WO2018003628A1 - Hot-water supply system - Google Patents
Hot-water supply system Download PDFInfo
- Publication number
- WO2018003628A1 WO2018003628A1 PCT/JP2017/022849 JP2017022849W WO2018003628A1 WO 2018003628 A1 WO2018003628 A1 WO 2018003628A1 JP 2017022849 W JP2017022849 W JP 2017022849W WO 2018003628 A1 WO2018003628 A1 WO 2018003628A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- hot water
- temperature
- mode control
- circulation
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H1/00—Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
- F24H1/18—Water-storage heaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H4/00—Fluid heaters characterised by the use of heat pumps
- F24H4/02—Water heaters
Definitions
- the present invention relates to a hot water supply system.
- water is heated using a heat pump that exchanges heat between refrigerant flowing in the refrigerant circuit and water, and the water is stored in a tank.
- a heat pump that exchanges heat between refrigerant flowing in the refrigerant circuit and water
- the water is stored in a tank.
- 45 ° C. water (hot water) is transferred from the tank to a supply destination.
- Sending hot water supply systems are widespread.
- the tank water is circulated between the tank and the heat exchanger of the heat pump by a circulation pump. And when there is no remaining hot water (water above a predetermined temperature) in the tank, in order to quickly bring the water in the upper part of the tank to a high temperature, the temperature of the water after passing through the heat exchanger is set to the target value.
- the pump and heat pump are controlled.
- Patent Document 1 Japanese Patent Laid-Open No. 2001-415764
- a combustion burner is provided between a faucet to which water is supplied and a tank, and the water in the tank is heated by a heat pump.
- additional heating with a combustion burner is performed when higher temperature water is required.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2001-415764
- the compressor of the heat pump is used. Control is made to operate at a high speed and to quickly boil the water in the tank. That is, the heat pump is operated with a high heating capacity so that the amount of hot water in the tank can be secured quickly.
- An object of the present invention is to reduce running costs in a hot water supply system.
- the hot water supply system supplies heated water to a supply destination.
- the hot water supply system includes a hot water supply unit connected to a supply destination, a heat pump, a tank, a circulation channel, a combustion heating unit, one or a plurality of first temperature sensors, and a control unit.
- the heat pump includes a heat exchanger that exchanges heat between the refrigerant and water, and a compressor that compresses the refrigerant.
- the tank stores water heated by the heat exchanger.
- the circulation channel has a circulation pump with variable output, and circulates water between the tank and the heat exchanger.
- the combustion heating unit has combustion equipment. A combustion device burns fuel and heats water.
- the one or more first temperature sensors detect the temperature of the water flowing through the circulation channel.
- the control unit controls the heat pump, the circulation pump, and the combustion equipment.
- the control unit has a single overboiling mode control and a circulating boiling mode control.
- the one-boiling-up mode control is performed by controlling the circulation pump so that the first flow rate of water flows through the circulation flow path, heating the water with a heat exchanger, and discharging the hot water at the target hot water storage temperature.
- Circulation boiling mode control is a temperature lower than the target hot water temperature by controlling the circulation pump so that a second flow rate of water larger than the first flow rate flows in the circulation flow path and heating the water with a heat exchanger.
- the water in the tank is boiled by controlling so that the hot water temperature gradually increases toward the target hot water temperature.
- a control part performs circulation boiling mode control in the 1st state, and operates a combustion apparatus when the temperature of the water supplied to a supply destination from a hot water supply part becomes smaller than a target value.
- the first state is a state in which the amount of water having a predetermined temperature or higher (hereinafter referred to as high temperature water) stored in the tank is small or absent. Then, after the circulation boiling mode control, the control unit switches from the circulation boiling mode control to the one super-boiling mode control based on a change in the temperature of the water flowing through the circulation channel.
- a one-over boiling mode control for circulating a first flow rate water, and a circulation boiling mode control for circulating a second flow rate water higher than the first flow rate Exists.
- the circulation boiling mode control is executed. That is, in the first state where there is no or little heat in the water in the tank, first, circulation boiling mode control is performed in which water is heated by a heat pump while circulating a large amount of water.
- the amount of water circulating is larger than that in the single overboiling mode control, the temperature of the heated water returning to the tank from the heat pump is lowered, but the heat pump is operated in an efficient region. Therefore, the amount of energy consumed by the operation of the heat pump is smaller than that in the case where the single over-boiling mode control is executed.
- this hot water supply system in order to execute the circulating boiling mode control in which the temperature of the heated water returning from the heat pump to the tank is lowered, the first state where there is no or little amount of high-temperature water stored in the tank The problem is not solved easily, and high-temperature water does not easily accumulate at the top of the tank. Then, since it becomes impossible to supply water at the temperature requested by the supply destination, in this hot water supply system, the temperature of the water supplied from the hot water supply section to the supply destination is controlled while performing the circulation boiling mode control in the first state. Activate combustion equipment when less than value. Thereby, the water heated with the heat exchanger of the heat pump is heated directly or indirectly.
- this hot water supply system suppresses the amount of energy consumed by the heat pump necessary for boiling water in the tank, lowers the running cost, and at the temperature required by the supplier (water ) Can be supplied.
- a hot water supply system is the hot water supply system according to the first aspect, wherein the control unit executes the circulating boiling mode control before passing through the heat exchanger in the first state. On the basis of the change in the temperature of the water, the control mode is switched from the circulation boiling mode control to the single super boiling mode control.
- the change in the temperature of the water before passing through the heat exchanger is monitored, and based on the change, the mode is switched from the cyclic boiling mode control to the single super-boiling mode control. Easy to avoid.
- a hot water supply system is the hot water supply system according to the first aspect, and further includes a plurality of second temperature sensors.
- the second temperature sensor is provided to detect the temperature distribution of water in the tank. Then, the control unit executes the circulation boiling mode control in the first state, and switches from the circulation boiling mode control to the one-over boiling control based on the temperature distribution of the water in the tank.
- the control is switched from the circulating boiling mode control to the single super boiling mode control based on the temperature distribution of the water in the tank.
- the hot water supply system supplies heated water to a supply destination.
- the hot water supply system includes a hot water supply unit connected to a supply destination, a heat pump, a tank, a circulation channel, a combustion heating unit, and a control unit.
- the heat pump includes a heat exchanger that exchanges heat between the refrigerant and water, and a compressor that compresses the refrigerant.
- the tank stores water heated by the heat exchanger.
- the circulation channel has a circulation pump with variable output, and circulates water between the tank and the heat exchanger.
- the combustion heating unit has combustion equipment. A combustion device burns fuel and heats water.
- the control unit controls the heat pump, the circulation pump, and the combustion equipment.
- the control unit has a single overboiling mode control and a circulating boiling mode control.
- the circulation pump is controlled so that the first flow rate of water flows in the circulation flow path, and the water in the tank is heated by heating the water with a heat exchanger.
- the circulation boiling mode control the water in the tank is boiled by controlling the circulation pump so that the second flow rate of water, which is larger than the first flow rate, flows into the circulation flow path and heating the water with the heat exchanger. increase.
- a control part performs circulation boiling mode control in the 1st state, and operates a combustion apparatus when the temperature of the water supplied to a supply destination from a hot water supply part becomes smaller than a target value.
- the first state is a state in which the amount of water (high temperature water) stored in the tank at a predetermined temperature or higher (high temperature water) is small or absent.
- circulation boiling mode control is performed in which water is heated with a heat pump while circulating a large amount of water. Then, since the amount of water circulating is larger than that in the single overboiling mode control, the temperature of the heated water returning to the tank from the heat pump is lowered, but the heat pump is operated in an efficient region. Therefore, the amount of energy consumed by the operation of the heat pump is smaller than that in the case where the single over-boiling mode control is executed.
- this hot water supply system in order to execute the circulating boiling mode control in which the temperature of the heated water returning from the heat pump to the tank is lowered, the first state where there is no or little amount of high-temperature water stored in the tank The problem is not solved easily, and high-temperature water does not easily accumulate at the top of the tank. Then, since it becomes impossible to supply water at the temperature requested by the supply destination, in this hot water supply system, the temperature of the water supplied from the hot water supply section to the supply destination is controlled while performing the circulation boiling mode control in the first state. Activate combustion equipment when less than value. Thereby, the water heated with the heat exchanger of the heat pump is heated directly or indirectly.
- this hot water supply system suppresses the amount of energy consumed by the heat pump necessary for boiling water in the tank, lowers the running cost, and at the temperature required by the supplier (water ) Can be supplied.
- the hot water supply system according to the fifth aspect of the present invention is the hot water supply system according to the fourth aspect, and the control unit controls the output of the circulation pump within the first range in the single over-boiling mode control.
- the control unit controls the output of the circulation pump within the second range in the circulation boiling mode control.
- the intermediate value of the second range is larger than the intermediate value of the first range.
- the circulating pump is controlled in the second range near the maximum output in the circulating boiling mode control, and is controlled in a wide range from a low output to a high output in the single over-boiling mode control. Thereby, the amount of water circulation in the circulation boiling mode control can be surely increased.
- a hot water supply system is the hot water supply system according to the fourth aspect, further comprising a third temperature sensor.
- the third temperature sensor detects the temperature of water after passing through the heat exchanger of the heat pump.
- the control unit controls the circulation pump so that the temperature of the water after passing through the heat exchanger becomes the first target temperature value in the single over-boiling mode control. Further, the control unit controls the circulation pump so that the temperature of the water after passing through the heat exchanger becomes the second target temperature value in the circulation boiling mode control.
- the second target temperature value is smaller than the first target temperature value.
- the second target temperature value is set to be smaller than the first target temperature value so that the output of the circulation pump is larger in the circulation boiling mode control than in the one-over boiling mode control. Thereby, the amount of energy consumption of the heat pump necessary for boiling water in the tank is reliably suppressed.
- the hot water supply system is the hot water supply system according to the fourth aspect, further comprising a third temperature sensor.
- the third temperature sensor detects the temperature of water after passing through the heat exchanger of the heat pump.
- the control unit controls the circulation pump so that the temperature of the water after passing through the heat exchanger becomes the first target temperature value in the single over-boiling mode control. Further, the control unit fixes the output of the circulation pump in the circulation boiling mode control.
- the water in the tank is boiled with emphasis on the temperature of the heated water returning to the tank, and in the circulating boiling mode control, the amount of circulating water is reliably ensured. Therefore, the output of the circulation pump is fixed. Thereby, the amount of energy consumption of the heat pump necessary for boiling water in the tank is reliably suppressed.
- a hot water supply system is the hot water supply system according to any of the fourth aspect to the seventh aspect, and further includes one or a plurality of first temperature sensors.
- the first temperature sensor detects the temperature of water flowing through the circulation channel.
- the control unit executes the circulation boiling mode control in the first state, and switches from the circulation boiling mode control to the single over-boiling mode control based on the temperature of the water flowing through the circulation channel.
- the control is switched from the circulation boiling mode control to the single overheating mode control based on the temperature of the water flowing through the circulation channel.
- a hot water supply system is the hot water supply system according to any of the fourth aspect to the eighth aspect, further comprising a plurality of second temperature sensors.
- the second temperature sensor is a sensor for detecting the temperature distribution of water in the tank.
- the control unit executes the circulating boiling mode control in the first state, and switches from the circulating boiling mode control to the single super boiling mode control based on the temperature distribution of the water in the tank.
- a hot water supply system is the hot water supply system according to the eighth aspect, wherein the first temperature sensor passes through the inlet temperature, which is the temperature of water before passing through the heat exchanger, and the heat exchanger. And the outlet temperature, which is the temperature of the water after it has been detected.
- the control unit executes the circulating boiling mode control in the first state, and switches from the circulating boiling mode control to the single over boiling mode control based on the inlet temperature and the outlet temperature.
- the heat pump In the circulation boiling mode control with a large amount of circulating water, the heat pump can be operated in an efficient area, but since the circulation amount is large, the temperature of the water not only in the upper part of the tank but also in the lower part gradually increases. Come. Then, the temperature of the water before entering the heat exchanger of the heat pump increases, and the coefficient of performance (COP) of the heat pump decreases. Therefore, in the hot water supply system according to the seventh aspect, when the coefficient of performance (COP) of the heat pump is improved by switching to the single overboiling mode control over the circulation boiling mode control based on the inlet temperature and the outlet temperature, Switch from upper mode control to one-boiling upper mode control. As a result, the amount of energy consumed by the heat pump required for boiling water in the tank is further suppressed, and the running cost is reduced.
- a hot-water supply system is the hot-water supply system according to any one of the fourth to tenth aspects, wherein the control unit executes the single over-boiling mode control when not in the first state. Alternatively, when not in the first state, the heat pump is stopped until the first state is reached.
- the circulation boiling mode control is executed, and not in the first state, the amount of high-temperature water stored in the tank is large.
- the overheating mode control is executed or the heat pump is stopped until the first state is reached.
- the one-boiling-up mode control is executed, the amount of circulating water decreases, so that the phenomenon that hot water stored in the tank is mixed in the tank and moves from the upper part to the lower part is suppressed.
- the heat pump is stopped until the first state is reached, the water in the tank is boiled by performing the circulating boiling mode control that allows the heat pump to operate in an efficient region after the first state. The amount of energy consumed by the heat pump required to increase the temperature is suppressed.
- a hot water supply system is the hot water supply system according to any one of the fourth aspect to the eleventh aspect, wherein the compressor of the heat pump is variable in output.
- the control unit controls the output of the compressor within the third range in the one-boiling upper mode control.
- a control part controls the output of a compressor in the 4th range in circulation boiling mode control.
- the fourth range is narrower than the third range.
- the average value of the coefficient of performance (COP) of the heat pump when the compressor is operated in the fourth range is larger than the average value of the coefficient of performance (COP) of the heat pump when the compressor is operated in the third range. high.
- the amount of energy consumed by the heat pump is controlled by controlling the compressor output within a narrow fourth range with a good coefficient of performance (COP) of the heat pump, so that it is stored in the tank.
- COP coefficient of performance
- water hot water is supplied at a temperature required by the supply destination while reducing the energy consumption of the heat pump necessary for boiling water in the tank and reducing the running cost. Can be supplied.
- the hot water supply system According to the hot water supply system according to the second aspect of the present invention, it is easy to avoid operation of an inefficient heat pump.
- the rate of decrease in the coefficient of performance (COP) of the heat pump is reduced or the coefficient of performance (COP) is improved.
- FIG. 1 is an external view of a hot water supply system according to an embodiment of the present invention.
- the water circuit and refrigerant circuit diagram of a hot-water supply system. The control block diagram of a hot-water supply system.
- the external view of the remote control of a hot-water supply system The figure which shows the circulation of the water at the time of one over-boiling upper mode control.
- the control flow figure of the boiling operation from the state in which the remaining hot water in a tank is 0 or 1.
- FIG. 6 is a control flow diagram of a boiling operation when the remaining hot water in the tank is 2-5.
- the water circuit of the hot-water supply system which concerns on the modification G, and a refrigerant circuit figure.
- the hot water supply system 1 includes a heat pump 2, a hot water storage unit 3, a controller 50 for managing and controlling them, information display to the user, and acceptance of user operations.
- a remote controller 90 for carrying the above.
- the heat pump 2 is a unit that functions as a heat source device for heating water, and includes a refrigerant circuit 20 through which refrigerant circulates, a blower fan 24F, various sensors, and the like. I have. Various refrigerants can be used, but carbon dioxide is used here.
- the refrigerant circuit 20 includes a compressor 21, a water heat exchanger 22, an electric expansion valve 23, an air heat exchanger 24, a refrigerant pipe 25, and the like.
- the compressor 21 is an inverter-type variable output electric compressor.
- the water heat exchanger 22 has a refrigerant pipe 22r and a water pipe 32w.
- the water heat exchanger 22 is between the high-temperature and high-pressure gas refrigerant that flows through the refrigerant pipe 22r after being discharged by the compressor 21 of the heat pump 2, and the circulating water that flows from the hot water storage unit 3 to be described later and flows through the water pipe 32w. Let the heat exchange occur.
- the refrigerant passing through the refrigerant pipe 22r is cooled, and at the same time, the water passing through the water pipe 32w is heated to generate hot water (hot water).
- the electric expansion valve 23 exits the compressor 21 and expands the low-temperature and high-pressure refrigerant cooled by heat exchange with water.
- the air heat exchanger 24 exchanges heat between the low-temperature and low-pressure two-phase refrigerant expanded by the electric expansion valve 23 and the outside air.
- the refrigerant that has absorbed heat from the outside air evaporates to become a low-pressure gas refrigerant and is sucked into the compressor 21.
- the refrigerant pipe 25 connects each device in the order of the discharge port of the compressor 21, the refrigerant pipe 22 r in the water heat exchanger 22, the electric expansion valve 23, the air heat exchanger 24, and the suction port of the compressor 21. .
- FIG. 2 shows a heat exchanger inlet water temperature sensor 31T and a heat exchanger outlet water temperature sensor 32T among these sensors.
- the heat exchanger inlet water temperature sensor 31T detects the temperature of water before entering the water heat exchanger 22. That is, the heat exchanger inlet water temperature sensor 31T detects the temperature of water before passing through the water heat exchanger 22.
- the heat exchanger outlet water temperature sensor 32T detects the temperature of water after passing through the water heat exchanger 22.
- the hot water storage unit 3 is a unit for storing water (hot water) returned from the heat pump 2 by heating the water supplied from the outside such as city water (tap water) to the heat pump 2 and heating it. is there.
- the hot water storage unit 3 has a function of sending hot water whose temperature is adjusted by the combustion heating device 4 and the mixing valve 77 to the hot water supply unit 82 so that hot water having a temperature set by the user is supplied.
- the hot water storage unit 3 includes a water intake part 81, a hot water supply part 82, a hot water storage tank 35, a circulating water pipe 30, a intake water hot water supply pipe 70, a combustion heating device 4, and the like.
- the water intake section 81 has a connection port to which a supply pipe 89a for city water (tap water) is connected.
- the hot water supply unit 82 has a connection port, and is connected to a water supply / hot water supply piping 99a extending from a faucet 99 or the like in the installation target building.
- the hot water storage tank 35 is a tank in which water (hot water) heated by the heat pump 2 is stored in advance before the user turns the faucet 99 for use.
- the hot water storage tank 35 is always filled with water.
- the hot water storage tank 35 is provided with a tank temperature distribution detection sensor for causing the controller 50 to grasp the amount of high-temperature water (hereinafter, referred to as high-temperature water) that is equal to or higher than a predetermined temperature, here 70 ° C. or higher.
- the tank temperature distribution detection sensor includes a first sensor T1, a second sensor T2, a third sensor T3, a fourth sensor T4, a fifth sensor T5, and a sixth sensor T6 in order from the lower part to the upper part of the hot water storage tank 35.
- the controller 50 drives the heat pump 2 to perform a boiling operation based on the water temperature at each height position in the hot water storage tank 35 detected by the tank temperature distribution detection sensors T1 to T6 and the setting by the remote controller 90.
- the boiling operation is an operation in which the amount of water is increased until the temperature of the water in the hot water storage tank 35 reaches a target temperature.
- the target temperature in the boiling operation that is, the target hot water storage temperature of the hot water storage tank 35 is set in advance in the manufacturing plant of the hot water supply system 1, for example. In the present embodiment, the target hot water storage temperature is 75 ° C.
- the remaining hot water amount is 0, and if the temperature detection value of the sixth sensor T6 is 70 ° C. or more, the remaining hot water amount is 1. Furthermore, if the temperature detection value of the fifth sensor T5 is also 70 ° C. or higher, the remaining hot water amount is 2. Similarly, the remaining hot water amount exists up to 3, 4, 5 and 6, and if the temperature detection value of the first sensor T1 is 70 ° C. or more, the remaining hot water amount is 6, which is the maximum.
- the circulating water piping 30 is a circuit for transferring heat obtained by the heat pump 2 to the water in the hot water storage tank 35.
- the circulating water piping 30 is a water pipe in the forward heat pipe 31 and the water heat exchanger 22. 32w, a return pipe 33, and a circulation pump 34 are provided.
- the forward pipe 31 connects the vicinity of the lower end of the hot water storage tank 35 and the upstream end of the water pipe 32 w in the water heat exchanger 22.
- the return pipe 33 connects the downstream end of the water pipe 32 w in the water heat exchanger 22 and the vicinity of the upper end of the hot water storage tank 35.
- the circulation pump 34 is provided in the middle of the forward pipe 31.
- the circulation pump 34 is an electric pump capable of adjusting the output, and plays a role of circulating water between the hot water storage tank 35 and the water heat exchanger 22. Specifically, in the circulating water pipe 30, the circulating pump 34 is driven in response to a command from the controller 50, so that the low-temperature water existing in the lower part of the water in the hot water storage tank 35 travels. The temperature rises by flowing out to the pipe 31 and passing through the water pipe 32 w in the water heat exchanger 22, and returns to the vicinity of the upper end of the hot water storage tank 35 through the return pipe 33. As a result, the boundary between the hot water in the hot water storage tank 35 and the water having a lower temperature moves from top to bottom, and the amount of high temperature water in the hot water storage tank 35 increases.
- the water intake hot water supply pipe 70 is a circuit for using the high-temperature water stored in the hot water storage tank 35 while receiving supply of water from outside city water or the like.
- a water intake pipe 71, a hot water supply pipe 73, a bypass pipe 74, and a mixing valve 77 are provided.
- the intake pipe 71 is supplied with water from outside city water or the like, and supplies room temperature water near the lower end of the hot water storage tank 35.
- the intake pipe 71 is provided with an intake temperature sensor 71T for detecting the temperature of water supplied by city water.
- the hot water supply pipe 73 is a hot water existing in the vicinity of the upper end of the water stored in the hot water storage tank 35, and is supplied from the hot water supply part 82 to a user's use location, for example, a faucet 99 in the building. Lead to pipe 99a.
- the combustion heating device 4 is provided in the middle of the hot water supply pipe 73.
- the combustion heating device 4 is disposed between the hot water storage tank 35 and the mixing valve 77 and includes a combustion burner 41 that burns fuel gas.
- the combustion burner 41 is a gas burner whose heating capacity can be adjusted, and heats the water flowing through the hot water supply pipe 73 while adjusting the heating amount in accordance with a command from the controller 50.
- a pre-mixing hot water temperature sensor 4T for detecting the temperature of the passing water is provided.
- the bypass pipe 74 is a pipe for mixing normal temperature water flowing through the intake pipe 71 and water (hot water) flowing through the hot water supply pipe 73.
- the bypass pipe 74 extends from the water intake pipe 71 to the hot water supply pipe 73, and is connected to the hot water supply pipe 73 by a mixing valve 77.
- the mixing valve 77 receives an instruction from the controller 50 and adjusts the mixing ratio of high temperature water (hot water) flowing through the hot water supply pipe 73 and normal temperature water flowing through the bypass pipe 74. It is.
- the controller 50 is installed in the hot water storage unit 3 as shown in FIG. 3, and includes a compressor 21, an electric expansion valve 23, a blower fan 24F, a mixing valve 77, a combustion burner 41, It is connected to actuators such as a circulation pump 34 and sends operation instructions to these actuators.
- the controller 50 is connected to sensors such as a heat exchanger inlet water temperature sensor 31T, a heat exchanger outlet water temperature sensor 32T, tank temperature distribution detection sensors T1 to T6, a water intake temperature sensor 71T, and a pre-mixing hot water temperature sensor 4T. The detection results are obtained from these sensors. Further, the controller 50 is connected to a remote controller 90 for accepting user setting input and providing information to the user.
- the remote controller 90 includes a hot water temperature setting unit 91 for setting a necessary hot water (water) temperature, a display unit 92 for displaying a set hot water temperature, a remaining hot water amount, and the like. Is provided.
- the temperature detection values from the first sensor T1 to the sixth sensor T6 are all below 70 ° C. 0.
- the water after passing through the heat exchanger 22 of the heat pump 2 is used.
- One over-boiling upper mode control 51 for controlling the heat pump 2 and the circulation pump 34 is performed so that the temperature becomes a target value. If the amount of water flowing through the circulating water pipe 30 is reduced and the one-boiling-up mode control 51 is performed so that high-temperature water returns to the hot water storage tank 35, as shown in FIG. Hot water accumulates.
- the controller 50 of the hot water supply system 1 provides a boiling operation from a state in which the remaining hot water amount is 0.
- the circulation boiling mode control 52 is selected instead of the super boiling mode control 51. This is not based on the idea of quickly storing high-temperature water in the upper part of the hot water storage tank 35 so that the amount of remaining hot water becomes 1 quickly, but based on the idea of boiling the water in the hot water storage tank 35 while keeping the power consumed by the heat pump 2 small. Is a choice.
- the temperature of the water after passing through the heat exchanger 22 of the heat pump 2 needs to be increased from the beginning, and in the heat pump 2, the refrigerant flowing through the heat exchanger 22 is changed. It is necessary to increase the condensation temperature.
- the coefficient of performance (COP) of the heat pump 2 is decreased.
- the circulation boiling mode control 52 is executed at the start of the boiling operation, the amount of water circulation increases, and there is no need to increase the condensation temperature in the heat pump 2, and the coefficient of performance (COP) of the heat pump 2 is eliminated. Becomes higher.
- the circulation pump 34 is controlled so that a small amount of water flows into the circulation water pipe 30, and the water is heated by the water heat exchanger 22 to set the target hot water storage temperature (here, 75 ° C.).
- the water in the hot water storage tank 35 is boiled up by controlling so that the hot water is discharged. That is, here, the target heat exchanger outlet water temperature, which is the target value of the water leaving the water heat exchanger 22, is set to 75 ° C., which is the target hot water storage temperature.
- the hot water temperature discharged from the heat pump 2 toward the hot water storage tank 35 becomes a temperature close to 75 ° C.
- the circulation pump 34 is controlled so that more water flows to the circulation water pipe 30 than in the case of the single overboiling mode control 51, and the water heat exchanger 22 The hot water is discharged at a temperature lower than the target hot water storage temperature and controlled so that the hot water temperature gradually increases toward the target hot water temperature, thereby boiling the water in the hot water storage tank 35.
- the main body of each step is the controller 50.
- step S11 first, the compressor 21 of the heat pump 2 is started and the circulation pump 34 is started to rotate.
- step S12 the circulation boiling mode control 52 is executed.
- the output of the circulation pump 34 is fixed at the maximum output or an output close to the maximum output.
- the output of the compressor 21 of the heat pump 2 is limited to a predetermined range where the coefficient of performance (COP) of the heat pump 2 is good.
- the heat pump 2 is controlled in the range of 30% to 50% of the maximum frequency M (Hz) of the compressor 21.
- the rotational speed of the compressor 21 is suppressed to a predetermined range, so the temperature of the water after passing through the heat exchanger 22 is relatively low.
- the water in the hot water storage tank 35 mixes, and a big temperature difference does not arise in the upper part and the lower part of the hot water storage tank 35, As a whole, the water in the hot water storage tank 35 is boiling up.
- step S13 it is determined whether or not the temperature of the water entering the water heat exchanger 22, that is, the detected temperature of the heat exchanger inlet water temperature sensor 31T exceeds a threshold value (25 ° C. here). If not, the circulation boiling mode control 52 in step S12 is continued.
- step S13 if it is determined in step S13 that the temperature of the water entering the water heat exchanger 22 has exceeded the threshold value, the target heat exchanger outlet water temperature is read from a memory (not shown) in the controller 50 in step S14, and in step S15. Switching to the one-boiling-up mode control 51 is performed.
- the output of the compressor 21 is limited (the above-mentioned maximum frequency M () so that the condensation temperature of the refrigerant in the water heat exchanger 22 of the heat pump 2 becomes the target heat exchanger outlet water temperature.
- M the maximum frequency
- the range of 30 to 50% of Hz is removed, and the rotational speed of the compressor 21 increases.
- the output of the circulation pump 34 is reduced so that the temperature of the water after passing through the water heat exchanger 22 becomes the target heat exchanger outlet water temperature.
- step S16 it is determined in step S16 whether or not the remaining hot water amount has reached a set value (for example, 5 or 6), and the overheating mode control 51 in step S15 is continued until it reaches. If it is determined in step S16 that the remaining hot water amount has reached the set value, the compressor 21 and the circulation pump 34 are stopped in step S17, and the boiling operation is terminated.
- a set value for example, 5 or 6
- the remaining hot water amount is 0 during the above-described boiling operation, particularly when the first circulating boiling mode control 52 is executed. For this reason, when the faucet 99 is opened and it is necessary to supply high-temperature hot water from the hot water supply unit 82, the controller 50 ignites the combustion burner 41 of the combustion heating device 4, and the water from the hot water storage tank 35 toward the hot water supply unit 82. To heat. At this time, the output of the combustion burner 41 is adjusted based on the detected temperature of the pre-mixing hot water temperature sensor 4T and the user's set hot water temperature input by the remote controller 90.
- the controller 50 of the hot water supply system 1 circulates as a boiling operation from a state in which the remaining hot water amount is 2 to 5.
- the one-over boiling mode control 51 is selected. This is because hot water already exists in the upper part of the hot water storage tank 35, and if a large amount of water is circulated through the circulating water pipe 30, the hot water in the upper part of the hot water storage tank 35 moves to the lower part. This is because water having a relatively high temperature enters the water heat exchanger 22 via the forward pipe 31. If the temperature of water entering the water heat exchanger 22 rises in this way, the refrigerant cannot be supercooled in the water heat exchanger 22 of the heat pump 2, and the coefficient of performance (COP) of the heat pump 2 decreases.
- COP coefficient of performance
- step S21 the compressor 21 of the heat pump 2 is first started and the circulation pump 34 is started to rotate.
- step S22 the target heat exchanger outlet water temperature is read from the memory in the controller 50, and in step S23, the one-boiling-up mode control 51 is executed.
- the output of the compressor 21 is adjusted so that the condensation temperature of the refrigerant in the water heat exchanger 22 of the heat pump 2 becomes a numerical value of the target heat exchanger outlet water temperature. Further, the output of the circulation pump 34 is adjusted so that the temperature of the water after passing through the water heat exchanger 22 becomes the target heat exchanger outlet water temperature. Both the output of the compressor 21 and the output of the circulation pump 34 are adjusted in the range from the minimum output to the maximum output.
- step S24 it is determined whether or not the remaining hot water amount has reached a set value (for example, 5 or 6), and the one-boiling-up mode control 51 is continued until it reaches. If it is determined in step S24 that the remaining hot water amount has reached the set value, the compressor 21 and the circulation pump 34 are stopped in step S25, and the boiling operation is terminated.
- a set value for example, 5 or 6
- hot water supply system In the hot water supply system 1, as the control for boiling the water in the hot water storage tank 35, there is a single overboiling mode control 51 and a circulation boiling mode control 52.
- the circulation boiling mode control 52 is first executed. Then, since the amount of water circulating through the circulating water pipe 30 is larger than that in the one-boiling mode control 51, the temperature of the heated water returning from the heat pump 2 to the hot water storage tank 35 is lowered. 2 can be operated in an efficient region, and the electric power consumed by the operation of the heat pump 2 is smaller than that in the case where the one-boiling upper mode control 51 is executed.
- the circulation boiling mode control 52 is first executed in which the temperature of the heated water returning from the heat pump 2 to the hot water storage tank 35 is lowered.
- a state where there is no or little amount, that is, a state where the remaining hot water amount is 0 or 1 is not easily solved, and high temperature water is not easily stored in the upper part of the hot water storage tank 35.
- the temperature of the water to be supplied from the hot water supply unit 82 in the hot water supply system 1 while performing the circulation boiling mode control 52 that is, mixing
- the combustion burner 41 of the combustion heating device 4 is ignited to heat the water from the hot water storage tank 35 toward the hot water supply section 82.
- this hot water supply system 1 Since such a configuration is adopted, in this hot water supply system 1, the set hot water temperature requested by the user is reduced while suppressing the power consumption of the heat pump 2 required for boiling the water in the hot water storage tank 35 to reduce the running cost. We can supply hot water at.
- switching from the circulating boiling mode control 52 to the single overheating mode control 51 is performed based on the temperature of the water flowing through the circulating water pipe 30 (the temperature detected by the heat exchanger inlet water temperature sensor 31T). Is going.
- the amount of circulating water is reduced, the difference between the temperature of the water before entering the water heat exchanger 22 and the temperature of the water after passing through the water heat exchanger 22 is expanded, and the coefficient of performance of the heat pump 2 ( The decrease in COP) is suppressed.
- the controller 50 adjusts the output of the compressor 21 in the range from the minimum output to the maximum output in the one-boiling upper mode control 51.
- the controller 50 sets the output of the compressor 21 to a predetermined range in which the coefficient of performance (COP) of the heat pump 2 is good, that is, 30 of the maximum frequency M (Hz) of the compressor 21.
- the adjustment is limited to the range of 50% to 50%.
- control range may be limited so that the output of the circulation pump 34 does not become too large in the single over-boiling mode control.
- the output of the circulation pump 34 is adjusted in a narrow range close to the maximum output, and in the one over-boiling mode control 51, the output for circulation is within a range not exceeding 50% of the maximum output.
- the output of the pump 34 may be adjusted.
- the output of the circulation pump 34 is controlled so that the temperature of the water after passing through the water heat exchanger 22 becomes the target heat exchanger outlet water temperature. It is possible to select.
- the target heat exchanger outlet water temperature in the circulation boiling mode control is set to be lower than the target heat exchanger outlet water temperature in the one-boiling upper mode control 51. Even in such a control, the flow rate of the water flowing through the circulating water pipe 30 when the circulation boiling mode control is executed is increased, the power consumption of the heat pump 2 is suppressed, and the running related to the water boiling is performed. Cost is reduced.
- switching from the circulating boiling mode control 52 to the one-over boiling mode control 51 may be performed based on the temperature distribution of water in the hot water storage tank 35. Also in this case, the power consumption of the heat pump 2 in the total boiling operation is suppressed.
- the boiling operation from the state where the remaining hot water amount is 2 to 5 is prohibited and the remaining hot water amount becomes zero or the remaining hot water amount is reduced. It may wait until it becomes 1, and then control may be performed so that the boiling operation is started by the circulating boiling mode control 52. In this case, the power consumption of the heat pump 2 necessary for boiling the water in the hot water storage tank 35 is further suppressed.
- the switching from the circulation boiling mode control 52 to the one super-boiling mode control 51 is performed by changing the temperature of water before passing through the water heat exchanger 22 and after passing through the water heat exchanger 22. You may carry out based on the temperature of water. That is, switching from the circulation boiling mode control 52 to the one-boiling mode control 51 may be performed based on the detected temperature of the heat exchanger inlet water temperature sensor 31T and the detected temperature of the heat exchanger outlet water temperature sensor 32T. Is possible.
- the output of the circulation pump 34 may be slightly lowered from the maximum output, and the circulation boiling mode control 52 may be performed to the end. .
- control is adjusted so that the ratio of the circulation boiling mode control 52 is relatively large in the boiling operation at night, and the ratio of the one-boiling mode control 51 is relatively large in the day-time boiling operation. Control may be adjusted.
- the combustion heating device 104 of the hot water storage unit 103 heats the water returning from the water heat exchanger 22 to the hot water storage tank 35 when necessary.
- the controller ignites the combustion burner 141 of the combustion heating device 104.
- the water returning from the water heat exchanger 22 to the hot water storage tank 35 is heated by the combustion burner 141, and the temperature of the water from the hot water storage tank 35 toward the hot water supply section 82 is increased.
- the output of the combustion burner 141 is adjusted based on the temperature detected by the pre-mixing hot water temperature sensor 4T and the user's set hot water temperature input by the remote controller 90.
- the flow rate of water flowing through the circulating water pipe 30 when the circulation boiling mode control is executed is increased, the power consumption of the heat pump 2 is suppressed, and the running cost for boiling water is reduced. Go down.
- the combustion heating device 204 of the hot water storage unit 203 is arranged alongside the hot water storage tank 35 between the intake pipe 71 and the hot water supply pipe 73. Further, the water from the combustion heating device 204 toward the hot water supply unit 82 and the water from the hot water storage tank 35 toward the hot water supply unit 82 both go to the hot water supply unit 82 through the mixing valve 177 provided in the hot water supply pipe 73.
- the mixing valve 277 receives a command from the controller and adjusts the mixing ratio of the water flowing from the hot water storage tank 35 and the water flowing from the combustion heating device 204.
- the combustion heating device 204 When the temperature of the temperature sensor 204T installed at the hot water tank 35 side of the mixing valve 277 is low when the faucet 99 is opened and high temperature hot water needs to be supplied from the hot water supply section 82, the combustion heating device 204 The combustion burner 241 is ignited. Then, the controller adjusts the combustion burner 241 and the mixing valve 277 so that the temperature of the water flowing from the hot water supply unit 82 to the in-building pipe 99a becomes the set hot water temperature set by the user.
- Hot water supply system Heat pump 4 Combustion heating device (combustion heating unit) 21 Compressor 22 Water heat exchanger (Heat exchanger) 30 Circulating water piping (circulation flow path) 31T Heat exchanger inlet water temperature sensor (first temperature sensor) 32T heat exchanger outlet water temperature sensor (first temperature sensor) 34 Circulation pump 35 Hot water storage tank (tank) 41 Combustion burner (combustion equipment) 50 controller (control unit) 51 Over-boiling mode control 52 Circulating boiling mode control 82 Hot water supply section 99 Faucet (supplier) 104 Combustion heating device (combustion heating unit) 141 Combustion burner (combustion equipment) 204 Combustion heating device (combustion heating unit) 241 Combustion burner (combustion equipment) T1 to T6 Tank temperature distribution detection sensor (second temperature sensor)
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
In order to reduce running cost, this hot-water supply system (1) comprises a heat pump (2), a hot-water tank (35), a water circulation pipe (30), a combustion heating device (4), and a controller (50). The controller (50) has a transient boiling mode control (51) and a circulation boiling mode control (52). In the circulation boiling mode control (52), a pump for circulation (34) is controlled so that more water flows through the water circulation pipe (30) than during the transient boiling mode control (51), and the water in the hot-water tank (35) is boiled. The controller (50) first executes the circulation boiling mode control (52) when the remaining hot water quantity is 0 or 1, and activates the combustion heating device (4) when the temperature of water to be supplied to a destination is lower than a target value. Then, after the circulation boiling mode control (52), the controller (50) switches from the circulation boiling mode control (52) to the transient boiling mode control (51) on the basis of a change in the temperature of water flowing through the water circulation pipe (30).
Description
本発明は、給湯システムに関する。
The present invention relates to a hot water supply system.
従来から、冷媒回路を流れる冷媒と水との間で熱交換を行わせるヒートポンプを用いて水を加熱し、その水をタンクに貯め、例えば45℃の水(湯)をタンクから供給先へと送る給湯システムが普及している。タンクの水は、循環用ポンプによってタンクとヒートポンプの熱交換器との間を循環する。そして、タンクに残湯(所定温度以上の水)が無いときには、タンクの上部の水を早く高温にするために、熱交換器を通過した後の水の温度が目標値になるように循環用ポンプやヒートポンプが制御される。
Conventionally, water is heated using a heat pump that exchanges heat between refrigerant flowing in the refrigerant circuit and water, and the water is stored in a tank. For example, 45 ° C. water (hot water) is transferred from the tank to a supply destination. Sending hot water supply systems are widespread. The tank water is circulated between the tank and the heat exchanger of the heat pump by a circulation pump. And when there is no remaining hot water (water above a predetermined temperature) in the tank, in order to quickly bring the water in the upper part of the tank to a high temperature, the temperature of the water after passing through the heat exchanger is set to the target value. The pump and heat pump are controlled.
また、ヒートポンプに加えて、燃焼バーナーを用いて水を加熱する給湯システムも提案されている。例えば、特許文献1(特開2001-41574号公報)に開示されている給湯機では、水の供給先である蛇口とタンクとの間に燃焼バーナーを配備し、タンクの水をヒートポンプで加熱しつつ、さらに高温度の水が要求される場合に燃焼バーナーによる追加の加熱が行われる。
In addition to the heat pump, a hot water supply system that heats water using a combustion burner has also been proposed. For example, in a water heater disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2001-41574), a combustion burner is provided between a faucet to which water is supplied and a tank, and the water in the tank is heated by a heat pump. However, additional heating with a combustion burner is performed when higher temperature water is required.
特許文献1(特開2001-41574号公報)に開示されている給湯機においても、従来のヒートポンプのみで水を加熱する給湯システムと同様に、タンクに残湯が無いときには、ヒートポンプの圧縮機を高回転数で運転させ、タンクの水を早急に沸き上げる制御が行われている。すなわち、ヒートポンプが高い加熱能力で運転され、タンク内の湯量を早く確保できるようにしている。
In the water heater disclosed in Patent Document 1 (Japanese Patent Application Laid-Open No. 2001-41574), as in the case of a hot water supply system that heats water using only a conventional heat pump, when there is no remaining hot water in the tank, the compressor of the heat pump is used. Control is made to operate at a high speed and to quickly boil the water in the tank. That is, the heat pump is operated with a high heating capacity so that the amount of hot water in the tank can be secured quickly.
しかし、タンクの残湯が無い或いは少ないときに、湯量を早く確保することを優先させると、ヒートポンプが必ずしも効率のよい領域で運転されるとは限らない。効率の悪いヒートポンプの運転は、タンクの水の沸き上げに要するエネルギー量を増大させてしまう。
However, if priority is given to ensuring the amount of hot water when there is no or little remaining hot water in the tank, the heat pump is not always operated in an efficient region. Inefficient heat pump operation increases the amount of energy required to boil the water in the tank.
本発明の課題は、給湯システムにおいてランニングコストを低減することにある。
An object of the present invention is to reduce running costs in a hot water supply system.
本発明の第1観点に係る給湯システムは、供給先に、加熱された水を供給する。給湯システムは、供給先に接続される給湯部と、ヒートポンプと、タンクと、循環流路と、燃焼加熱部と、1又は複数の第1温度センサと、制御部とを備える。ヒートポンプは、冷媒と水とを熱交換させる熱交換器と、冷媒を圧縮する圧縮機と、を有する。タンクは、熱交換器で加熱された水を貯める。循環流路は、出力可変の循環用ポンプを有し、タンクと熱交換器との間で水を循環させる。燃焼加熱部は、燃焼機器を有している。燃焼機器は、燃料を燃焼させて水を加熱する。1又は複数の第1温度センサは、循環流路を流れる水の温度を検知する。制御部は、ヒートポンプ、循環用ポンプおよび燃焼機器を制御する。制御部は、一過沸上モード制御と、循環沸上モード制御とを有している。一過沸上モード制御は、第1流量の水が循環流路に流れるように循環用ポンプを制御して、熱交換器で水を加熱して目標貯湯温度で出湯するように制御することで、タンクの水を沸き上げる。循環沸上モード制御は、第1流量よりも多い第2流量の水が循環流路に流れるように循環用ポンプを制御して、熱交換器で水を加熱して目標貯湯温度よりも低い温度で出湯し、目標貯湯温度に向けて次第に出湯温度が上がるように制御することで、タンクの水を沸き上げる。制御部は、第1状態のときに、循環沸上モード制御を実行し、給湯部から供給先に供給される水の温度が目標値よりも小さくなるときに燃焼機器を作動させる。第1状態は、タンクに貯められている所定温度以上の水(以下、高温水という。)の量が、少ない或いは無い、という状態である。そして、制御部は、循環沸上モード制御の後に、循環流路を流れる水の温度の変化に基づいて、循環沸上モード制御から一過沸上モード制御に切り換える。
The hot water supply system according to the first aspect of the present invention supplies heated water to a supply destination. The hot water supply system includes a hot water supply unit connected to a supply destination, a heat pump, a tank, a circulation channel, a combustion heating unit, one or a plurality of first temperature sensors, and a control unit. The heat pump includes a heat exchanger that exchanges heat between the refrigerant and water, and a compressor that compresses the refrigerant. The tank stores water heated by the heat exchanger. The circulation channel has a circulation pump with variable output, and circulates water between the tank and the heat exchanger. The combustion heating unit has combustion equipment. A combustion device burns fuel and heats water. The one or more first temperature sensors detect the temperature of the water flowing through the circulation channel. The control unit controls the heat pump, the circulation pump, and the combustion equipment. The control unit has a single overboiling mode control and a circulating boiling mode control. The one-boiling-up mode control is performed by controlling the circulation pump so that the first flow rate of water flows through the circulation flow path, heating the water with a heat exchanger, and discharging the hot water at the target hot water storage temperature. Boil the water in the tank. Circulation boiling mode control is a temperature lower than the target hot water temperature by controlling the circulation pump so that a second flow rate of water larger than the first flow rate flows in the circulation flow path and heating the water with a heat exchanger. The water in the tank is boiled by controlling so that the hot water temperature gradually increases toward the target hot water temperature. A control part performs circulation boiling mode control in the 1st state, and operates a combustion apparatus when the temperature of the water supplied to a supply destination from a hot water supply part becomes smaller than a target value. The first state is a state in which the amount of water having a predetermined temperature or higher (hereinafter referred to as high temperature water) stored in the tank is small or absent. Then, after the circulation boiling mode control, the control unit switches from the circulation boiling mode control to the one super-boiling mode control based on a change in the temperature of the water flowing through the circulation channel.
この給湯システムでは、タンクの水を沸き上げる制御として、第1流量の水を循環させる一過沸上モード制御と、第1流量よりも多い第2流量の水を循環させる循環沸上モード制御とが存在する。そして、タンクに貯められている高温水の量が無い或いは少ないときに、まず、循環沸上モード制御を実行する。すなわち、タンクの中の水の熱量が無い又は少ない第1状態のとき、最初に、多くの水を循環させながらヒートポンプで水を加熱する循環沸上モード制御を実行する。すると、一過沸上モード制御に較べて循環する水の量が多いため、ヒートポンプからタンクに戻ってくる加熱後の水の温度が低くなってしまうが、ヒートポンプを効率のよい領域で運転させることができ、ヒートポンプの運転によって消費されるエネルギー量が一過沸上モード制御を実行する場合に較べて小さくなる。
In this hot water supply system, as a control for boiling water in the tank, a one-over boiling mode control for circulating a first flow rate water, and a circulation boiling mode control for circulating a second flow rate water higher than the first flow rate, Exists. When the amount of high-temperature water stored in the tank is small or small, first, the circulation boiling mode control is executed. That is, in the first state where there is no or little heat in the water in the tank, first, circulation boiling mode control is performed in which water is heated by a heat pump while circulating a large amount of water. Then, since the amount of water circulating is larger than that in the single overboiling mode control, the temperature of the heated water returning to the tank from the heat pump is lowered, but the heat pump is operated in an efficient region. Therefore, the amount of energy consumed by the operation of the heat pump is smaller than that in the case where the single over-boiling mode control is executed.
一方、この給湯システムでは、ヒートポンプからタンクに戻ってくる加熱後の水の温度が低くなる循環沸上モード制御を実行するため、タンクに貯められている高温水の量が無い或いは少ない第1状態がなかなか解消されず、タンクの上部に高温水がなかなか貯まらない。それでは供給先が要求する温度で水を供給できなくなるため、第1状態のときに循環沸上モード制御を実行しつつ、この給湯システムでは、給湯部から供給先に供給される水の温度が目標値よりも小さくなるときに燃焼機器を作動させる。これにより、ヒートポンプの熱交換器で加熱された水が、直接的あるいは間接的に加熱される。
On the other hand, in this hot water supply system, in order to execute the circulating boiling mode control in which the temperature of the heated water returning from the heat pump to the tank is lowered, the first state where there is no or little amount of high-temperature water stored in the tank The problem is not solved easily, and high-temperature water does not easily accumulate at the top of the tank. Then, since it becomes impossible to supply water at the temperature requested by the supply destination, in this hot water supply system, the temperature of the water supplied from the hot water supply section to the supply destination is controlled while performing the circulation boiling mode control in the first state. Activate combustion equipment when less than value. Thereby, the water heated with the heat exchanger of the heat pump is heated directly or indirectly.
このような構成を採っているため、この給湯システムでは、タンクの水を沸き上げるために必要なヒートポンプの消費エネルギー量を抑制してランニングコストを下げつつ、供給先が要求する温度で水(湯)を供給することができる。
Since this configuration is adopted, this hot water supply system suppresses the amount of energy consumed by the heat pump necessary for boiling water in the tank, lowers the running cost, and at the temperature required by the supplier (water ) Can be supplied.
本発明の第2観点に係る給湯システムは、第1観点に係る給湯システムであって、制御部は、第1状態のときに、循環沸上モード制御を実行し、熱交換器を通過する前の水の温度の変化に基づいて、循環沸上モード制御から一過沸上モード制御に切り換える。
A hot water supply system according to a second aspect of the present invention is the hot water supply system according to the first aspect, wherein the control unit executes the circulating boiling mode control before passing through the heat exchanger in the first state. On the basis of the change in the temperature of the water, the control mode is switched from the circulation boiling mode control to the single super boiling mode control.
ここでは、熱交換器を通過する前の水の温度の変化を監視し、その変化に基づいて循環沸上モード制御から一過沸上モード制御に切り換えているため、効率の悪いヒートポンプの運転の回避が容易である。
Here, the change in the temperature of the water before passing through the heat exchanger is monitored, and based on the change, the mode is switched from the cyclic boiling mode control to the single super-boiling mode control. Easy to avoid.
本発明の第3観点に係る給湯システムは、第1観点に係る給湯システムであって、複数の第2温度センサをさらに備える。第2温度センサは、タンクの中の水の温度分布を検知するために設けられている。そして、制御部は、第1状態のときに、循環沸上モード制御を実行し、タンクの中の水の温度分布に基づいて、循環沸上モード制御から一過沸上制御に切り換える。
A hot water supply system according to a third aspect of the present invention is the hot water supply system according to the first aspect, and further includes a plurality of second temperature sensors. The second temperature sensor is provided to detect the temperature distribution of water in the tank. Then, the control unit executes the circulation boiling mode control in the first state, and switches from the circulation boiling mode control to the one-over boiling control based on the temperature distribution of the water in the tank.
循環沸上モード制御を実行して、タンクの水を沸き上げ始めると、循環量が多いため、タンクの上部のみならず下部にある水の温度もだんだん上昇してくる。すると、ヒートポンプの熱交換器に入る前の水の温度が上昇し、ヒートポンプの成績係数(COP)が低下してくる。そこで、第3観点に係る給湯システムでは、タンクの中の水の温度分布に基づいて、循環沸上モード制御から一過沸上モード制御に切り換えている。これにより、ヒートポンプの熱交換器に入る前の水の温度が上昇し過ぎるまでに、一過沸上モード制御に切り換わり、ヒートポンプの成績係数(COP)の低下スピードが落ちる或いは成績係数(COP)が向上する。
When the boiling water mode control is started and the water in the tank starts to be boiled, the temperature of the water not only in the upper part of the tank but also in the lower part gradually rises due to the large amount of circulation. Then, the temperature of the water before entering the heat exchanger of the heat pump increases, and the coefficient of performance (COP) of the heat pump decreases. Therefore, in the hot water supply system according to the third aspect, the control is switched from the circulating boiling mode control to the single super boiling mode control based on the temperature distribution of the water in the tank. As a result, before the temperature of the water before entering the heat exchanger of the heat pump rises too much, it switches to the one-boiling-up mode control and the coefficient of performance (COP) of the heat pump decreases or the coefficient of performance (COP) decreases. Will improve.
本発明の第4観点に係る給湯システムは、供給先に、加熱された水を供給する。給湯システムは、供給先に接続される給湯部と、ヒートポンプと、タンクと、循環流路と、燃焼加熱部と、制御部とを備える。ヒートポンプは、冷媒と水とを熱交換させる熱交換器と、冷媒を圧縮する圧縮機と、を有する。タンクは、熱交換器で加熱された水を貯める。循環流路は、出力可変の循環用ポンプを有し、タンクと熱交換器との間で水を循環させる。燃焼加熱部は、燃焼機器を有している。燃焼機器は、燃料を燃焼させて水を加熱する。制御部は、ヒートポンプ、循環用ポンプおよび燃焼機器を制御する。制御部は、一過沸上モード制御と、循環沸上モード制御とを有している。一過沸上モード制御は、第1流量の水が循環流路に流れるように循環用ポンプを制御して、熱交換器で水を加熱させることで、タンクの水を沸き上げる。循環沸上モード制御は、第1流量よりも多い第2流量の水が循環流路に流れるように循環用ポンプを制御して、熱交換器で水を加熱させることで、タンクの水を沸き上げる。制御部は、第1状態のときに、循環沸上モード制御を実行し、給湯部から供給先に供給される水の温度が目標値よりも小さくなるときに燃焼機器を作動させる。第1状態は、タンクに貯められている所定温度以上の水(高温水)の量が、少ない或いは無い、という状態である。
The hot water supply system according to the fourth aspect of the present invention supplies heated water to a supply destination. The hot water supply system includes a hot water supply unit connected to a supply destination, a heat pump, a tank, a circulation channel, a combustion heating unit, and a control unit. The heat pump includes a heat exchanger that exchanges heat between the refrigerant and water, and a compressor that compresses the refrigerant. The tank stores water heated by the heat exchanger. The circulation channel has a circulation pump with variable output, and circulates water between the tank and the heat exchanger. The combustion heating unit has combustion equipment. A combustion device burns fuel and heats water. The control unit controls the heat pump, the circulation pump, and the combustion equipment. The control unit has a single overboiling mode control and a circulating boiling mode control. In the one-boiling mode control, the circulation pump is controlled so that the first flow rate of water flows in the circulation flow path, and the water in the tank is heated by heating the water with a heat exchanger. In the circulation boiling mode control, the water in the tank is boiled by controlling the circulation pump so that the second flow rate of water, which is larger than the first flow rate, flows into the circulation flow path and heating the water with the heat exchanger. increase. A control part performs circulation boiling mode control in the 1st state, and operates a combustion apparatus when the temperature of the water supplied to a supply destination from a hot water supply part becomes smaller than a target value. The first state is a state in which the amount of water (high temperature water) stored in the tank at a predetermined temperature or higher (high temperature water) is small or absent.
この給湯システムでは、タンクの中の水の熱量が無い又は少ない第1状態のときに、多くの水を循環させながらヒートポンプで水を加熱する循環沸上モード制御を実行する。すると、一過沸上モード制御に較べて循環する水の量が多いため、ヒートポンプからタンクに戻ってくる加熱後の水の温度が低くなってしまうが、ヒートポンプを効率のよい領域で運転させることができ、ヒートポンプの運転によって消費されるエネルギー量が一過沸上モード制御を実行する場合に較べて小さくなる。
In this hot water supply system, in the first state where there is no or little heat of water in the tank, circulation boiling mode control is performed in which water is heated with a heat pump while circulating a large amount of water. Then, since the amount of water circulating is larger than that in the single overboiling mode control, the temperature of the heated water returning to the tank from the heat pump is lowered, but the heat pump is operated in an efficient region. Therefore, the amount of energy consumed by the operation of the heat pump is smaller than that in the case where the single over-boiling mode control is executed.
一方、この給湯システムでは、ヒートポンプからタンクに戻ってくる加熱後の水の温度が低くなる循環沸上モード制御を実行するため、タンクに貯められている高温水の量が無い或いは少ない第1状態がなかなか解消されず、タンクの上部に高温水がなかなか貯まらない。それでは供給先が要求する温度で水を供給できなくなるため、第1状態のときに循環沸上モード制御を実行しつつ、この給湯システムでは、給湯部から供給先に供給される水の温度が目標値よりも小さくなるときに燃焼機器を作動させる。これにより、ヒートポンプの熱交換器で加熱された水が、直接的あるいは間接的に加熱される。
On the other hand, in this hot water supply system, in order to execute the circulating boiling mode control in which the temperature of the heated water returning from the heat pump to the tank is lowered, the first state where there is no or little amount of high-temperature water stored in the tank The problem is not solved easily, and high-temperature water does not easily accumulate at the top of the tank. Then, since it becomes impossible to supply water at the temperature requested by the supply destination, in this hot water supply system, the temperature of the water supplied from the hot water supply section to the supply destination is controlled while performing the circulation boiling mode control in the first state. Activate combustion equipment when less than value. Thereby, the water heated with the heat exchanger of the heat pump is heated directly or indirectly.
このような構成を採っているため、この給湯システムでは、タンクの水を沸き上げるために必要なヒートポンプの消費エネルギー量を抑制してランニングコストを下げつつ、供給先が要求する温度で水(湯)を供給することができる。
Since this configuration is adopted, this hot water supply system suppresses the amount of energy consumed by the heat pump necessary for boiling water in the tank, lowers the running cost, and at the temperature required by the supplier (water ) Can be supplied.
本発明の第5観点に係る給湯システムは、第4観点に係る給湯システムであって、制御部は、一過沸上モード制御において、循環用ポンプの出力を、第1範囲で制御する。また、制御部は、循環沸上モード制御において、循環用ポンプの出力を、第2範囲で制御する。第2範囲の中間値は、第1範囲の中間値よりも大きい。
The hot water supply system according to the fifth aspect of the present invention is the hot water supply system according to the fourth aspect, and the control unit controls the output of the circulation pump within the first range in the single over-boiling mode control. The control unit controls the output of the circulation pump within the second range in the circulation boiling mode control. The intermediate value of the second range is larger than the intermediate value of the first range.
ここでは、例えば、循環沸上モード制御において循環用ポンプを最大出力付近の第2範囲で制御し、一過沸上モード制御では、低出力から高出力までの広範囲で制御する。これにより、循環沸上モード制御での水の循環量を確実に多くすることができる。
Here, for example, the circulating pump is controlled in the second range near the maximum output in the circulating boiling mode control, and is controlled in a wide range from a low output to a high output in the single over-boiling mode control. Thereby, the amount of water circulation in the circulation boiling mode control can be surely increased.
本発明の第6観点に係る給湯システムは、第4観点に係る給湯システムであって、第3温度センサをさらに備える。第3温度センサは、ヒートポンプの熱交換器を通った後の水の温度を検知する。制御部は、一過沸上モード制御において、熱交換器を通った後の水の温度が、第1目標温度値になるように、循環用ポンプを制御する。また、制御部は、循環沸上モード制御において、熱交換器を通った後の水の温度が、第2目標温度値になるように、循環用ポンプを制御する。第2目標温度値は、第1目標温度値よりも小さい。
A hot water supply system according to a sixth aspect of the present invention is the hot water supply system according to the fourth aspect, further comprising a third temperature sensor. The third temperature sensor detects the temperature of water after passing through the heat exchanger of the heat pump. The control unit controls the circulation pump so that the temperature of the water after passing through the heat exchanger becomes the first target temperature value in the single over-boiling mode control. Further, the control unit controls the circulation pump so that the temperature of the water after passing through the heat exchanger becomes the second target temperature value in the circulation boiling mode control. The second target temperature value is smaller than the first target temperature value.
ここでは、一過沸上モード制御よりも循環沸上モード制御のほうが循環用ポンプの出力が大きくなるように、第2目標温度値を第1目標温度値よりも小さく設定している。これにより、タンクの水を沸き上げるために必要なヒートポンプの消費エネルギー量が確実に抑制される。
Here, the second target temperature value is set to be smaller than the first target temperature value so that the output of the circulation pump is larger in the circulation boiling mode control than in the one-over boiling mode control. Thereby, the amount of energy consumption of the heat pump necessary for boiling water in the tank is reliably suppressed.
本発明の第7観点に係る給湯システムは、第4観点に係る給湯システムであって、第3温度センサをさらに備える。第3温度センサは、ヒートポンプの熱交換器を通った後の水の温度を検知する。制御部は、一過沸上モード制御において、熱交換器を通った後の水の温度が、第1目標温度値になるように、循環用ポンプを制御する。また、制御部は、循環沸上モード制御において、循環用ポンプの出力を固定する。
The hot water supply system according to the seventh aspect of the present invention is the hot water supply system according to the fourth aspect, further comprising a third temperature sensor. The third temperature sensor detects the temperature of water after passing through the heat exchanger of the heat pump. The control unit controls the circulation pump so that the temperature of the water after passing through the heat exchanger becomes the first target temperature value in the single over-boiling mode control. Further, the control unit fixes the output of the circulation pump in the circulation boiling mode control.
ここでは、一過沸上モード制御において、タンクに戻ってくる加熱後の水の温度を重視してタンクの水を沸き上げ、循環沸上モード制御において、循環する水の量を確実に確保するために循環用ポンプの出力を固定している。これにより、タンクの水を沸き上げるために必要なヒートポンプの消費エネルギー量が確実に抑制される。
Here, in the single overboiling mode control, the water in the tank is boiled with emphasis on the temperature of the heated water returning to the tank, and in the circulating boiling mode control, the amount of circulating water is reliably ensured. Therefore, the output of the circulation pump is fixed. Thereby, the amount of energy consumption of the heat pump necessary for boiling water in the tank is reliably suppressed.
本発明の第8観点に係る給湯システムは、第4観点~第7観点のいずれかに係る給湯システムであって、1又は複数の第1温度センサをさらに備える。第1温度センサは、循環流路を流れる水の温度を検知する。制御部は、第1状態のときに、循環沸上モード制御を実行し、循環流路を流れる水の温度に基づいて、循環沸上モード制御から一過沸上モード制御に切り換える。
A hot water supply system according to an eighth aspect of the present invention is the hot water supply system according to any of the fourth aspect to the seventh aspect, and further includes one or a plurality of first temperature sensors. The first temperature sensor detects the temperature of water flowing through the circulation channel. The control unit executes the circulation boiling mode control in the first state, and switches from the circulation boiling mode control to the single over-boiling mode control based on the temperature of the water flowing through the circulation channel.
循環沸上モード制御を実行して、タンクの水を沸き上げ始めると、循環量が多いため、タンクの上部のみならず下部にある水の温度もだんだん上昇してくる。すると、ヒートポンプの熱交換器に入る前の水の温度が上昇し、ヒートポンプの成績係数(COP)が低下してくる。そこで、第5観点に係る給湯システムでは、循環流路を流れる水の温度に基づいて、循環沸上モード制御から一過沸上モード制御に切り換えている。これにより、循環する水の量が減り、熱交換器に入る前の水の温度と熱交換器を通った後の水の温度との差が拡大し、ヒートポンプの成績係数(COP)の低下スピードが落ちる或いは成績係数(COP)が向上する。
When the boiling water mode control is started and the water in the tank starts to be boiled, the temperature of the water not only in the upper part of the tank but also in the lower part gradually rises due to the large amount of circulation. Then, the temperature of the water before entering the heat exchanger of the heat pump increases, and the coefficient of performance (COP) of the heat pump decreases. Therefore, in the hot water supply system according to the fifth aspect, the control is switched from the circulation boiling mode control to the single overheating mode control based on the temperature of the water flowing through the circulation channel. This reduces the amount of circulating water, increases the difference between the temperature of the water before entering the heat exchanger and the temperature of the water after passing through the heat exchanger, and the rate of decrease in the coefficient of performance (COP) of the heat pump Drop or the coefficient of performance (COP) improves.
本発明の第9観点に係る給湯システムは、第4観点~第8観点のいずれかに係る給湯システムであって、複数の第2温度センサをさらに備える。第2温度センサは、タンクの中の水の温度分布を検知するためのセンサである。制御部は、第1状態のときに、循環沸上モード制御を実行し、タンクの中の水の温度分布に基づいて、循環沸上モード制御から一過沸上モード制御に切り換える。
A hot water supply system according to a ninth aspect of the present invention is the hot water supply system according to any of the fourth aspect to the eighth aspect, further comprising a plurality of second temperature sensors. The second temperature sensor is a sensor for detecting the temperature distribution of water in the tank. The control unit executes the circulating boiling mode control in the first state, and switches from the circulating boiling mode control to the single super boiling mode control based on the temperature distribution of the water in the tank.
循環沸上モード制御を実行して、タンクの水を沸き上げ始めると、循環量が多いため、タンクの上部のみならず下部にある水の温度もだんだん上昇してくる。すると、ヒートポンプの熱交換器に入る前の水の温度が上昇し、ヒートポンプの成績係数(COP)が低下してくる。そこで、第6観点に係る給湯システムでは、タンクの中の水の温度分布に基づいて、循環沸上モード制御から一過沸上モード制御に切り換えている。これにより、ヒートポンプの熱交換器に入る前の水の温度が上昇し過ぎるまでに、一過沸上モード制御に切り換わり、ヒートポンプの成績係数(COP)の低下スピードが落ちる或いは成績係数(COP)が向上する。
When the boiling water mode control is started and the water in the tank starts to be boiled, the temperature of the water not only in the upper part of the tank but also in the lower part gradually rises due to the large amount of circulation. Then, the temperature of the water before entering the heat exchanger of the heat pump increases, and the coefficient of performance (COP) of the heat pump decreases. Therefore, in the hot water supply system according to the sixth aspect, switching from the circulation boiling mode control to the one super-boiling mode control is performed based on the temperature distribution of the water in the tank. As a result, before the temperature of the water before entering the heat exchanger of the heat pump rises too much, it switches to the one-boiling-up mode control and the coefficient of performance (COP) of the heat pump decreases or the coefficient of performance (COP) decreases. Will improve.
本発明の第10観点に係る給湯システムは、第8観点に係る給湯システムであって、第1温度センサは、熱交換器を通る前の水の温度である入口温度と、熱交換器を通った後の水の温度である出口温度と、を検知する。制御部は、第1状態のときに、循環沸上モード制御を実行し、入口温度および出口温度に基づいて、循環沸上モード制御から一過沸上モード制御に切り換える。
A hot water supply system according to a tenth aspect of the present invention is the hot water supply system according to the eighth aspect, wherein the first temperature sensor passes through the inlet temperature, which is the temperature of water before passing through the heat exchanger, and the heat exchanger. And the outlet temperature, which is the temperature of the water after it has been detected. The control unit executes the circulating boiling mode control in the first state, and switches from the circulating boiling mode control to the single over boiling mode control based on the inlet temperature and the outlet temperature.
循環する水の量が多い循環沸上モード制御では、ヒートポンプを効率のよい領域で運転させることができるが、循環量が多いため、タンクの上部のみならず下部にある水の温度もだんだん上昇してくる。すると、ヒートポンプの熱交換器に入る前の水の温度が上昇し、ヒートポンプの成績係数(COP)が低下してくる。そこで、第7観点に係る給湯システムでは、入口温度および出口温度に基づき、循環沸上モード制御よりも一過沸上モード制御に切り換えたほうがヒートポンプの成績係数(COP)が良くなるときには、循環沸上モード制御から一過沸上モード制御に切り換える。これにより、タンクの水を沸き上げるために必要なヒートポンプの消費エネルギー量が更に抑制され、ランニングコストが下がる。
In the circulation boiling mode control with a large amount of circulating water, the heat pump can be operated in an efficient area, but since the circulation amount is large, the temperature of the water not only in the upper part of the tank but also in the lower part gradually increases. Come. Then, the temperature of the water before entering the heat exchanger of the heat pump increases, and the coefficient of performance (COP) of the heat pump decreases. Therefore, in the hot water supply system according to the seventh aspect, when the coefficient of performance (COP) of the heat pump is improved by switching to the single overboiling mode control over the circulation boiling mode control based on the inlet temperature and the outlet temperature, Switch from upper mode control to one-boiling upper mode control. As a result, the amount of energy consumed by the heat pump required for boiling water in the tank is further suppressed, and the running cost is reduced.
本発明の第11観点に係る給湯システムは、第4観点~第10観点のいずれかに係る給湯システムであって、制御部は、第1状態ではないときに一過沸上モード制御を実行する、或いは、第1状態ではないときに、第1状態になるまでヒートポンプを停止させる。
A hot-water supply system according to an eleventh aspect of the present invention is the hot-water supply system according to any one of the fourth to tenth aspects, wherein the control unit executes the single over-boiling mode control when not in the first state. Alternatively, when not in the first state, the heat pump is stopped until the first state is reached.
ここでは、タンクに貯められている高温水の量が少ない或いは無い第1状態のときには循環沸上モード制御を実行し、その第1状態ではなく、タンクに貯められている高温水の量が多いときには、一過沸上モード制御を実行する、或いは、第1状態になるまでヒートポンプを停止させている。一過沸上モード制御を実行した場合には、循環する水の量が少なくなるため、タンクに貯められている高温水がタンク内で混ざって上部から下部に移動してしまうという現象が抑制される。一方、第1状態になるまでヒートポンプを停止させる場合には、第1状態になってからヒートポンプを効率のよい領域で運転させることができる循環沸上モード制御を行うことで、タンクの水を沸き上げるために必要なヒートポンプの消費エネルギー量が抑制される。
Here, when the amount of high-temperature water stored in the tank is small or absent, the circulation boiling mode control is executed, and not in the first state, the amount of high-temperature water stored in the tank is large. Sometimes, the overheating mode control is executed or the heat pump is stopped until the first state is reached. When the one-boiling-up mode control is executed, the amount of circulating water decreases, so that the phenomenon that hot water stored in the tank is mixed in the tank and moves from the upper part to the lower part is suppressed. The On the other hand, when the heat pump is stopped until the first state is reached, the water in the tank is boiled by performing the circulating boiling mode control that allows the heat pump to operate in an efficient region after the first state. The amount of energy consumed by the heat pump required to increase the temperature is suppressed.
本発明の第12観点に係る給湯システムは、第4観点~第11観点のいずれかに係る給湯システムであって、ヒートポンプの圧縮機は、出力可変である。制御部は、一過沸上モード制御において、圧縮機の出力を、第3範囲で制御する。また、制御部は、循環沸上モード制御において、圧縮機の出力を、第4範囲で制御する。第4範囲は、第3範囲よりも狭い。そして、圧縮機を第4範囲で運転させた場合のヒートポンプの成績係数(COP)の平均値は、圧縮機を第3範囲で運転させた場合のヒートポンプの成績係数(COP)の平均値よりも高い。
A hot water supply system according to a twelfth aspect of the present invention is the hot water supply system according to any one of the fourth aspect to the eleventh aspect, wherein the compressor of the heat pump is variable in output. The control unit controls the output of the compressor within the third range in the one-boiling upper mode control. Moreover, a control part controls the output of a compressor in the 4th range in circulation boiling mode control. The fourth range is narrower than the third range. And the average value of the coefficient of performance (COP) of the heat pump when the compressor is operated in the fourth range is larger than the average value of the coefficient of performance (COP) of the heat pump when the compressor is operated in the third range. high.
ここでは、ヒートポンプの成績係数(COP)のよい狭い第4範囲で圧縮機の出力を制御することで、循環沸上モード制御時に消費されるヒートポンプのエネルギー量を抑制しているため、タンクに貯められている高温水の量が少ない或いは無い第1状態のときに、水の沸き上げに係るランニングコストを下げることができる。
Here, the amount of energy consumed by the heat pump is controlled by controlling the compressor output within a narrow fourth range with a good coefficient of performance (COP) of the heat pump, so that it is stored in the tank. When the amount of high-temperature water is small or no, the running cost for boiling water can be reduced.
本発明の第1観点に係る給湯システムによれば、タンクの水を沸き上げるために必要なヒートポンプの消費エネルギー量を抑制してランニングコストを下げつつ、供給先が要求する温度で水(湯)を供給することができる。
According to the hot water supply system according to the first aspect of the present invention, water (hot water) is supplied at a temperature required by the supply destination while reducing the energy consumption of the heat pump necessary for boiling water in the tank and reducing the running cost. Can be supplied.
本発明の第2観点に係る給湯システムによれば、効率の悪いヒートポンプの運転の回避が容易となる。
According to the hot water supply system according to the second aspect of the present invention, it is easy to avoid operation of an inefficient heat pump.
本発明の第3観点に係る給湯システムによれば、ヒートポンプの成績係数(COP)の低下スピードが落ちる或いは成績係数(COP)が向上する。
According to the hot water supply system according to the third aspect of the present invention, the rate of decrease in the coefficient of performance (COP) of the heat pump is reduced or the coefficient of performance (COP) is improved.
(1)給湯システムの全体構成
給湯システム1は、図1~図3に示すように、ヒートポンプ2、貯湯ユニット3、これらの管理や制御を行うコントローラ50、ユーザーへの情報表示やユーザーの操作受付を担うリモコン90、などを備えている。 (1) Overall configuration of a hot water supply system As shown in FIGS. 1 to 3, the hotwater supply system 1 includes a heat pump 2, a hot water storage unit 3, a controller 50 for managing and controlling them, information display to the user, and acceptance of user operations. A remote controller 90 for carrying the above.
給湯システム1は、図1~図3に示すように、ヒートポンプ2、貯湯ユニット3、これらの管理や制御を行うコントローラ50、ユーザーへの情報表示やユーザーの操作受付を担うリモコン90、などを備えている。 (1) Overall configuration of a hot water supply system As shown in FIGS. 1 to 3, the hot
(2)給湯システムの詳細構成
(2-1)ヒートポンプ
ヒートポンプ2は、水を加熱するための熱源装置として機能するユニットであり、冷媒が循環する冷媒回路20、送風ファン24F、各種センサ、などを備えている。冷媒は、種々のものを使用できるが、ここでは二酸化炭素を使用している。 (2) Detailed Configuration of Hot Water Supply System (2-1) Heat Pump Theheat pump 2 is a unit that functions as a heat source device for heating water, and includes a refrigerant circuit 20 through which refrigerant circulates, a blower fan 24F, various sensors, and the like. I have. Various refrigerants can be used, but carbon dioxide is used here.
(2-1)ヒートポンプ
ヒートポンプ2は、水を加熱するための熱源装置として機能するユニットであり、冷媒が循環する冷媒回路20、送風ファン24F、各種センサ、などを備えている。冷媒は、種々のものを使用できるが、ここでは二酸化炭素を使用している。 (2) Detailed Configuration of Hot Water Supply System (2-1) Heat Pump The
冷媒回路20は、圧縮機21、水熱交換器22、電動膨張弁23、空気熱交換器24、冷媒配管25、などから構成されている。
The refrigerant circuit 20 includes a compressor 21, a water heat exchanger 22, an electric expansion valve 23, an air heat exchanger 24, a refrigerant pipe 25, and the like.
圧縮機21は、インバータ式の出力可変の電動圧縮機である。
The compressor 21 is an inverter-type variable output electric compressor.
水熱交換器22は、冷媒管22rと、水管32wとを有している。水熱交換器22は、ヒートポンプ2の圧縮機21によって吐出された後に冷媒管22rを流れる高温高圧のガス冷媒と、後述する貯湯ユニット3から流れてきて水管32wを流れる循環水との間で、熱交換を行わせる。この水熱交換器22における熱交換によって、冷媒管22rを通過する冷媒が冷却されると同時に、水管32wを通過する水が加熱され、湯(高温の水)が生成される。
The water heat exchanger 22 has a refrigerant pipe 22r and a water pipe 32w. The water heat exchanger 22 is between the high-temperature and high-pressure gas refrigerant that flows through the refrigerant pipe 22r after being discharged by the compressor 21 of the heat pump 2, and the circulating water that flows from the hot water storage unit 3 to be described later and flows through the water pipe 32w. Let the heat exchange occur. By the heat exchange in the water heat exchanger 22, the refrigerant passing through the refrigerant pipe 22r is cooled, and at the same time, the water passing through the water pipe 32w is heated to generate hot water (hot water).
電動膨張弁23は、圧縮機21を出て、水との熱交換で冷却された低温高圧の冷媒を膨張させる。
The electric expansion valve 23 exits the compressor 21 and expands the low-temperature and high-pressure refrigerant cooled by heat exchange with water.
空気熱交換器24は、電動膨張弁23で膨張した低温低圧の二相状態の冷媒と、外気との間で、熱交換を行わせる。外気から吸熱した冷媒は、蒸発して低圧のガス冷媒となって圧縮機21に吸入される。
The air heat exchanger 24 exchanges heat between the low-temperature and low-pressure two-phase refrigerant expanded by the electric expansion valve 23 and the outside air. The refrigerant that has absorbed heat from the outside air evaporates to become a low-pressure gas refrigerant and is sucked into the compressor 21.
冷媒配管25は、圧縮機21の吐出口、水熱交換器22内の冷媒管22r、電動膨張弁23、空気熱交換器24、圧縮機21の吸入口、の順に各機器を接続している。
The refrigerant pipe 25 connects each device in the order of the discharge port of the compressor 21, the refrigerant pipe 22 r in the water heat exchanger 22, the electric expansion valve 23, the air heat exchanger 24, and the suction port of the compressor 21. .
各種センサとしては、例えば、冷媒に関する温度や圧力を検知するセンサが設けられる。図2には、これらのセンサのうち、熱交換器入口水温センサ31Tと、熱交換器出口水温センサ32Tとを示している。熱交換器入口水温センサ31Tは、水熱交換器22に入る前の水の温度を検出する。すなわち、熱交換器入口水温センサ31Tは、水熱交換器22を通過する前の水の温度を検出する。熱交換器出口水温センサ32Tは、水熱交換器22を通過した後の水の温度を検出する。
As the various sensors, for example, sensors for detecting temperature and pressure related to the refrigerant are provided. FIG. 2 shows a heat exchanger inlet water temperature sensor 31T and a heat exchanger outlet water temperature sensor 32T among these sensors. The heat exchanger inlet water temperature sensor 31T detects the temperature of water before entering the water heat exchanger 22. That is, the heat exchanger inlet water temperature sensor 31T detects the temperature of water before passing through the water heat exchanger 22. The heat exchanger outlet water temperature sensor 32T detects the temperature of water after passing through the water heat exchanger 22.
(2-2)貯湯ユニット
貯湯ユニット3は、市水(水道水)などの外部から供給される水を、ヒートポンプ2に送って加熱させ、ヒートポンプ2から戻ってきた水(湯)を蓄えるユニットである。また、貯湯ユニット3は、ユーザーが設定する温度の湯が供給されるように、燃焼加熱装置4や混合弁77によって温度調整された湯を給湯部82に送る機能を持つ。 (2-2) Hot Water Storage Unit The hotwater storage unit 3 is a unit for storing water (hot water) returned from the heat pump 2 by heating the water supplied from the outside such as city water (tap water) to the heat pump 2 and heating it. is there. The hot water storage unit 3 has a function of sending hot water whose temperature is adjusted by the combustion heating device 4 and the mixing valve 77 to the hot water supply unit 82 so that hot water having a temperature set by the user is supplied.
貯湯ユニット3は、市水(水道水)などの外部から供給される水を、ヒートポンプ2に送って加熱させ、ヒートポンプ2から戻ってきた水(湯)を蓄えるユニットである。また、貯湯ユニット3は、ユーザーが設定する温度の湯が供給されるように、燃焼加熱装置4や混合弁77によって温度調整された湯を給湯部82に送る機能を持つ。 (2-2) Hot Water Storage Unit The hot
貯湯ユニット3は、取水部81、給湯部82、貯湯タンク35、循環水配管30、取水給湯配管70、燃焼加熱装置4、などを備えている。
The hot water storage unit 3 includes a water intake part 81, a hot water supply part 82, a hot water storage tank 35, a circulating water pipe 30, a intake water hot water supply pipe 70, a combustion heating device 4, and the like.
(2-2-1)取水部および給湯部
取水部81は、接続口を有し、市水(水道水)の供給管89aが接続される。 (2-2-1) Water intake section and hot water supply section Thewater intake section 81 has a connection port to which a supply pipe 89a for city water (tap water) is connected.
取水部81は、接続口を有し、市水(水道水)の供給管89aが接続される。 (2-2-1) Water intake section and hot water supply section The
給湯部82は、接続口を有し、設置対象の建物内の蛇口99などから延びる給水・給湯用の建物内配管99aが接続される。
The hot water supply unit 82 has a connection port, and is connected to a water supply / hot water supply piping 99a extending from a faucet 99 or the like in the installation target building.
(2-2-2)貯湯タンク
貯湯タンク35は、ヒートポンプ2によって加熱された水(湯)を、ユーザーが蛇口99を回して利用する前から予め蓄えておくタンクである。貯湯タンク35は、水が常に満たされている。そして、貯湯タンク35には、所定温度以上、ここでは70℃以上の高温の水(以下、高温水という。)の量をコントローラ50に把握させるための、タンク温度分布検知センサが設けられている。タンク温度分布検知センサは、貯湯タンク35の下部から上部に向かって、順に、第1センサT1、第2センサT2、第3センサT3、第4センサT4、第5センサT5、第6センサT6の6つにより構成される。コントローラ50は、これらのタンク温度分布検知センサT1~T6が検知する貯湯タンク35内の各高さ位置での水温およびリモコン90による設定に基づき、ヒートポンプ2を駆動させて沸き上げ運転を行う。沸き上げ運転とは、貯湯タンク35の中の水の温度が目的の温度に到達するまで水の熱量を上げていく運転である。沸き上げ運転における目的の温度、すなわち、貯湯タンク35の中の水の目標貯湯温度は、例えば予め給湯システム1の製造工場において設定されている。本実施形態では、目標貯湯温度は75℃である。 (2-2-2) Hot Water Storage Tank The hotwater storage tank 35 is a tank in which water (hot water) heated by the heat pump 2 is stored in advance before the user turns the faucet 99 for use. The hot water storage tank 35 is always filled with water. The hot water storage tank 35 is provided with a tank temperature distribution detection sensor for causing the controller 50 to grasp the amount of high-temperature water (hereinafter, referred to as high-temperature water) that is equal to or higher than a predetermined temperature, here 70 ° C. or higher. . The tank temperature distribution detection sensor includes a first sensor T1, a second sensor T2, a third sensor T3, a fourth sensor T4, a fifth sensor T5, and a sixth sensor T6 in order from the lower part to the upper part of the hot water storage tank 35. It consists of six. The controller 50 drives the heat pump 2 to perform a boiling operation based on the water temperature at each height position in the hot water storage tank 35 detected by the tank temperature distribution detection sensors T1 to T6 and the setting by the remote controller 90. The boiling operation is an operation in which the amount of water is increased until the temperature of the water in the hot water storage tank 35 reaches a target temperature. The target temperature in the boiling operation, that is, the target hot water storage temperature of the hot water storage tank 35 is set in advance in the manufacturing plant of the hot water supply system 1, for example. In the present embodiment, the target hot water storage temperature is 75 ° C.
貯湯タンク35は、ヒートポンプ2によって加熱された水(湯)を、ユーザーが蛇口99を回して利用する前から予め蓄えておくタンクである。貯湯タンク35は、水が常に満たされている。そして、貯湯タンク35には、所定温度以上、ここでは70℃以上の高温の水(以下、高温水という。)の量をコントローラ50に把握させるための、タンク温度分布検知センサが設けられている。タンク温度分布検知センサは、貯湯タンク35の下部から上部に向かって、順に、第1センサT1、第2センサT2、第3センサT3、第4センサT4、第5センサT5、第6センサT6の6つにより構成される。コントローラ50は、これらのタンク温度分布検知センサT1~T6が検知する貯湯タンク35内の各高さ位置での水温およびリモコン90による設定に基づき、ヒートポンプ2を駆動させて沸き上げ運転を行う。沸き上げ運転とは、貯湯タンク35の中の水の温度が目的の温度に到達するまで水の熱量を上げていく運転である。沸き上げ運転における目的の温度、すなわち、貯湯タンク35の中の水の目標貯湯温度は、例えば予め給湯システム1の製造工場において設定されている。本実施形態では、目標貯湯温度は75℃である。 (2-2-2) Hot Water Storage Tank The hot
なお、第6センサT6の温度検出値が70℃を下回っていれば、残湯量は0、第6センサT6の温度検出値が70℃以上であれば、残湯量は1である。さらに、第5センサT5の温度検出値も70℃以上であれば、残湯量は2である。同様に、残湯量は3,4,5,6まで存在し、第1センサT1の温度検出値も70℃以上であれば、残湯量は最大の6である。
If the temperature detection value of the sixth sensor T6 is less than 70 ° C., the remaining hot water amount is 0, and if the temperature detection value of the sixth sensor T6 is 70 ° C. or more, the remaining hot water amount is 1. Furthermore, if the temperature detection value of the fifth sensor T5 is also 70 ° C. or higher, the remaining hot water amount is 2. Similarly, the remaining hot water amount exists up to 3, 4, 5 and 6, and if the temperature detection value of the first sensor T1 is 70 ° C. or more, the remaining hot water amount is 6, which is the maximum.
(2-2-3)循環水配管
循環水配管30は、貯湯タンク35の中の水にヒートポンプ2で得られる熱を伝えるための回路であり、往き管31、水熱交換器22内の水管32w、戻り管33、および、循環用ポンプ34を有している。往き管31は、貯湯タンク35の下端近傍と水熱交換器22内の水管32wの上流側端部とを接続している。戻り管33は、水熱交換器22内の水管32wの下流側端部と貯湯タンク35の上端近傍とを接続している。循環用ポンプ34は、往き管31の途中に設けられている。循環用ポンプ34は、出力を調整することができる電動ポンプであり、貯湯タンク35と水熱交換器22との間で水を循環させる役割を果たす。具体的には、循環水配管30では、循環用ポンプ34がコントローラ50からの指令を受けて駆動することにより、貯湯タンク35内の水のうち下部に存在している温度の低い水が、往き管31に流出し、水熱交換器22内の水管32wを通過することで温度上昇し、戻り管33を介して貯湯タンク35の上端近傍に戻ってくる。これにより、貯湯タンク35内の高温水とそれより温度が低い水との境界が上から下に向けて移動していくことになり、貯湯タンク35内の高温水の量が増えていく。 (2-2-3) Circulating water piping The circulatingwater piping 30 is a circuit for transferring heat obtained by the heat pump 2 to the water in the hot water storage tank 35. The circulating water piping 30 is a water pipe in the forward heat pipe 31 and the water heat exchanger 22. 32w, a return pipe 33, and a circulation pump 34 are provided. The forward pipe 31 connects the vicinity of the lower end of the hot water storage tank 35 and the upstream end of the water pipe 32 w in the water heat exchanger 22. The return pipe 33 connects the downstream end of the water pipe 32 w in the water heat exchanger 22 and the vicinity of the upper end of the hot water storage tank 35. The circulation pump 34 is provided in the middle of the forward pipe 31. The circulation pump 34 is an electric pump capable of adjusting the output, and plays a role of circulating water between the hot water storage tank 35 and the water heat exchanger 22. Specifically, in the circulating water pipe 30, the circulating pump 34 is driven in response to a command from the controller 50, so that the low-temperature water existing in the lower part of the water in the hot water storage tank 35 travels. The temperature rises by flowing out to the pipe 31 and passing through the water pipe 32 w in the water heat exchanger 22, and returns to the vicinity of the upper end of the hot water storage tank 35 through the return pipe 33. As a result, the boundary between the hot water in the hot water storage tank 35 and the water having a lower temperature moves from top to bottom, and the amount of high temperature water in the hot water storage tank 35 increases.
循環水配管30は、貯湯タンク35の中の水にヒートポンプ2で得られる熱を伝えるための回路であり、往き管31、水熱交換器22内の水管32w、戻り管33、および、循環用ポンプ34を有している。往き管31は、貯湯タンク35の下端近傍と水熱交換器22内の水管32wの上流側端部とを接続している。戻り管33は、水熱交換器22内の水管32wの下流側端部と貯湯タンク35の上端近傍とを接続している。循環用ポンプ34は、往き管31の途中に設けられている。循環用ポンプ34は、出力を調整することができる電動ポンプであり、貯湯タンク35と水熱交換器22との間で水を循環させる役割を果たす。具体的には、循環水配管30では、循環用ポンプ34がコントローラ50からの指令を受けて駆動することにより、貯湯タンク35内の水のうち下部に存在している温度の低い水が、往き管31に流出し、水熱交換器22内の水管32wを通過することで温度上昇し、戻り管33を介して貯湯タンク35の上端近傍に戻ってくる。これにより、貯湯タンク35内の高温水とそれより温度が低い水との境界が上から下に向けて移動していくことになり、貯湯タンク35内の高温水の量が増えていく。 (2-2-3) Circulating water piping The circulating
(2-2-4)取水給湯配管および燃焼加熱装置
取水給湯配管70は、外部の市水等から水の供給を受けつつ、貯湯タンク35に蓄えられている高温水を利用するための回路であって、取水管71、給湯管73、バイパス管74、および、混合弁77を有している。 (2-2-4) Water intake hot water supply pipe and combustion heating device The water intake hotwater supply pipe 70 is a circuit for using the high-temperature water stored in the hot water storage tank 35 while receiving supply of water from outside city water or the like. Thus, a water intake pipe 71, a hot water supply pipe 73, a bypass pipe 74, and a mixing valve 77 are provided.
取水給湯配管70は、外部の市水等から水の供給を受けつつ、貯湯タンク35に蓄えられている高温水を利用するための回路であって、取水管71、給湯管73、バイパス管74、および、混合弁77を有している。 (2-2-4) Water intake hot water supply pipe and combustion heating device The water intake hot
取水管71は、外部の市水等から水の供給を受けて、貯湯タンク35の下端近傍に常温の水を供給する。この取水管71には、市水によって供給される水の温度を検知するための取水温度センサ71Tが設けられている。
The intake pipe 71 is supplied with water from outside city water or the like, and supplies room temperature water near the lower end of the hot water storage tank 35. The intake pipe 71 is provided with an intake temperature sensor 71T for detecting the temperature of water supplied by city water.
給湯管73は、貯湯タンク35に蓄えられている水のうち、上端近傍に存在している温度の高い水を、給湯部82から、ユーザーの利用箇所、例えば建物内の蛇口99から延びる建物内配管99aに導く。
The hot water supply pipe 73 is a hot water existing in the vicinity of the upper end of the water stored in the hot water storage tank 35, and is supplied from the hot water supply part 82 to a user's use location, for example, a faucet 99 in the building. Lead to pipe 99a.
燃焼加熱装置4は、給湯管73の途中に配備されている。燃焼加熱装置4は、貯湯タンク35と混合弁77との間に配置されており、燃料ガスを燃焼させる燃焼バーナー41を備えている。燃焼バーナー41は、その加熱能力が調整できるガスバーナーであり、コントローラ50の指令に応じて加熱量を調整しながら給湯管73を流れる水を加熱する。
The combustion heating device 4 is provided in the middle of the hot water supply pipe 73. The combustion heating device 4 is disposed between the hot water storage tank 35 and the mixing valve 77 and includes a combustion burner 41 that burns fuel gas. The combustion burner 41 is a gas burner whose heating capacity can be adjusted, and heats the water flowing through the hot water supply pipe 73 while adjusting the heating amount in accordance with a command from the controller 50.
また、給湯管73の燃焼加熱装置4と混合弁77との間には、通過する水の温度を検知するための混合前湯温センサ4Tが設けられている。
Further, between the combustion heating device 4 of the hot water supply pipe 73 and the mixing valve 77, a pre-mixing hot water temperature sensor 4T for detecting the temperature of the passing water is provided.
バイパス管74は、取水管71を流れている常温の水と、給湯管73を流れてくる水(湯)と、を混合させるための配管である。バイパス管74は、取水管71から給湯管73まで延びており、混合弁77によって給湯管73に接続されている。
The bypass pipe 74 is a pipe for mixing normal temperature water flowing through the intake pipe 71 and water (hot water) flowing through the hot water supply pipe 73. The bypass pipe 74 extends from the water intake pipe 71 to the hot water supply pipe 73, and is connected to the hot water supply pipe 73 by a mixing valve 77.
混合弁77は、コントローラ50からの指令を受け、給湯管73を流れてくる高い温度の水(湯)と、バイパス管74を流れてくる常温の水との混合比率を調節するための調整弁である。
The mixing valve 77 receives an instruction from the controller 50 and adjusts the mixing ratio of high temperature water (hot water) flowing through the hot water supply pipe 73 and normal temperature water flowing through the bypass pipe 74. It is.
(2-3)コントローラおよびリモコン
コントローラ50は、図3に示すように貯湯ユニット3の内部に設置されており、圧縮機21、電動膨張弁23、送風ファン24F、混合弁77、燃焼バーナー41、循環用ポンプ34などのアクチュエータと接続され、これらのアクチュエータに動作指示を送る。また、コントローラ50は、熱交換器入口水温センサ31T、熱交換器出口水温センサ32T、タンク温度分布検知センサT1~T6、取水温度センサ71T、混合前湯温センサ4T、などのセンサ類と接続されており、これらのセンサ類から検知結果を取得する。さらに、コントローラ50には、ユーザーの設定入力を受け付けたりユーザーへの情報提供を行ったりするためのリモコン90が接続されている。 (2-3) Controller and Remote Controller Thecontroller 50 is installed in the hot water storage unit 3 as shown in FIG. 3, and includes a compressor 21, an electric expansion valve 23, a blower fan 24F, a mixing valve 77, a combustion burner 41, It is connected to actuators such as a circulation pump 34 and sends operation instructions to these actuators. The controller 50 is connected to sensors such as a heat exchanger inlet water temperature sensor 31T, a heat exchanger outlet water temperature sensor 32T, tank temperature distribution detection sensors T1 to T6, a water intake temperature sensor 71T, and a pre-mixing hot water temperature sensor 4T. The detection results are obtained from these sensors. Further, the controller 50 is connected to a remote controller 90 for accepting user setting input and providing information to the user.
コントローラ50は、図3に示すように貯湯ユニット3の内部に設置されており、圧縮機21、電動膨張弁23、送風ファン24F、混合弁77、燃焼バーナー41、循環用ポンプ34などのアクチュエータと接続され、これらのアクチュエータに動作指示を送る。また、コントローラ50は、熱交換器入口水温センサ31T、熱交換器出口水温センサ32T、タンク温度分布検知センサT1~T6、取水温度センサ71T、混合前湯温センサ4T、などのセンサ類と接続されており、これらのセンサ類から検知結果を取得する。さらに、コントローラ50には、ユーザーの設定入力を受け付けたりユーザーへの情報提供を行ったりするためのリモコン90が接続されている。 (2-3) Controller and Remote Controller The
リモコン90には、図3および図4に示すように、必要な湯(水)の温度を設定するための湯温設定部91や、設定湯温や残湯量などを表示する表示部92などが設けられている。
As shown in FIGS. 3 and 4, the remote controller 90 includes a hot water temperature setting unit 91 for setting a necessary hot water (water) temperature, a display unit 92 for displaying a set hot water temperature, a remaining hot water amount, and the like. Is provided.
(3)給湯システムにおける沸き上げ運転
次に、貯湯タンク35に蓄えられている水を沸き上げる運転について説明する。 (3) Boiling operation in hot water supply system Next, an operation of boiling water stored in the hotwater storage tank 35 will be described.
次に、貯湯タンク35に蓄えられている水を沸き上げる運転について説明する。 (3) Boiling operation in hot water supply system Next, an operation of boiling water stored in the hot
貯湯タンク35の中の水が全て低温(例えば、取水温度である常温)である場合、第1センサT1~第6センサT6までの温度検出値は全て70℃を下回るため、上述の残湯量は0になる。
When all the water in the hot water storage tank 35 is at a low temperature (for example, room temperature that is the intake water temperature), the temperature detection values from the first sensor T1 to the sixth sensor T6 are all below 70 ° C. 0.
この状態から、仮に、従来の給湯システムのように早期に高温水を貯湯タンク35の上部に溜めて早く残湯量を1にしたいならば、ヒートポンプ2の熱交換器22を通過した後の水の温度が目標値になるようにヒートポンプ2や循環用ポンプ34を制御する一過沸上モード制御51を行うことになる。循環水配管30を流れる水の量を絞り、高温の水が貯湯タンク35に戻ってくるように一過沸上モード制御51を行えば、図5Aに示すように、貯湯タンク35の上部のみに高温水が溜まっていく。
From this state, if it is desired to quickly store high-temperature water in the upper part of the hot water storage tank 35 and quickly make the remaining hot water amount 1 as in the conventional hot water supply system, the water after passing through the heat exchanger 22 of the heat pump 2 is used. One over-boiling upper mode control 51 for controlling the heat pump 2 and the circulation pump 34 is performed so that the temperature becomes a target value. If the amount of water flowing through the circulating water pipe 30 is reduced and the one-boiling-up mode control 51 is performed so that high-temperature water returns to the hot water storage tank 35, as shown in FIG. Hot water accumulates.
(3-1)残湯量が0又は1の状態からの沸き上げ運転
しかし、本発明の一実施形態に係る給湯システム1のコントローラ50は、残湯量が0の状態からの沸き上げ運転として、一過沸上モード制御51ではなく、まずは循環沸上モード制御52を選択する。これは、早期に高温水を貯湯タンク35の上部に溜めて早く残湯量を1にするという考え方ではなく、ヒートポンプ2が消費する電力を小さく抑えながら貯湯タンク35の水を沸き上げるという考え方に基づく選択である。一過沸上モード制御51を採る場合は、初期からヒートポンプ2の熱交換器22を通過した後の水の温度を高温にする必要があり、ヒートポンプ2においては、熱交換器22を流れる冷媒の凝縮温度を高める必要が出る。凝縮温度を上げるために圧縮機の回転数を上げて冷媒の圧力を高めると、ヒートポンプ2の成績係数(COP)は低下する。これに対し、沸き上げ運転を始めるときに循環沸上モード制御52を実行すれば、水の循環量が多くなって、ヒートポンプ2において凝縮温度を上げる必要がなくなり、ヒートポンプ2の成績係数(COP)が高くなる。 (3-1) Boiling operation from a state in which the remaining hot water amount is 0 or 1 However, thecontroller 50 of the hot water supply system 1 according to an embodiment of the present invention provides a boiling operation from a state in which the remaining hot water amount is 0. First, the circulation boiling mode control 52 is selected instead of the super boiling mode control 51. This is not based on the idea of quickly storing high-temperature water in the upper part of the hot water storage tank 35 so that the amount of remaining hot water becomes 1 quickly, but based on the idea of boiling the water in the hot water storage tank 35 while keeping the power consumed by the heat pump 2 small. Is a choice. When the one-boiling-up mode control 51 is employed, the temperature of the water after passing through the heat exchanger 22 of the heat pump 2 needs to be increased from the beginning, and in the heat pump 2, the refrigerant flowing through the heat exchanger 22 is changed. It is necessary to increase the condensation temperature. When the number of revolutions of the compressor is increased to increase the condensation temperature and the refrigerant pressure is increased, the coefficient of performance (COP) of the heat pump 2 is decreased. On the other hand, if the circulation boiling mode control 52 is executed at the start of the boiling operation, the amount of water circulation increases, and there is no need to increase the condensation temperature in the heat pump 2, and the coefficient of performance (COP) of the heat pump 2 is eliminated. Becomes higher.
しかし、本発明の一実施形態に係る給湯システム1のコントローラ50は、残湯量が0の状態からの沸き上げ運転として、一過沸上モード制御51ではなく、まずは循環沸上モード制御52を選択する。これは、早期に高温水を貯湯タンク35の上部に溜めて早く残湯量を1にするという考え方ではなく、ヒートポンプ2が消費する電力を小さく抑えながら貯湯タンク35の水を沸き上げるという考え方に基づく選択である。一過沸上モード制御51を採る場合は、初期からヒートポンプ2の熱交換器22を通過した後の水の温度を高温にする必要があり、ヒートポンプ2においては、熱交換器22を流れる冷媒の凝縮温度を高める必要が出る。凝縮温度を上げるために圧縮機の回転数を上げて冷媒の圧力を高めると、ヒートポンプ2の成績係数(COP)は低下する。これに対し、沸き上げ運転を始めるときに循環沸上モード制御52を実行すれば、水の循環量が多くなって、ヒートポンプ2において凝縮温度を上げる必要がなくなり、ヒートポンプ2の成績係数(COP)が高くなる。 (3-1) Boiling operation from a state in which the remaining hot water amount is 0 or 1 However, the
一過沸上モード制御51では、少量の水が循環水配管30に流れるように循環用ポンプ34を制御して、水熱交換器22で水を加熱して目標貯湯温度(ここでは75℃)で出湯するように制御することで、貯湯タンク35の水を沸き上げる。すなわち、ここでは、水熱交換器22を出た水の目標値である目標熱交換器出口水温が、目標貯湯温度である75℃に設定される。これにより、ヒートポンプ2から貯湯タンク35に向けて出湯される湯温が、75℃に近い温度となる。
In the one-boiling-up mode control 51, the circulation pump 34 is controlled so that a small amount of water flows into the circulation water pipe 30, and the water is heated by the water heat exchanger 22 to set the target hot water storage temperature (here, 75 ° C.). The water in the hot water storage tank 35 is boiled up by controlling so that the hot water is discharged. That is, here, the target heat exchanger outlet water temperature, which is the target value of the water leaving the water heat exchanger 22, is set to 75 ° C., which is the target hot water storage temperature. Thereby, the hot water temperature discharged from the heat pump 2 toward the hot water storage tank 35 becomes a temperature close to 75 ° C.
これに対し、循環沸上モード制御52では、一過沸上モード制御51のときよりも多い水が循環水配管30に流れるように循環用ポンプ34を制御して、水熱交換器22で水を加熱して目標貯湯温度よりも低い温度で出湯し、目標貯湯温度に向けて次第に出湯温度が上がるように制御することで、貯湯タンク35の水を沸き上げる。
On the other hand, in the circulation boiling mode control 52, the circulation pump 34 is controlled so that more water flows to the circulation water pipe 30 than in the case of the single overboiling mode control 51, and the water heat exchanger 22 The hot water is discharged at a temperature lower than the target hot water storage temperature and controlled so that the hot water temperature gradually increases toward the target hot water temperature, thereby boiling the water in the hot water storage tank 35.
次に、図6を参照しながら、残湯量が0又は1の状態からの沸き上げ運転について説明する。各ステップの主体は、コントローラ50である。
Next, the boiling operation from the state where the remaining hot water amount is 0 or 1 will be described with reference to FIG. The main body of each step is the controller 50.
ステップS11で、まずヒートポンプ2の圧縮機21を起動し、循環用ポンプ34を回し始める。そして、ステップS12で、循環沸上モード制御52を実行する。この循環沸上モード制御52では、循環用ポンプ34の出力を最大出力又は最大出力に近い出力で固定する。一方、ヒートポンプ2の圧縮機21の出力は、ヒートポンプ2の成績係数(COP)が良好な所定範囲に限定をかける。具体的には、図8に示すように、圧縮機21の最大周波数M(Hz)の30%~50%の範囲でヒートポンプ2を制御する。このとき、循環水配管30を流れる水の量が多いけれども、圧縮機21の回転数は所定範囲に抑えられているため、熱交換器22を通過した後の水の温度は比較的低い。そして、図5Bに示すように多量の水が貯湯タンク35の上部に戻ってくるため、貯湯タンク35の中の水が混ざり、貯湯タンク35の上部と下部とで大きな温度差が生じることなく、全体的に貯湯タンク35の水が沸き上がっていく。
In step S11, first, the compressor 21 of the heat pump 2 is started and the circulation pump 34 is started to rotate. In step S12, the circulation boiling mode control 52 is executed. In the circulation boiling mode control 52, the output of the circulation pump 34 is fixed at the maximum output or an output close to the maximum output. On the other hand, the output of the compressor 21 of the heat pump 2 is limited to a predetermined range where the coefficient of performance (COP) of the heat pump 2 is good. Specifically, as shown in FIG. 8, the heat pump 2 is controlled in the range of 30% to 50% of the maximum frequency M (Hz) of the compressor 21. At this time, although the amount of water flowing through the circulating water pipe 30 is large, the rotational speed of the compressor 21 is suppressed to a predetermined range, so the temperature of the water after passing through the heat exchanger 22 is relatively low. And since a lot of water returns to the upper part of the hot water storage tank 35 as shown to FIG. 5B, the water in the hot water storage tank 35 mixes, and a big temperature difference does not arise in the upper part and the lower part of the hot water storage tank 35, As a whole, the water in the hot water storage tank 35 is boiling up.
ステップS13では、水熱交換器22に入る水の温度、すなわち、熱交換器入口水温センサ31Tの検出温度が、閾値(ここでは25℃)を超えたか否かを判断する。超えていなければ、ステップS12の循環沸上モード制御52を継続する。
In step S13, it is determined whether or not the temperature of the water entering the water heat exchanger 22, that is, the detected temperature of the heat exchanger inlet water temperature sensor 31T exceeds a threshold value (25 ° C. here). If not, the circulation boiling mode control 52 in step S12 is continued.
一方、ステップS13で、水熱交換器22に入る水の温度が閾値を超えたと判断すると、ステップS14で目標熱交換器出口水温をコントローラ50内のメモリ(図示せず)から読み込み、ステップS15の一過沸上モード制御51への切り換えを行う。
On the other hand, if it is determined in step S13 that the temperature of the water entering the water heat exchanger 22 has exceeded the threshold value, the target heat exchanger outlet water temperature is read from a memory (not shown) in the controller 50 in step S14, and in step S15. Switching to the one-boiling-up mode control 51 is performed.
一過沸上モード制御51では、ヒートポンプ2の水熱交換器22における冷媒の凝縮温度が目標熱交換器出口水温の数値になるように、圧縮機21の出力の制限(上述の最大周波数M(Hz)の30%~50%の範囲)が外され、圧縮機21の回転数が上がっていく。また、水熱交換器22を通過した後の水の温度が目標熱交換器出口水温になるように、循環用ポンプ34の出力が絞られる。
In the one-boiling-up mode control 51, the output of the compressor 21 is limited (the above-mentioned maximum frequency M () so that the condensation temperature of the refrigerant in the water heat exchanger 22 of the heat pump 2 becomes the target heat exchanger outlet water temperature. The range of 30 to 50% of Hz) is removed, and the rotational speed of the compressor 21 increases. Further, the output of the circulation pump 34 is reduced so that the temperature of the water after passing through the water heat exchanger 22 becomes the target heat exchanger outlet water temperature.
その後、ステップS16において残湯量が設定された値(例えば5や6)に到達したか否かが判断され、到達するまでステップS15の一過沸上モード制御51が継続される。ステップS16において残湯量が設定された値に到達したと判断されると、ステップS17で圧縮機21や循環用ポンプ34を停止させ、沸き上げ運転を終了する。
Thereafter, it is determined in step S16 whether or not the remaining hot water amount has reached a set value (for example, 5 or 6), and the overheating mode control 51 in step S15 is continued until it reaches. If it is determined in step S16 that the remaining hot water amount has reached the set value, the compressor 21 and the circulation pump 34 are stopped in step S17, and the boiling operation is terminated.
なお、上記の沸き上げ運転中、特に最初の循環沸上モード制御52を実行しているときには、残湯量が0である。このため、蛇口99が開けられ給湯部82から高温の湯を供給する必要があるときには、コントローラ50は、燃焼加熱装置4の燃焼バーナー41を点火して、貯湯タンク35から給湯部82に向かう水を加熱させる。このとき、燃焼バーナー41の出力は、混合前湯温センサ4Tの検出温度と、リモコン90で入力されたユーザーの設定湯温とに基づいて調整される。
It should be noted that the remaining hot water amount is 0 during the above-described boiling operation, particularly when the first circulating boiling mode control 52 is executed. For this reason, when the faucet 99 is opened and it is necessary to supply high-temperature hot water from the hot water supply unit 82, the controller 50 ignites the combustion burner 41 of the combustion heating device 4, and the water from the hot water storage tank 35 toward the hot water supply unit 82. To heat. At this time, the output of the combustion burner 41 is adjusted based on the detected temperature of the pre-mixing hot water temperature sensor 4T and the user's set hot water temperature input by the remote controller 90.
(3-2)残湯量が2~5の状態からの沸き上げ運転
本発明の一実施形態に係る給湯システム1のコントローラ50は、残湯量が2~5の状態からの沸き上げ運転として、循環沸上モード制御52ではなく、一過沸上モード制御51を選択する。これは、既に貯湯タンク35の上部には高温水が存在しており、多量の水を循環水配管30で循環させてしまうと、貯湯タンク35の上部の高温水が下部に移動して、比較的高い温度の水が往き管31を経て水熱交換器22に入ってきてしまうからである。このように水熱交換器22への入水温度が上がってしまうと、ヒートポンプ2の水熱交換器22において冷媒の過冷却が取れなくなり、ヒートポンプ2の成績係数(COP)が低下する。 (3-2) Boiling operation from a state in which the remaining hot water amount is 2 to 5 Thecontroller 50 of the hot water supply system 1 according to an embodiment of the present invention circulates as a boiling operation from a state in which the remaining hot water amount is 2 to 5. Instead of the boiling mode control 52, the one-over boiling mode control 51 is selected. This is because hot water already exists in the upper part of the hot water storage tank 35, and if a large amount of water is circulated through the circulating water pipe 30, the hot water in the upper part of the hot water storage tank 35 moves to the lower part. This is because water having a relatively high temperature enters the water heat exchanger 22 via the forward pipe 31. If the temperature of water entering the water heat exchanger 22 rises in this way, the refrigerant cannot be supercooled in the water heat exchanger 22 of the heat pump 2, and the coefficient of performance (COP) of the heat pump 2 decreases.
本発明の一実施形態に係る給湯システム1のコントローラ50は、残湯量が2~5の状態からの沸き上げ運転として、循環沸上モード制御52ではなく、一過沸上モード制御51を選択する。これは、既に貯湯タンク35の上部には高温水が存在しており、多量の水を循環水配管30で循環させてしまうと、貯湯タンク35の上部の高温水が下部に移動して、比較的高い温度の水が往き管31を経て水熱交換器22に入ってきてしまうからである。このように水熱交換器22への入水温度が上がってしまうと、ヒートポンプ2の水熱交換器22において冷媒の過冷却が取れなくなり、ヒートポンプ2の成績係数(COP)が低下する。 (3-2) Boiling operation from a state in which the remaining hot water amount is 2 to 5 The
次に、図7を参照しながら、残湯量が2~5の状態からの沸き上げ運転について説明する。
Next, a boiling operation from a state where the remaining hot water amount is 2 to 5 will be described with reference to FIG.
ステップS21で、まずヒートポンプ2の圧縮機21を起動し、循環用ポンプ34を回し始める。そして、ステップS22で、目標熱交換器出口水温をコントローラ50内のメモリから読み込み、ステップS23で一過沸上モード制御51を実行する。
In step S21, the compressor 21 of the heat pump 2 is first started and the circulation pump 34 is started to rotate. In step S22, the target heat exchanger outlet water temperature is read from the memory in the controller 50, and in step S23, the one-boiling-up mode control 51 is executed.
一過沸上モード制御51では、ヒートポンプ2の水熱交換器22における冷媒の凝縮温度が目標熱交換器出口水温の数値になるように、圧縮機21の出力が調整される。また、水熱交換器22を通過した後の水の温度が目標熱交換器出口水温になるように、循環用ポンプ34の出力が調整される。圧縮機21の出力も、循環用ポンプ34の出力も、最小出力から最大出力の範囲で調整される。
In the one super-boiling upper mode control 51, the output of the compressor 21 is adjusted so that the condensation temperature of the refrigerant in the water heat exchanger 22 of the heat pump 2 becomes a numerical value of the target heat exchanger outlet water temperature. Further, the output of the circulation pump 34 is adjusted so that the temperature of the water after passing through the water heat exchanger 22 becomes the target heat exchanger outlet water temperature. Both the output of the compressor 21 and the output of the circulation pump 34 are adjusted in the range from the minimum output to the maximum output.
その後、ステップS24において残湯量が設定された値(例えば5や6)に到達したか否かが判断され、到達するまで一過沸上モード制御51が継続される。ステップS24において残湯量が設定された値に到達したと判断されると、ステップS25で圧縮機21や循環用ポンプ34を停止させ、沸き上げ運転を終了する。
Thereafter, in step S24, it is determined whether or not the remaining hot water amount has reached a set value (for example, 5 or 6), and the one-boiling-up mode control 51 is continued until it reaches. If it is determined in step S24 that the remaining hot water amount has reached the set value, the compressor 21 and the circulation pump 34 are stopped in step S25, and the boiling operation is terminated.
(4)給湯システムの特徴
(4-1)
上記の給湯システム1では、貯湯タンク35の水を沸き上げる制御として、一過沸上モード制御51と、循環沸上モード制御52とが存在する。そして、貯湯タンク35に貯められている高温水の量が無い或いは少ないとき、すなわち、残湯量が0か1のときに、まずは循環沸上モード制御52を実行する。すると、一過沸上モード制御51に較べて循環水配管30を循環する水の量が多いため、ヒートポンプ2から貯湯タンク35に戻ってくる加熱後の水の温度が低くなってしまうが、ヒートポンプ2を効率のよい領域で運転させることができ、ヒートポンプ2の運転によって消費される電力が一過沸上モード制御51を実行する場合に較べて小さくなる。 (4) Features of hot water supply system (4-1)
In the hotwater supply system 1, as the control for boiling the water in the hot water storage tank 35, there is a single overboiling mode control 51 and a circulation boiling mode control 52. When the amount of high-temperature water stored in the hot water storage tank 35 is small or small, that is, when the remaining hot water amount is 0 or 1, the circulation boiling mode control 52 is first executed. Then, since the amount of water circulating through the circulating water pipe 30 is larger than that in the one-boiling mode control 51, the temperature of the heated water returning from the heat pump 2 to the hot water storage tank 35 is lowered. 2 can be operated in an efficient region, and the electric power consumed by the operation of the heat pump 2 is smaller than that in the case where the one-boiling upper mode control 51 is executed.
(4-1)
上記の給湯システム1では、貯湯タンク35の水を沸き上げる制御として、一過沸上モード制御51と、循環沸上モード制御52とが存在する。そして、貯湯タンク35に貯められている高温水の量が無い或いは少ないとき、すなわち、残湯量が0か1のときに、まずは循環沸上モード制御52を実行する。すると、一過沸上モード制御51に較べて循環水配管30を循環する水の量が多いため、ヒートポンプ2から貯湯タンク35に戻ってくる加熱後の水の温度が低くなってしまうが、ヒートポンプ2を効率のよい領域で運転させることができ、ヒートポンプ2の運転によって消費される電力が一過沸上モード制御51を実行する場合に較べて小さくなる。 (4) Features of hot water supply system (4-1)
In the hot
一方、この給湯システム1では、ヒートポンプ2から貯湯タンク35に戻ってくる加熱後の水の温度が低くなる循環沸上モード制御52をまず実行するため、貯湯タンク35に貯められている高温水の量が無い或いは少ない状態、すなわち、残湯量が0か1の状態がなかなか解消されず、貯湯タンク35の上部に高温水がなかなか貯まらない。それではユーザーがリモコン90で設定した湯温で給湯できなくなるため、循環沸上モード制御52を実行しつつ、この給湯システム1では、給湯部82から給湯されることになる水の温度、すなわち、混合前湯温センサ4Tの検出温度が、ユーザーの設定湯温よりも小さいときに、燃焼加熱装置4の燃焼バーナー41を点火して、貯湯タンク35から給湯部82に向かう水を加熱させる。
On the other hand, in this hot water supply system 1, the circulation boiling mode control 52 is first executed in which the temperature of the heated water returning from the heat pump 2 to the hot water storage tank 35 is lowered. A state where there is no or little amount, that is, a state where the remaining hot water amount is 0 or 1 is not easily solved, and high temperature water is not easily stored in the upper part of the hot water storage tank 35. Then, since it becomes impossible for the user to supply hot water at the hot water temperature set by the remote controller 90, the temperature of the water to be supplied from the hot water supply unit 82 in the hot water supply system 1 while performing the circulation boiling mode control 52, that is, mixing When the temperature detected by the hot water temperature sensor 4T is lower than the user's set hot water temperature, the combustion burner 41 of the combustion heating device 4 is ignited to heat the water from the hot water storage tank 35 toward the hot water supply section 82.
このような構成を採っているため、この給湯システム1では、貯湯タンク35の水を沸き上げるために必要なヒートポンプ2の消費電力を抑制してランニングコストを下げつつ、ユーザーが要求する設定湯温で給湯を行うことができている。
Since such a configuration is adopted, in this hot water supply system 1, the set hot water temperature requested by the user is reduced while suppressing the power consumption of the heat pump 2 required for boiling the water in the hot water storage tank 35 to reduce the running cost. We can supply hot water at.
(4-2)
給湯システム1では、一過沸上モード制御51において、貯湯タンク35に戻ってくる加熱後の水の温度を重視して貯湯タンク35の水を沸き上げ、循環沸上モード制御52において、循環する水の量を確実に確保するために循環用ポンプ34の出力を最大出力又は最大出力に近い出力で固定している。これにより、貯湯タンク35の水を沸き上げるために必要なヒートポンプ2の消費電力が確実に抑制されている。 (4-2)
In the hotwater supply system 1, in the overheating mode control 51, the water in the hot water storage tank 35 is boiled with emphasis on the temperature of the heated water returning to the hot water tank 35, and is circulated in the circulation heating mode control 52. In order to ensure the amount of water, the output of the circulation pump 34 is fixed at the maximum output or an output close to the maximum output. Thereby, the power consumption of the heat pump 2 necessary for boiling water in the hot water storage tank 35 is reliably suppressed.
給湯システム1では、一過沸上モード制御51において、貯湯タンク35に戻ってくる加熱後の水の温度を重視して貯湯タンク35の水を沸き上げ、循環沸上モード制御52において、循環する水の量を確実に確保するために循環用ポンプ34の出力を最大出力又は最大出力に近い出力で固定している。これにより、貯湯タンク35の水を沸き上げるために必要なヒートポンプ2の消費電力が確実に抑制されている。 (4-2)
In the hot
(4-3)
循環沸上モード制御52を実行して、貯湯タンク35の水を沸き上げ始めると、循環量が多いため、貯湯タンク35の上部のみならず貯湯タンク35の下部にある水の温度もだんだん上昇してくる(図5B参照)。すると、ヒートポンプ2の水熱交換器22に入る前の水の温度が上昇し、ヒートポンプ2の成績係数(COP)が低下してくる。 (4-3)
When the circulation boilingmode control 52 is executed and the water in the hot water storage tank 35 is started to be boiled, the temperature of the water not only in the upper part of the hot water storage tank 35 but also in the lower part of the hot water storage tank 35 rises gradually because the circulation amount is large. Comes (see FIG. 5B). Then, the temperature of the water before entering the water heat exchanger 22 of the heat pump 2 increases, and the coefficient of performance (COP) of the heat pump 2 decreases.
循環沸上モード制御52を実行して、貯湯タンク35の水を沸き上げ始めると、循環量が多いため、貯湯タンク35の上部のみならず貯湯タンク35の下部にある水の温度もだんだん上昇してくる(図5B参照)。すると、ヒートポンプ2の水熱交換器22に入る前の水の温度が上昇し、ヒートポンプ2の成績係数(COP)が低下してくる。 (4-3)
When the circulation boiling
そこで、給湯システム1では、循環水配管30を流れる水の温度(熱交換器入口水温センサ31Tの検出温度)に基づいて、循環沸上モード制御52から一過沸上モード制御51への切り換えを行っている。これにより、循環する水の量が減り、水熱交換器22に入る前の水の温度と水熱交換器22を通った後の水の温度との差が拡大し、ヒートポンプ2の成績係数(COP)の低下が抑制されている。
Therefore, in the hot water supply system 1, switching from the circulating boiling mode control 52 to the single overheating mode control 51 is performed based on the temperature of the water flowing through the circulating water pipe 30 (the temperature detected by the heat exchanger inlet water temperature sensor 31T). Is going. As a result, the amount of circulating water is reduced, the difference between the temperature of the water before entering the water heat exchanger 22 and the temperature of the water after passing through the water heat exchanger 22 is expanded, and the coefficient of performance of the heat pump 2 ( The decrease in COP) is suppressed.
(4-4)
給湯システム1では、残湯量が0又は1の状態のときには、まず循環沸上モード制御52で沸き上げ運転を始め、残湯量が2~5の状態のときには、一過沸上モード制御51を実行している。もしも、残湯量が2~5の状態のときに循環沸上モード制御52を実行すると、貯湯タンク35に既に貯められている高温水が貯湯タンク35内で混ざって上部から下部に移動してしまうが、ここでは一過沸上モード制御51を選択しているため、貯湯タンク35の上部の高温水が貯湯タンク35の下部に移動することが抑えられている。 (4-4)
In the hotwater supply system 1, when the remaining hot water amount is 0 or 1, the boiling operation is first started by the circulating boiling mode control 52, and when the remaining hot water amount is 2 to 5, the overheating mode control 51 is executed. is doing. If the circulating boiling mode control 52 is executed when the amount of remaining hot water is 2-5, the hot water already stored in the hot water storage tank 35 is mixed in the hot water storage tank 35 and moves from the upper part to the lower part. However, since the one-boiling-up mode control 51 is selected here, the hot water in the upper part of the hot water storage tank 35 is prevented from moving to the lower part of the hot water storage tank 35.
給湯システム1では、残湯量が0又は1の状態のときには、まず循環沸上モード制御52で沸き上げ運転を始め、残湯量が2~5の状態のときには、一過沸上モード制御51を実行している。もしも、残湯量が2~5の状態のときに循環沸上モード制御52を実行すると、貯湯タンク35に既に貯められている高温水が貯湯タンク35内で混ざって上部から下部に移動してしまうが、ここでは一過沸上モード制御51を選択しているため、貯湯タンク35の上部の高温水が貯湯タンク35の下部に移動することが抑えられている。 (4-4)
In the hot
(4-5)
給湯システム1では、一過沸上モード制御51において、コントローラ50が、圧縮機21の出力を、最小出力から最大出力の範囲で調整する。一方、循環沸上モード制御52においては、コントローラ50が、圧縮機21の出力を、ヒートポンプ2の成績係数(COP)が良好な所定範囲、すなわち、圧縮機21の最大周波数M(Hz)の30%~50%の範囲に限定して調整している。これにより、循環沸上モード制御52を行う残湯量が0又は1の状態からの沸き上げ運転において、ヒートポンプ2の消費電力が抑えられ、水の沸き上げに係るランニングコストが下がっている。 (4-5)
In the hotwater supply system 1, the controller 50 adjusts the output of the compressor 21 in the range from the minimum output to the maximum output in the one-boiling upper mode control 51. On the other hand, in the circulation boiling mode control 52, the controller 50 sets the output of the compressor 21 to a predetermined range in which the coefficient of performance (COP) of the heat pump 2 is good, that is, 30 of the maximum frequency M (Hz) of the compressor 21. The adjustment is limited to the range of 50% to 50%. Thereby, in the boiling operation from the state where the amount of remaining hot water for performing the circulation boiling mode control 52 is 0 or 1, the power consumption of the heat pump 2 is suppressed, and the running cost for boiling water is reduced.
給湯システム1では、一過沸上モード制御51において、コントローラ50が、圧縮機21の出力を、最小出力から最大出力の範囲で調整する。一方、循環沸上モード制御52においては、コントローラ50が、圧縮機21の出力を、ヒートポンプ2の成績係数(COP)が良好な所定範囲、すなわち、圧縮機21の最大周波数M(Hz)の30%~50%の範囲に限定して調整している。これにより、循環沸上モード制御52を行う残湯量が0又は1の状態からの沸き上げ運転において、ヒートポンプ2の消費電力が抑えられ、水の沸き上げに係るランニングコストが下がっている。 (4-5)
In the hot
(5)変形例
(5-1)変形例A
上記の給湯システム1では、循環沸上モード制御52において、循環する水の量を確実に確保するために、循環用ポンプ34の出力を最大出力又は最大出力に近い出力で固定し、一過沸上モード制御51において、水熱交換器22を通過した後の水の温度が目標熱交換器出口水温になるように、循環用ポンプ34の出力を制御している。 (5) Modification (5-1) Modification A
In the hotwater supply system 1 described above, in the circulation boiling mode control 52, the output of the circulation pump 34 is fixed at the maximum output or an output close to the maximum output in order to ensure the amount of circulating water. In the upper mode control 51, the output of the circulation pump 34 is controlled so that the temperature of the water after passing through the water heat exchanger 22 becomes the target heat exchanger outlet water temperature.
(5-1)変形例A
上記の給湯システム1では、循環沸上モード制御52において、循環する水の量を確実に確保するために、循環用ポンプ34の出力を最大出力又は最大出力に近い出力で固定し、一過沸上モード制御51において、水熱交換器22を通過した後の水の温度が目標熱交換器出口水温になるように、循環用ポンプ34の出力を制御している。 (5) Modification (5-1) Modification A
In the hot
この制御に加え、一過沸上モード制御において、循環用ポンプ34の出力が大きくなり過ぎないように、制御範囲を限定してもよい。例えば、循環沸上モード制御においては、最大出力に近い狭い範囲で循環用ポンプ34の出力を調整し、一過沸上モード制御51においては、最大出力の50%を超えない範囲で、循環用ポンプ34の出力を調整するようにしてもよい。このように制御すれば、一過沸上モード制御を実行しているときに循環水配管30を流れる水の流量が大きくなりすぎて貯湯タンク35の中の高温水と低温水とが混じりすぎるという不具合が抑制される。
In addition to this control, the control range may be limited so that the output of the circulation pump 34 does not become too large in the single over-boiling mode control. For example, in the circulation boiling mode control, the output of the circulation pump 34 is adjusted in a narrow range close to the maximum output, and in the one over-boiling mode control 51, the output for circulation is within a range not exceeding 50% of the maximum output. The output of the pump 34 may be adjusted. By controlling in this way, the flow rate of the water flowing through the circulating water pipe 30 becomes too large when the one-boiling-up mode control is executed, and the high temperature water and the low temperature water in the hot water storage tank 35 are mixed too much. Defects are suppressed.
(5-2)変形例B
上記の給湯システム1では、循環沸上モード制御52において、循環する水の量を確実に確保するために、循環用ポンプ34の出力を最大出力又は最大出力に近い出力で固定し、一過沸上モード制御51において、水熱交換器22を通過した後の水の温度が目標熱交換器出口水温になるように、循環用ポンプ34の出力を制御している。 (5-2) Modification B
In the hotwater supply system 1 described above, in the circulation boiling mode control 52, the output of the circulation pump 34 is fixed at the maximum output or an output close to the maximum output in order to ensure the amount of circulating water. In the upper mode control 51, the output of the circulation pump 34 is controlled so that the temperature of the water after passing through the water heat exchanger 22 becomes the target heat exchanger outlet water temperature.
上記の給湯システム1では、循環沸上モード制御52において、循環する水の量を確実に確保するために、循環用ポンプ34の出力を最大出力又は最大出力に近い出力で固定し、一過沸上モード制御51において、水熱交換器22を通過した後の水の温度が目標熱交換器出口水温になるように、循環用ポンプ34の出力を制御している。 (5-2) Modification B
In the hot
この制御に代えて、循環沸上モード制御においても、水熱交換器22を通過した後の水の温度が目標熱交換器出口水温になるように、循環用ポンプ34の出力を制御することを選択することが可能である。この場合には、循環沸上モード制御における目標熱交換器出口水温を、一過沸上モード制御51における目標熱交換器出口水温よりも低く設定する。このように制御した場合にも、循環沸上モード制御を実行しているときの循環水配管30を流れる水の流量が多くなり、ヒートポンプ2の消費電力が抑えられ、水の沸き上げに係るランニングコストが下がる。
Instead of this control, also in the circulation boiling mode control, the output of the circulation pump 34 is controlled so that the temperature of the water after passing through the water heat exchanger 22 becomes the target heat exchanger outlet water temperature. It is possible to select. In this case, the target heat exchanger outlet water temperature in the circulation boiling mode control is set to be lower than the target heat exchanger outlet water temperature in the one-boiling upper mode control 51. Even in such a control, the flow rate of the water flowing through the circulating water pipe 30 when the circulation boiling mode control is executed is increased, the power consumption of the heat pump 2 is suppressed, and the running related to the water boiling is performed. Cost is reduced.
(5-3)変形例C
上記の給湯システム1では、水熱交換器22に入る水の温度が閾値を超えたと判断されたときに、循環沸上モード制御52から一過沸上モード制御51への切り換えが行われる(図6のステップS13参照)。 (5-3) Modification C
In the hotwater supply system 1 described above, when it is determined that the temperature of the water entering the water heat exchanger 22 has exceeded the threshold value, switching from the circulation boiling mode control 52 to the single overheating mode control 51 is performed (FIG. 6 step S13).
上記の給湯システム1では、水熱交換器22に入る水の温度が閾値を超えたと判断されたときに、循環沸上モード制御52から一過沸上モード制御51への切り換えが行われる(図6のステップS13参照)。 (5-3) Modification C
In the hot
この切り換え判断に代えて、循環沸上モード制御52から一過沸上モード制御51への切り換えを、貯湯タンク35の中の水の温度分布に基づいて行ってもよい。この場合にも、沸き上げ運転のトータルでのヒートポンプ2の消費電力が抑制される。
Instead of this switching determination, switching from the circulating boiling mode control 52 to the one-over boiling mode control 51 may be performed based on the temperature distribution of water in the hot water storage tank 35. Also in this case, the power consumption of the heat pump 2 in the total boiling operation is suppressed.
(5-4)変形例D
上記の給湯システム1では、ユーザー設定などに基づき、残湯量が2~5の状態から一過沸上モード制御51を用いた沸き上げ運転を実行させている。 (5-4) Modification D
In the hotwater supply system 1 described above, the boiling operation using the one-boiling-up mode control 51 is executed from the state where the remaining hot water amount is 2 to 5 based on the user setting or the like.
上記の給湯システム1では、ユーザー設定などに基づき、残湯量が2~5の状態から一過沸上モード制御51を用いた沸き上げ運転を実行させている。 (5-4) Modification D
In the hot
これに代えて、例えばユーザーが省エネ設定を選択している場合などには、残湯量が2~5の状態からの沸き上げ運転を禁止し、残湯量が0になるまで、或いは、残湯量が1になるまで待機し、その後に循環沸上モード制御52によって沸き上げ運転を開始させるように制御してもよい。この場合には、貯湯タンク35の水を沸き上げるために必要なヒートポンプ2の消費電力がより抑制される。
Instead, for example, when the user has selected the energy saving setting, the boiling operation from the state where the remaining hot water amount is 2 to 5 is prohibited and the remaining hot water amount becomes zero or the remaining hot water amount is reduced. It may wait until it becomes 1, and then control may be performed so that the boiling operation is started by the circulating boiling mode control 52. In this case, the power consumption of the heat pump 2 necessary for boiling the water in the hot water storage tank 35 is further suppressed.
(5-5)変形例E
上記の給湯システム1では、水熱交換器22に入る水の温度が閾値を超えたと判断され たときに、循環沸上モード制御52から一過沸上モード制御51への切り換えが行われる(図6のステップS13参照)。 (5-5) Modification E
In the hotwater supply system 1 described above, when it is determined that the temperature of the water entering the water heat exchanger 22 has exceeded the threshold value, switching from the circulation boiling mode control 52 to the single overheating mode control 51 is performed (see FIG. 6 step S13).
上記の給湯システム1では、水熱交換器22に入る水の温度が閾値を超えたと判断され たときに、循環沸上モード制御52から一過沸上モード制御51への切り換えが行われる(図6のステップS13参照)。 (5-5) Modification E
In the hot
この切り換え判断に代えて、循環沸上モード制御52から一過沸上モード制御51への切り換えを、水熱交換器22を通る前の水の温度と、水熱交換器22を通った後の水の温度とに基づいて行ってもよい。すなわち、熱交換器入口水温センサ31Tの検知温度と、熱交換器出口水温センサ32Tの検知温度とに基づいて、循環沸上モード制御52から一過沸上モード制御51への切り換えを行うことも可能である。
Instead of this switching determination, the switching from the circulation boiling mode control 52 to the one super-boiling mode control 51 is performed by changing the temperature of water before passing through the water heat exchanger 22 and after passing through the water heat exchanger 22. You may carry out based on the temperature of water. That is, switching from the circulation boiling mode control 52 to the one-boiling mode control 51 may be performed based on the detected temperature of the heat exchanger inlet water temperature sensor 31T and the detected temperature of the heat exchanger outlet water temperature sensor 32T. Is possible.
(5-6)変形例F
上記の給湯システム1では、残湯量が0又は1の状態からの沸き上げ運転において、まず循環沸上モード制御52を選択し、途中で一過沸上モード制御51に切り換えている。 (5-6) Modification F
In the hotwater supply system 1 described above, in the boiling operation from the state where the remaining hot water amount is 0 or 1, the circulation boiling mode control 52 is first selected and switched to the single super boiling mode control 51 on the way.
上記の給湯システム1では、残湯量が0又は1の状態からの沸き上げ運転において、まず循環沸上モード制御52を選択し、途中で一過沸上モード制御51に切り換えている。 (5-6) Modification F
In the hot
この沸き上げ運転に代えて、残湯量が0又は1の状態からの沸き上げ運転では、循環用ポンプ34の出力を最大出力から少し下げて、最後まで循環沸上モード制御52を行ってもよい。
Instead of this boiling operation, in the boiling operation from a state where the remaining hot water amount is 0 or 1, the output of the circulation pump 34 may be slightly lowered from the maximum output, and the circulation boiling mode control 52 may be performed to the end. .
また、夜間の沸き上げ運転では循環沸上モード制御52の割合が比較的多くなるように制御を調整し、昼間の沸き上げ運転では一過沸上モード制御51の割合が比較的多くなるように制御を調整してもよい。
Further, the control is adjusted so that the ratio of the circulation boiling mode control 52 is relatively large in the boiling operation at night, and the ratio of the one-boiling mode control 51 is relatively large in the day-time boiling operation. Control may be adjusted.
(5-7)変形例G
上記の給湯システム1では、燃焼加熱装置4を、貯湯タンク35と混合弁77との間に配置しているが、図9に示すように、燃焼加熱装置104を循環水配管30の戻り管33に設けてもよい。 (5-7) Modification G
In the hotwater supply system 1, the combustion heating device 4 is disposed between the hot water storage tank 35 and the mixing valve 77, but the combustion heating device 104 is connected to the return pipe 33 of the circulating water pipe 30 as shown in FIG. 9. May be provided.
上記の給湯システム1では、燃焼加熱装置4を、貯湯タンク35と混合弁77との間に配置しているが、図9に示すように、燃焼加熱装置104を循環水配管30の戻り管33に設けてもよい。 (5-7) Modification G
In the hot
図9に示す給湯システム101では、貯湯ユニット103の燃焼加熱装置104が、水熱交換器22から貯湯タンク35への戻る水を、必要な場合に加熱する。具体的には、例えば残湯量が0の状態からの沸き上げ運転において循環沸上モード制御が実行されているときに、蛇口99が開けられ給湯部82から高温の湯を供給する必要があるときには、コントローラは、燃焼加熱装置104の燃焼バーナー141を点火する。これにより、水熱交換器22から貯湯タンク35への戻る水が燃焼バーナー141によって加熱され、貯湯タンク35から給湯部82に向かう水の温度が上がる。このとき、燃焼バーナー141の出力は、混合前湯温センサ4Tの検出温度と、リモコン90で入力されたユーザーの設定湯温とに基づいて調整される。
In the hot water supply system 101 shown in FIG. 9, the combustion heating device 104 of the hot water storage unit 103 heats the water returning from the water heat exchanger 22 to the hot water storage tank 35 when necessary. Specifically, for example, when the circulating boiling mode control is being executed in the boiling operation from a state where the remaining hot water amount is 0, when the faucet 99 is opened and hot water needs to be supplied from the hot water supply unit 82 The controller ignites the combustion burner 141 of the combustion heating device 104. As a result, the water returning from the water heat exchanger 22 to the hot water storage tank 35 is heated by the combustion burner 141, and the temperature of the water from the hot water storage tank 35 toward the hot water supply section 82 is increased. At this time, the output of the combustion burner 141 is adjusted based on the temperature detected by the pre-mixing hot water temperature sensor 4T and the user's set hot water temperature input by the remote controller 90.
この変形例Gにおいても、循環沸上モード制御を実行しているときの循環水配管30を流れる水の流量が多くなり、ヒートポンプ2の消費電力が抑えられ、水の沸き上げに係るランニングコストが下がる。
Also in this modified example G, the flow rate of water flowing through the circulating water pipe 30 when the circulation boiling mode control is executed is increased, the power consumption of the heat pump 2 is suppressed, and the running cost for boiling water is reduced. Go down.
(5-8)変形例H
上記の給湯システム1では、燃焼加熱装置4を、貯湯タンク35と混合弁77との間に配置しているが、図10に示すように、燃焼加熱装置204を貯湯タンク35と並列に配置してもよい。 (5-8) Modification H
In the hotwater supply system 1 described above, the combustion heating device 4 is disposed between the hot water storage tank 35 and the mixing valve 77, but as shown in FIG. 10, the combustion heating device 204 is disposed in parallel with the hot water storage tank 35. May be.
上記の給湯システム1では、燃焼加熱装置4を、貯湯タンク35と混合弁77との間に配置しているが、図10に示すように、燃焼加熱装置204を貯湯タンク35と並列に配置してもよい。 (5-8) Modification H
In the hot
図10に示す給湯システム201では、貯湯ユニット203の燃焼加熱装置204が、取水管71と給湯管73との間に、貯湯タンク35と並んで配備されている。また、燃焼加熱装置204から給湯部82に向かう水と、貯湯タンク35から給湯部82に向かう水とは、ともに、給湯管73に設けられた混合弁177を経て給湯部82に向かう。混合弁277は、コントローラからの指令を受け、貯湯タンク35から流れてくる水と、燃焼加熱装置204から流れてくる水との混合比率を調節する。コントローラは、蛇口99が開けられ給湯部82から高温の湯を供給する必要があるときに、混合弁277の給湯タンク35側に設置された温度センサ204Tの検出温度が低ければ、燃焼加熱装置204の燃焼バーナー241を点火する。そして、給湯部82から建物内配管99aに流れる水の温度がユーザーの設定する設定湯温になるように、コントローラは、燃焼バーナー241や混合弁277を調整する。
In the hot water supply system 201 shown in FIG. 10, the combustion heating device 204 of the hot water storage unit 203 is arranged alongside the hot water storage tank 35 between the intake pipe 71 and the hot water supply pipe 73. Further, the water from the combustion heating device 204 toward the hot water supply unit 82 and the water from the hot water storage tank 35 toward the hot water supply unit 82 both go to the hot water supply unit 82 through the mixing valve 177 provided in the hot water supply pipe 73. The mixing valve 277 receives a command from the controller and adjusts the mixing ratio of the water flowing from the hot water storage tank 35 and the water flowing from the combustion heating device 204. When the temperature of the temperature sensor 204T installed at the hot water tank 35 side of the mixing valve 277 is low when the faucet 99 is opened and high temperature hot water needs to be supplied from the hot water supply section 82, the combustion heating device 204 The combustion burner 241 is ignited. Then, the controller adjusts the combustion burner 241 and the mixing valve 277 so that the temperature of the water flowing from the hot water supply unit 82 to the in-building pipe 99a becomes the set hot water temperature set by the user.
この変形例Hにおいても、循環沸上モード制御を実行しているときの循環水配管30を流れる水の流量が多くなり、ヒートポンプ2の消費電力が抑えられ、水の沸き上げに係るランニングコストが下がる。
Also in this modified example H, the flow rate of the water flowing through the circulating water pipe 30 when the circulating boiling mode control is executed is increased, the power consumption of the heat pump 2 is suppressed, and the running cost for boiling water is reduced. Go down.
1 給湯システム
2 ヒートポンプ
4 燃焼加熱装置(燃焼加熱部)
21 圧縮機
22 水熱交換器(熱交換器)
30 循環水配管(循環流路)
31T 熱交換器入口水温センサ(第1温度センサ)
32T 熱交換器出口水温センサ(第1温度センサ)
34 循環用ポンプ
35 貯湯タンク(タンク)
41 燃焼バーナー(燃焼機器)
50 コントローラ(制御部)
51 一過沸上モード制御
52 循環沸上モード制御
82 給湯部
99 蛇口(供給先)
104 燃焼加熱装置(燃焼加熱部)
141 燃焼バーナー(燃焼機器)
204 燃焼加熱装置(燃焼加熱部)
241 燃焼バーナー(燃焼機器)
T1~T6 タンク温度分布検知センサ(第2温度センサ) 1 Hotwater supply system 2 Heat pump 4 Combustion heating device (combustion heating unit)
21Compressor 22 Water heat exchanger (Heat exchanger)
30 Circulating water piping (circulation flow path)
31T Heat exchanger inlet water temperature sensor (first temperature sensor)
32T heat exchanger outlet water temperature sensor (first temperature sensor)
34Circulation pump 35 Hot water storage tank (tank)
41 Combustion burner (combustion equipment)
50 controller (control unit)
51Over-boiling mode control 52 Circulating boiling mode control 82 Hot water supply section 99 Faucet (supplier)
104 Combustion heating device (combustion heating unit)
141 Combustion burner (combustion equipment)
204 Combustion heating device (combustion heating unit)
241 Combustion burner (combustion equipment)
T1 to T6 Tank temperature distribution detection sensor (second temperature sensor)
2 ヒートポンプ
4 燃焼加熱装置(燃焼加熱部)
21 圧縮機
22 水熱交換器(熱交換器)
30 循環水配管(循環流路)
31T 熱交換器入口水温センサ(第1温度センサ)
32T 熱交換器出口水温センサ(第1温度センサ)
34 循環用ポンプ
35 貯湯タンク(タンク)
41 燃焼バーナー(燃焼機器)
50 コントローラ(制御部)
51 一過沸上モード制御
52 循環沸上モード制御
82 給湯部
99 蛇口(供給先)
104 燃焼加熱装置(燃焼加熱部)
141 燃焼バーナー(燃焼機器)
204 燃焼加熱装置(燃焼加熱部)
241 燃焼バーナー(燃焼機器)
T1~T6 タンク温度分布検知センサ(第2温度センサ) 1 Hot
21
30 Circulating water piping (circulation flow path)
31T Heat exchanger inlet water temperature sensor (first temperature sensor)
32T heat exchanger outlet water temperature sensor (first temperature sensor)
34
41 Combustion burner (combustion equipment)
50 controller (control unit)
51
104 Combustion heating device (combustion heating unit)
141 Combustion burner (combustion equipment)
204 Combustion heating device (combustion heating unit)
241 Combustion burner (combustion equipment)
T1 to T6 Tank temperature distribution detection sensor (second temperature sensor)
Claims (3)
- 供給先(99)に、加熱された水を供給するための、給湯システム(1)であって、
前記供給先に接続される給湯部(82)と、
冷媒と水とを熱交換させる熱交換器(22)と、冷媒を圧縮する圧縮機(21)と、を有するヒートポンプ(2)と、
前記熱交換器で加熱された水を貯めるタンク(35)と、
出力可変の循環用ポンプ(34)を有し、前記タンクと前記熱交換器との間で水を循環させる循環流路(30)と、
燃料を燃焼させて水を加熱する燃焼機器(41)を有する、燃焼加熱部(4)と、
前記循環流路を流れる水の温度を検知する、1又は複数の第1温度センサ(31T,32T)と、
前記ヒートポンプ、前記循環用ポンプおよび前記燃焼機器を制御する制御部(50)と、
を備え、
前記制御部は、
第1流量の水が前記循環流路に流れるように前記循環用ポンプを制御して、前記熱交換器で水を加熱して目標貯湯温度で出湯するように制御することで、前記タンクの水を沸き上げる、一過沸上モード制御(51)と、
前記第1流量よりも多い第2流量の水が前記循環流路に流れるように前記循環用ポンプを制御して、前記熱交換器で水を加熱して前記目標貯湯温度よりも低い温度で出湯し、前記目標貯湯温度に向けて次第に出湯温度が上がるように制御することで、前記タンクの水を沸き上げる、循環沸上モード制御(52)と、
を有し、
前記タンクに貯められている所定温度以上の水の量が少ない或いは無い第1状態のときに、前記循環沸上モード制御を実行し、前記給湯部から前記供給先に供給される水の温度が目標値よりも小さくなるときに前記燃焼機器を作動させ、
前記循環沸上モード制御の後に、前記循環流路を流れる水の温度の変化に基づいて、前記循環沸上モード制御から前記一過沸上モード制御に切り換える、
給湯システム(1)。 A hot water supply system (1) for supplying heated water to a supply destination (99),
A hot water supply unit (82) connected to the supply destination;
A heat pump (2) having a heat exchanger (22) for exchanging heat between the refrigerant and water, and a compressor (21) for compressing the refrigerant;
A tank (35) for storing water heated by the heat exchanger;
A circulation path (30) having a circulation pump (34) with variable output and circulating water between the tank and the heat exchanger;
A combustion heating section (4) having a combustion device (41) for burning fuel and heating water;
One or more first temperature sensors (31T, 32T) for detecting the temperature of the water flowing through the circulation channel;
A control unit (50) for controlling the heat pump, the circulation pump and the combustion device;
With
The controller is
By controlling the circulation pump so that the first flow rate of water flows through the circulation flow path, the water is heated by the heat exchanger and discharged at a target hot water storage temperature. Boiling over mode control (51),
The circulation pump is controlled so that water having a second flow rate larger than the first flow rate flows into the circulation flow path, and the water is heated by the heat exchanger to discharge the hot water at a temperature lower than the target hot water storage temperature. Then, by controlling so that the tapping temperature gradually rises toward the target hot water storage temperature, the water in the tank is boiled, and the circulation boiling mode control (52),
Have
When the amount of water stored in the tank is less than or equal to a predetermined temperature, the circulation boiling mode control is executed, and the temperature of water supplied from the hot water supply unit to the supply destination is Activating the combustion device when it becomes smaller than the target value,
After the circulation boiling mode control, switching from the circulation boiling mode control to the one over-boiling mode control based on a change in the temperature of the water flowing through the circulation channel,
Hot water system (1). - 前記制御部は、前記第1状態のときに、前記循環沸上モード制御を実行し、前記熱交換器を通過する前の水の温度の変化に基づいて、前記循環沸上モード制御から前記一過沸上モード制御に切り換える、
請求項1に記載の給湯システム。 The control unit performs the circulation boiling mode control in the first state, and performs the circulation boiling mode control from the circulation boiling mode control based on a change in the temperature of water before passing through the heat exchanger. Switch to overboiling mode control,
The hot water supply system according to claim 1. - 前記タンクの中の水の温度分布を検知するための、複数の第2温度センサ(T1~T6)、
をさらに備え、
前記制御部は、前記第1状態のときに、前記循環沸上モード制御を実行し、前記タンクの中の水の温度分布に基づいて、前記循環沸上モード制御から前記一過沸上制御に切り換える、
請求項1に記載の給湯システム。 A plurality of second temperature sensors (T1 to T6) for detecting the temperature distribution of water in the tank;
Further comprising
The control unit performs the circulation boiling mode control in the first state, and changes the circulation boiling mode control from the circulation boiling mode control to the one over-boiling control based on a temperature distribution of water in the tank. Switch,
The hot water supply system according to claim 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016126490A JP6743519B2 (en) | 2016-06-27 | 2016-06-27 | Hot water supply system |
JP2016-126490 | 2016-06-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018003628A1 true WO2018003628A1 (en) | 2018-01-04 |
Family
ID=60787304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/022849 WO2018003628A1 (en) | 2016-06-27 | 2017-06-21 | Hot-water supply system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6743519B2 (en) |
WO (1) | WO2018003628A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022180715A1 (en) * | 2021-02-25 | 2022-09-01 | 三浦工業株式会社 | Heat supply system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001041574A (en) * | 1999-08-03 | 2001-02-16 | Matsushita Electric Ind Co Ltd | Hot-water supplier |
WO2012121382A1 (en) * | 2011-03-10 | 2012-09-13 | ダイキン工業株式会社 | Heat pump-type water heater |
JP2013242115A (en) * | 2012-05-22 | 2013-12-05 | Rinnai Corp | Storage type hot water supply system |
JP2015048995A (en) * | 2013-09-02 | 2015-03-16 | リンナイ株式会社 | Hot water supply system |
JP2016050731A (en) * | 2014-09-01 | 2016-04-11 | リンナイ株式会社 | Heat pump system |
JP2016065685A (en) * | 2014-09-25 | 2016-04-28 | 三菱電機株式会社 | Hybrid hot water supply system |
JP2016080204A (en) * | 2014-10-10 | 2016-05-16 | 三菱電機株式会社 | Hot water supply system |
-
2016
- 2016-06-27 JP JP2016126490A patent/JP6743519B2/en active Active
-
2017
- 2017-06-21 WO PCT/JP2017/022849 patent/WO2018003628A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001041574A (en) * | 1999-08-03 | 2001-02-16 | Matsushita Electric Ind Co Ltd | Hot-water supplier |
WO2012121382A1 (en) * | 2011-03-10 | 2012-09-13 | ダイキン工業株式会社 | Heat pump-type water heater |
JP2013242115A (en) * | 2012-05-22 | 2013-12-05 | Rinnai Corp | Storage type hot water supply system |
JP2015048995A (en) * | 2013-09-02 | 2015-03-16 | リンナイ株式会社 | Hot water supply system |
JP2016050731A (en) * | 2014-09-01 | 2016-04-11 | リンナイ株式会社 | Heat pump system |
JP2016065685A (en) * | 2014-09-25 | 2016-04-28 | 三菱電機株式会社 | Hybrid hot water supply system |
JP2016080204A (en) * | 2014-10-10 | 2016-05-16 | 三菱電機株式会社 | Hot water supply system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022180715A1 (en) * | 2021-02-25 | 2022-09-01 | 三浦工業株式会社 | Heat supply system |
Also Published As
Publication number | Publication date |
---|---|
JP2018004094A (en) | 2018-01-11 |
JP6743519B2 (en) | 2020-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9157654B2 (en) | Heat pump system | |
JP4958460B2 (en) | Heat pump water heater | |
KR100640137B1 (en) | Heat pumped water heating and heating apparaturs | |
JP6239333B2 (en) | Hot water supply system and control method thereof | |
KR20060103169A (en) | Heat pump type hot water supply device | |
JP4867514B2 (en) | Heat pump water heater / heater | |
JP4726573B2 (en) | Heat pump hot water floor heater | |
JP4231863B2 (en) | Heat pump water heater bathroom heating dryer | |
JP2016075425A (en) | Hot water supply system and operation control method of the same | |
JP2008196794A (en) | Heat pump hot water supply cooling/heating apparatus | |
WO2018003628A1 (en) | Hot-water supply system | |
JP5166840B2 (en) | Heat pump system | |
JP2010054145A (en) | Heat pump water heater | |
JP4790538B2 (en) | Hot water storage hot water heater | |
JP6043954B2 (en) | Heat pump water heater | |
JP2006234211A (en) | Heat pump water heater | |
JP7374038B2 (en) | heating system | |
JP5741256B2 (en) | Hot water storage water heater | |
JP7265368B2 (en) | Cooling waste heat utilization heat pump water heater | |
JP2024120658A (en) | Storage water heater | |
JP7160699B2 (en) | Heat pump water heater with air conditioning function | |
JP2018124037A (en) | Heat pump device | |
JP6729072B2 (en) | Hot water supply system | |
JP2010085092A (en) | Hot water supply heating device | |
JP6375252B2 (en) | Hot water filling system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17819987 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17819987 Country of ref document: EP Kind code of ref document: A1 |