げ温度の可変手段として、貯湯用ポンプP0の回転数を可変制御する例を示したが、他の沸き上げ温度の可変手段(例えば、冷媒圧縮機21の回転数制御や、可変容量型の冷媒圧縮機21を用いた容量可変など)を用いたり、組み合わせたりして沸き上げ温度を可変しても良い。
[Modification]
Each numerical value shown in the above-described embodiment is an example for explaining the embodiment, and can be appropriately changed according to the specification or the like.
In the above-described embodiment, an example in which the temperature of the H / P feed water temperature T1 (reference feed water temperature) that switches between high temperature direct warming and intermediate temperature direct warming is set to a constant value is shown, but hysteresis may be provided.
In the above-described embodiment, the example in which the rotational speed of the hot water storage pump P0 is variably controlled as the boiling temperature variable means by the heat pump cycle R has been shown. However, other boiling temperature variable means (for example, the refrigerant compressor 21). The boiling temperature may be varied by using or combining the number of revolutions of the engine and the variable capacity using the variable capacity refrigerant compressor 21.

上記の実施例では、放熱パネルの一例として床暖房パネル32を用いる例を示したが、床以外の他の部位に配置される放熱器(放熱パネル)を用いても良い。もちろん、床暖房パネル32と、床以外の他の部位に配置される放熱器(放熱パネル)とを、組み合わせて用いても良い。
上記の実施例では、超臨界ヒートポンプサイクルを用いる例を示したが、フロン冷媒(代替フロンを含む)を用いた一般的なヒートポンプサイクルを用いても良い。
上記の実施例では、ヒートポンプ式給湯暖房装置の制御を1つの制御装置4で制御する例を示したが、制御装置を複数に分けて用いても良い。
In the above embodiment, an example in which the floor heating panel 32 is used as an example of the heat radiating panel has been described. However, a heat radiator (heat radiating panel) disposed in a portion other than the floor may be used. Of course, you may use combining the floor heating panel 32 and the heat radiator (heat dissipation panel) arrange | positioned in parts other than a floor.
In the above embodiment, an example using a supercritical heat pump cycle has been shown, but a general heat pump cycle using a chlorofluorocarbon refrigerant (including an alternative chlorofluorocarbon) may be used.
In the above-described embodiment, an example in which the control of the heat pump hot water supply / room heating device is controlled by one control device 4, but the control device may be divided into a plurality of devices.

ヒートポンプ式給湯暖房装置の概略構成図である。It is a schematic block diagram of a heat pump type hot water supply and heating device. ヒートポンプ式給湯暖房装置の作動説明図である。It is operation | movement explanatory drawing of a heat pump type hot water supply and heating apparatus. 暖房運転制御の一例を示すフローチャートである。It is a flowchart which shows an example of heating operation control. 沸き上げ温度切替手段の制御例を示すフローチャートである。It is a flowchart which shows the example of control of a boiling temperature switching means. H/P給水温度とCOPとの関係を示すグラフである。It is a graph which shows the relationship between H / P feed water temperature and COP.

符号の説明Explanation of symbols

1 タンク装置
2 ヒートポンプ熱源装置
3 温水式暖房装置
4 制御装置
5 貯湯タンク
22 放熱器
26 冷媒/水熱交換器
34 水/ブライン熱交換器
R ヒートポンプサイクル
DESCRIPTION OF SYMBOLS 1 Tank apparatus 2 Heat pump heat source apparatus 3 Hot water type heating apparatus 4 Control apparatus 5 Hot water storage tank 22 Radiator 26 Refrigerant / water heat exchanger 34 Water / brine heat exchanger R Heat pump cycle

Claims (4)

加熱された給湯水を蓄える貯湯タンク(5)と、
冷媒の放熱を行う放熱器(22)を備えたヒートポンプサイクル(R)と、
前記放熱器(22)における冷媒の放熱によって前記貯湯タンク(5)内の給湯水を加熱する冷媒/水熱交換器(26)と、
前記貯湯タンク(5)内に蓄えられた給湯水の熱、あるいは前記ヒートポンプサイクル(R)により加熱された給湯水の熱によって、暖房用のブラインを加熱する水/ブライン熱交換器(34)と、
前記ヒートポンプサイクル(R)によって加熱される給湯水の温度を制御する制御装置(4)とを具備し、
前記ヒートポンプサイクル(R)により加熱された給湯水を直接、前記水/ブライン熱交換器(34)へ供給する直暖運転時に、前記ヒートポンプサイクル(R)で加熱された給湯水の余剰分が前記貯湯タンク(5)に戻されるヒートポンプ式給湯暖房装置において、
前記制御装置(4)は直暖運転時に、
前記貯湯タンク(5)内から前記冷媒/水熱交換器(26)に導かれるH/P給水温度(T1)が低い時に、前記ヒートポンプサイクル(R)による給湯水の沸き上げ温度を低温側に制御し、
前記貯湯タンク(5)内から前記冷媒/水熱交換器(26)に導かれるH/P給水温度(T1)が高い時に、前記ヒートポンプサイクル(R)による給湯水の沸き上げ温度を高温側に制御する沸き上げ温度切替手段を備えることを特徴とするヒートポンプ式給湯暖房装置。
A hot water storage tank (5) for storing heated hot water,
A heat pump cycle (R) including a radiator (22) for radiating the refrigerant;
A refrigerant / water heat exchanger (26) for heating hot water in the hot water storage tank (5) by heat radiation of the refrigerant in the radiator (22);
A water / brine heat exchanger (34) for heating a heating brine by heat of hot water stored in the hot water storage tank (5) or by hot water heated by the heat pump cycle (R); ,
A controller (4) for controlling the temperature of hot water heated by the heat pump cycle (R),
During the direct warming operation in which the hot water heated by the heat pump cycle (R) is directly supplied to the water / brine heat exchanger (34), the excess amount of the hot water heated by the heat pump cycle (R) is In the heat pump hot water supply and heating device returned to the hot water storage tank (5),
The control device (4) is in a direct warming operation,
When the H / P feed water temperature (T1) led from the hot water storage tank (5) to the refrigerant / water heat exchanger (26) is low, the boiling temperature of the hot water by the heat pump cycle (R) is lowered. Control
When the H / P feed water temperature (T1) guided from the hot water storage tank (5) to the refrigerant / water heat exchanger (26) is high, the boiling temperature of the hot water by the heat pump cycle (R) is set to a high temperature side. A heat pump type hot water supply and heating device comprising a boiling temperature switching means for controlling.
請求項1に記載のヒートポンプ式給湯暖房装置において、
前記制御装置(4)が直暖運転時に前記ヒートポンプサイクル(R)による給湯水の沸き上げ温度を低温側に制御する際、前記ヒートポンプサイクル(R)で加熱された給湯水の余剰分を、前記貯湯タンク(5)の上下方向の中間部に戻し、
前記制御装置(4)が直暖運転時に前記ヒートポンプサイクル(R)による給湯水の沸き上げ温度を高温側に制御する際、前記ヒートポンプサイクル(R)で加熱された給湯水の余剰分を、前記貯湯タンク(5)の上下方向の上部に戻すことを特徴とするヒートポンプ式給湯暖房装置。
In the heat pump hot water supply and heating device according to claim 1,
When the controller (4) controls the boiling temperature of the hot water supply by the heat pump cycle (R) to a low temperature side during the direct warming operation, the surplus amount of hot water heated by the heat pump cycle (R) is Return to the middle of the hot water storage tank (5) in the vertical direction,
When the controller (4) controls the boiling temperature of the hot water supply by the heat pump cycle (R) to the high temperature side during the direct warming operation, the surplus amount of hot water heated in the heat pump cycle (R) is A heat pump type hot water supply and heating device, wherein the hot water storage tank (5) is returned to the upper part in the vertical direction.
請求項2に記載のヒートポンプ式給湯暖房装置において、
前記制御装置(4)は、暖房運転時に所定の運転条件が成立した際に、前記貯湯タンク(5)における上下方向の中間部に蓄えられた給湯水を前記水/ブライン熱交換器(34)に導いて暖房運転を実施する中温蓄暖実行手段を備えることを特徴とするヒートポンプ式給湯暖房装置。
In the heat pump hot water supply and heating device according to claim 2,
When the predetermined operating condition is established during the heating operation, the control device (4) supplies hot water stored in the intermediate portion in the vertical direction of the hot water storage tank (5) to the water / brine heat exchanger (34). A heat pump hot water supply / room heating device comprising medium temperature storage / execution means for conducting heating operation by guiding to a heat source.
請求項3に記載のヒートポンプ式給湯暖房装置において、
前記所定の運転条件が成立した際とは、暖房運転中に前記貯湯タンク(5)における上下方向の中間部の貯湯温度が所定温度より高い時であることを特徴とするヒートポンプ式給湯暖房装置。
In the heat pump hot water supply and heating device according to claim 3,
The time when the predetermined operating condition is satisfied is a time when the hot water storage temperature in the vertical intermediate portion of the hot water storage tank (5) is higher than a predetermined temperature during the heating operation.
JP2006204735A 2006-07-27 2006-07-27 Heat pump water heater / heater Expired - Fee Related JP4867514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006204735A JP4867514B2 (en) 2006-07-27 2006-07-27 Heat pump water heater / heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006204735A JP4867514B2 (en) 2006-07-27 2006-07-27 Heat pump water heater / heater

Publications (2)

Publication Number Publication Date
JP2008032291A true JP2008032291A (en) 2008-02-14
JP4867514B2 JP4867514B2 (en) 2012-02-01

Family

ID=39121911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006204735A Expired - Fee Related JP4867514B2 (en) 2006-07-27 2006-07-27 Heat pump water heater / heater

Country Status (1)

Country Link
JP (1) JP4867514B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204252A (en) * 2008-02-28 2009-09-10 Panasonic Electric Works Co Ltd Hot water storage type hot water supply system
JP2010133597A (en) * 2008-12-03 2010-06-17 Daikin Ind Ltd Heat pump type water heater
JP2011058702A (en) * 2009-09-09 2011-03-24 Corona Corp Hot water storage type hot water supply heater
JP2011064398A (en) * 2009-09-17 2011-03-31 Panasonic Corp Heat pump type hot water heater
JP2011064396A (en) * 2009-09-17 2011-03-31 Panasonic Corp Heat pump type hot water heater
JP2012047375A (en) * 2010-08-25 2012-03-08 Hitachi Appliances Inc Air conditioning system
JP2013142490A (en) * 2012-01-10 2013-07-22 Rinnai Corp Heater
JP2020176832A (en) * 2019-03-27 2020-10-29 ダイキン工業株式会社 Hot water supply device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222396A (en) * 2002-01-30 2003-08-08 Daikin Ind Ltd Heat pump type water heater
JP2003336896A (en) * 2002-05-21 2003-11-28 Toshiba Electric Appliance Co Ltd Heat pump hot water supply system
JP2004251621A (en) * 2004-06-04 2004-09-09 Central Res Inst Of Electric Power Ind Hot water storage device
JP2006071151A (en) * 2004-08-31 2006-03-16 Denso Corp Storage type hot water supply heating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222396A (en) * 2002-01-30 2003-08-08 Daikin Ind Ltd Heat pump type water heater
JP2003336896A (en) * 2002-05-21 2003-11-28 Toshiba Electric Appliance Co Ltd Heat pump hot water supply system
JP2004251621A (en) * 2004-06-04 2004-09-09 Central Res Inst Of Electric Power Ind Hot water storage device
JP2006071151A (en) * 2004-08-31 2006-03-16 Denso Corp Storage type hot water supply heating device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204252A (en) * 2008-02-28 2009-09-10 Panasonic Electric Works Co Ltd Hot water storage type hot water supply system
JP2010133597A (en) * 2008-12-03 2010-06-17 Daikin Ind Ltd Heat pump type water heater
JP2011058702A (en) * 2009-09-09 2011-03-24 Corona Corp Hot water storage type hot water supply heater
JP2011064398A (en) * 2009-09-17 2011-03-31 Panasonic Corp Heat pump type hot water heater
JP2011064396A (en) * 2009-09-17 2011-03-31 Panasonic Corp Heat pump type hot water heater
JP2012047375A (en) * 2010-08-25 2012-03-08 Hitachi Appliances Inc Air conditioning system
CN102401503A (en) * 2010-08-25 2012-04-04 日立空调·家用电器株式会社 Air conditioning system
JP2013142490A (en) * 2012-01-10 2013-07-22 Rinnai Corp Heater
JP2020176832A (en) * 2019-03-27 2020-10-29 ダイキン工業株式会社 Hot water supply device
JP7104343B2 (en) 2019-03-27 2022-07-21 ダイキン工業株式会社 Water heater

Also Published As

Publication number Publication date
JP4867514B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP4867514B2 (en) Heat pump water heater / heater
JP4923812B2 (en) Brine heat dissipation heating system
US7856835B2 (en) Hot water supply apparatus
JP2008014585A (en) Brine heat radiation type heating apparatus
EP2216609A1 (en) Hot water supply system
JP5171410B2 (en) Hot water supply system
JP5580658B2 (en) Heat medium supply device
JP2007327725A (en) Heat pump type water heater
JP4120683B2 (en) Water heater abnormality detection device
EP2685177A1 (en) Heat pump-type water heater
CN111868455B (en) Hot water supply device
JP5176474B2 (en) Heat pump water heater
JP5321072B2 (en) Hot water storage heat source device
JP2007113897A (en) Heat pump type water heater
JP2007327727A (en) Heat pump water heater
JP2009264714A (en) Heat pump hot water system
JP5365203B2 (en) Hot water storage heat source device
JP2008261590A (en) Ejector cycle
JP4867517B2 (en) Heat pump water heater
JP2007113896A (en) Heat pump type water heater
JP2007085662A (en) Heat pump water heater
JP7144343B2 (en) heating system
JP4138712B2 (en) Hot water storage hot water system
WO2018003628A1 (en) Hot-water supply system
EP3091293B1 (en) Heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees