JP2016075425A - Hot water supply system and operation control method of the same - Google Patents

Hot water supply system and operation control method of the same Download PDF

Info

Publication number
JP2016075425A
JP2016075425A JP2014205837A JP2014205837A JP2016075425A JP 2016075425 A JP2016075425 A JP 2016075425A JP 2014205837 A JP2014205837 A JP 2014205837A JP 2014205837 A JP2014205837 A JP 2014205837A JP 2016075425 A JP2016075425 A JP 2016075425A
Authority
JP
Japan
Prior art keywords
temperature
hot water
heat exchanger
outlet
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014205837A
Other languages
Japanese (ja)
Other versions
JP6453603B2 (en
Inventor
耕司 位田
Koji Ida
耕司 位田
洋 宮村
Hiroshi Miyamura
洋 宮村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Thermoener Co Ltd
Original Assignee
Nippon Thermoener Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Thermoener Co Ltd filed Critical Nippon Thermoener Co Ltd
Priority to JP2014205837A priority Critical patent/JP6453603B2/en
Publication of JP2016075425A publication Critical patent/JP2016075425A/en
Application granted granted Critical
Publication of JP6453603B2 publication Critical patent/JP6453603B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress temperature drop in a secondary side outlet of a heat exchanger to a minimum even in the case where a winter defrosting operation is necessary, in a hot water supply system in which a heat pump water heater and the heat exchanger are disposed.SOLUTION: A hot water supply system 1 includes: a heat pump water heater 11; a heat exchanger 12; a hot water storage tank 15 for storing hot water supplied from an outlet of a secondary side flow passage 14 of the heat exchanger; temperature sensors 37, 38 for detecting water temperature T3 of a primary side inlet of the heat exchanger 12 and water temperature T4 of a secondary side outlet of the heat exchanger 12 respectively; a circulation pump 17 for supplying cold water to the secondary side flow passage 14 from a lower part water outlet 24 of the hot water storage tank 15; and a control unit 20. In a predetermined period after the completion of a defrosting operation of the heat pump water heater 11, the control unit 20 controls a circulation flow rate supplied to the secondary side flow passage 14 so that the temperature T4 of the secondary side flow passage 14 outlet maintains constant preset temperature without following the temperature T3 of the primary side flow passage 13 inlet.SELECTED DRAWING: Figure 1

Description

本発明は、温水を貯湯して給湯負荷に供給する貯湯タンクにヒートポンプ給湯機を接続し、その間に熱交換器を配置した給湯システム、及びその制御方法に関する。   The present invention relates to a hot water supply system in which a heat pump hot water heater is connected to a hot water storage tank that stores hot water and supplies it to a hot water supply load, and a control method thereof.

ヒートポンプ給湯機(以降において、適宜「HP」と称する)は夜間に貯湯タンクに湯を貯めておき、翌朝使用するのに利用されることが多い。また、ヒートポンプ給湯機を直接貯湯タンクと接続するのではなく、ヒートポンプ給湯機と貯湯タンクの間に熱交換器を介したシステムがある。蓄熱温度を高くした方が貯湯タンクの容量を小さくできるため、熱交換器を使用したシステムであっても、できるだけ高い湯温を維持できる設備と制御が求められる。   A heat pump water heater (hereinafter referred to as “HP” as appropriate) is often used to store hot water in a hot water storage tank at night and use it the next morning. There is also a system in which a heat pump water heater is not directly connected to a hot water storage tank, but a heat exchanger is interposed between the heat pump water heater and the hot water storage tank. Since the capacity of the hot water storage tank can be reduced by increasing the heat storage temperature, equipment and control capable of maintaining the hot water temperature as high as possible are required even in a system using a heat exchanger.

例えば、ヒートポンプ給湯機と熱交換器を設置したシステムとして、下記の特許文献1に示すものが挙げられる。   For example, what is shown in the following patent document 1 is mentioned as a system which installed the heat pump water heater and the heat exchanger.

小規模施設向けの給湯システムの概略構成を模式的に図5に示す。ヒートポンプ給湯機11、熱交換器12、及び貯湯タンク15を1:1:1に設置し、HP出口温度(熱交換器の一次側流路13の入口温度)T3と熱交換器の二次側流路14の出口温度T4の差(T3−T4)が一定温度を維持するように二次側の循環流量を制御する。これにより、HP入口温度(熱交換器の一次側流路13の出口温度)を常に低く保つことができ、高いCOP(Coefficient of Performance:成績係数)を維持できる。   FIG. 5 schematically shows a schematic configuration of a hot water supply system for a small-scale facility. The heat pump water heater 11, the heat exchanger 12, and the hot water storage tank 15 are installed at 1: 1: 1, and the HP outlet temperature (the inlet temperature of the primary side flow path 13 of the heat exchanger) T3 and the secondary side of the heat exchanger The circulation flow rate on the secondary side is controlled so that the difference (T3-T4) in the outlet temperature T4 of the flow path 14 maintains a constant temperature. Thereby, HP inlet temperature (outlet temperature of the primary side flow path 13 of the heat exchanger) can always be kept low, and high COP (Coefficient of Performance: coefficient of performance) can be maintained.

この給湯システムにおいて、ヒートポンプ給湯機11は、一般的に冬期(着霜期)の場合60分に1回程度デフロスト運転が行われる。デフロスト運転中は加熱能力が0になり、デフロスト運転完了後定常運転になるまでの約5〜20分の間は、加熱能力及び出口温度T3ともに低下する。もっとも、デフロスト運転中にHP内蔵の循環ポンプ18が停止せずに低速運転するものがあるが、二次側の循環ポンプ17を停止すれば貯湯タンク内の蓄熱温度(T1、T2)は低下しない。しかし、デフロスト運転完了後約5〜20分の間はHP出口温度T3の低下に追随して二次側出口温度T4も低下し、貯湯タンクの蓄熱温度の低下を引き起こす。このため、貯湯タンクの容量は当該蓄熱温度の低下を考慮の上で決定される。   In this hot water supply system, the heat pump water heater 11 is generally defrosted once every 60 minutes in winter (frosting period). During the defrost operation, the heating capacity becomes 0, and both the heating capacity and the outlet temperature T3 decrease for about 5 to 20 minutes after the completion of the defrost operation until the steady operation is performed. Of course, while the defrosting operation, the circulation pump 18 with a built-in HP does not stop and operates at a low speed, but if the circulation pump 17 on the secondary side is stopped, the heat storage temperature (T1, T2) in the hot water storage tank does not decrease. . However, for about 5 to 20 minutes after the completion of the defrost operation, the secondary outlet temperature T4 also decreases following the decrease in the HP outlet temperature T3, causing a decrease in the heat storage temperature of the hot water storage tank. For this reason, the capacity of the hot water storage tank is determined in consideration of a decrease in the heat storage temperature.

これに対し、中・大規模施設向けの給湯システムの概略構成を模式的に図6に示す。図6は、図5のヒートポンプ給湯機11(11a、11b)と熱交換器12(12a、12b)の組を複数組(ここでは、2組)、夫々、共通の貯湯タンク15に接続したもので、夫々がHP出口温度T3と二次側出口温度T4の差(T3−T4)が一定温度を維持するように制御される。デフロスト運転はHPの運転状況に応じて個別に行われ、対象となる熱交換器の二次側循環ポンプを停止すれば、タンク蓄熱温度(T1、T2)は低下しない。しかし、図5と同様、デフロスト運転完了後の所定期間は二次側出口温度T4が低下し、貯湯タンクの蓄熱温度の低下を引き起こす。ここで、デフロスト運転の回数はヒートポンプ給湯機の設置台数に関係なく、各ヒートポンプ給湯機に対して同じであるので、蓄熱温度低下の影響はヒートポンプ給湯機の設置台数に比例して増大する。このため、ヒートポンプ給湯機の設置台数増加に伴い、貯湯タンクに低温の湯量が増えることになる。   In contrast, FIG. 6 schematically shows a schematic configuration of a hot water supply system for medium and large-scale facilities. 6 shows a plurality of sets (two sets here) of the heat pump water heater 11 (11a, 11b) and the heat exchanger 12 (12a, 12b) in FIG. 5, each connected to a common hot water storage tank 15. Thus, each is controlled such that the difference (T3−T4) between the HP outlet temperature T3 and the secondary outlet temperature T4 maintains a constant temperature. The defrost operation is performed individually according to the operation state of the HP, and the tank heat storage temperature (T1, T2) does not decrease if the secondary circulation pump of the target heat exchanger is stopped. However, as in FIG. 5, the secondary side outlet temperature T4 decreases during a predetermined period after completion of the defrost operation, causing a decrease in the heat storage temperature of the hot water storage tank. Here, since the number of defrost operations is the same for each heat pump water heater regardless of the number of installed heat pump water heaters, the influence of a decrease in the heat storage temperature increases in proportion to the number of installed heat pump water heaters. For this reason, as the number of installed heat pump water heaters increases, the amount of low-temperature hot water in the hot water storage tank increases.

特開2010-65852号公報JP 2010-65852 A

上述の通り、デフロスト運転完了後の所定期間はHP出口温度T3が低下しているため、熱交換器の二次側出口温度T4が低下し、貯湯タンクに低温の湯量が増えることになる。HP出口温度T3と二次側出口温度T4の差が一定温度を維持するように二次側の循環流量を制御する方法では、HP出口温度T3の低下に伴って二次側出口温度T4の低下は避けらない。   As described above, since the HP outlet temperature T3 is lowered during the predetermined period after the completion of the defrost operation, the secondary outlet temperature T4 of the heat exchanger is lowered, and the amount of low-temperature hot water is increased in the hot water storage tank. In the method of controlling the circulation flow rate on the secondary side so that the difference between the HP outlet temperature T3 and the secondary outlet temperature T4 is maintained at a constant temperature, the secondary outlet temperature T4 decreases as the HP outlet temperature T3 decreases. Is inevitable.

本発明は、上記問題点を鑑み、ヒートポンプ給湯機と熱交換器を備えた給湯システムにおいて、冬期のデフロスト運転が必要な場合においても、二次側出口温度T4の低下を最小限に制御することが可能な給湯システム及びその運転制御方法を提供することをその目的とする。   In view of the above problems, the present invention controls a decrease in the secondary side outlet temperature T4 to a minimum even when a defrost operation in winter is necessary in a hot water supply system including a heat pump water heater and a heat exchanger. It is an object of the present invention to provide a hot water supply system and an operation control method thereof.

上記目的を達成するため、本発明に係る給湯システムは、
ヒートポンプ給湯機、
熱交換器、
貯湯タンク、
前記ヒートポンプ給湯機の入口と前記熱交換器の一次側出口の間に設けられた第1管路、
前記ヒートポンプ給湯機の出口と前記熱交換器の一次側入口の間に設けられた第2管路、
前記熱交換器の二次側出口と前記貯湯タンクの上部入水口の間に設けられた第3管路、
前記熱交換器の二次側入口と前記貯湯タンクの下部出水口の間に設けられた第4管路、
前記熱交換器の一次側入口の水温として第1温度、及び、前記熱交換器の前記二次側出口の水温として第2温度を検出する温度センサの夫々、
前記第3管路又は前記第4管路上に介装された循環ポンプ、及び、
前記第1温度及び前記第2温度の検出値に基づき、前記貯湯タンクの前記下部出水口から、前記第4管路、前記熱交換器の二次側流路、及び前記第3管路を介して前記貯湯タンクの前記上部入水口に至る循環路の循環流量を調整する制御部を備え、
前記制御部は、
前記ヒートポンプ給湯機のデフロスト運転が完了した後の所定期間、前記第2温度が前記第1温度の変化に追随せず一定の第1調整温度を維持するように前記循環流量を制御する第1制御を実行することを特徴とする。
In order to achieve the above object, a hot water supply system according to the present invention includes:
Heat pump water heater,
Heat exchanger,
Hot water storage tank,
A first pipe provided between an inlet of the heat pump water heater and a primary outlet of the heat exchanger;
A second pipe provided between the outlet of the heat pump water heater and the primary inlet of the heat exchanger;
A third conduit provided between the secondary side outlet of the heat exchanger and the upper water inlet of the hot water storage tank;
A fourth conduit provided between the secondary side inlet of the heat exchanger and the lower outlet of the hot water storage tank;
A temperature sensor that detects a first temperature as the water temperature at the primary side inlet of the heat exchanger and a second temperature as the water temperature at the secondary side outlet of the heat exchanger,
A circulation pump interposed on the third pipe line or the fourth pipe line; and
Based on the detected values of the first temperature and the second temperature, from the lower outlet of the hot water storage tank through the fourth pipe, the secondary flow path of the heat exchanger, and the third pipe. A control unit for adjusting the circulation flow rate of the circulation path to the upper water inlet of the hot water storage tank,
The controller is
A first control for controlling the circulation flow rate so that the second temperature does not follow the change in the first temperature and maintains a constant first adjusted temperature for a predetermined period after the defrosting operation of the heat pump water heater is completed. It is characterized by performing.

上記特徴の本発明に係る給湯システムは、更に、
前記所定期間の経過後、前記制御部は、
前記第1温度と前記第2温度の差が一定の第1設定温度差を維持するように前記循環流量を制御する第2制御を実行することが好ましい。
The hot water supply system according to the present invention having the above characteristics further includes:
After the elapse of the predetermined period, the control unit
It is preferable to execute a second control for controlling the circulation flow rate so that a difference between the first temperature and the second temperature is maintained at a constant first set temperature difference.

上記特徴の本発明に係る給湯システムは、更に、
前記所定期間において、前記制御部は、
前記第1温度の検出値が前記第2温度の検出値に対して前記第1設定温度差よりも小さな第2設定温度差以上高温のとき、前記第1制御を実行し、
前記第1温度の検出値と前記第2温度の検出値の差が前記第1設定温度差よりも小さな第2設定温度差未満のとき、前記第2温度が前記第1温度よりも前記第2設定温度差だけ低温の第2調整温度以上を維持するように前記循環流量を制御する第3制御を実行することが好ましい。
The hot water supply system according to the present invention having the above characteristics further includes:
In the predetermined period, the control unit
When the detected value of the first temperature is higher than the detected value of the second temperature by a second set temperature difference smaller than the first set temperature difference, the first control is executed,
When the difference between the detected value of the first temperature and the detected value of the second temperature is less than the second set temperature difference that is smaller than the first set temperature difference, the second temperature is more than the second temperature than the first temperature. It is preferable to execute the third control for controlling the circulation flow rate so as to maintain the low adjustment temperature equal to or lower than the set temperature difference.

上記特徴の本発明に係る給湯システムは、更に、
前記熱交換器の前記一次側出口の水温として第3温度を検出する温度センサを更に備え、
前記所定期間において、前記制御部は、
前記第3温度の検出値に基づき、前記第3温度の上昇速度が所定速度を超えないように前記循環流量を制御する第4制御を前記第1及び第3制御よりも優先させることが好ましい。
The hot water supply system according to the present invention having the above characteristics further includes:
A temperature sensor that detects a third temperature as a water temperature at the outlet of the primary side of the heat exchanger;
In the predetermined period, the control unit
It is preferable to prioritize the fourth control for controlling the circulation flow rate over the first and third controls so that the rising speed of the third temperature does not exceed a predetermined speed based on the detected value of the third temperature.

上記特徴の本発明に係る給湯システムは、更に、
1つの前記ヒートポンプ給湯機と1つの前記熱交換器からなる組を複数備え、
前記組の夫々の前記熱交換器の前記二次側出口が、共通の前記貯湯タンクの前記上部入水口に接続される構成とすることが好ましい。
The hot water supply system according to the present invention having the above characteristics further includes:
A plurality of sets including one heat pump water heater and one heat exchanger are provided,
It is preferable that the secondary outlets of the heat exchangers of the sets are connected to the upper water inlet of the common hot water storage tank.

上記目的を達成するため、本発明に係る給湯システムの運転制御方法は、
ヒートポンプ給湯機、
熱交換器、
貯湯タンク、
前記ヒートポンプ給湯機の入口と前記熱交換器の一次側出口の間に設けられた第1管路、
前記ヒートポンプ給湯機の出口と前記熱交換器の一次側入口の間に設けられた第2管路、
前記熱交換器の二次側出口と前記貯湯タンクの上部入水口の間に設けられた第3管路、
前記熱交換器の二次側入口と前記貯湯タンクの下部出水口の間に設けられた第4管路、
前記熱交換器の一次側入口の水温として第1温度、及び、前記熱交換器の前記二次側出口の水温として第2温度を検出する温度センサの夫々、及び、
前記第3管路又は前記第4管路上に介装された循環ポンプ、を備えてなる給湯システムの運転制御方法であって、
前記ヒートポンプ給湯機のデフロスト運転が完了した後の所定期間において、
前記第2温度が前記第1温度の変化に追随せず一定の第1調整温度を維持するように、前記貯湯タンクの前記下部出水口から、前記第4管路、前記熱交換器の二次側流路、及び前記第3管路を介して前記貯湯タンクの前記上部入水口に至る循環路の循環流量を調整する第1制御を実行することを特徴とする。
In order to achieve the above object, an operation control method for a hot water supply system according to the present invention includes:
Heat pump water heater,
Heat exchanger,
Hot water storage tank,
A first pipe provided between an inlet of the heat pump water heater and a primary outlet of the heat exchanger;
A second pipe provided between the outlet of the heat pump water heater and the primary inlet of the heat exchanger;
A third conduit provided between the secondary side outlet of the heat exchanger and the upper water inlet of the hot water storage tank;
A fourth conduit provided between the secondary side inlet of the heat exchanger and the lower outlet of the hot water storage tank;
A temperature sensor that detects a first temperature as a water temperature at the primary side inlet of the heat exchanger and a second temperature as a water temperature at the secondary side outlet of the heat exchanger, and
An operation control method for a hot water supply system comprising a circulation pump interposed on the third pipeline or the fourth pipeline,
In a predetermined period after the defrost operation of the heat pump water heater is completed,
From the lower outlet of the hot water storage tank, the fourth pipe, the secondary of the heat exchanger, so that the second temperature does not follow the change in the first temperature and maintains a constant first adjusted temperature. The first control for adjusting the circulation flow rate of the circulation path reaching the upper water inlet of the hot water storage tank through the side flow path and the third pipe line is performed.

上記特徴の本発明に係る給湯システムの運転制御方法は、更に、
前記所定期間の経過後は、
前記第1温度と前記第2温度の差が一定の所定の第1設定温度差を維持するように、前記循環流量を調整する第2制御を実行することが好ましい。
The operation control method of the hot water supply system according to the present invention having the above characteristics further includes:
After elapse of the predetermined period,
It is preferable to execute a second control for adjusting the circulation flow rate so that a difference between the first temperature and the second temperature is maintained at a predetermined first set temperature difference.

上記特徴の本発明に係る給湯システムの運転制御方法は、更に、
前記熱交換器の前記一次側出口の水温として第3温度を検出する温度センサを用い、
前記所定期間において、前記第3温度の上昇速度が所定速度を超えないように前記循環流量を調整する制御を前記第1制御より優先させることが好ましい。
The operation control method of the hot water supply system according to the present invention having the above characteristics further includes:
Using a temperature sensor that detects a third temperature as the water temperature of the primary side outlet of the heat exchanger,
In the predetermined period, it is preferable that priority is given to the control for adjusting the circulation flow rate over the first control so that the rising speed of the third temperature does not exceed the predetermined speed.

上記特徴の給湯システム又はその運転制御方法によれば、ヒートポンプ給湯機がデフロスト運転完了後から定常運転に移行する所定期間の間は、熱交換器の二次側出口の水温(第2温度:T4)が、熱交換器の一次側入口の水温(第1温度:T3)の変化に追随せず一定の温度を維持するように、二次側流路の循環流量を制御する。これによって、冬期のデフロスト運転が必要な場合においても、デフロスト運転後の一次側入口温度T3の低下に伴う二次側出口温度T4の低下を最小限に制御し、貯湯タンクの蓄熱温度の低下を抑制できる。   According to the hot water supply system having the above characteristics or the operation control method thereof, the water temperature (second temperature: T4) at the secondary side outlet of the heat exchanger during a predetermined period in which the heat pump hot water heater shifts to the steady operation after the completion of the defrost operation. ) Controls the circulation flow rate of the secondary flow path so as to maintain a constant temperature without following the change in the water temperature (first temperature: T3) at the primary side inlet of the heat exchanger. As a result, even when winter defrost operation is necessary, the decrease in the secondary side outlet temperature T4 accompanying the decrease in the primary side inlet temperature T3 after the defrost operation is controlled to the minimum, and the heat storage temperature of the hot water storage tank is reduced. Can be suppressed.

本発明に係る給湯システムの一実施形態における概略構成を模式的に示すシステム構成図The system block diagram which shows typically the schematic structure in one Embodiment of the hot water supply system which concerns on this invention 本発明に係る給湯システムの一実施形態における運転制御方法を示すフローチャートThe flowchart which shows the operation control method in one Embodiment of the hot water supply system which concerns on this invention. 本発明に係る給湯システムの一実施形態における運転制御方法を示すフローチャートThe flowchart which shows the operation control method in one Embodiment of the hot water supply system which concerns on this invention. 本発明に係る給湯システムの一実施形態における概略構成を模式的に示すシステム構成図The system block diagram which shows typically the schematic structure in one Embodiment of the hot water supply system which concerns on this invention 従来の給湯システムの概略構成の一例を簡略的に示すシステム構成図System configuration diagram schematically showing an example of a schematic configuration of a conventional hot water supply system 従来の給湯システムの概略構成の一例を簡略的に示すシステム構成図System configuration diagram schematically showing an example of a schematic configuration of a conventional hot water supply system

以下に、本発明に係る給湯システム、及び、その運転制御方法(以下、適宜「本発明方法」と称す)の実施の形態につき、図面に基づいて説明する。本実施形態では、図5に示す従来構成の給湯システムと同じ構成要素及び同じ部位には、本発明の理解の容易のために同じ符号を付して説明する。   Hereinafter, embodiments of a hot water supply system according to the present invention and an operation control method thereof (hereinafter referred to as “the present invention method” as appropriate) will be described with reference to the drawings. In the present embodiment, the same components and the same parts as those of the hot water supply system having the conventional configuration shown in FIG. 5 will be described with the same reference numerals for easy understanding of the present invention.

図1は、本発明に係る給湯システム1の一実施形態における概略構成を模式的に示すシステム構成図である。図中において、湯水の流れる配管を簡単のため実線で示し、給湯システムの制御のための制御信号線を点線で示している。図1に示すように、給湯システム1は、ヒートポンプ給湯機11、熱交換器12、貯湯タンク15、及び、制御部20を備える。   FIG. 1 is a system configuration diagram schematically showing a schematic configuration in an embodiment of a hot water supply system 1 according to the present invention. In the drawing, piping through which hot water flows is shown by a solid line for simplicity, and a control signal line for controlling the hot water supply system is shown by a dotted line. As shown in FIG. 1, the hot water supply system 1 includes a heat pump water heater 11, a heat exchanger 12, a hot water storage tank 15, and a control unit 20.

ヒートポンプ給湯機11は、ヒートポンプ回路の冷媒として例えばCOを採用したCOヒートポンプで構成され、熱交換器12の一次側出口から管路(第1管路)31を介してヒートポンプ給湯機11の入水口に供給される低温水をヒートポンプ回路の凝縮器からの放熱と熱交換して加熱し、ヒートポンプ給湯機11の出水口において温水を供給する。この温水は、管路(第2管路)32を通って熱交換器12の一次側入口に提供される。 The heat pump water heater 11 is configured by a CO 2 heat pump adopting, for example, CO 2 as a refrigerant of the heat pump circuit, and the heat pump water heater 11 of the heat pump water heater 11 is connected from the primary side outlet of the heat exchanger 12 via the pipe line (first pipe line) 31. The low temperature water supplied to the water inlet is heated by exchanging heat with heat released from the condenser of the heat pump circuit, and hot water is supplied at the water outlet of the heat pump water heater 11. This hot water is provided to the primary side inlet of the heat exchanger 12 through a pipe line (second pipe line) 32.

熱交換器12は、一次側流路13と二次側流路14を備え、前述の通り、ヒートポンプ給湯機11で加熱された温水が、管路32を通って一次側流路13の入口(一次側入口)に供給される。一方、二次側流路14の出口(二次側出口)は、電動弁16を介し、管路(第3管路)33を通って貯湯タンクの上部入水口21と接続され、貯湯タンクの下部出水口24が、管路(第4管路)34を通り、管路34上に介装された循環ポンプ17を介して二次側流路14の入口(二次側入口)と接続される。これにより、二次側流路14に供給される冷水は、一次側流路13に供給される温水との熱交換によって加熱され、熱交換により加熱された温水が貯湯タンク15の上部入水口21に供給される。   The heat exchanger 12 includes a primary flow path 13 and a secondary flow path 14, and as described above, the hot water heated by the heat pump water heater 11 passes through the pipe line 32 and enters the primary flow path 13 ( To the primary inlet). On the other hand, the outlet (secondary outlet) of the secondary side flow path 14 is connected to the upper water inlet 21 of the hot water storage tank through the conduit (third pipe) 33 via the motor-operated valve 16. The lower water outlet 24 passes through a pipe line (fourth pipe line) 34 and is connected to an inlet (secondary side inlet) of the secondary side flow path 14 via a circulation pump 17 interposed on the pipe line 34. The Thereby, the cold water supplied to the secondary side flow path 14 is heated by heat exchange with the hot water supplied to the primary side flow path 13, and the hot water heated by the heat exchange is the upper water inlet 21 of the hot water storage tank 15. To be supplied.

貯湯タンク15は、熱交換器12の二次側出口より供給された温水を貯え、給湯負荷が生じた場合に、その上部に設けられた出水口22から温水を提供する。貯湯タンク15の壁部には、貯湯タンク15内に水が流入する入水口、及び、貯湯タンク15内から水が流出する出水口が、夫々設けられている。具体的には、入水口21と出水口22が上部に、入水口23と出水口24が下部に、夫々設けられている。ヒートポンプ給湯機11が稼働中であるとき、下部出水口24からの冷水は、循環ポンプ17によって熱交換器12の二次側入口に供給され、一次側流路13との熱交換により加熱されて上部入水口21に供給される。   The hot water storage tank 15 stores hot water supplied from the secondary side outlet of the heat exchanger 12 and provides hot water from a water outlet 22 provided on the upper part when a hot water supply load is generated. The wall of the hot water storage tank 15 is provided with a water inlet through which water flows into the hot water storage tank 15 and a water outlet through which water flows out of the hot water storage tank 15. Specifically, the water inlet 21 and the water outlet 22 are provided in the upper part, and the water inlet 23 and the water outlet 24 are provided in the lower part, respectively. When the heat pump water heater 11 is in operation, the cold water from the lower outlet 24 is supplied to the secondary inlet of the heat exchanger 12 by the circulation pump 17 and is heated by heat exchange with the primary flow path 13. It is supplied to the upper water inlet 21.

これにより、給湯システム1内に、ヒートポンプ給湯機11、管路32、熱交換器12の一次側流路13、及び、管路31からなる一次側循環路と、貯湯タンク15、管路34、熱交換器12の二次側流路14、及び、管路33からなる二次側循環路が形成され、これら2つの循環路中の水は混合されることがない構成である。   Thereby, in the hot water supply system 1, in the heat pump water heater 11, the pipe line 32, the primary side flow path 13 of the heat exchanger 12, and the primary side circulation path consisting of the pipe line 31, the hot water storage tank 15, the pipe line 34, A secondary-side circulation path composed of the secondary-side flow path 14 and the pipe line 33 of the heat exchanger 12 is formed, and the water in these two circulation paths is not mixed.

さらに、貯湯タンク15には、貯湯タンク15内の上下方向の所定の位置における水温を検知する温度センサ35、36が設けられている。   Further, the hot water storage tank 15 is provided with temperature sensors 35 and 36 for detecting the water temperature at a predetermined position in the vertical direction in the hot water storage tank 15.

水は、温度が高くなるにつれ上方に移動する性質、所謂対流性を有する。貯湯タンク15は、下部に設けられた入水口23から低温水が供給され、上部に設けられた入水口21からは高温水が供給されるため、貯湯タンク15に貯湯される温水は、上方ほど高温となる水温分布を示すこととなる。   Water has a property of moving upward as the temperature increases, so-called convection. The hot water storage tank 15 is supplied with low-temperature water from a water inlet 23 provided in the lower part and is supplied with high-temperature water from a water inlet 21 provided in the upper part. The water temperature distribution which becomes high temperature will be shown.

また、管路32上の熱交換器12の一次側入口側に、一次側流路13に流入する水の水温を検知する温度センサ37、管路33上の熱交換器12の二次側出口側に、二次側流路14から流出する水の水温を検知する温度センサ38、管路31上の熱交換器12の一次側出口側に、一次側流路13から流出する水の水温を検知する温度センサ39が、夫々、設けられている。   Further, a temperature sensor 37 that detects the temperature of water flowing into the primary side flow path 13 on the primary side inlet side of the heat exchanger 12 on the pipe line 32, and a secondary side outlet of the heat exchanger 12 on the pipe line 33. The temperature sensor 38 for detecting the temperature of the water flowing out from the secondary channel 14 on the side, the temperature of the water flowing out from the primary channel 13 on the primary outlet side of the heat exchanger 12 on the conduit 31 A temperature sensor 39 for detection is provided for each.

制御部20は、温度センサ35〜39の検出温度に基づいて、給湯システム1の運転を制御する。特に、制御部20は、温度センサ37〜39の検出温度に基づいて、電動弁16又は循環ポンプ17を制御し、デフロスト運転時及びデフロスト運転後の所定期間において、貯湯タンク11の上部入水口21に低温水が供給されるのを抑制する。なお、このときの電動弁16又は循環ポンプ17の制御方法については、後述する。   Control unit 20 controls the operation of hot water supply system 1 based on the temperature detected by temperature sensors 35-39. In particular, the control unit 20 controls the motor-operated valve 16 or the circulation pump 17 based on the temperature detected by the temperature sensors 37 to 39, and the upper water inlet 21 of the hot water storage tank 11 during the defrost operation and a predetermined period after the defrost operation. Suppresses the supply of low temperature water. In addition, the control method of the motor operated valve 16 or the circulation pump 17 at this time will be described later.

また、制御部20は、ヒートポンプ給湯機11の稼働及び停止を制御する。一方で、本実施形態では、ヒートポンプ給湯機11は、一旦ヒートポンプ給湯機が稼働すると、制御部20からの制御から独立して、基本的に設定された出水温(ここでは、70℃)となるように自動的に出水温度制御がされるように構成されている。ここで、ヒートポンプ給湯機11の出水温度制御は、内蔵の循環ポンプ18による流量制御及び圧縮機の出力調整により行われる。   Further, the control unit 20 controls the operation and stop of the heat pump water heater 11. On the other hand, in the present embodiment, once the heat pump water heater 11 is operated, the heat pump water heater 11 is basically set to a discharge water temperature (here, 70 ° C.) independently of the control from the control unit 20. Thus, the water temperature is automatically controlled. Here, the water temperature control of the heat pump water heater 11 is performed by flow control by the built-in circulation pump 18 and output adjustment of the compressor.

なお、上記管路31〜34上には、夫々、開閉弁(2方弁)、逆止弁、減圧弁、定流量弁、安全弁、自動空気抜き弁等、適宜必要なものが介装されるものとし、図示を省略する。   In addition, on the pipes 31 to 34, necessary ones such as an on-off valve (two-way valve), a check valve, a pressure reducing valve, a constant flow valve, a safety valve, and an automatic air vent valve are interposed. The illustration is omitted.

以下に、給湯システム1の運転制御について、詳細に説明する。   Below, the operation control of the hot water supply system 1 is demonstrated in detail.

先ず、通常運転時の動作を説明する。本実施形態において、給湯システム1の運転制御は、温度センサ35〜39の検出温度に基づいて行われる。ここで、温度センサ35〜39の検出温度を夫々T1〜T5とする。温度センサ35〜39の検出温度に基づきほぼリアルタイムで運転制御が実行される。   First, the operation during normal operation will be described. In the present embodiment, the operation control of the hot water supply system 1 is performed based on the temperature detected by the temperature sensors 35-39. Here, the detected temperatures of the temperature sensors 35 to 39 are T1 to T5, respectively. The operation control is executed almost in real time based on the temperature detected by the temperature sensors 35-39.

〈通常運転時の動作〉
給湯負荷が発生すると、下部入水口23を介して冷水が貯湯タンク15に補給される。この結果、貯湯タンク内の湯の温度は低下し、温度センサ35、36の検出温度が低下する。このうち、貯湯タンク15の上側に設けられた温度センサ35の検出温度T1が所定温度(例えば、35℃)未満に低下すると、ヒートポンプ給湯機11を稼働させ、循環ポンプ17を稼働させて、熱交換器12を介して熱交換された加熱されたお湯(ここでは、60℃)を上部入水口21から補給する。これにより、貯湯タンク内の湯温が上昇し、貯湯タンク15の下側に設けられた温度センサ36の検出温度T2が所定温度(例えば、50℃)以上になるまで、ヒートポンプ給湯機11及び循環ポンプを稼働させる。これにより、貯湯タンクは上部から温度センサ36の位置まで、ほぼ設定温度(ここでは、60℃)の湯で満たされる。このときの貯湯タンクに補給される湯の温度である、熱交換器12の二次側出口の水温を、第1調整温度と呼ぶことにする。
<Operation during normal operation>
When a hot water supply load is generated, cold water is supplied to the hot water storage tank 15 through the lower water inlet 23. As a result, the temperature of the hot water in the hot water storage tank decreases, and the temperature detected by the temperature sensors 35 and 36 decreases. Among these, when the detection temperature T1 of the temperature sensor 35 provided on the upper side of the hot water storage tank 15 falls below a predetermined temperature (for example, 35 ° C.), the heat pump water heater 11 is operated, the circulation pump 17 is operated, Heated hot water (here, 60 ° C.) heat-exchanged through the exchanger 12 is replenished from the upper water inlet 21. As a result, the hot water temperature in the hot water storage tank rises, and the heat pump water heater 11 and the circulation until the temperature T2 detected by the temperature sensor 36 provided on the lower side of the hot water storage tank 15 reaches a predetermined temperature (for example, 50 ° C.) or higher. Run the pump. As a result, the hot water storage tank is filled with hot water at a substantially set temperature (here, 60 ° C.) from the top to the position of the temperature sensor 36. The water temperature at the secondary side outlet of the heat exchanger 12, which is the temperature of hot water supplied to the hot water storage tank at this time, will be referred to as a first adjusted temperature.

このとき、制御部20は、温度センサ37が検出する熱交換器12の一次側入口の検出温度T3と、温度センサ38が検出する熱交換器12の二次側出口の検出温度T4との差T3−T4が一定の所定の第1設定温度差ΔT1(例えば、10℃程度)を維持するように、電動弁16の開度を制御し、熱交換器の二次側流路に流れ込む流量を制御する。   At this time, the control unit 20 determines the difference between the detected temperature T3 at the primary side inlet of the heat exchanger 12 detected by the temperature sensor 37 and the detected temperature T4 at the secondary side outlet of the heat exchanger 12 detected by the temperature sensor 38. The opening of the motor-operated valve 16 is controlled so that T3-T4 maintains a predetermined first set temperature difference ΔT1 (for example, about 10 ° C.), and the flow rate flowing into the secondary side flow path of the heat exchanger is set. Control.

ここで、一次側流路13に流れる温水の単位時間当たりの流量をf1、二次側流路14に流れる温水の単位時間当たりの流量をf2とする。また、図1に示されていないが、熱交換器12の二次側入口側の管路34上における水温をT6とする。熱交換器12の一次側流路13にて放出される単位時間当たりの熱量と、二次側流路14にて吸収される単位時間当たりの熱量Qが等しいことから、下記の数1が近似的に成立する。ここで、Cは流体の比熱とする。   Here, the flow rate per unit time of the hot water flowing through the primary side flow path 13 is f1, and the flow rate per unit time of the hot water flowing through the secondary side flow path 14 is f2. Although not shown in FIG. 1, the water temperature on the pipe 34 on the secondary inlet side of the heat exchanger 12 is T6. Since the amount of heat per unit time released in the primary flow path 13 of the heat exchanger 12 and the amount of heat Q per unit time absorbed in the secondary flow path 14 are equal, the following equation 1 is approximated: It holds true. Here, C is the specific heat of the fluid.

[数1]
Q=C(T3−T5)f1=C(T4−T6)f2
[Equation 1]
Q = C (T3-T5) f1 = C (T4-T6) f2

数1より、T3、T5、及びf1が変化しないとすれば、f2を減らすことで、T4が上昇し、f2を増やすことで、T4が低下する。したがって、例えば、検出温度T4がT3−ΔT1よりも低いときは電動弁16を絞り、T3−T4がΔT1に一致するまで段階的に流量f2を減らす制御を行い、検出温度T4がT3−ΔT1よりも高いときは電動弁16を開き、T3−T4がΔT1に一致するまで段階的にf2を増やす制御を行うことで、T3−T4を一定の温度差ΔT1に維持制御できる。   If T3, T5, and f1 do not change from Equation 1, T4 increases by decreasing f2, and T4 decreases by increasing f2. Therefore, for example, when the detected temperature T4 is lower than T3-ΔT1, the motor-operated valve 16 is throttled, and the flow rate f2 is controlled stepwise until T3-T4 matches ΔT1, and the detected temperature T4 is lower than T3-ΔT1. If it is higher, the motor-operated valve 16 is opened, and control is performed to increase f2 step by step until T3-T4 matches ΔT1, whereby T3-T4 can be maintained and controlled at a constant temperature difference ΔT1.

一方、熱交換器において交換される熱量Qは、一般に、総括伝熱係数をK、伝熱面積をAとして、下記の数2で表すことができる。ここで、ΔTLMTDは対数平均温度差と呼ばれる。 On the other hand, the heat quantity Q exchanged in the heat exchanger can be generally expressed by the following formula 2 where K is the overall heat transfer coefficient and A is the heat transfer area. Here, ΔT LMTD is called the logarithmic average temperature difference.

[数2]
Q=K・A・ΔTLMTD
ΔTLMTD=(ΔT−ΔT)/ln(ΔT/ΔT
ΔT=T3−T4、 ΔT=T5−T6
[Equation 2]
Q = K ・ A ・ ΔT LMTD
ΔT LMTD = (ΔT A −ΔT B ) / ln (ΔT A / ΔT B )
ΔT A = T3-T4, ΔT B = T5-T6

総括伝熱係数Kは、熱交換器の形状、流体物性及び流量により決定される比例係数であるが、本発明の場合は、流量が大きく変化しない限り一定であると考えてよい。T3、T6は既知として、上記数1、数2からT4、T5を算出できる。   The overall heat transfer coefficient K is a proportionality coefficient determined by the shape of the heat exchanger, the physical properties of the fluid, and the flow rate. In the present invention, the overall heat transfer coefficient K may be considered constant as long as the flow rate does not change significantly. Assuming that T3 and T6 are known, T4 and T5 can be calculated from the above equations 1 and 2.

〈デフロスト運転時の動作〉
冬期(着霜期)では、約60分に一度、5分間程度デフロスト運転が行われる。なお、デフロスト運転の頻度、時間は外気温や湿度により異なる。この期間中ヒートポンプ給湯機11の加熱能力は0になる。このとき、ヒートポンプ給湯機11内蔵の循環ポンプ18は停止又は低流量で運転している。制御部20は、循環ポンプ17を停止させる。これにより熱交換器の二次側出口の流量は0になり、貯湯タンクの蓄熱温度は低下しない。
<Operation during defrost operation>
In the winter season (frosting season), the defrost operation is performed once every about 60 minutes for about 5 minutes. The frequency and time of the defrost operation vary depending on the outside air temperature and humidity. During this period, the heating capacity of the heat pump water heater 11 becomes zero. At this time, the circulation pump 18 built in the heat pump water heater 11 is stopped or operated at a low flow rate. The control unit 20 stops the circulation pump 17. As a result, the flow rate at the secondary outlet of the heat exchanger becomes zero, and the heat storage temperature of the hot water storage tank does not decrease.

〈デフロスト運転後の動作〉
デフロスト運転完了後は、熱交換器12の一次側入口の温度T3が低下(例えば、70℃→55℃まで)している。このため、制御部20は、定常運転になるまでの所定期間(例えば、20分)は、二次側出口との温度差T3−T4に拘らず、二次側出口温度T4の維持を優先させる制御を行う。
<Operation after defrost operation>
After completion of the defrost operation, the temperature T3 at the primary side inlet of the heat exchanger 12 is decreased (for example, from 70 ° C. to 55 ° C.). For this reason, the control unit 20 gives priority to the maintenance of the secondary side outlet temperature T4 regardless of the temperature difference T3-T4 from the secondary side outlet for a predetermined period (for example, 20 minutes) until the steady operation is performed. Take control.

数1より、検出温度T4が目標温度TA(ここでは、60℃)より低いときは電動弁16を絞って、段階的に流量f2を減らす制御を行い、検出温度T4が当該目標温度TAよりも高いときは電動弁16を開いて、高いときは段階的にf2を増やす制御を行うことで、T4を所定の目標温度に向かって制御できる。或いは、管路31又は32上に別途設けられた流量計又はヒートポンプ給湯機11から流量f1を取得し、管路36上にT6を検出する温度センサを別に設けることで、数1から直接、T4を目標温度に設定するために最適な流量f2を設定できる。
なお、検出温度T3が目標温度TAよりも低下している場合は、後述するように、目標温度TAをT3より所定の温度差ΔT2だけ低い温度に設定し、流量f2の制御を行うことができる。
From Equation 1, when the detected temperature T4 is lower than the target temperature TA (here, 60 ° C.), the motorized valve 16 is throttled to control the flow rate f2 step by step, and the detected temperature T4 is lower than the target temperature TA. When it is high, the motor-operated valve 16 is opened, and when it is high, T2 can be controlled toward a predetermined target temperature by performing control to increase f2 stepwise. Alternatively, by obtaining a flow rate f1 from a flow meter or heat pump water heater 11 separately provided on the pipe line 31 or 32 and separately providing a temperature sensor for detecting T6 on the pipe line 36, T4 can be directly obtained from the equation (1). Can be set to the optimum flow rate f2.
When the detected temperature T3 is lower than the target temperature TA, as will be described later, the target temperature TA can be set to a temperature lower than T3 by a predetermined temperature difference ΔT2, and the flow rate f2 can be controlled. .

しかしながら、一次側入口温度T3が低下しているにも拘らず二次側出口温度T4を一定に維持することで、温度差T3−T4(=ΔT)は減少することになる。交換熱量Qは変化しないとした場合、対数平均温度差ΔTLMTDが同じとなるように、温度差T5−T6(=ΔT)が増加する。したがって、T6は変化しないとして、T5が上昇する。 However, the temperature difference T3−T4 (= ΔT A ) decreases by maintaining the secondary outlet temperature T4 constant despite the primary inlet temperature T3 being lowered. If the exchange heat quantity Q does not change, the temperature difference T5-T6 (= ΔT B ) increases so that the logarithmic average temperature difference ΔT LMTD becomes the same. Therefore, T5 rises assuming that T6 does not change.

この結果、温度差T3−T4に追随せずT4を一定に制御する本発明の運転制御方法では、温度差T3−T4を一定に制御する方法よりも一次側出口温度T5が上昇し、T3−T5の温度差が小さくなる。この結果、ヒートポンプ給湯機11の成績係数(COP)は、通常運転時と比べて低下する。   As a result, in the operation control method of the present invention in which T4 is controlled to be constant without following the temperature difference T3-T4, the primary side outlet temperature T5 is increased more than the method in which the temperature difference T3-T4 is controlled to be constant. The temperature difference of T5 becomes small. As a result, the coefficient of performance (COP) of the heat pump water heater 11 is lower than that during normal operation.

また、上述の通り、ヒートポンプ給湯機11はHP出口温度(熱交換器12の一次側入口温度T3に略等しい)が一定になるように制御しようとし、HP入口温度(熱交換器12の一次側出口温度T5に略等しい)の変化に伴い、自動で流量f1の調整及び圧縮機の出力調整が行われる。しかし、T5の上昇速度が速いと、圧縮機の出力はそれに合わせて急激に変化することになり、圧縮機の負担が大きく寿命に影響する。従って、一次側出口温度T5の上昇速度は、ヒートポンプ給湯機の能力に応じて一定速度以下(例えば、1℃/分以内)に抑えることが好ましい。   As described above, the heat pump water heater 11 tries to control the HP outlet temperature (substantially equal to the primary inlet temperature T3 of the heat exchanger 12) to be constant, and the HP inlet temperature (primary side of the heat exchanger 12). With the change in the outlet temperature T5, the flow rate f1 and the compressor output are automatically adjusted. However, if the rising speed of T5 is fast, the output of the compressor will change abruptly in accordance with it, and the burden on the compressor will greatly affect the life. Therefore, it is preferable to suppress the rising speed of the primary side outlet temperature T5 to a certain speed or less (for example, within 1 ° C./min) according to the capability of the heat pump water heater.

そこで、ヒートポンプ給湯機11を保護するため、T4の維持よりもT5の上昇速度を抑えることを優先させることとし、T5の上昇速度が基準値を超えるとf2を増加させるようにして、上昇速度を一定以下に抑えるように制御するのが好ましい。   Therefore, in order to protect the heat pump water heater 11, priority is given to suppressing the rising speed of T5 over maintaining T4, and when the rising speed of T5 exceeds the reference value, f2 is increased so that the rising speed is increased. It is preferable to control so as to keep it below a certain level.

さらに、T4を一定温度に維持する場合における温度差T3−T4は、通常運転時の温度差ΔT1より小さな第2設定温度差ΔT2以上が維持されるように、一定温度に維持すべき温度TAを設定するとよい。好ましくは、ΔT2はΔT1の50%程度以上であり、例えばΔT1=10℃であれば、T3−T4が5℃以上の温度差を維持するようにTAを設定するとよい。したがって、T3が通常運転時の二次側出口温度(第1調整温度)よりもΔT2以上高い場合、TAは当該第1調整温度に設定されるが、T3と第1調整温度との温度差がΔT2未満になるまでT3が低下した場合、当該第1調整温度より低温のT3−ΔT2(第2調整温度)にTAは再設定される。換言すると、第1調整温度と第2調整温度のうち低い方にT4を一定温度に維持すべき目標温度TAを設定するとよい。   Further, the temperature difference T3-T4 in the case where T4 is maintained at a constant temperature is a temperature TA to be maintained at a constant temperature so that a second set temperature difference ΔT2 which is smaller than the temperature difference ΔT1 during normal operation is maintained. It is good to set. Preferably, ΔT2 is about 50% or more of ΔT1, and for example, if ΔT1 = 10 ° C., TA may be set so that T3-T4 maintains a temperature difference of 5 ° C. or more. Therefore, when T3 is higher by ΔT2 or more than the secondary side outlet temperature (first adjustment temperature) during normal operation, TA is set to the first adjustment temperature, but the temperature difference between T3 and the first adjustment temperature is When T3 decreases until it becomes less than ΔT2, TA is reset to T3-ΔT2 (second adjustment temperature) lower than the first adjustment temperature. In other words, the target temperature TA at which T4 should be maintained at a constant temperature may be set to the lower of the first adjustment temperature and the second adjustment temperature.

この結果、デフロスト運転後にヒートポンプ給湯機11の出口温度T3が通常運転時よりΔT1−ΔT2以上低下した場合や、T5の上昇速度が速い場合には、T4が第1調整温度より低下し、貯湯タンクに通常運転時より低温の湯が流入することがある。しかしながら、T3−T4に基づく制御ではなく、二次側出口温度T4に基づく制御を行うことにより、湯温の低下は最低限に抑制される。これにより、ヒートポンプ給湯機11を安定運転させながら、二次側出口温度T4の低下を抑えることが可能になる。   As a result, when the outlet temperature T3 of the heat pump water heater 11 decreases by ΔT1-ΔT2 or more after the defrost operation or when the rising speed of T5 is faster, T4 decreases from the first adjustment temperature, and the hot water storage tank In some cases, hot water having a temperature lower than that during normal operation may flow in. However, by performing the control based on the secondary side outlet temperature T4 instead of the control based on T3-T4, the decrease in the hot water temperature is suppressed to the minimum. Thereby, it becomes possible to suppress the fall of secondary side exit temperature T4, making the heat pump water heater 11 operate stably.

図2及び図3に、給湯システム1の運転制御方法を示すフローチャートを示す。   2 and 3 are flowcharts showing the operation control method of the hot water supply system 1.

図2のステップS101において、制御部20は、温度センサ35の検出温度を参照し、T1が所定温度(ここでば、35℃)未満に低下しているか否かを判定する。T1が所定温度未満の場合(ステップS101でYES分岐)、ステップS102に進む。   In step S101 in FIG. 2, the control unit 20 refers to the temperature detected by the temperature sensor 35 and determines whether or not T1 has decreased below a predetermined temperature (in this case, 35 ° C.). If T1 is lower than the predetermined temperature (YES branch in step S101), the process proceeds to step S102.

ステップS102において、ヒートポンプ給湯機11を稼働させ、ステップS103において、二次側の循環ポンプ17の運転を開始する。   In step S102, the heat pump water heater 11 is operated, and in step S103, the operation of the secondary circulation pump 17 is started.

ステップS104では、ヒートポンプ給湯機11が、デフロスト運転完了から所定期間(ここでは、20分)経過しているか否かを判定する。デフロスト運転完了後の経過時間が所定期間以内の場合(ステップS104でYES分枝)、図3のステップS109に進む。一方、デフロスト運転完了から既に所定期間が経過している場合(ステップS104でNO分岐)は、ステップS105に進む。   In step S104, the heat pump water heater 11 determines whether or not a predetermined period (here, 20 minutes) has elapsed since the completion of the defrost operation. When the elapsed time after completion of the defrost operation is within the predetermined period (YES branch in step S104), the process proceeds to step S109 in FIG. On the other hand, when the predetermined period has already elapsed since the completion of the defrost operation (NO branch in step S104), the process proceeds to step S105.

ステップS105では、通常運転時の制御動作として、制御部20が、温度センサ37の検出温度T3と温度センサ38の検出温度T4との差T3−T4が一定の所定の温度差ΔT1(例えば、10℃)を維持するように、二次側流路14に流れ込む流量f2を調整する制御を行う。   In step S105, as a control operation during normal operation, the control unit 20 determines that the difference T3-T4 between the detected temperature T3 of the temperature sensor 37 and the detected temperature T4 of the temperature sensor 38 is a predetermined temperature difference ΔT1 (for example, 10 C) is controlled so as to adjust the flow rate f2 flowing into the secondary side flow path 14.

ステップS105の後、ステップS106において、制御部20は、温度センサ36の検出温度を参照し、T2が所定温度(ここでば、50℃)を超えたか否かを判定する。T2が所定温度を超えた場合(ステップS106でYES分岐)、ステップS107に進む。一方、T2が所定温度以下の場合(ステップS106でNO分岐)、ステップS104に戻る。   After step S105, in step S106, the control unit 20 refers to the temperature detected by the temperature sensor 36 and determines whether T2 has exceeded a predetermined temperature (in this case, 50 ° C.). If T2 exceeds the predetermined temperature (YES branch in step S106), the process proceeds to step S107. On the other hand, if T2 is equal to or lower than the predetermined temperature (NO branch in step S106), the process returns to step S104.

ステップS107において、ヒートポンプ給湯機11の運転を停止し、ステップS108において、二次側の循環ポンプ17を停止し、ステップS101に戻る。   In step S107, the operation of the heat pump water heater 11 is stopped. In step S108, the secondary circulation pump 17 is stopped, and the process returns to step S101.

一方、デフロスト運転完了後の経過時間が所定期間以内の場合(ステップS104でYES分枝)には、図3のステップS109において、制御部20が、温度センサ38の検出温度T4が一定の設定温度TAを維持するように、二次側流路14に流れ込む流量を調整する制御を行う。ここでの設定温度TAは、基本的に、通常運転時(ステップS105)における二次出口温度(第1調整温度。ここでは、60℃)と同じとするが、前述の通り、T3−T4の温度差が前述の第2設定温度差ΔT2以上を維持するよう、T3と第1調整温度との温度差がΔT2未満の場合は第1調整温度よりも低い第2調整温度に設定されることがある。   On the other hand, when the elapsed time after the completion of the defrost operation is within the predetermined period (YES branch in step S104), in step S109 in FIG. 3, the control unit 20 determines that the detected temperature T4 of the temperature sensor 38 is constant. Control is performed to adjust the flow rate flowing into the secondary channel 14 so as to maintain TA. The set temperature TA here is basically the same as the secondary outlet temperature (first adjustment temperature, here 60 ° C.) during normal operation (step S105), but as described above, T3-T4 When the temperature difference between T3 and the first adjustment temperature is less than ΔT2, the second adjustment temperature lower than the first adjustment temperature may be set so that the temperature difference is maintained at the above-described second set temperature difference ΔT2. is there.

ステップS109の後、ステップS110において、制御部20は、ヒートポンプ給湯機11の入口側温度T5の変化速度を検出し、T5の上昇速度が基準値を超えていないかを判定する。T5の上昇速度が基準値を超えている場合(ステップS110でYES分枝)、ステップS111に進み、二次側流路14に流れ込む流量f2を増大させる制御を行い、その後、図2のステップS106に進む。一方、T5が上昇していない場合、或いはT5の上昇速度が基準値以下である場合(ステップS110でNO分枝)は、ステップS111を実行することなく、図2のステップS106へ進む。   After step S109, in step S110, the control unit 20 detects the changing speed of the inlet side temperature T5 of the heat pump water heater 11, and determines whether or not the rising speed of T5 exceeds the reference value. When the rising speed of T5 exceeds the reference value (YES branch in step S110), the process proceeds to step S111 to perform a control to increase the flow rate f2 flowing into the secondary side flow path 14, and thereafter, step S106 in FIG. Proceed to On the other hand, if T5 has not increased, or if the increasing speed of T5 is below the reference value (NO branch in step S110), the process proceeds to step S106 in FIG. 2 without executing step S111.

図4に本発明の給湯システムの他の構成例を示す。図4に示す給湯システム2では、ヒートポンプ給湯機11aと熱交換器12aの組、及びヒートポンプ給湯機11bと熱交換器12bの組を複数組(ここでは、2組)備え、各組の二次側流路14a、14bが、夫々、管路40、41によって共通の貯湯タンク15に接続されている。制御部20は、温度センサ37a〜39aの検出温度に基づいて管路33a上に介装された電磁弁16aの開度を制御し、二次側流路14aの流量を調整し、温度センサ37b〜39bの検出温度に基づいて管路33b上に介装された電磁弁16bの開度を制御し、二次側流路14bの流量を調整する。図2及び図3に示すフローに従って運転が制御される場合、夫々のヒートポンプ給湯機は、温度センサ31の検出温度T1が所定温度より低下することで(デフロスト運転中の場合は、当該デフロスト運転の完了を待って)運転を開始し、温度センサ32の検出温度T2がより高温の別の設定温度より上昇すると、全てのヒートポンプ給湯機の運転を停止する。しかしながら、夫々のヒートポンプ給湯機でデフロスト運転が行われる期間が一致しなくてもよいように、流量調整の制御は、T3−T4を維持する制御と、T4を一定に維持する制御の何れかが、夫々のヒートポンプ給湯機のデフロスト運転完了のタイミングに応じて、夫々の組で独立して行われることになる。   FIG. 4 shows another configuration example of the hot water supply system of the present invention. The hot water supply system 2 shown in FIG. 4 includes a plurality of sets (here, two sets) of sets of heat pump water heaters 11a and heat exchangers 12a and heat pump water heaters 11b and heat exchangers 12b. The side flow paths 14a and 14b are connected to the common hot water storage tank 15 by pipe lines 40 and 41, respectively. The control unit 20 controls the opening degree of the electromagnetic valve 16a interposed on the pipe line 33a based on the detected temperatures of the temperature sensors 37a to 39a, adjusts the flow rate of the secondary side flow path 14a, and the temperature sensor 37b. Based on the detected temperature of .about.39b, the opening degree of the electromagnetic valve 16b interposed on the pipe line 33b is controlled to adjust the flow rate of the secondary side flow path 14b. When the operation is controlled according to the flow shown in FIG. 2 and FIG. 3, each heat pump water heater is configured so that the detected temperature T1 of the temperature sensor 31 is lower than a predetermined temperature (if the defrost operation is being performed, The operation is started (waiting for completion), and when the detected temperature T2 of the temperature sensor 32 rises from another higher set temperature, the operation of all the heat pump water heaters is stopped. However, in order that the periods during which the defrost operation is performed in the respective heat pump water heaters do not have to coincide with each other, the flow rate adjustment control may be one of control for maintaining T3-T4 and control for maintaining T4 constant. In accordance with the timing of completion of the defrost operation of each heat pump water heater, the heat pump water heater is performed independently in each group.

図4のようなヒートポンプ給湯機を複数備える構成の場合、夫々のデフロスト運転のタイミングがずれ、少なくとも何れかの組において二次側出口温度T4が低下する虞のある期間が増加するが、上述した給湯システムの運転制御を行うことで、貯湯タンクに低温の湯が供給されるのを抑制し、貯湯タンクの蓄熱温度の低下を抑制することができる。   In the case of a configuration including a plurality of heat pump water heaters as shown in FIG. 4, the timing of each defrost operation is shifted, and the period during which the secondary side outlet temperature T4 may decrease in at least one set increases. By controlling the operation of the hot water supply system, it is possible to suppress the supply of low-temperature hot water to the hot water storage tank, and to suppress the decrease in the heat storage temperature of the hot water storage tank.

以上、本発明の給湯システム1及び2では、ヒートポンプ給湯機11がデフロスト運転完了後から定常運転に移行する所定期間の間、熱交換器12の二次側出口温度T4が、一次側入口温度T3の変化に追随せず一定の温度を維持するように、二次側流路14の循環流量を制御することによって、デフロスト運転後の一次側入口温度T3の低下に伴う二次側出口温度T4の低下を最小限に制御し、貯湯タンクの蓄熱温度の低下を抑制できる。また、一次側入口温度T3が低下しても短時間で設定温度に戻すことができるので、蓄熱温度を高くでき、小さな貯湯タンク容量に対して蓄熱量の大きなシステムを実現可能となる。   As described above, in the hot water supply systems 1 and 2 of the present invention, the secondary outlet temperature T4 of the heat exchanger 12 is changed to the primary inlet temperature T3 during a predetermined period in which the heat pump water heater 11 shifts to the steady operation after the completion of the defrost operation. By controlling the circulation flow rate of the secondary side flow path 14 so as to maintain a constant temperature without following the change of the secondary side temperature T4 of the secondary side outlet temperature T4 accompanying the decrease in the primary side inlet temperature T3 after the defrost operation. The decrease can be controlled to the minimum, and the decrease in the heat storage temperature of the hot water storage tank can be suppressed. Moreover, since it can return to setting temperature in a short time even if primary side inlet_port | entrance temperature T3 falls, heat storage temperature can be made high and it becomes possible to implement | achieve the system with a large heat storage amount with respect to a small hot water storage tank capacity.

また、一次側出口温度(HP入口温度)T5の上昇速度を基準値以下に制御できるので、ヒートポンプ給湯機の冷媒圧力の急変や出湯温度の急変がない安定した運転が可能となる。   In addition, since the rate of increase in the primary side outlet temperature (HP inlet temperature) T5 can be controlled below the reference value, stable operation without sudden changes in the refrigerant pressure or hot water temperature of the heat pump water heater becomes possible.

〈別実施形態〉
以下に、別実施形態について説明する。
<Another embodiment>
Another embodiment will be described below.

〈1〉本発明の給湯システムの運転制御は、貯湯タンクより二次側に燃焼式温水器が設けられたハイブリッド給湯システムの運転制御にも適用可能である。当該ハイブリッド給湯システムの場合、貯湯タンクの蓄熱温度よりもヒートポンプ給湯機のCOPを優先した制御を求められることがあるが、本制御方法はヒートポンプ給湯機の入口温度T5及びその上昇速度の基準値を自由に調整可能なため、COPを優先した制御に切り替えも可能である。   <1> The operation control of the hot water supply system of the present invention can also be applied to the operation control of a hybrid hot water supply system in which a combustion water heater is provided on the secondary side of the hot water storage tank. In the case of the hybrid hot water supply system, control with priority given to the COP of the heat pump water heater may be required over the heat storage temperature of the hot water storage tank. However, this control method uses the reference value of the inlet temperature T5 of the heat pump water heater and its rising speed. Since it can be freely adjusted, it is possible to switch to control giving priority to COP.

つまり、図3のステップS110において、一次側出口温度(HP入口温度)T5の上昇速度の基準値を低く設定することで、T5の上昇を抑制し、T3−T5の低下を抑制して、ヒートポンプ給湯機を効率優先で稼働させることができる。一方、入口温度T5の上昇速度の基準値を低く設定することで、T4を設定温度に維持できず、貯湯タンクの蓄熱温度が低下する可能性が高くなるが、燃焼式温水器を介して温水を再加熱することにより、低温の温水が給湯負荷に供給されることは防止される。本発明の給湯システムの運転制御を適用することで、ハイブリッド給湯システムは、ヒートポンプ給湯機のデフロスト運転が必要な冬期においてもヒートポンプ給湯機を高効率で稼働させつつ、且つ、燃焼式温水器による湯の再加熱に必要な燃料消費を最適化して、システム全体としてより省エネルギーが可能である。   That is, in step S110 of FIG. 3, the reference value of the rising speed of the primary outlet temperature (HP inlet temperature) T5 is set low, thereby suppressing the increase in T5 and suppressing the decrease in T3-T5. The water heater can be operated with priority on efficiency. On the other hand, by setting the reference value of the rate of increase of the inlet temperature T5 low, T4 cannot be maintained at the set temperature, and there is a high possibility that the heat storage temperature of the hot water storage tank decreases. Is reheated to prevent low-temperature hot water from being supplied to the hot water supply load. By applying the operation control of the hot water supply system of the present invention, the hybrid hot water supply system can operate the heat pump water heater with high efficiency even in the winter season when the defrost operation of the heat pump water heater is necessary, and the hot water by the combustion water heater By optimizing the fuel consumption required for the reheating of the system, the system as a whole can save more energy.

〈2〉上記実施形態では、熱交換器12(12a、12b)の二次側流路14(14a、14b)の流量制御を電動弁16(16a、16b)の開度の比例制御により行うとしたが、循環ポンプ17(17a、17b)に供給される交流電力のインバータ制御により吐出量を調整するものとしてもよい。また、電動弁16と循環ポンプ17の両方の制御により行ってもよい。   <2> In the above embodiment, when the flow rate control of the secondary flow path 14 (14a, 14b) of the heat exchanger 12 (12a, 12b) is performed by proportional control of the opening degree of the electric valve 16 (16a, 16b). However, the discharge amount may be adjusted by inverter control of AC power supplied to the circulation pump 17 (17a, 17b). Moreover, you may carry out by control of both the motor operated valve 16 and the circulation pump 17. FIG.

〈3〉上記実施形態において、循環ポンプ17は熱交換器12の二次側流路14より上流の管路34上に、電動弁16は二次側流路14より下流の管路33上に介装されているが、夫々、循環ポンプ17を管路33上に、電動弁16を管路34上に介装することもできる。   <3> In the above embodiment, the circulation pump 17 is on the pipe line 34 upstream of the secondary side flow path 14 of the heat exchanger 12, and the motor operated valve 16 is on the pipe line 33 downstream of the secondary side flow path 14. However, the circulation pump 17 can be interposed on the pipe line 33 and the motor-operated valve 16 can be interposed on the pipe line 34, respectively.

〈4〉また、熱交換器12については、図1に示す対向流型のもののほか、並行流型のものを使用してもよい。   <4> Further, as the heat exchanger 12, a parallel flow type may be used in addition to the counter flow type shown in FIG.

〈5〉また、上記実施形態において、ヒートポンプ給湯機11の稼働、停止制御については、温度センサ35の検出温度T1に基づいてヒートポンプ給湯機が稼働し、温度センサ36の検出温度T2に基づいてヒートポンプ給湯機が停止する制御を行う構成となっているが、本発明はこれに限られるものではなく、稼働、停止夫々において、他の制御条件を設定してもよい。   <5> In the above embodiment, for the operation and stop control of the heat pump water heater 11, the heat pump water heater is operated based on the detected temperature T1 of the temperature sensor 35, and the heat pump is based on the detected temperature T2 of the temperature sensor 36. The hot water heater is controlled to stop. However, the present invention is not limited to this, and other control conditions may be set for each of operation and stop.

一方、上記実施形態の運転制御方法を用いる場合、温度センサ35、36については、夫々、貯湯タンク15内の湯温T1が所定温度(例えば、35℃)未満か否か、或いはT2が所定温度(例えば、50℃)を超えているか否かを判断するために用いられるものであるので、実際の温度を検出する必要はなく、例えばサーモスタットのような、所定温度を境にオンオフが切り替わるスイッチで代用することができる。   On the other hand, when the operation control method of the above embodiment is used, for the temperature sensors 35 and 36, whether or not the hot water temperature T1 in the hot water storage tank 15 is lower than a predetermined temperature (for example, 35 ° C.), or T2 is a predetermined temperature. (For example, it is used to determine whether or not the temperature exceeds 50 ° C.), it is not necessary to detect the actual temperature. For example, a switch such as a thermostat that switches on and off at a predetermined temperature. Can be substituted.

〈6〉更に、上記実施形態では、貯湯タンク11として一槽式のものを想定したが、複数の貯湯タンクを直列に接続した多槽式であっても良い。この場合、貯湯タンクの水温分布は、各タンク内で上下方向に形成されるだけでなく、各タンクの配列順にも形成されるため、温度センサ35は、配列順で中間に存在するタンクに設け、温度センサ36は、最も管路34に近いタンクに設けることができる。   <6> Furthermore, in the said embodiment, although the one tank type thing was assumed as the hot water storage tank 11, the multiple tank type which connected the some hot water storage tank in series may be sufficient. In this case, the water temperature distribution of the hot water storage tanks is formed not only in the vertical direction in each tank but also in the order in which the tanks are arranged. Therefore, the temperature sensor 35 is provided in the tank existing in the middle in the arrangement order. The temperature sensor 36 can be provided in a tank closest to the pipe line 34.

〈7〉また、上記実施形態において、給湯システムの運転制御で説明した温度設定は一例であり、本発明はこれに限られるものではない。   <7> Moreover, in the said embodiment, the temperature setting demonstrated by the operation control of the hot water supply system is an example, and this invention is not limited to this.

本発明に係る給湯システム及びその運転制御方法は、ヒートポンプ給湯機で加熱した温水を給湯負荷に供給する給湯システムであって、ヒートポンプ給湯機と温水を貯湯する貯湯タンクの間に熱交換器を配した給湯システムの運転制御に利用可能である。   A hot water supply system and an operation control method thereof according to the present invention are hot water supply systems that supply hot water heated by a heat pump hot water supply to a hot water supply load, and a heat exchanger is disposed between the heat pump hot water supply and a hot water storage tank that stores hot water. It can be used for operation control of a hot water supply system.

1、2: 本発明に係る給湯システム
11(11a、11b): ヒートポンプ給湯機
12(12a、12b): 熱交換器
13(13a、13b): 一次側流路
14(14a、14b): 二次側流路
15: 貯湯タンク
21: 上部入水口
22: 上部出水口
23: 下部入水口
24: 下部出水口
16(16a、16b): 電動弁
17(17a、17b): 循環ポンプ
18: ヒートポンプ給湯機内蔵の循環ポンプ
20: 制御部
31〜34、31a、13b、32a、32b、33a、33b、34a、34b、40、41: 管路
35〜39、37a、37b、38a、38b、39a、39b: 温度センサ
1, 2: Hot water supply system 11 (11a, 11b) according to the present invention: Heat pump water heater 12 (12a, 12b): Heat exchanger 13 (13a, 13b): Primary channel 14 (14a, 14b): Secondary Side channel 15: Hot water storage tank 21: Upper water inlet 22: Upper water outlet 23: Lower water inlet 24: Lower water outlet 16 (16a, 16b): Electric valve 17 (17a, 17b): Circulation pump 18: Heat pump water heater Built-in circulation pump 20: Control units 31-34, 31a, 13b, 32a, 32b, 33a, 33b, 34a, 34b, 40, 41: Pipe lines 35-39, 37a, 37b, 38a, 38b, 39a, 39b: Temperature sensor

Claims (8)

ヒートポンプ給湯機、
熱交換器、
貯湯タンク、
前記ヒートポンプ給湯機の入口と前記熱交換器の一次側出口の間に設けられた第1管路、
前記ヒートポンプ給湯機の出口と前記熱交換器の一次側入口の間に設けられた第2管路、
前記熱交換器の二次側出口と前記貯湯タンクの上部入水口の間に設けられた第3管路、
前記熱交換器の二次側入口と前記貯湯タンクの下部出水口の間に設けられた第4管路、
前記熱交換器の一次側入口の水温として第1温度、及び、前記熱交換器の前記二次側出口の水温として第2温度を検出する温度センサの夫々、
前記第3管路又は前記第4管路上に介装された循環ポンプ、及び、
前記第1温度及び前記第2温度の検出値に基づき、前記貯湯タンクの前記下部出水口から、前記第4管路、前記熱交換器の二次側流路、及び前記第3管路を介して前記貯湯タンクの前記上部入水口に至る循環路の循環流量を調整する制御部を備え、
前記制御部は、
前記ヒートポンプ給湯機のデフロスト運転が完了した後の所定期間、前記第2温度が前記第1温度の変化に追随せず一定の第1調整温度を維持するように前記循環流量を制御する第1制御を実行することを特徴とする給湯システム。
Heat pump water heater,
Heat exchanger,
Hot water storage tank,
A first pipe provided between an inlet of the heat pump water heater and a primary outlet of the heat exchanger;
A second pipe provided between the outlet of the heat pump water heater and the primary inlet of the heat exchanger;
A third conduit provided between the secondary side outlet of the heat exchanger and the upper water inlet of the hot water storage tank;
A fourth conduit provided between the secondary side inlet of the heat exchanger and the lower outlet of the hot water storage tank;
A temperature sensor that detects a first temperature as the water temperature at the primary side inlet of the heat exchanger and a second temperature as the water temperature at the secondary side outlet of the heat exchanger,
A circulation pump interposed on the third pipe line or the fourth pipe line; and
Based on the detected values of the first temperature and the second temperature, from the lower outlet of the hot water storage tank through the fourth pipe, the secondary flow path of the heat exchanger, and the third pipe. A control unit for adjusting the circulation flow rate of the circulation path to the upper water inlet of the hot water storage tank,
The controller is
A first control for controlling the circulation flow rate so that the second temperature does not follow the change in the first temperature and maintains a constant first adjusted temperature for a predetermined period after the defrosting operation of the heat pump water heater is completed. A hot water supply system characterized by executing.
前記所定期間の経過後、前記制御部は、
前記第1温度と前記第2温度の差が一定の第1設定温度差を維持するように前記循環流量を制御する第2制御を実行することを特徴とする請求項1に記載の給湯システム。
After the elapse of the predetermined period, the control unit
2. The hot water supply system according to claim 1, wherein a second control is performed to control the circulating flow rate so that a difference between the first temperature and the second temperature maintains a constant first set temperature difference.
前記所定期間において、前記制御部は、
前記第1温度の検出値が前記第2温度の検出値に対して前記第1設定温度差よりも小さな第2設定温度差以上高温のとき、前記第1制御を実行し、
前記第1温度の検出値と前記第2温度の検出値の差が前記第1設定温度差よりも小さな第2設定温度差未満のとき、前記第2温度が前記第1温度よりも前記第2設定温度差だけ低温の第2調整温度以上を維持するように前記循環流量を制御する第3制御を実行することを特徴とする請求項1又は2に記載の給湯システム。
In the predetermined period, the control unit
When the detected value of the first temperature is higher than the detected value of the second temperature by a second set temperature difference smaller than the first set temperature difference, the first control is executed,
When the difference between the detected value of the first temperature and the detected value of the second temperature is less than the second set temperature difference that is smaller than the first set temperature difference, the second temperature is more than the second temperature than the first temperature. 3. The hot water supply system according to claim 1, wherein a third control for controlling the circulating flow rate is performed so as to maintain the low second adjustment temperature or more by a set temperature difference.
前記熱交換器の前記一次側出口の水温として第3温度を検出する温度センサを更に備え、
前記所定期間において、前記制御部は、
前記第3温度の検出値に基づき、前記第3温度の上昇速度が所定速度を超えないように前記循環流量を制御する第4制御を前記第1及び第3制御よりも優先させることを特徴とする請求項1〜3の何れか一項に記載の給湯システム。
A temperature sensor that detects a third temperature as a water temperature at the outlet of the primary side of the heat exchanger;
In the predetermined period, the control unit
Based on the detected value of the third temperature, the fourth control for controlling the circulation flow rate is prioritized over the first and third controls so that the rising speed of the third temperature does not exceed a predetermined speed. The hot water supply system according to any one of claims 1 to 3.
1つの前記ヒートポンプ給湯機と1つの前記熱交換器からなる組を複数備え、
前記組の夫々の前記熱交換器の前記二次側出口が、共通の前記貯湯タンクの前記上部入水口に接続されることを特徴とする請求項1〜4の何れか一項に記載の給湯システム。
A plurality of sets including one heat pump water heater and one heat exchanger are provided,
The hot water supply according to any one of claims 1 to 4, wherein the secondary side outlet of each of the heat exchangers of the set is connected to the upper water inlet of the common hot water storage tank. system.
ヒートポンプ給湯機、
熱交換器、
貯湯タンク、
前記ヒートポンプ給湯機の入口と前記熱交換器の一次側出口の間に設けられた第1管路、
前記ヒートポンプ給湯機の出口と前記熱交換器の一次側入口の間に設けられた第2管路、
前記熱交換器の二次側出口と前記貯湯タンクの上部入水口の間に設けられた第3管路、
前記熱交換器の二次側入口と前記貯湯タンクの下部出水口の間に設けられた第4管路、
前記熱交換器の一次側入口の水温として第1温度、及び、前記熱交換器の前記二次側出口の水温として第2温度を検出する温度センサの夫々、及び、
前記第3管路又は前記第4管路上に介装された循環ポンプ、を備えてなる給湯システムの運転制御方法であって、
前記ヒートポンプ給湯機のデフロスト運転が完了した後の所定期間において、
前記第2温度が前記第1温度の変化に追随せず一定の第1調整温度を維持するように、前記貯湯タンクの前記下部出水口から、前記第4管路、前記熱交換器の二次側流路、及び前記第3管路を介して前記貯湯タンクの前記上部入水口に至る循環路の循環流量を調整する第1制御を実行することを特徴とする給湯システムの運転制御方法。
Heat pump water heater,
Heat exchanger,
Hot water storage tank,
A first pipe provided between an inlet of the heat pump water heater and a primary outlet of the heat exchanger;
A second pipe provided between the outlet of the heat pump water heater and the primary inlet of the heat exchanger;
A third conduit provided between the secondary side outlet of the heat exchanger and the upper water inlet of the hot water storage tank;
A fourth conduit provided between the secondary side inlet of the heat exchanger and the lower outlet of the hot water storage tank;
A temperature sensor that detects a first temperature as a water temperature at the primary side inlet of the heat exchanger and a second temperature as a water temperature at the secondary side outlet of the heat exchanger, and
An operation control method for a hot water supply system comprising a circulation pump interposed on the third pipeline or the fourth pipeline,
In a predetermined period after the defrost operation of the heat pump water heater is completed,
From the lower outlet of the hot water storage tank, the fourth pipe, the secondary of the heat exchanger, so that the second temperature does not follow the change in the first temperature and maintains a constant first adjusted temperature. An operation control method for a hot water supply system, comprising: performing a first control for adjusting a circulation flow rate of a circulation path that reaches a top water inlet of the hot water storage tank through a side flow path and the third pipeline.
前記所定期間の経過後は、
前記第1温度と前記第2温度の差が一定の所定の第1設定温度差を維持するように、前記循環流量を調整する第2制御を実行することを特徴とする請求項6に記載の給湯システムの運転制御方法。
After elapse of the predetermined period,
The second control for adjusting the circulating flow rate is executed so that a difference between the first temperature and the second temperature is maintained at a predetermined first set temperature difference. Operation control method for hot water supply system.
前記熱交換器の前記一次側出口の水温として第3温度を検出する温度センサを用い、
前記所定期間において、前記第3温度の上昇速度が所定速度を超えないように前記循環流量を調整する制御を前記第1制御より優先させることを特徴とする請求項6又は7に記載の給湯システムの運転制御方法。
Using a temperature sensor that detects a third temperature as the water temperature of the primary side outlet of the heat exchanger,
The hot water supply system according to claim 6 or 7, wherein priority is given to control for adjusting the circulating flow rate over the first control so that an increase rate of the third temperature does not exceed a predetermined rate during the predetermined period. Operation control method.
JP2014205837A 2014-10-06 2014-10-06 Hot water supply system and operation control method thereof Active JP6453603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014205837A JP6453603B2 (en) 2014-10-06 2014-10-06 Hot water supply system and operation control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014205837A JP6453603B2 (en) 2014-10-06 2014-10-06 Hot water supply system and operation control method thereof

Publications (2)

Publication Number Publication Date
JP2016075425A true JP2016075425A (en) 2016-05-12
JP6453603B2 JP6453603B2 (en) 2019-01-16

Family

ID=55951007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014205837A Active JP6453603B2 (en) 2014-10-06 2014-10-06 Hot water supply system and operation control method thereof

Country Status (1)

Country Link
JP (1) JP6453603B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225193A1 (en) * 2017-06-07 2018-12-13 三菱電機株式会社 Hot water supply system
CN110715448A (en) * 2019-10-21 2020-01-21 浙江正理生能科技有限公司 Control method of heating pressure-bearing system
JPWO2021002003A1 (en) * 2019-07-04 2021-01-07
CN113551427A (en) * 2021-07-20 2021-10-26 珠海格力电器股份有限公司 Control method and device of water heater, water heater and storage medium
CN115218486A (en) * 2022-07-19 2022-10-21 成都清渟科技有限公司 Multi-stage heating system and method for drinking water equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121283A (en) * 2003-10-16 2005-05-12 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2005147609A (en) * 2003-11-19 2005-06-09 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2005188879A (en) * 2003-12-26 2005-07-14 Matsushita Electric Ind Co Ltd Heat pump type hot water supplier
JP3737357B2 (en) * 2000-11-24 2006-01-18 株式会社デンソー Water heater
JP2010065852A (en) * 2008-09-08 2010-03-25 Showa Mfg Co Ltd Hot water supply device and pressure tight heat exchange unit for the same
JP2012247116A (en) * 2011-05-27 2012-12-13 Noritz Corp Heat pump type hot water supply apparatus
JP2013137170A (en) * 2011-12-28 2013-07-11 Daikin Industries Ltd Heat pump type water heater
JP2014105945A (en) * 2012-11-28 2014-06-09 Hitachi Appliances Inc Heat pump type water heater

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3737357B2 (en) * 2000-11-24 2006-01-18 株式会社デンソー Water heater
JP2005121283A (en) * 2003-10-16 2005-05-12 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2005147609A (en) * 2003-11-19 2005-06-09 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2005188879A (en) * 2003-12-26 2005-07-14 Matsushita Electric Ind Co Ltd Heat pump type hot water supplier
JP2010065852A (en) * 2008-09-08 2010-03-25 Showa Mfg Co Ltd Hot water supply device and pressure tight heat exchange unit for the same
JP2012247116A (en) * 2011-05-27 2012-12-13 Noritz Corp Heat pump type hot water supply apparatus
JP2013137170A (en) * 2011-12-28 2013-07-11 Daikin Industries Ltd Heat pump type water heater
JP2014105945A (en) * 2012-11-28 2014-06-09 Hitachi Appliances Inc Heat pump type water heater

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225193A1 (en) * 2017-06-07 2018-12-13 三菱電機株式会社 Hot water supply system
JPWO2018225193A1 (en) * 2017-06-07 2019-12-26 三菱電機株式会社 Hot water supply system
JPWO2021002003A1 (en) * 2019-07-04 2021-01-07
WO2021002003A1 (en) * 2019-07-04 2021-01-07 三菱電機株式会社 Hot water supply system
JP7211512B2 (en) 2019-07-04 2023-01-24 三菱電機株式会社 hot water system
CN110715448A (en) * 2019-10-21 2020-01-21 浙江正理生能科技有限公司 Control method of heating pressure-bearing system
CN110715448B (en) * 2019-10-21 2021-06-01 浙江正理生能科技有限公司 Control method of heating pressure-bearing system
CN113551427A (en) * 2021-07-20 2021-10-26 珠海格力电器股份有限公司 Control method and device of water heater, water heater and storage medium
CN115218486A (en) * 2022-07-19 2022-10-21 成都清渟科技有限公司 Multi-stage heating system and method for drinking water equipment
CN115218486B (en) * 2022-07-19 2023-12-08 成都清渟科技有限公司 Multistage heating system and method for drinking water equipment

Also Published As

Publication number Publication date
JP6453603B2 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
US10088852B2 (en) Multi-tank water heater systems
US9341383B2 (en) Heating system and method for controlling a heating system
JP6453603B2 (en) Hot water supply system and operation control method thereof
US10697648B2 (en) Heating and hot water supply system
JP5657110B2 (en) Temperature control system and air conditioning system
JP5261170B2 (en) Thermal load processing system and heat source system
CN103348200B (en) Air conditioning and hot-water supplying system
JP6644559B2 (en) Heat source control system, control method and control device
KR20140139425A (en) Heating system
JP6681896B2 (en) Refrigeration system
CN109959073A (en) air conditioning system and operation method thereof
CA2833449C (en) Domestic hot water delivery system
KR20160051596A (en) Air-conditioning system
JP4818780B2 (en) Water heater
KR101475720B1 (en) Heating device
JP5901920B2 (en) Solar heat utilization system
JP2012247113A (en) Air-conditioning piping system
CN210624718U (en) Air conditioning system
JP5326890B2 (en) Thermal storage system
EP2622523B1 (en) Hot water prioritization
WO2018003628A1 (en) Hot-water supply system
CN115614927B (en) Air conditioning system and defrosting control method thereof
JP2000002452A (en) Heat source system using heat storage tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181213

R150 Certificate of patent or registration of utility model

Ref document number: 6453603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250