JP6644559B2 - Heat source control system, control method and control device - Google Patents

Heat source control system, control method and control device Download PDF

Info

Publication number
JP6644559B2
JP6644559B2 JP2016010982A JP2016010982A JP6644559B2 JP 6644559 B2 JP6644559 B2 JP 6644559B2 JP 2016010982 A JP2016010982 A JP 2016010982A JP 2016010982 A JP2016010982 A JP 2016010982A JP 6644559 B2 JP6644559 B2 JP 6644559B2
Authority
JP
Japan
Prior art keywords
chilled water
primary
header
temperature
return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016010982A
Other languages
Japanese (ja)
Other versions
JP2017129340A (en
Inventor
田代 博一
博一 田代
隆広 藤澤
隆広 藤澤
浩太郎 園田
浩太郎 園田
広英 杉原
広英 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2016010982A priority Critical patent/JP6644559B2/en
Publication of JP2017129340A publication Critical patent/JP2017129340A/en
Application granted granted Critical
Publication of JP6644559B2 publication Critical patent/JP6644559B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、1次冷水ポンプおよび2次冷水ポンプを用いる1次2次ポンプ方式の熱源制御システム、制御方法および制御装置に関する。   The present invention relates to a primary / secondary pump type heat source control system using a primary chilled water pump and a secondary chilled water pump, a control method, and a control device.

空調設備における熱源制御システムの配管方式の1つとして、往ヘッダおよび還ヘッダを境として冷凍機側と空調負荷側の揚程を2種類のポンプで分け合う1次2次ポンプ方式が従来から知られている。1次2次ポンプ方式の配管方式では、複数台の冷凍機の各々に対して、空調負荷(熱交換器)にて熱交換され昇温されて還ってくる2次冷水を還ヘッダを経て1次冷水として送り出す複数台の1次冷水ポンプと、冷凍機からの1次冷水を空調負荷に対して往ヘッダを経て往2次冷水として送り出す2次冷水ポンプとが設けられる。1次冷水ポンプは、1次冷水を還ヘッダから冷凍機、冷凍機から往ヘッダへと循環するのに、往ヘッダ及び還ヘッダまでの配管抵抗と冷凍機の水圧損分との合計を揚程として受け持つものであり、2次冷水ポンプは、冷水2次往配管および冷水2次還配管の配管抵抗と空調負荷の熱交換器部分の水圧損分との合計を揚程として受け持つ。なお、往ヘッダおよび還ヘッダはバイパス管で接続されている。   As one of the piping systems of a heat source control system in an air conditioner, there has been known a primary and secondary pump system in which a head on a refrigerator side and an air conditioning load side are divided by two types of pumps at a boundary between an outgoing header and a return header. I have. In the piping system of the primary / secondary pump system, the secondary chilled water that is heat-exchanged by the air-conditioning load (heat exchanger) and returned to each of the plurality of refrigerators through the return header is passed through the return header. There are provided a plurality of primary chilled water pumps for sending out the primary chilled water as secondary chilled water, and a secondary chilled water pump for sending out the primary chilled water from the refrigerator through an outgoing header to the air conditioning load as outgoing secondary chilled water. The primary chilled water pump circulates the primary chilled water from the return header to the refrigerator and from the refrigerator to the outgoing header, and uses the sum of the pipe resistance from the outgoing header and the return header and the water pressure loss of the refrigerator as the head. The secondary chilled water pump is responsible for the sum of the pipe resistance of the chilled water secondary outgoing pipe and the chilled water secondary return pipe and the water pressure loss of the heat exchanger part of the air conditioning load as the head. The outgoing header and the return header are connected by a bypass pipe.

ここで、1次2次ポンプ方式の熱源制御システムの設計では、空調負荷の熱交換器への冷水供給温度の制御目標値を1次側の冷凍機冷水出口温度でとることが通例であり、運転時の実際の2次冷水往温度は、各冷凍機における冷凍機冷水出口温度および1次冷水流量や、バイパス管からの流れ等によって成り行きで温度が決まる。そのため、上記の熱源制御システムの制御では、基本的には冷凍機冷水出口温度の1次冷水がそのままの温度で往ヘッダから空調負荷に送り出されるように、定常状態において1次冷水流量が2次冷水流量よりも多くなるような制御が行われる。1次冷水流量が2次冷水流量よりも多い場合には、その差分の流量はバイパス管を経由して冷凍機に戻ることとなり、往ヘッダから還ヘッダへ冷水の流れが生じる(以下の説明では、バイパス管内の往ヘッダから還ヘッダへの流れを正流とする)。   Here, in the design of the heat source control system of the primary and secondary pump systems, it is customary to take the control target value of the chilled water supply temperature to the heat exchanger of the air conditioning load by the chilled water outlet temperature on the primary side, The actual secondary chilled water outgoing temperature during operation depends on the chilled water outlet temperature of the chiller, the flow rate of the primary chilled water, the flow from the bypass pipe, and the like. Therefore, in the control of the above-mentioned heat source control system, the primary chilled water flow rate in the steady state is basically set so that the primary chilled water at the refrigerator chilled water outlet temperature is sent out to the air conditioning load from the outgoing header at the same temperature. Control is performed such that the flow rate becomes larger than the cold water flow rate. When the primary chilled water flow rate is larger than the secondary chilled water flow rate, the difference flow rate returns to the refrigerator via the bypass pipe, and the chilled water flows from the outgoing header to the return header (in the following description). And the flow from the outgoing header to the return header in the bypass pipe is defined as a positive flow).

一方、2次冷水往温度と2次冷水還温度との差(2次冷水温度差ΔT2)がその設計値(例えばΔT2=5℃)よりも小さい場合、2次冷水流量が増加する。これは、変流量定温度差方式としての熱源流量制御システムを組んだ場合で、負荷の変動に関わらず2次冷水温度差ΔT2が設計値となるべきところ、実際には負荷の小さくなる中間期、冬期になるに従って2次冷水温度差ΔT2が小さくなったりする事柄を指している。このような小温度差となってしまう原因として、2次側の多数ある空調負荷の、制御弁差圧や制御弁サイズの過大、熱交換器であるコイル流量の過大などがあり、理想的な状況とはならない現場も多数ある。
これにより、1次側総冷熱量と2次側総熱量とを合致させて設計2次冷水温度差ΔT2から演算した、大温度差が確保できている2次冷水流量に基づいて決まる1次冷水流量にて1次側を変流量制御していると、実際の2次冷水流量が1次冷水流量よりも多くなる場合が生じる。
On the other hand, when the difference between the secondary chilled water forward temperature and the secondary chilled water return temperature (secondary chilled water temperature difference ΔT2) is smaller than its design value (eg, ΔT2 = 5 ° C.), the secondary chilled water flow rate increases. This is the case where the heat source flow control system as a variable flow constant temperature difference system is set up, and the secondary chilled water temperature difference ΔT2 should be a design value regardless of the load fluctuation, but in the middle period when the load is actually small. , The secondary chilled water temperature difference ΔT2 becomes smaller as the winter season progresses. The causes of such a small temperature difference include an excessively large control valve differential pressure and control valve size, an excessive coil flow rate as a heat exchanger, and the like for many air conditioning loads on the secondary side. There are many sites that are not the situation.
As a result, the primary chilled water determined based on the secondary chilled water flow rate at which a large temperature difference is ensured, calculated from the designed secondary chilled water temperature difference ΔT2 by matching the primary-side total chilled heat amount with the secondary-side total heat amount. If the primary side is subjected to the variable flow rate control with the flow rate, the actual secondary chilled water flow rate may become larger than the primary chilled water flow rate.

その結果として、2次冷水流量が1次冷水流量よりも多くなると、還ヘッダの温度の高い冷水がバイパス管を介して往ヘッダに逆流し、2次冷水往温度が上昇することで空調負荷を構成する空調機での冷房能力が低下するおそれがある。そのため、2次冷水往温度が上昇する場合には、停止している熱源(冷凍機)を追加起動させて1次側の冷水循環量を増加させることで、バイパス管における還ヘッダから往ヘッダへの逆流を防止する対策が講じられる。   As a result, when the flow rate of the secondary chilled water becomes larger than the flow rate of the primary chilled water, the chilled water having a high return header temperature flows back to the forward header via the bypass pipe, and the secondary chilled water upstream temperature rises, thereby reducing the air conditioning load. There is a possibility that the cooling capacity of the configured air conditioner may decrease. Therefore, when the secondary chilled water outgoing temperature increases, the stopped heat source (refrigerator) is additionally started to increase the chilled water circulation amount on the primary side, so that the return header from the bypass pipe to the outgoing header is increased. Countermeasures are taken to prevent backflow.

特許第5515166号公報Japanese Patent No. 55515166 特許第4600139号公報Japanese Patent No. 4600139

従来の技術において、2次冷水往温度を冷凍機冷水出口温度に維持すべく、還ヘッダから往ヘッダへの逆流を防止するために冷水1次流量を増加させる場合には、1次冷水ポンプにおける1次冷水の搬送動力の増大や熱源の運転台数の増加等により、余計なエネルギーが消費されるおそれがある。変流量定温度差方式の熱源流量制御システムを組んでいれば、負荷の変動に関わらず2次冷水温度差ΔT2が設計値となるべきところ、実際には2次冷水温度差ΔT2が小さくなっている事柄を受けて、さらに1次冷水流量を増加させるのは、設計時のポンプ搬送動力や設計時の熱源運転動力や運転台数を大きく増加させていることに他ならない。   In the prior art, in order to maintain the secondary chilled water outlet temperature at the chiller chilled water outlet temperature and to increase the chilled water primary flow rate in order to prevent backflow from the return header to the outgoing header, the primary chilled water pump Extra energy may be consumed due to an increase in the power for transporting the primary cold water or an increase in the number of operating heat sources. If the variable flow constant temperature difference type heat source flow control system is set up, the secondary chilled water temperature difference ΔT2 should be a design value regardless of the load fluctuation, but the secondary chilled water temperature difference ΔT2 actually becomes small. In addition to the fact that the primary chilled water flow rate is further increased in response to the current situation, the only difference is that the pump transport power at the time of design, the heat source operating power at the time of design, and the number of operating units are greatly increased.

また、上記のように空調負荷が要求する必要な冷熱量が同じ状況で1次冷水流量を増加させると、1次冷水出口温度と1次冷水入口温度との差(1次冷水温度差ΔT1)が小さくなるが、1次冷水温度差ΔT1が小さくなると、冷凍機としては軽負荷運転状態となり圧縮機の能力を絞っても蒸発器から圧縮機への吸入量を絞ることが出来ず、吸入過剰状態から蒸発圧力低下による、冷水凍結という故障防止のため、冷凍機側盤の安全回路により冷凍機のコンプレッサを停止させる制御が行われ、冷凍機コンプレッサの再起動には一定時間のインターバルが必要なため、冷凍機のコンプレッサが停止したときには2次冷水往温度が上昇してしまう。   Further, as described above, when the primary chilled water flow rate is increased with the required amount of chilled heat required by the air conditioning load being the same, the difference between the primary chilled water outlet temperature and the primary chilled water inlet temperature (primary chilled water temperature difference ΔT1) However, if the primary chilled water temperature difference ΔT1 becomes small, the refrigerator will be in a light load operation state, and even if the capacity of the compressor is reduced, the amount of suction from the evaporator to the compressor cannot be reduced. In order to prevent the failure of chilled water freezing due to a drop in evaporation pressure from the state, control to stop the compressor of the refrigerator is performed by the safety circuit of the refrigerator side panel, and a fixed time interval is required for restarting the refrigerator compressor. Therefore, when the compressor of the refrigerator stops, the secondary chilled water upstream temperature rises.

これらの問題を解決するために、往ヘッダと還ヘッダ間のバイパス管内を、還ヘッダから往ヘッダへ温度が高くなった2次還冷水を流入させる逆流を許容することで、1次冷水流量を2次冷水流量よりも大きくしなくてすむ、適正な1次冷水流量を目指す熱源制御システムが、わずかながら存在する。   In order to solve these problems, the flow rate of the primary chilled water is reduced by allowing a reverse flow in which the heated secondary cooled water flows from the return header to the outward header in the bypass pipe between the outgoing header and the return header. There are a few heat source control systems that aim for an appropriate primary chilled water flow that does not need to be greater than the secondary chilled water flow.

例えば、特許文献1には、一次流量制御を実行する制御手段が、冷凍機からの送出熱媒とバイパス管からの二次還り熱媒との混合により負荷機器の適正入口熱媒温度となるバイパス利用一次流量制御において、二次流量に対する一次流量の比率である運転流量比率を制御するのに、負荷機器の入口熱媒温度の計測値と所要の目標状態に処理する適正入口熱媒温度との偏差に応じて、その偏差の解消側に一次流量を調整することが開示されている。   For example, in Japanese Patent Application Laid-Open No. H11-163, the control means for executing the primary flow rate control includes a bypass which becomes a proper inlet heating medium temperature of a load device by mixing a delivery heating medium from a refrigerator and a secondary return heating medium from a bypass pipe. In use primary flow control, to control the operating flow ratio, which is the ratio of the primary flow to the secondary flow, the measured value of the inlet heat medium temperature of the load device and the appropriate inlet heat medium temperature to be processed to the required target state It is disclosed that the primary flow rate is adjusted in accordance with the deviation on the side where the deviation is eliminated.

また、特許文献2には、往一次ヘッダと往二次ヘッダとからなる往ヘッダと、還一次ヘッダと還二次ヘッダとからなる還ヘッダとの間に、各ヘッダの内部熱媒の混合の良好な箇所にバランス管を配置して、往ヘッダ内の熱媒の温度を検出する熱源水温度検出手段、還流水一次温度検出手段、還流水二次温度検出手段およびバランス管内水温検出手段によって検出された温度に基づいて熱源の温度制御および熱源ポンプによる流量制御を行う制御手段を備えることで、送水温度が上昇した冷水を空調負荷に送ることを防止し、負荷が増え二次側の還流水がバランス管を、還ヘッダから往ヘッダへと流れる逆流を速やかに検知し、冷凍機からの熱媒の温度制御を実行すること、が開示されている。   Patent Document 2 discloses that mixing of the internal heat medium of each header is performed between an outgoing header including an outgoing primary header and an outgoing secondary header and a returning header including a returning primary header and a returning secondary header. A balance pipe is placed in a good place and detected by the heat source water temperature detection means, the return water primary temperature detection means, the return water secondary temperature detection means and the balance pipe water temperature detection means for detecting the temperature of the heat medium in the outgoing header. By providing control means for controlling the temperature of the heat source and the flow rate control by the heat source pump based on the temperature obtained, it is possible to prevent the cold water having the increased water supply temperature from being sent to the air-conditioning load, increase the load, and increase the secondary side return water. Discloses that a backflow flowing from a return header to an outgoing header in a balance pipe is detected quickly and temperature control of a heat medium from a refrigerator is performed.

しかし、特許文献1では、負荷機器の入出口熱媒温度差が設計値よりも小さくなる原因である、中間期などで負荷機器の入口熱媒温度が相対的に過剰能力の温度になる状況については、何ら具体的な説明がなく、負荷機器で処理対象を所要の目標状態に処理することが可能で且つ処理に必要な限界温度寄りである適正入口熱媒温度については、熱源システム構成機器の特性情報に基づく所定の決定方法によると、概念だけ示して具体的には記載がない。   However, in Patent Literature 1, a situation in which the inlet heat medium temperature of the load device becomes a relatively excess capacity temperature in an intermediate period or the like, which is a cause of the difference between the inlet and outlet heat medium temperature of the load device being smaller than a design value. There is no specific description, the load equipment can process the processing target to the required target state, and the appropriate inlet heating medium temperature near the limit temperature required for processing, the heat source system component equipment According to the predetermined determination method based on the characteristic information, only the concept is shown and there is no specific description.

さらに、特許文献1では、熱源ユニット側の熱媒流量である一次流量は、二次流量に対する一次流量の比率である運転流量比率は、100%より増側にも減側にも調整可能とはしているものの、負荷機器の入口熱媒温度の計測値と、設定値である適正入口熱媒温度との偏差でしか調整しないもので、冷凍機の出口温度下限値や流量下限値に付いて考慮していないので、冷凍機の安全回路を動作させかねず、熱源制御としては不完全なものである。   Furthermore, in Patent Literature 1, the primary flow rate, which is the heat medium flow rate on the heat source unit side, is such that the operating flow rate, which is the ratio of the primary flow rate to the secondary flow rate, can be adjusted to an increase or decrease from 100%. However, it is adjusted only by the deviation between the measured value of the inlet heat medium temperature of the load equipment and the set value of the appropriate inlet heat medium temperature. Since no consideration is given, the safety circuit of the refrigerator may be operated, and the heat source control is incomplete.

そして、特許文献2では、熱源水温度検出手段、還流水一次温度検出手段、還流水二次温度検出手段およびバランス管内水温検出手段という、均一に混合している箇所に温度計を設置することが困難なヘッダやヘッダ間バランス管内の温度計測値に頼り、その温度計測値を用いた複雑な演算により、あくまでバランス管内の逆流をできるだけ防止することを主眼とした熱源制御システムである。   In Patent Document 2, it is possible to install a thermometer at a uniformly mixed place such as a heat source water temperature detecting means, a return water primary temperature detecting means, a return water secondary temperature detecting means and a balance pipe water temperature detecting means. The heat source control system mainly relies on difficult headers and temperature measurement values in the balance pipe between headers, and uses a complicated calculation using the temperature measurement values to prevent backflow in the balance pipe as much as possible.

このように、これら従来技術においても、1次2次ポンプ方式における2次冷水往温度に新たに制御目標値を設けた熱源制御システムとして、1次冷水出口温度の最適化や1次冷水流量の最適化による、空調負荷へ一定温度で供給しなければならない2次冷水往温度の安定制御を行ないつつ、1次冷水の搬送動力の省エネルギー制御にはなお改善の余地があった。   As described above, even in these conventional techniques, the primary chilled water outlet temperature is optimized and the primary chilled water flow rate is adjusted as a heat source control system in which a new control target value is provided for the secondary chilled water upstream temperature in the primary secondary pump system. There is still room for improvement in the energy-saving control of the transport power of the primary chilled water while performing the stable control of the secondary chilled water outgoing temperature, which must be supplied to the air conditioning load at a constant temperature by optimization.

本発明の目的は、従来の制御では成り行きで決定されていた2次冷水往温度を安定的に制御し、従来と比べて1次冷水ポンプにおける1次冷水の搬送動力の増大や熱源の運転台数増加を抑制し易く、冷凍機のコンプレッサも停止しにくくなる熱源制御システム、制御方法および制御装置を提供することにある。   An object of the present invention is to stably control the secondary chilled water outgoing temperature, which has been determined by the conventional control as a result, to increase the power for transporting the primary chilled water in the primary chilled water pump and to operate the number of heat sources in comparison with the conventional control. An object of the present invention is to provide a heat source control system, a control method, and a control device in which increase is easily suppressed and a compressor of a refrigerator is hard to stop.

本発明の一例である熱源制御システムは、冷凍機と、前記冷凍機の冷水出口側に冷水1次往配管で接続される第1往ヘッダと、1次冷水ポンプを介して、前記冷凍機の冷水入口側に冷水1次往配管で接続される還ヘッダと、前記第1往ヘッダと前記還ヘッダとを接続するバイパス管と、2次冷水ポンプを介して、前記第1往ヘッダに往ヘッダ配管で接続される第2往ヘッダと、前記第2往ヘッダと前記還ヘッダとの間に冷水2次往配管及び冷水2次還配管を介して接続される空調負荷と、前記第2往ヘッダ又は前記冷水2次往配管に2次往温度計と、前記還ヘッダ又は前記冷水2次還配管に2次冷水還温度を計測する2次還温度計と、前記冷水2次還配管に2次冷水流量を計測する2次流量計と、前記冷凍機および前記1次冷水ポンプを制御する制御装置と、を備え、前記制御装置は、前記空調負荷の出口の前記2次還温度計と前記空調負荷の入口の前記2次往温度計の計測値の差である2次冷水温度差が設計値未満となるときに、前記2次還温度計と前記2次往温度計と前記2次流量計の各計測値から算出した2次側の負荷熱量と、前記2次冷水還温度計測値と冷凍機冷水出口温度と1次冷水流量から計算で求める1次側の生成熱量とが等しくなる条件で、かつ前記1次冷水ポンプが送水する1次冷水と、前記バイパス管を介して前記還ヘッダから前記第1往ヘッダへ流入する2次還冷水とが合流した2次冷水往温度が制御目標値である2次冷水往温度の設定値となるように、前記2次冷水往温度の設定値と、前記2次冷水還温度と、前記2次冷水流量を用いて、冷凍機冷水出口温度を制御するための第1の制御設定値と、1次冷水流量を制御するための第2の制御設定値とを求め、前記第1の制御設定値および前記第2の制御設定値に基づいて前記冷凍機および前記1次冷水ポンプを制御する。 A heat source control system, which is an example of the present invention, includes a refrigerator, a first outgoing header connected to a chilled water outlet side of the chilled water by a first outgoing pipe, and a primary chilled water pump. A return header connected to the chilled water inlet side by a chilled water primary outgoing pipe, a bypass pipe connecting the first outgoing header and the return header, and an outgoing header to the first outgoing header via a secondary chilled water pump. A second outgoing header connected by piping, an air conditioning load connected between the second outgoing header and the return header via a chilled water secondary outgoing pipe and a chilled water secondary return pipe, and the second outgoing header or a secondary往温meter in the cold secondary往配tube, wherein the second place a thermometer for measuring the secondary chilled water instead temperature in a header or the cold secondary place pipe place, secondary to the cold secondary place pipe a secondary flow meter that measures the coolant flow rate, the refrigerator and controlling the primary chilled water pumps A control device, the control device comprising: a secondary chilled water temperature difference that is a difference between a measurement value of the secondary return thermometer at the outlet of the air conditioning load and a measurement value of the secondary going thermometer at the entrance of the air conditioning load. when There be less than the design value, the the heat load of the secondary instead thermometer and secondary side calculated from the measured value of the secondary往温meter and the secondary flow meter, the second cold water instead temperature Under the condition that the measured value, the refrigerator cold water outlet temperature and the amount of heat generated on the primary side obtained by calculation from the primary cold water flow rate are equal, and the primary cold water sent by the primary cold water pump and the bypass pipe, The secondary chilled water forward temperature is set such that the secondary chilled water forward temperature, at which the secondary returned chilled water flowing from the return header into the first forward header merges, becomes the set value of the secondary chilled water forward temperature that is the control target value. Using the set value of the above, the secondary chilled water return temperature, and the secondary chilled water flow rate, A first control set value for controlling the temperature and a second control set value for controlling the primary chilled water flow rate are obtained, and based on the first control set value and the second control set value. To control the refrigerator and the primary chilled water pump.

本発明の一例である熱源制御システムの制御方法は、冷凍機と、前記冷凍機の冷水出口側に冷水1次往配管で接続される第1往ヘッダと、1次冷水ポンプを介して、前記冷凍機の冷水入口側に冷水1次往配管で接続される還ヘッダと、前記第1往ヘッダと前記還ヘッダとを接続するバイパス管と、2次冷水ポンプを介して、前記第1往ヘッダに往ヘッダ配管で接続される第2往ヘッダと、前記第2往ヘッダと前記還ヘッダとの間に冷水2次往配管及び冷水2次還配管を介して接続される空調負荷と、前記第2往ヘッダ又は前記冷水2次往配管に2次往温度計と、前記還ヘッダ又は前記冷水2次還配管に2次冷水還温度を計測する2次還温度計と、前記冷水2次還配管に2次冷水流量を計測する2次流量計と、制御装置と、を備える熱源制御システムの制御方法であって、前記空調負荷の出口の前記2次還温度計と前記空調負荷の入口の前記2次往温度計の計測値の差である2次冷水温度差が設計値未満となるときに、前記2次還温度計と前記2次往温度計と前記2次流量計の各計測値から算出した2次側の負荷熱量と、前記2次冷水還温度計測値と冷凍機冷水出口温度と1次冷水流量から計算で求める1次側の生成熱量とが等しくなる条件で、かつ前記1次冷水ポンプが送水する1次冷水と、前記バイパス管を介して前記還ヘッダから前記第1往ヘッダへ流入する2次還冷水とが合流した2次冷水往温度が制御目標値である2次冷水往温度の設定値となるように、前記制御装置が、前記2次冷水往温度の設定値と、前記2次冷水還温度と、前記2次冷水流量を用いて、冷凍機冷水出口温度を制御するための第1の制御設定値と、1次冷水流量を制御するための第2の制御設定値とを求め、前記制御装置が、前記第1の制御設定値および前記第2の制御設定値に基づいて前記冷凍機および前記1次冷水ポンプを制御する。
本発明の一例である制御装置は、冷凍機と、前記冷凍機の冷水出口側に冷水1次往配管で接続される第1往ヘッダと、1次冷水ポンプを介して、前記冷凍機の冷水入口側に冷水1次往配管で接続される還ヘッダと、前記第1往ヘッダと前記還ヘッダとを接続するバイパス管と、2次冷水ポンプを介して、前記第1往ヘッダに往ヘッダ配管で接続される第2往ヘッダと、前記第2往ヘッダと前記還ヘッダとの間に冷水2次往配管及び冷水2次還配管を介して接続される空調負荷と、前記第2往ヘッダ又は前記冷水2次往配管に2次往温度計と、前記還ヘッダ又は前記冷水2次還配管に2次冷水還温度を計測する2次還温度計と、前記冷水2次還配管に2次冷水流量を計測する2次流量計と、を備える熱源制御システムに適用される制御装置であって、前記空調負荷の出口の前記2次還温度計と前記空調負荷の入口の前記2次往温度計の計測値の差である2次冷水温度差が設計値未満となるときに、前記2次還温度計と前記2次往温度計と前記2次流量計の各計測値から算出した2次側の負荷熱量と、前記2次冷水還温度計測値と冷凍機冷水出口温度と1次冷水流量から計算で求める1次側の生成熱量とが等しくなる条件で、かつ前記1次冷水ポンプが送水する1次冷水と、前記バイパス管を介して前記還ヘッダから前記第1往ヘッダへ流入する2次還冷水とが合流した2次冷水往温度が制御目標値である2次冷水往温度の設定値となるように、前記2次冷水往温度の設定値と、前記2次冷水還温度と、前記2次冷水流量を用いて、冷凍機冷水出口温度を制御するための第1の制御設定値と、1次冷水流量を制御するための第2の制御設定値とを求める処理と、前記第1の制御設定値および前記第2の制御設定値に基づいて前記冷凍機および前記1次冷水ポンプを制御する処理と、を実行する。
The control method of the heat source control system, which is an example of the present invention, includes a refrigerator, a first header connected to a chilled water outlet side of the refrigerator by a chilled water primary piping, and a primary chilled water pump. A return header connected to the chilled water inlet side of the refrigerator by a chilled water primary outgoing pipe, a bypass pipe connecting the first outgoing header and the return header, and a second chilled water pump through the first outgoing header A second outgoing header connected to the outgoing header pipe, an air conditioning load connected between the second outgoing header and the return header via a chilled water secondary outgoing pipe and a chilled water secondary return pipe, A second-outgoing thermometer for the second outgoing header or the chilled water secondary outgoing pipe, a second-outgoing thermometer for measuring the second chilled water returning temperature in the return header or the chilled water secondary returning pipe, and the chilled water secondary returning pipe heat control comprises a secondary flowmeter for measuring the secondary coolant flow rate, and a control device, to the sheet A control method of the system, wherein a secondary chilled water temperature difference, which is a difference between a measured value of the secondary return thermometer at the outlet of the air conditioning load and a measured value of the secondary forward thermometer at the inlet of the air conditioning load, is less than a design value When the secondary return thermometer, the secondary load calorie calculated from the measured values of the secondary forward thermometer and the secondary flow meter, the measured value of the secondary chilled water return temperature , and the refrigerator The primary chilled water pumped by the primary chilled water pump and the primary chilled water supplied by the primary chilled water pump under the condition that the chilled water outlet temperature and the amount of heat generated on the primary side calculated from the primary chilled water flow rate are equal to each other. The control device is configured to control the secondary chilled water outflow temperature so that the secondary chilled water outflow temperature, which is combined with the secondary return chilled water flowing into the first outflow header, becomes the set value of the secondary chilled water outflow temperature that is the control target value. Using the set value of the above, the secondary chilled water return temperature, and the secondary chilled water flow rate, A first control set value for controlling the mouth temperature and a second control set value for controlling the primary chilled water flow rate are obtained, and the control device determines the first control set value and the second control set value. And controls the refrigerator and the primary chilled water pump based on the control set value of
A control device, which is an example of the present invention, includes a chiller, a chilled water outlet side of the chilled water, a first outgoing header connected to a chilled water primary outgoing pipe, and a chilled water pump of the chilled water. A return header connected to the inlet side by a cold water primary outgoing pipe, a bypass pipe connecting the first outgoing header and the return header, and an outgoing header pipe to the first outgoing header via a secondary cold water pump. A second outward header, an air-conditioning load connected between the second outward header and the return header via a chilled water secondary outward pipe and a chilled water secondary return pipe, and the second outward header or a secondary往温meter in the cold secondary往配tube, the changing header or a secondary place a thermometer for measuring the secondary chilled water instead temperature to the cold secondary place pipe, the cold water secondary place secondary cold water pipe controller der applied to a heat source control system comprising a secondary flow meter that measures the flow rate, the When the secondary chilled water temperature difference, which is the difference between the measured value of the secondary return thermometer at the outlet of the air conditioning load and the measured value of the secondary going thermometer at the inlet of the air conditioning load, becomes smaller than the design value, The secondary-side load calorie calculated from the measured values of the secondary return thermometer, the secondary outgoing thermometer, and the secondary flow meter, the measured value of the secondary chilled water return temperature , the refrigerator cold water outlet temperature, and the primary Under the condition that the amount of heat generated on the primary side calculated from the flow rate of the chilled water becomes equal, and the primary chilled water supplied by the primary chilled water pump flows into the first header from the return header via the bypass pipe. The set value of the secondary chilled water outgoing temperature and the secondary chilled water returning temperature are set such that the secondary chilled water outgoing temperature where the secondary cooled chilled water joins becomes the set value of the secondary chilled water outgoing temperature which is the control target value. And a first control device for controlling the chiller chilled water outlet temperature using the secondary chilled water flow rate. A value and a second control set value for controlling the primary chilled water flow rate, and the refrigerator and the primary chilled water based on the first control set value and the second control set value. And a process of controlling the pump.

本発明の熱源制御システム、制御方法および制御装置によれば、従来の制御では成り行きで決定されていた2次冷水往温度を安定的に制御でき、従来と比べて1次冷水ポンプにおける1次冷水の搬送動力の増大や熱源の運転台数増加を抑制し易くするとともに、冷凍機のコンプレッサを停止しにくくすることができる。   ADVANTAGE OF THE INVENTION According to the heat-source control system, control method, and control apparatus of this invention, the secondary chilled water outflow temperature which was determined by the conventional control by the result can be controlled stably, and the primary chilled water in the primary chilled water pump is compared with the conventional. In addition, it is possible to easily suppress the increase in the transfer power and the increase in the number of operating heat sources, and to make it difficult to stop the compressor of the refrigerator.

1次2次ポンプ方式の熱源制御システムの構成例を示す図The figure which shows the example of a structure of the heat source control system of a primary and secondary pump system 熱源制御システムにおける中央監視装置、PLC0、PLC1および冷凍機との入出力の例を示す図The figure which shows the example of input / output with the central monitoring apparatus, PLC0, PLC1, and a refrigerator in a heat-source control system. 熱源制御システム全体の動作を示す流れ図Flow chart showing the operation of the entire heat source control system 図3のステップS103におけるPLC0の制御例を示す流れ図3 is a flowchart showing a control example of PLC0 in step S103 of FIG. 図4のステップS209におけるPLC0の処理例を示す流れ図4 is a flowchart showing a processing example of PLC0 in step S209 of FIG. Q1=Q2のときの1次冷水流量Vc1と1次冷水温度差ΔT1との関係の例を示す図The figure which shows the example of the relationship between primary chilled water flow volume Vc1 at the time of Q1 = Q2, and primary chilled water temperature difference (DELTA) T1. 熱源制御システムの一例の動作状態を示す図The figure which shows the operation state of an example of a heat source control system 熱源制御システムの比較例での動作状態を示す図The figure which shows the operation state in the comparative example of a heat source control system 熱源制御システムの実施例での動作状態を示す図The figure which shows the operation state in the Example of a heat-source control system.

以下、本発明の実施形態を図面に基づいて説明する。なお、以下の説明では、冷水を冷熱媒とし、冷凍機を熱源とする場合を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, a case where cold water is used as a cooling medium and a refrigerator is used as a heat source will be described.

本実施形態では、1次2次ポンプ方式の熱源制御システムにおいて、2次側の熱交換器への冷水供給温度の制御目標値を、1次側の冷凍機冷水出口温度ではなく2次側の2次冷水往温度で設定し(Tcs2_SP)、冷凍機冷水出口温度(Tcs1)と1次冷水流量(Vc1)を制御する。そして、本実施形態の熱源制御システムでは、バイパス管を介した還ヘッダから往ヘッダへの逆流を許容し、熱源からの1次冷水と往ヘッダに逆流する還ヘッダの温度の高い冷水とをミキシングして2次側の熱交換器に送水することで、2次冷水往温度(Tcs2)を安定的に制御するものである。   In the present embodiment, in the heat source control system of the primary / secondary pump system, the control target value of the chilled water supply temperature to the secondary-side heat exchanger is changed to the secondary-side chilled water outlet temperature instead of the primary-side chilled water outlet temperature. The secondary chilled water outlet temperature is set (Tcs2_SP), and the refrigerator chilled water outlet temperature (Tcs1) and the primary chilled water flow rate (Vc1) are controlled. In the heat source control system according to the present embodiment, the backflow from the return header to the forward header via the bypass pipe is allowed, and the primary chilled water from the heat source and the high-temperature cold water of the return header flowing back to the forward header are mixed. Then, by sending water to the secondary-side heat exchanger, the secondary cold water outgoing temperature (Tcs2) is stably controlled.

図1は、本実施形態における1次2次ポンプ方式の熱源制御システムの構成例を示す。   FIG. 1 shows a configuration example of a heat source control system of a primary and secondary pump type in the present embodiment.

熱源制御システム100は、n台の冷凍機(熱源R1−Rn)10と、n台の1次冷水ポンプ11と、第1往ヘッダ12と、第2往ヘッダ13と、第1還ヘッダ14と、第2還ヘッダ15と、2次冷水ポンプ16と、空調負荷としての空調機(AHU)17と、PLC(Programmable Logic Controller)0およびPLC1とを備える。また、第1往ヘッダ12および第1還ヘッダ14は、バイパス管18を介して接続されている。なお、図1の例では、簡単のため空調機17を1台のみ示すが、実際には空調機17の台数及び種類は複数である。そして空調機17の近傍には図示しない比例2方弁などの制御弁が、空調機の熱交換器に1対1又は多対1で設置され、空調対象室の温度センサなどの信号から空調負荷に応じて2次側冷水流量を調整している。   The heat source control system 100 includes n refrigerators (heat sources R1-Rn) 10, n primary chilled water pumps 11, a first forward header 12, a second forward header 13, and a first return header 14, , A second return header 15, a secondary chilled water pump 16, an air conditioner (AHU) 17 as an air conditioning load, and PLCs (Programmable Logic Controllers) 0 and PLC1. Further, the first forward header 12 and the first return header 14 are connected via a bypass pipe 18. Although only one air conditioner 17 is shown in the example of FIG. 1 for simplicity, the number and types of the air conditioners 17 are actually plural. A control valve such as a proportional two-way valve (not shown) is installed near the air conditioner 17 in a one-to-one or many-to-one manner in a heat exchanger of the air conditioner. The secondary-side cold water flow rate is adjusted according to.

冷凍機(熱源R)10は、例えば、ターボ冷凍機、インバータターボ冷凍機、吸収式冷凍機、冷温水発生機、スクリューチラー、ヒートポンプチラーなどである。熱源制御システム100に含まれるn台の冷凍機10は、個々の性能に相違がある場合があるが、本実施形態では、冷凍容量や運転の優先度などそれらの冷凍負荷に対する運転の基本的な対応は同一または同様である。また、各々の冷凍機10を制御する冷凍機側盤10aの入出力は、PLC0およびPLC1にそれぞれ接続されている。冷凍機側盤10aには、冷凍機の保護回路やそれに必要な補機のインターロック回路が納められている。なお、図1では、冷凍機側盤10aの図示は省略する。   The refrigerator (heat source R) 10 is, for example, a turbo refrigerator, an inverter turbo refrigerator, an absorption refrigerator, a cold / hot water generator, a screw chiller, a heat pump chiller, or the like. Although the n refrigerators 10 included in the heat source control system 100 may have different performances, in the present embodiment, the basic operation of the refrigeration load such as the refrigeration capacity and the operation priority is performed. Correspondence is the same or similar. The inputs and outputs of the refrigerator side panel 10a that controls each refrigerator 10 are connected to PLC0 and PLC1, respectively. The refrigerator side panel 10a contains a refrigerator protection circuit and an interlock circuit for auxiliary equipment necessary for the protection circuit. In FIG. 1, the illustration of the refrigerator side panel 10a is omitted.

各々の冷凍機10は、それぞれ冷水1次往配管21により第1往ヘッダ12に対して並列に接続されており、それぞれ冷水1次還配管22により第1還ヘッダ14に対して並列に接続されている。冷水1次往配管21は、冷水の1次側において、冷凍機10で冷却された冷水を第1往ヘッダ12へ送水する配管である。また、冷水1次還配管22は、冷水の1次側において、空調機17で熱交換されて温度が上昇した冷水が合流した還冷水を、第1還ヘッダ14から冷凍機10まで送水する配管である。   Each refrigerator 10 is connected in parallel to the first header 12 by a cold water primary return pipe 21, and is connected in parallel to the first return header 14 by a cold water primary return pipe 22. ing. The cold water primary outgoing pipe 21 is a pipe that supplies cold water cooled by the refrigerator 10 to the first outgoing header 12 on the primary side of the cold water. The chilled water primary return pipe 22 is a pipe for sending return chilled water, in which chilled water whose temperature has risen due to heat exchange in the air conditioner 17 merges, from the first return header 14 to the refrigerator 10 on the primary side of the chilled water. It is.

各冷凍機10に接続される各々の冷水1次往配管21には、冷凍機冷水出口温度Tcs1を計測する温度センサ23がそれぞれ設けられている。各々の温度センサ23で計測された冷凍機冷水出口温度Tcs1のPV(Process Value:計測値)は、PLC0およびPLC1にそれぞれ出力される。   Each cold water primary outgoing pipe 21 connected to each refrigerator 10 is provided with a temperature sensor 23 for measuring the refrigerator cold water outlet temperature Tcs1. PV (Process Value: measured value) of the refrigerator cold water outlet temperature Tcs1 measured by each temperature sensor 23 is output to PLC0 and PLC1, respectively.

各冷凍機10に接続される各々の冷水1次還配管22には、第1還ヘッダから冷凍機10に向かって、1次冷水ポンプ11と、1次冷水流量Vc1_Ri(iは冷凍機10の番号を示す)を計測する流量計24と、冷凍機冷水入口温度Tcr1を計測する温度センサ25とがそれぞれ設けられている。各々の温度センサ25で計測された冷凍機冷水入口温度Tcr1のPVは、PLC0およびPLC1にそれぞれ出力される。また、各々の流量計24で計測された1次冷水流量Vc1_RiのPVは、PLC0およびPLC1と、流量指示調節計(FIC)26とに出力される。また、1次冷水ポンプ11はポンプモータのインバータ(INV)27を備えている。流量指示調節計26は、複数の熱源に対して1台設けられており、後述するように、1次冷水流量Vc1_RiのPVとPLC0の指示(pVc1_SP)を受けて各々の1次冷水ポンプ11の流量(回転数)を制御する。1次冷水ポンプ11の回転数は、インバータ27が電源を周波数制御することで可変する。   In each of the chilled water primary return pipes 22 connected to each of the chillers 10, the primary chilled water pump 11 and the primary chilled water flow rate Vc1_Ri (i is the A flow meter 24 for measuring a temperature of the refrigerator cold water inlet temperature Tcr1 is provided. The PV of the refrigerator cold water inlet temperature Tcr1 measured by each temperature sensor 25 is output to PLC0 and PLC1, respectively. The PV of the primary chilled water flow rate Vc1_Ri measured by each flow meter 24 is output to the PLC 0 and the PLC 1 and the flow rate controller (FIC) 26. Further, the primary chilled water pump 11 includes an inverter (INV) 27 for a pump motor. One flow rate instruction controller 26 is provided for each of the plurality of heat sources, and receives a PV of the primary chilled water flow rate Vc1_Ri and an instruction (pVc1_SP) of the PLC 0 (pVc1_SP) as will be described later. Controls the flow rate (rotation speed). The rotation speed of the primary chilled water pump 11 is variable by the inverter 27 controlling the frequency of the power supply.

このように、図1に示す熱源制御システム100では、第1往ヘッダ12および第1還ヘッダ14と、第1往ヘッダ12および第1還ヘッダ14の間に並列に接続されたn台の冷凍機10と、これらの要素を接続する配管とによって、熱源の1次側が構成される。   As described above, in the heat source control system 100 shown in FIG. 1, the first free header 12 and the first free header 14 and the n refrigeration units connected in parallel between the first forward header 12 and the first free header 14. The primary side of the heat source is constituted by the machine 10 and the piping connecting these elements.

一方、図1に示す熱源制御システム100では、熱源の2次側において、第1往ヘッダ12の下流側には第2往ヘッダ13が接続され、第1還ヘッダ14の上流側には第2還ヘッダ15が接続されている。また、第1往ヘッダ12と第2往ヘッダ13とは、それぞれに2次冷水ポンプ16が配置された複数の配管31で接続されている。なお、各々の2次冷水ポンプ16の回転数は、インバータ32が電源を周波数制御することで可変する。   On the other hand, in the heat source control system 100 shown in FIG. 1, on the secondary side of the heat source, a second outgoing header 13 is connected downstream of the first outgoing header 12, and a second The return header 15 is connected. Further, the first outgoing header 12 and the second outgoing header 13 are connected by a plurality of pipes 31 in each of which the secondary chilled water pump 16 is arranged. In addition, the rotation speed of each secondary chilled water pump 16 is variable by the inverter 32 controlling the frequency of the power supply.

この2次冷水ポンプ16の回転数可変は、2次側に位置する全空調機の要求冷水量の総量に応じて行なわれるのだが、例えば2次側冷水配管系の何れかの位置に設置される圧力計のPVに応じて制御され、各空調機17の制御弁により空調負荷に応じて熱交換器へ流入する冷水量が絞られた場合、2次冷水ポンプ16の回転数がそのままだと圧力計のPV値が上昇し、設定圧との偏差に応じて2次冷水ポンプ16の回転数を低下させる制御を行なう。尚、2次側の変流量制御の一例として圧力による例を示したが、これに限定されることなく流量によっても熱量によっても良く、どのような2次側の変流量制御でも良い。   Although the rotation speed of the secondary chilled water pump 16 is varied according to the total amount of required chilled water of all air conditioners located on the secondary side, for example, the secondary chilled water pump 16 is installed at any position in the secondary side chilled water piping system. If the amount of chilled water flowing into the heat exchanger is reduced by the control valve of each air conditioner 17 according to the air conditioning load, the rotation speed of the secondary chilled water pump 16 remains unchanged. Control is performed to increase the PV value of the pressure gauge and decrease the rotation speed of the secondary chilled water pump 16 according to the deviation from the set pressure. Although an example based on pressure has been described as an example of the secondary variable flow rate control, the present invention is not limited to this, and the flow rate or heat quantity may be used, and any secondary variable flow rate control may be used.

また、第2往ヘッダ13には、2次冷水往温度Tcs2を計測する温度センサ33が設けられる。温度センサ33で計測された2次冷水往温度Tcs2のPVは、PLC0およびPLC1に出力される。また、第1還ヘッダ14には、2次冷水還温度Tcr2を計測する温度センサ34が設けられる。温度センサ34で計測された2次冷水還温度Tcr2のPVは、PLC0およびPLC1に出力される。さらに、第2還ヘッダ15と第1還ヘッダ14との間には、2次冷水流量Vc2を計測する流量計35が設けられる。流量計35で計測された2次冷水流量Vc2のPVは、PLC0およびPLC1に出力される。   Further, the second outgoing header 13 is provided with a temperature sensor 33 for measuring the secondary cold water outgoing temperature Tcs2. The PV of the secondary chilled water upstream temperature Tcs2 measured by the temperature sensor 33 is output to the PLC0 and the PLC1. Further, the first return header 14 is provided with a temperature sensor 34 for measuring the secondary chilled water return temperature Tcr2. The PV at the secondary chilled water return temperature Tcr2 measured by the temperature sensor 34 is output to the PLC0 and the PLC1. Further, between the second return header 15 and the first return header 14, a flow meter 35 for measuring the secondary chilled water flow rate Vc2 is provided. The PV of the secondary chilled water flow rate Vc2 measured by the flow meter 35 is output to the PLC0 and the PLC1.

そして、第2往ヘッダ13と第2還ヘッダ15との間には、第2往ヘッダ13と空調機17とを接続する冷水2次往配管36と、空調機17と第2還ヘッダ15とを接続する冷水2次還配管37とが設けられており、これらの配管によって第2往ヘッダ13および第2還ヘッダ15が空調機17と接続される。冷水2次往配管36は、冷水の2次側において、冷凍機10で冷却された冷水を第2往ヘッダ13から空調機17に送水する配管である。冷水2次還配管37は、冷水の2次側において、空調機17で熱交換されて温度が上昇した冷水を空調機17から第2還ヘッダ15に送水する配管である。   And between the 2nd outgoing header 13 and the 2nd return header 15, the cold water 2nd outgoing piping 36 which connects the 2nd outgoing header 13 and the air conditioner 17, the air conditioner 17 and the 2nd return header 15 Are connected, and the second outgoing header 13 and the second returning header 15 are connected to the air conditioner 17 by these pipes. The cold water secondary outgoing pipe 36 is a pipe that supplies cold water cooled by the refrigerator 10 from the second outgoing header 13 to the air conditioner 17 on the secondary side of the cold water. The chilled water secondary return pipe 37 is a pipe that supplies the chilled water whose temperature has been increased by the heat exchange in the air conditioner 17 from the air conditioner 17 to the second return header 15 on the secondary side of the chilled water.

このように、図1に示す熱源制御システム100では、第1往ヘッダ12および第2往ヘッダ13と、第1還ヘッダ14および第2還ヘッダ15と、空調機17と、これらの要素を接続する配管によって2次側が構成される。   As described above, in the heat source control system 100 shown in FIG. 1, the first forward header 12 and the second forward header 13, the first return header 14 and the second return header 15, the air conditioner 17, and these elements are connected. The secondary side is constituted by the piping which performs.

PLC0およびPLC1は、熱源制御システム100の制御を分担して実行するコントローラである。PLC0およびPLC1は、例えば空調設備が設置されている建物の中央監視装置とそれぞれ接続され、中央監視装置からの指示を受ける。なお、図1では中央監視装置の図示は省略している。   PLC0 and PLC1 are controllers that share and execute the control of the heat source control system 100. PLC0 and PLC1, for example, are respectively connected to a central monitoring device of a building in which an air conditioner is installed, and receive instructions from the central monitoring device. In FIG. 1, illustration of the central monitoring device is omitted.

なお、図2は、熱源制御システム100における中央監視装置、PLC0、PLC1および冷凍機nとの入出力の例を示す図である。図2では、n台の冷凍機10のうち1台分の冷凍機nのみを示し、PLC0、PLC1と他の冷凍機との接続はいずれも同一または同様であるので重複説明は省略する。また、図2では、PLC0、PLC1に対する温度センサ23,25,33,34および流量計24,35との接続はいずれも図示を省略している。   FIG. 2 is a diagram illustrating an example of input and output with the central monitoring device, the PLC0, the PLC1, and the refrigerator n in the heat source control system 100. FIG. 2 shows only one refrigerator n out of the n refrigerators 10, and the connections between PLC0 and PLC1 and the other refrigerators are the same or similar, and thus redundant description is omitted. In FIG. 2, the connections of the temperature sensors 23, 25, 33, 34 and the flow meters 24, 35 to the PLCs 0, 1 are not shown.

PLC0は、制御装置の一例であって、1次側の冷凍機冷水出口温度および1次冷水流量を制御する。なお、PLC0は、PLC1と同時に設置されるものでもよく、PLC1を有する既存の熱源制御システムに後付けで設置されるものであってもよい。   PLC0 is an example of a control device, and controls the primary-chiller chilled water outlet temperature and the primary chilled water flow rate. The PLC0 may be installed at the same time as the PLC1, or may be installed after the existing heat source control system having the PLC1.

例えば、図2に示すように、PLC0は、制御目標値である2次冷水往温度の設定値Tcs2_SP(SP:Set Point)を中央監視装置から受ける。また、PLC0は、冷凍機側盤10aに冷凍機冷水出口温度の設定値Tcs1_SPを出力し、冷凍機側盤10aからその冷凍機nの運転状態(オン/オフ)を示す信号を受ける。PLC0は、各々の冷凍機側盤10aから受けた運転状態の信号によりシステム全体での冷凍機10の運転台数Nの情報を取得できる。また、PLC0は、1次冷水流量比率の設定値pVc1_SPを流量指示調節計26に出力する。   For example, as shown in FIG. 2, the PLC 0 receives a set value Tcs2_SP (SP: Set Point) of the secondary chilled water upstream temperature, which is a control target value, from the central monitoring device. Further, the PLC 0 outputs the set value Tcs1_SP of the refrigerator cold water outlet temperature to the refrigerator side panel 10a, and receives a signal indicating the operation state (ON / OFF) of the refrigerator n from the refrigerator side panel 10a. The PLC0 can acquire information on the number N of operating the refrigerators 10 in the entire system from the operation state signals received from the respective refrigerator side panels 10a. Further, the PLC 0 outputs the set value pVc1_SP of the primary chilled water flow rate ratio to the flow rate instruction controller 26.

ここで、図2に示すように、流量指示調節計26は、PLC0からpVc1_SPを受け、流量計24から1次冷水流量Vc1_RiのPVを受ける。また、流量指示調節計26は、1次冷水ポンプ11のインバータ27にインバータ制御用の流量信号を出力する。そして、1次冷水ポンプ11のインバータ27は、流量指示調節計26から受けた流量信号に応じて1次冷水ポンプ11の電源の周波数制御を行い、1次冷水ポンプ11の回転数を可変させる。これにより、1次冷水ポンプ11による1次冷水流量を調節することができる。なお、1次冷水ポンプ11のインバータ27は冷凍機側盤10aと接続されており、1次冷水ポンプ11のオン/オフは冷凍機10の運転状態と連動するように制御される。   Here, as shown in FIG. 2, the flow indicator controller 26 receives pVc1_SP from the PLC 0 and receives the PV of the primary chilled water flow rate Vc1_Ri from the flow meter 24. Further, the flow rate indicating controller 26 outputs a flow rate signal for inverter control to the inverter 27 of the primary chilled water pump 11. Then, the inverter 27 of the primary chilled water pump 11 controls the frequency of the power supply of the primary chilled water pump 11 according to the flow signal received from the flow rate indicating controller 26, and varies the rotation speed of the primary chilled water pump 11. Thereby, the primary cold water flow rate by the primary cold water pump 11 can be adjusted. In addition, the inverter 27 of the primary chilled water pump 11 is connected to the refrigerator side panel 10 a, and ON / OFF of the primary chilled water pump 11 is controlled so as to be linked with the operation state of the refrigerator 10.

PLC1は、システム全体での冷凍機10の稼働台数を変更する制御(熱源台数制御)を実行する。例えば、図2に示すように、PLC1は、熱源群発停指令(システム全体での熱源のオン/オフ)を中央監視装置から受ける。また、PLC1は、冷凍機側盤10aに発停指令(個々の熱源のオン/オフ)を出力し、冷凍機側盤10aからはその冷凍機nの運転状態(オン/オフ)を示す信号を受ける。   The PLC 1 executes a control (a heat source number control) for changing the number of operating chillers 10 in the entire system. For example, as shown in FIG. 2, the PLC 1 receives a heat source group start / stop command (on / off of the heat source in the entire system) from the central monitoring device. The PLC 1 outputs a start / stop command (on / off of each heat source) to the refrigerator side panel 10a, and outputs a signal indicating the operation state (on / off) of the refrigerator n from the refrigerator side panel 10a. receive.

次に、本実施形態の熱源制御システムの制御例を説明する。   Next, a control example of the heat source control system of the present embodiment will be described.

図3は、熱源制御システム全体の動作を示す流れ図である。図3の処理は、中央監視装置から熱源群の起動指令(システム全体での熱源のオン)が出力されたときに開始される。   FIG. 3 is a flowchart showing the operation of the entire heat source control system. The process in FIG. 3 is started when the central monitoring device outputs a heat source group start command (the heat source is turned on in the entire system).

ステップS100において、PLC1は、熱源群を起動する。ステップS101において、PLC0およびPLC1は、例えばPLC内に設けられたメモリ等から各機器の設計値(各種パラメータの上限値および下限値など)の情報を取得する。ステップS102において、PLC1は熱源群のベース機を起動させる。   In step S100, the PLC 1 activates the heat source group. In step S101, the PLC0 and the PLC1 acquire information on design values (upper and lower limits of various parameters, etc.) of each device from, for example, a memory or the like provided in the PLC. In step S102, the PLC 1 starts the base unit of the heat source group.

そして、ステップS103において、PLC0およびPLC1は、熱源制御システム100の定周期ループ制御を行う。例えば、中央監視装置から熱源群の停止指令を受けるまでこれらの制御は継続して行われる。   Then, in step S103, the PLC0 and the PLC1 perform the fixed-cycle loop control of the heat source control system 100. For example, these controls are continuously performed until a stop instruction of the heat source group is received from the central monitoring device.

ステップS103でのPLC0は1次側の冷凍機冷水出口温度および1次冷水流量の制御を実行する。ステップS103でのPLC0の制御の例は図4に示す。同様に、ステップS103でのPLC1は熱源台数制御を実行する。なお、以下の熱源台数制御の説明では、冷凍機を追加で起動させることを増段と称し、冷凍機を停止させることを減段と称する。   The PLC0 in step S103 executes control of the primary-side refrigerator cold water outlet temperature and the primary cold water flow rate. FIG. 4 shows an example of the control of the PLC 0 in step S103. Similarly, the PLC 1 in step S103 executes the heat source number control. In the following description of the control of the number of heat sources, additionally starting the refrigerator is referred to as step-up, and stopping the refrigerator is referred to as step-down.

ここで、本実施形態におけるPLC1の熱源台数制御は、公知の制御と同様であってもよいが、2次負荷熱量による増段判定と減段判定に加えて、2次冷水往温度Tcs2と2次冷水還温度Tcr2が2次冷水往温度の設定値Tcs2_SPに追従するようにPLC1が熱源台数制御を行うことが好ましい。この場合、例えば、PLC1は、2次冷水往温度の設定値Tcs2_SPに調整パラメータ(例えば1〜2℃程度)の値を足した増段判定温度(2次側冷水往温度に基づく冷凍能力不足判定)よりも2次冷水往温度Tcs2が高いときに熱源を1台分増段し、2次冷水往温度の設定値Tcs2_SPに調整パラメータ(例えば0.5℃〜2℃程度)の値を足した減段判定温度(2次側冷水還温度と2次側冷水往温度との差分に基づく冷凍能力過分判定)よりも2次冷水還温度Tcr2が低いときに熱源を1台分減段する。なお、PLC1の熱源台数制御を公知の制御と同様にすると、例えば、既存の熱源制御システムにPLC0を後付けで設置して本実施形態の熱源制御システム100を実現する場合には、PLC1の熱源台数制御のアルゴリズムを既存のものから変更しなくてすむのでシステムの導入が容易となるという利点がある。   Here, the control of the number of heat sources of the PLC 1 in the present embodiment may be the same as the known control. However, in addition to the step increase determination and the step reduction determination based on the secondary load heat amount, the secondary chilled water upstream temperatures Tcs2 and Tcs2 It is preferable that the PLC 1 controls the number of heat sources so that the secondary chilled water return temperature Tcr2 follows the set value Tcs2_SP of the secondary chilled water forward temperature. In this case, for example, the PLC 1 determines the step-up determination temperature (the refrigeration capacity shortage determination based on the secondary-side chilled water upstream temperature) by adding the value of the adjustment parameter (for example, about 1 to 2 ° C.) to the set value Tcs2_SP of the secondary chilled water upstream temperature. ), The number of heat sources is increased by one, and the value of the adjustment parameter (for example, about 0.5 ° C. to 2 ° C.) is added to the set value Tcs2_SP of the secondary chilled water upstream temperature. When the secondary chilled water return temperature Tcr2 is lower than the step reduction determination temperature (refrigeration capacity excess determination based on the difference between the secondary chilled water return temperature and the secondary chilled water forward temperature), the heat source is reduced by one heat source. If the control of the number of heat sources of the PLC 1 is performed in the same manner as the known control, for example, when the PLC 0 is retrofitted to an existing heat source control system to realize the heat source control system 100 of the present embodiment, the number of heat sources of the PLC 1 There is an advantage that the system can be easily introduced because the control algorithm does not need to be changed from the existing one.

図4は、図3のステップS103におけるPLC0の制御例を示す流れ図である。なお、以下の制御例の説明では、熱源制御システム100の熱源構成において、各熱源の(冷凍機出口温度、冷水流量、定格に対する冷水流量比率、バイパス流量などの)上限値および下限値はいずれも同じであり、各熱源において、冷凍機冷水出口温度の設定値Tcs1_SPと1次冷水流量比率の設定値pVc1_SPとがいずれも同じに設定される(すなわち均等容量方式)ことを前提として説明を行う。   FIG. 4 is a flowchart showing a control example of the PLC0 in step S103 of FIG. In the following description of the control example, in the heat source configuration of the heat source control system 100, both the upper limit value and the lower limit value (such as the refrigerator outlet temperature, the chilled water flow rate, the ratio of the chilled water flow rate to the rating, and the bypass flow rate) of each heat source are set. The description will be made on the assumption that the set value Tcs1_SP of the chiller chilled water outlet temperature and the set value pVc1_SP of the primary chilled water flow rate ratio are set to be the same (that is, the equal capacity method) in each heat source.

ステップS200において、PLC0は、制御目標値である2次冷水往温度の設定値Tcs2_SPを中央監視装置から受ける。なお、2次冷水往温度の設定値Tcs2_SPは、例えば、中央監視装置が実行するスケジュール管理処理によって日付に応じて自動的に決定されてもよく、中央監視装置を操作する設備管理者が手動で設定してもよい。また、PLC0に対して制御目標値である2次冷水往温度の設定値Tcs2_SPを送信する装置は、中央監視装置以外の他の装置類であってもよい。   In step S200, the PLC 0 receives the set value Tcs2_SP of the secondary chilled water upstream temperature, which is the control target value, from the central monitoring device. In addition, the set value Tcs2_SP of the secondary chilled water outflow temperature may be automatically determined according to the date by, for example, a schedule management process executed by the central monitoring device, or a facility manager operating the central monitoring device may manually determine the setting value Tcs2_SP. May be set. The device that transmits the set value Tcs2_SP of the secondary chilled water upstream temperature, which is the control target value, to the PLC 0 may be devices other than the central monitoring device.

ステップS201において、PLC0は、温度センサ23,25,33,34から冷凍機冷水出口温度Tcs1、冷凍機冷水入口温度Tcr1、2次冷水往温度Tcs2、2次冷水還温度Tcr2のPVをそれぞれ取得する。また、PLC0は、流量計24,35から1次冷水流量Vc1_Ri、2次冷水流量Vc2のPVをそれぞれ取得する。また、PLC0は、各々の冷凍機側盤10aから受けた運転状態の信号によりシステム全体での冷凍機10の運転台数Nの情報を取得する。   In step S201, the PLC 0 acquires the PV of the refrigerator cold water outlet temperature Tcs1, the refrigerator cold water inlet temperature Tcr1, the secondary cold water forward temperature Tcs2, and the secondary cold water return temperature Tcr2 from the temperature sensors 23, 25, 33, and 34, respectively. . In addition, the PLC 0 acquires the PVs of the primary chilled water flow rate Vc1_Ri and the secondary chilled water flow rate Vc2 from the flow meters 24 and 35, respectively. Further, the PLC 0 acquires information on the number N of operating the refrigerators 10 in the entire system from the operation state signals received from the respective refrigerator side panels 10a.

ステップS202において、PLC0は、2次冷水往温度Tcs2、2次冷水還温度Tcr2および2次冷水流量Vc2の各PVを用いて、以下の式(1)により2次負荷熱量Q2を算出する。ここで、「k」は水の比熱の物理定数および水の密度の物理定数をまとめて示した係数である。
Q2=(Tcr2−Tcs2)×Vc2×k[kW] …(1)
ステップS203において、PLC0は、冷凍機10の運転台数Nに基づいて、N台運転時における1次冷水流量の上限値Vc1_MAXを以下の式(2)により算出し、N台運転時における1次冷水流量の下限値Vc1_MINを以下の式(3)により算出する。また、PLC0は、N台運転時における1次生成熱量の最大値Q1_MAXを以下の式(4)により算出する。
Vc1_MAX=Vc1_MAX_Ri×N[m3/h] …(2)
Vc1_MIN=Vc1_MAX×pVc1_MIN_Ri[m3/h] …(3)
Q1_MAX=Q1_MAX_Ri×N[kW] …(4)
ここで、「Vc1_MAX_Ri」は、番号iの冷凍機10における1次冷水流量の上限値である。「pVc1_MIN_Ri」は、番号iの冷凍機10における1次冷水流量比率の下限値である。「Q1_MAX_Ri」は、番号iの冷凍機10における定格生成熱量である。これらのパラメータは、図3のステップS100の処理で取得される。
In step S202, the PLC 0 calculates the secondary load calorific value Q2 by the following equation (1) using the secondary chilled water forward temperature Tcs2, the secondary chilled water return temperature Tcr2, and each PV of the secondary chilled water flow rate Vc2. Here, “k” is a coefficient collectively indicating the physical constant of the specific heat of water and the physical constant of the density of water.
Q2 = (Tcr2−Tcs2) × Vc2 × k [kW] (1)
In step S203, the PLC 0 calculates the upper limit value Vc1_MAX of the primary chilled water flow rate during the N-unit operation based on the number N of the refrigerators 10 operated by the following equation (2), and calculates the primary chilled water during the N-unit operation. The lower limit value Vc1_MIN of the flow rate is calculated by the following equation (3). Further, the PLC 0 calculates the maximum value Q1_MAX of the primary generated heat amount during the operation of the N units by the following equation (4).
Vc1_MAX = Vc1_MAX_Ri × N [m 3 / h] (2)
Vc1_MIN = Vc1_MAX × pVc1_MIN_Ri [m 3 / h] (3)
Q1_MAX = Q1_MAX_Ri × N [kW] (4)
Here, “Vc1_MAX_Ri” is the upper limit of the primary chilled water flow rate in the refrigerator 10 of the number i. “PVc1_MIN_Ri” is a lower limit value of the primary chilled water flow rate ratio in the refrigerator 10 of the number i. “Q1_MAX_Ri” is a rated generated heat amount in the refrigerator 10 of the number i. These parameters are obtained in the process of step S100 in FIG.

なお、1次冷水流量については、冷凍機の蒸発器チューブ内流速が速すぎると圧力損失が増加するだけでなく、チューブ内にエロージョンを発生させる原因となるので冷凍機メーカにより上限値が設定されている。1次冷水流量比率は、逆に蒸発器チューブ内の流速が遅すぎる場合、伝熱の低下と流水中の異物沈降による腐食を起こす虞があるため冷凍機メーカによりチューブ内流速に応じて冷水流量の定格値の比率として下限値が設定されている。   When the flow rate of the primary chilled water in the evaporator tube of the refrigerator is too high, not only the pressure loss increases, but also erosion occurs in the tube, so the upper limit value is set by the refrigerator manufacturer. ing. Conversely, if the flow rate of the primary chilled water is too slow in the evaporator tube, there is a risk of corrosion due to a decrease in heat transfer and sedimentation of foreign matter in the flowing water. The lower limit is set as the ratio of the rated values of.

ステップS204において、PLC0は、2次負荷熱量Q2と1次生成熱量の最大値Q1_MAXとを用いて、以下の式(5)により熱源負荷率pQ1を算出する。
pQ1=Q2/Q1_MAX×100[%] …(5)
ステップS205において、PLC0は、2次負荷熱量Q2に対して冷凍機の運転台数Nが適切かを判定する。具体的には、PLC0は、熱源負荷率pQ1が番号iの冷凍機10における生成熱量比率の下限値(pQ1_MIN_Ri)以上であり、かつ熱源負荷率pQ1が熱源負荷率pQ1の最大値(pQ1_MAX)以下であるか(pQ1_MIN_Ri≦pQ1≦pQ1_MAX)を判定する。ここで、pQ1_MAX=100[%]であり、pQ1_MIN_Riは設計値で決定される。
In step S204, the PLC 0 calculates the heat source load factor pQ1 by the following equation (5) using the secondary load heat quantity Q2 and the maximum value Q1_MAX of the primary heat generation quantity.
pQ1 = Q2 / Q1_MAX × 100 [%] (5)
In step S205, the PLC 0 determines whether the number N of operating refrigerators is appropriate for the secondary load heat quantity Q2. Specifically, PLC0 is such that the heat source load factor pQ1 is equal to or more than the lower limit value (pQ1_MIN_Ri) of the generated heat amount ratio in the refrigerator 10 of the number i, and the heat source load factor pQ1 is equal to or less than the maximum value (pQ1_MAX) of the heat source load factor pQ1. Is determined (pQ1_MIN_Ri ≦ pQ1 ≦ pQ1_MAX). Here, pQ1_MAX = 100 [%], and pQ1_MIN_Ri is determined by a design value.

pQ1_MIN_Ri≦pQ1≦pQ1_MAXの場合、2次負荷熱量Q2に対して現在の冷凍機10の運転台数Nが適切な状態であり、ステップS206に処理が移行する。一方、pQ1_MIN_Ri≦pQ1≦pQ1_MAXではない場合、2次負荷熱量Q2に対して現在の冷凍機10の運転台数Nが適切ではない状態であり、ステップS210に処理が移行する。   If pQ1_MIN_Ri ≦ pQ1 ≦ pQ1_MAX, the current operating number N of the refrigerator 10 is appropriate for the secondary load heat quantity Q2, and the process proceeds to step S206. On the other hand, if pQ1_MIN_Ri ≦ pQ1 ≦ pQ1_MAX is not satisfied, the current operating number N of the refrigerator 10 is not appropriate for the secondary load heat quantity Q2, and the process proceeds to step S210.

ステップS206において、PLC0は、2次冷水往温度Tcs2、2次冷水還温度Tcr2を用いて、以下の式(6)により空調負荷の出口と入口との間の2次冷水温度差ΔT2を算出する。
ΔT2=Tcr2−Tcs2[℃] …(6)
ステップS207において、PLC0は、2次冷水温度差ΔT2が十分に取れているかを判定する。具体的には、PLC0は、2次冷水温度差ΔT2が2次冷水温度差の設計値(ΔT2_DV=5℃)以上か否かを判定する。2次冷水温度差ΔT2が2次冷水温度差の設計値以上である場合(ΔT2≧ΔT2_DV)には、ステップS208に処理が移行する。一方、2次冷水温度差ΔT2が2次冷水温度差の設計値未満である場合(ΔT2<ΔT2_DV)には、ステップS209に処理が移行する。
In step S206, the PLC 0 calculates the secondary chilled water temperature difference ΔT2 between the outlet and the inlet of the air conditioning load by using the secondary chilled water forward temperature Tcs2 and the secondary chilled water return temperature Tcr2 according to the following equation (6). .
ΔT2 = Tcr2-Tcs2 [° C.] (6)
In step S207, the PLC 0 determines whether the secondary chilled water temperature difference ΔT2 is sufficiently obtained. Specifically, the PLC 0 determines whether or not the secondary chilled water temperature difference ΔT2 is equal to or greater than a design value of the secondary chilled water temperature difference (ΔT2_DV = 5 ° C.). If the secondary chilled water temperature difference ΔT2 is equal to or larger than the design value of the secondary chilled water temperature difference (ΔT2 ≧ ΔT2_DV), the process proceeds to step S208. On the other hand, when the secondary chilled water temperature difference ΔT2 is smaller than the design value of the secondary chilled water temperature difference (ΔT2 <ΔT2_DV), the process proceeds to step S209.

ステップS208において、2次冷水温度差ΔT2が2次冷水温度差の設計値以上であって2次冷水温度差ΔT2が十分に取れているので、PLC0は、1次冷水流量=2次冷水流量、1次冷水冷凍機出口温度=2次冷水往温度となるように制御を行う。   In step S208, the secondary chilled water temperature difference ΔT2 is equal to or larger than the design value of the secondary chilled water temperature difference, and the secondary chilled water temperature difference ΔT2 is sufficiently obtained. Control is performed so that the primary chilled water refrigerator outlet temperature = the secondary chilled water forward temperature.

具体的には、PLC0は、第1の制御設定値である冷凍機冷水出口温度の設定値Tcs1_SPを、2次冷水往温度の設定値Tcs2_SPと等しくする(Tcs1_SP=Tsc2_SP)。また、PLC0は、第2の制御設定値である1次冷水流量比率の設定値pVc1_SPを、以下の式(7)で算出する。ステップS208の後、PLC0は図4の処理を終了する。
pVc1_SP=Vc2/Vc1_MAX×100[%] …(7)
ステップS209において、PLC0は、2次負荷熱量Q2と1次側の生成熱量Q1とが等しくなる条件(Q2=Q1)で、各種の設計条件を満たして冷凍機10が安全運転できるような第1の制御設定値(Tcs1_SP)および第2の制御設定値(pVc1_SP)の解を算出する。ステップS209の処理の例は図5に示す。
Specifically, the PLC 0 makes the set value Tcs1_SP of the refrigerator cold water outlet temperature, which is the first control set value, equal to the set value Tcs2_SP of the secondary chilled water forward temperature (Tcs1_SP = Tsc2_SP). In addition, the PLC 0 calculates a set value pVc1_SP of the primary chilled water flow rate ratio, which is the second control set value, by the following equation (7). After step S208, the PLC 0 ends the processing in FIG.
pVc1_SP = Vc2 / Vc1_MAX × 100 [%] (7)
In step S209, the PLC0 performs the first condition such that the refrigerator 10 can safely operate under the condition (Q2 = Q1) that the secondary load heat amount Q2 and the primary-side generated heat amount Q1 are equal. The solution of the control set value (Tcs1_SP) and the second control set value (pVc1_SP) is calculated. FIG. 5 shows an example of the processing in step S209.

ここで、ステップS209では、1次冷水ポンプ11が送水する1次冷水と、バイパス管18を介して還ヘッダから第1往ヘッダ12へ流入する2次還冷水とが合流した2次冷水往温度が制御目標値である2次冷水往温度の設定値となるように、PLC0は、2次冷水往温度の設定値Tcs2_SPと、2次冷水還温度Tcr2と、2次冷水流量Vc2を用いて、第1の制御設定値(Tcs1_SP)および第2の制御設定値(pVc1_SP)を算出する。この演算においては、仮の冷凍機冷水出口温度tTcs1または仮の1次冷水流量tVc1を代入することで、これらの仮の値に対応する解を算出することができる。ステップS209の後、PLC0は図4の処理を終了する。   Here, in step S209, the secondary chilled water forward temperature at which the primary chilled water fed by the primary chilled water pump 11 and the secondary cooled chilled water flowing from the return header to the first forward header 12 via the bypass pipe 18 are merged. PLC0 uses the secondary chilled water forward temperature set value Tcs2_SP, the secondary chilled water return temperature Tcr2, and the secondary chilled water flow rate Vc2 so that A first control set value (Tcs1_SP) and a second control set value (pVc1_SP) are calculated. In this calculation, a solution corresponding to these temporary values can be calculated by substituting the temporary refrigerator cold water outlet temperature tTcs1 or the temporary primary cold water flow rate tVc1. After step S209, the PLC 0 ends the processing in FIG.

ここで、ステップS209の制御では、2次冷水還温度Tcr2は冷凍機冷水出口温度Tcs1よりも高い温度である。つまり、ステップS209でのPLC0は、第1の制御設定値および第2の制御設定値に基づいて送水される1次冷水の冷凍機冷水出口温度を2次冷水往温度の設定値よりも低い温度もしくは同じ温度とする。そして、PLC0は、冷凍機10から送水される1次冷水とバイパス管18から逆流する2次還冷水とをミキシングした2次冷水往温度Tcs2が所望の2次冷水往温度の設定値Tcs2_SPとなるように制御を行う(なお、第1の制御設定値および第2の制御設定値の値によっては1次冷水流量=2次冷水流量となってミキシングをさせない場合もある)。そのため、2次冷水往温度の設定値Tcs2_SPは、冷凍機冷水出口温度の下限値Tcs1_MINよりも高い温度に設定することが好ましい。なお、本実施形態による制御は、2次冷水往温度の設定値Tcs2_SPを高く設定しても影響のない冬期や中間期の運転に適している。   Here, in the control of step S209, the secondary chilled water return temperature Tcr2 is a temperature higher than the refrigerator cold water outlet temperature Tcs1. That is, the PLC0 in step S209 sets the chilled water outlet temperature of the refrigerator of the primary chilled water supplied based on the first control set value and the second control set value to a temperature lower than the set value of the secondary chilled water forward temperature. Alternatively, the temperature is the same. In the PLC 0, the secondary chilled water forward temperature Tcs2 obtained by mixing the primary chilled water fed from the refrigerator 10 and the secondary return chilled water flowing backward from the bypass pipe 18 becomes the desired secondary chilled water forward temperature set value Tcs2_SP. (In some cases, the primary chilled water flow rate is equal to the secondary chilled water flow rate and mixing is not performed depending on the values of the first control set value and the second control set value.) Therefore, it is preferable that the set value Tcs2_SP of the secondary chilled water outgoing temperature be set to a temperature higher than the lower limit value Tcs1_MIN of the refrigerator chilled water outlet temperature. Note that the control according to the present embodiment is suitable for operation in winter or an intermediate period where there is no effect even if the set value Tcs2_SP of the secondary chilled water upstream temperature is set high.

ステップS210において、PLC0は、冷凍機10の運転台数Nが不足しているかを判定する。具体的には、PLC0は、熱源負荷率pQ1が熱源負荷率の最大値pQ1_MAXより大きいか(pQ1>pQ1_MAX)を判定する。熱源負荷率pQ1が熱源負荷率の最大値pQ1_MAXより大きい場合、冷凍機10の運転台数Nが不足している状態であり、ステップS211に処理が移行する。一方、熱源負荷率pQ1が熱源負荷率の最大値pQ1_MAX以下である場合、冷凍機10の運転台数Nが過剰な状態であり、ステップS212に処理が移行する。   In step S210, the PLC 0 determines whether the number N of operating the refrigerators 10 is insufficient. Specifically, the PLC 0 determines whether the heat source load factor pQ1 is larger than the maximum heat source load factor pQ1_MAX (pQ1> pQ1_MAX). When the heat source load factor pQ1 is larger than the maximum value pQ1_MAX of the heat source load factor, the operating number N of the refrigerators 10 is insufficient, and the process proceeds to step S211. On the other hand, when the heat source load factor pQ1 is equal to or less than the maximum value pQ1_MAX of the heat source load factor, the number of operating refrigerators N is in an excessive state, and the process proceeds to step S212.

ステップS211において、2次負荷熱量Q2に対して冷凍機10の運転台数が不足しているため、PLC0は、現在の冷凍機10の運転台数Nの条件下で1次側の生成熱量Q1が最大となるように制御を行う。具体的には、PLC0は、第1の制御設定値である冷凍機冷水出口温度の設定値Tcs1_SPを、冷凍機冷水出口温度の下限値Tcs1_MINまで下げる(Tcs1_SP=Tsc1_MIN)。また、PLC0は、第2の制御設定値である1次冷水流量比率の設定値pVc1_SPを最大の100%とする(pVc1_SP=100[%])。ステップS211の後、PLC0は図4の処理を終了する。   In step S211, since the number of operating chillers 10 is insufficient for the secondary load heat amount Q2, the PLC0 determines that the generated heat amount Q1 on the primary side is the maximum under the condition of the current operating number N of the chillers 10. The control is performed so that Specifically, the PLC 0 lowers the set value Tcs1_SP of the refrigerator cold water outlet temperature that is the first control set value to the lower limit value Tcs1_MIN of the refrigerator cold water outlet temperature (Tcs1_SP = Tsc1_MIN). In addition, the PLC0 sets the set value pVc1_SP of the primary chilled water flow ratio, which is the second control set value, to 100% of the maximum (pVc1_SP = 100 [%]). After step S211, the PLC 0 ends the processing in FIG.

ステップS212において、2次負荷熱量Q2に対しての冷凍機10の運転台数Nが過剰であるため、PLC0は、1次側の生成熱量を制御範囲内で最小とするための1次冷水流量の判定を行う。具体的には、PLC0は、1次冷水流量Vc1が最小となるときにバイパス管流量が上限値を超えないかを判定する。具体的には、PLC0は、2次冷水流量Vc2から1次冷水流量の下限値Vc1_MINを減じた値がバイパス管流量の上限値Vbp_MAXより大きいか(Vbp_MAX<Vc2−Vc1_MIN)を判定する。1次冷水流量Vc1が最小となるときにバイパス管流量が上限値を超える場合、ステップS213に処理が移行する。1次冷水流量Vc1が最小となるときにバイパス管流量が上限値を超えない場合、ステップS214に処理が移行する。   In step S212, since the number N of operating the refrigerators 10 with respect to the secondary load heat quantity Q2 is excessive, the PLC0 determines the primary chilled water flow rate for minimizing the primary-side generated heat quantity within the control range. Make a decision. Specifically, the PLC0 determines whether the bypass pipe flow rate does not exceed the upper limit value when the primary chilled water flow rate Vc1 is minimized. Specifically, the PLC 0 determines whether a value obtained by subtracting the lower limit value Vc1_MIN of the primary chilled water flow rate from the secondary chilled water flow rate Vc2 is larger than the upper limit value Vbp_MAX of the bypass pipe flow rate (Vbp_MAX <Vc2−Vc1_MIN). If the bypass pipe flow rate exceeds the upper limit when the primary chilled water flow rate Vc1 is minimized, the process proceeds to step S213. If the bypass pipe flow rate does not exceed the upper limit when the primary chilled water flow rate Vc1 is minimized, the process proceeds to step S214.

ステップS213において、PLC0は、現在の冷凍機10の運転台数Nの条件下で1次側の生成熱量Q1が可能な限り小さくなるように制御を行う。具体的には、PLC0は、第1の制御設定値である冷凍機冷水出口温度の設定値Tcs1_SPを、冷凍機冷水出口温度の下限値Tcs1_MINとする(Tcs1_SP=Tsc1_MIN)。また、PLC0は、第2の制御設定値である1次冷水流量比率の設定値pVc1_SPを以下の式(8)で算出する。ステップS213の後、PLC0は図4の処理を終了する。
pVc1_SP=(Vc2−Vbp_MAX)/Vc1_MAX×100[%] …(8)
ステップS214において、PLC0は、現在の冷凍機10の運転台数Nの条件下で1次側の生成熱量Q1が可能な限り小さくなるように制御を行う。具体的には、PLC0は、第1の制御設定値である冷凍機冷水出口温度の設定値Tcs1_SPを、冷凍機冷水出口温度の下限値Tcs1_MINとする(Tcs1_SP=Tsc1_MIN)。また、PLC0は、第2の制御設定値である1次冷水流量比率の設定値pVc1_SPを、個々の冷凍機10での1次冷水流量比率の下限値pVc1_MIN_Riとする(pVc1_SP=pVc1_MIN_Ri)。ステップS214の後、PLC0は図4の処理を終了する。
In step S213, the PLC 0 performs control such that the generated heat amount Q1 on the primary side becomes as small as possible under the condition of the current number N of operating the refrigerators 10. Specifically, the PLC 0 sets the set value Tcs1_SP of the refrigerator cold water outlet temperature, which is the first control set value, to the lower limit value Tcs1_MIN of the refrigerator cold water outlet temperature (Tcs1_SP = Tsc1_MIN). In addition, the PLC 0 calculates the set value pVc1_SP of the primary chilled water flow rate ratio, which is the second control set value, by the following equation (8). After step S213, the PLC 0 ends the processing in FIG.
pVc1_SP = (Vc2−Vbp_MAX) / Vc1_MAX × 100 [%] (8)
In step S214, the PLC 0 performs control such that the generated heat quantity Q1 on the primary side becomes as small as possible under the condition of the current number of operating refrigerators N. Specifically, the PLC 0 sets the set value Tcs1_SP of the refrigerator cold water outlet temperature, which is the first control set value, to the lower limit value Tcs1_MIN of the refrigerator cold water outlet temperature (Tcs1_SP = Tsc1_MIN). Further, the PLC 0 sets the set value pVc1_SP of the primary chilled water flow ratio, which is the second control set value, to the lower limit pVc1_MIN_Ri of the primary chilled water flow ratio in each refrigerator 10 (pVc1_SP = pVc1_MIN_Ri). After step S214, the PLC 0 ends the process of FIG.

次に、図5、図6を参照しつつ、図4のステップS209での処理を詳細に説明する。図5は、図4のステップS209におけるPLC0の処理例を示す流れ図である。   Next, the processing in step S209 in FIG. 4 will be described in detail with reference to FIGS. FIG. 5 is a flowchart showing a processing example of the PLC0 in step S209 of FIG.

また、図6は、Q1=Q2のときの1次冷水流量Vc1を定格値100%とした比率と1次冷水温度差ΔT1との関係の例を示す図である。図6の縦軸は1次冷水温度差ΔT1を示し、図6の横軸は1次冷水流量Vc1を定格値100%とした比率を示す。また、図6の曲線は、Q1=Q2=Constのときの1次冷水流量Vc1と1次冷水温度差ΔT1との関係をプロットしたものである。図6のQ1=Q2の曲線で示される熱量の定格比率は45%で、横軸100%のとき縦軸は45%、横軸67%のとき縦軸は67%、横軸50%のとき縦軸は90%、縦軸120%のとき横軸37.5%である。なお、図6に示す曲線はあくまで一例であり、Q2が増減することで曲線がシフトする。   FIG. 6 is a diagram showing an example of the relationship between the ratio of the primary chilled water flow rate Vc1 when Q1 = Q2 and the primary chilled water temperature difference ΔT1 when the rated value is 100%. The vertical axis of FIG. 6 indicates the primary chilled water temperature difference ΔT1, and the horizontal axis of FIG. 6 indicates the ratio of the primary chilled water flow rate Vc1 to the rated value of 100%. The curve in FIG. 6 plots the relationship between the primary chilled water flow rate Vc1 and the primary chilled water temperature difference ΔT1 when Q1 = Q2 = Const. The rated ratio of the amount of heat indicated by the curve of Q1 = Q2 in FIG. 6 is 45%. When the horizontal axis is 100%, the vertical axis is 45%, when the horizontal axis is 67%, the vertical axis is 67%, and when the horizontal axis is 50%. The vertical axis is 90%, and when the vertical axis is 120%, the horizontal axis is 37.5%. Note that the curve shown in FIG. 6 is merely an example, and the curve shifts as Q2 increases or decreases.

ここで、図5に示すステップS300番台の制御では、計測値から算出した2次側の負荷熱量Q2と計算で求める1次側の生成熱量Q1とが等しくなる条件で、かつ冷凍機10の出口と入口との間の1次冷水温度差ΔT1を制御範囲内で最大とすることで軽負荷運転による冷凍機コンプレッサの停止を抑制するとともに、1次冷水ポンプ11の流量を制御範囲内で極力小さく制御することで1次冷水搬送動力の削減が期待できる順に、第1の制御設定値(Tcs1_SP)および第2の制御設定値(pVc1_SP)の解を求める。   Here, in the control in the step S300s shown in FIG. 5, the secondary-side load calorie Q2 calculated from the measured value is equal to the primary-side generated calorie Q1 calculated, and the outlet of the refrigerator 10 By making the primary chilled water temperature difference ΔT1 between the chiller and the inlet maximum within the control range, the stoppage of the refrigerator compressor due to light load operation is suppressed, and the flow rate of the primary chilled water pump 11 is minimized within the control range. The solutions of the first control set value (Tcs1_SP) and the second control set value (pVc1_SP) are obtained in the order in which the control can reduce the primary chilled water transfer power.

ステップS300において、PLC0は、冷凍機冷水出口温度が下限値のとき(図6の点(a))の解を算出する。具体的には、PLC0は、以下の式(9)において、仮の冷凍機冷水出口温度tTcs1に冷凍機冷水出口温度の下限値Tcs1_MINを代入したときの仮の1次冷水流量tVc1を算出する。   In step S300, the PLC 0 calculates a solution when the refrigerator cold water outlet temperature is at the lower limit (point (a) in FIG. 6). Specifically, the PLC0 calculates the temporary primary chilled water flow rate tVc1 when the lower limit value Tcs1_MIN of the refrigerator chilled water outlet temperature is substituted for the temporary chilled water outlet temperature tTcs1 in the following equation (9).

Figure 0006644559
Figure 0006644559

また、PLC0は、仮の1次冷水流量tVc1に基づく仮のバイパス管流量tVbpを以下の式(10)で算出する。
tVbp=Vc2−tVc1 ……(10)
ステップS301において、PLC0は、ステップS300で算出した解が設計条件を満たすかを判定する。具体的には、PLC0は、以下の(条件1)および(条件2)を満たす場合に設計条件を満たすと判定する。
(条件1):仮の1次冷水流量tVc1が1次冷水流量の下限値から上限値までの範囲内(Vc1_MIN≦tVc1≦Vc1_MAX)にある。
(条件2):仮のバイパス管流量tVbpがバイパス管流量の上限値Vbp_MAX以下(tVbp≦Vbp_MAX)である。
Further, the PLC 0 calculates a temporary bypass pipe flow rate tVbp based on the temporary primary chilled water flow rate tVc1 by the following equation (10).
tVbp = Vc2−tVc1 (10)
In step S301, the PLC 0 determines whether the solution calculated in step S300 satisfies the design condition. Specifically, the PLC 0 determines that the design condition is satisfied when the following (condition 1) and (condition 2) are satisfied.
(Condition 1): The provisional primary chilled water flow rate tVc1 is within the range (Vc1_MIN ≦ tVc1 ≦ Vc1_MAX) from the lower limit value to the upper limit value of the primary chilled water flow rate.
(Condition 2): The temporary bypass pipe flow rate tVbp is equal to or less than the upper limit value Vbp_MAX of the bypass pipe flow rate (tVbp ≦ Vbp_MAX).

上記の設計条件を満たす場合にはステップS308に処理が移行する。一方、上記の設計条件を満たさない場合にはステップS302に処理が移行する。   If the above design conditions are satisfied, the process moves to step S308. On the other hand, if the above design conditions are not satisfied, the process moves to step S302.

ステップS302において、PLC0は、1次冷水流量が下限値のとき(図6の点(b))の解を算出する。具体的には、PLC0は、以下の式(11)において、仮の1次冷水流量tVc1に1次冷水流量の下限値Vc1_MINを代入したときの仮の冷凍機冷水出口温度tTcs1を算出する。   In step S302, the PLC 0 calculates a solution when the primary chilled water flow rate is at the lower limit (point (b) in FIG. 6). Specifically, the PLC0 calculates a temporary refrigerator cold water outlet temperature tTcs1 when the lower limit value Vc1_MIN of the primary cold water flow rate is substituted for the temporary primary cold water flow rate tVc1 in the following equation (11).

Figure 0006644559
Figure 0006644559

また、PLC0は、仮の冷凍機冷水出口温度tTcs1に基づく仮の1次冷水温度差tΔT1を以下の式(12)で算出する。
tΔT1=Tcr2−tTcs1 ……(12)
ステップS303において、PLC0は、ステップS302で算出した解が設計条件を満たすかを判定する。具体的には、PLC0は、以下の(条件11)〜(条件13)の全てを満たす場合に設計条件を満たすと判定する。
(条件11):仮の冷凍機冷水出口温度tTcs1が冷凍機冷水出口温度の下限値から上限値までの範囲内(Tcs1_MIN≦tTcs1≦Tcs1_MAX)にある。
(条件12):仮の1次冷水温度差tΔT1が1次冷水温度差の下限値ΔT1_MIN以上(tΔT1≧ΔT1_MIN)である。
(条件13):仮のバイパス管流量tVbpがバイパス管流量の上限値Vbp_MAX以下(tVbp≦Vbp_MAX)である。
Further, the PLC 0 calculates a temporary primary chilled water temperature difference tΔT 1 based on the temporary refrigerator chilled water outlet temperature tTcs 1 by the following equation (12).
tΔT1 = Tcr2−tTcs1 (12)
In step S303, the PLC 0 determines whether the solution calculated in step S302 satisfies the design condition. Specifically, the PLC 0 determines that the design condition is satisfied when all of the following (condition 11) to (condition 13) are satisfied.
(Condition 11): The temporary refrigerator cold water outlet temperature tTcs1 is within the range from the lower limit to the upper limit of the refrigerator cold water outlet temperature (Tcs1_MIN ≦ tTcs1 ≦ Tcs1_MAX).
(Condition 12): The provisional primary chilled water temperature difference tΔT1 is equal to or larger than the lower limit value ΔT1_MIN of the primary chilled water temperature difference (tΔT1 ≧ ΔT1_MIN).
(Condition 13): The temporary bypass pipe flow rate tVbp is equal to or less than the upper limit value Vbp_MAX of the bypass pipe flow rate (tVbp ≦ Vbp_MAX).

上記の設計条件を満たす場合にはステップS308に処理が移行する。一方、上記の設計条件を満たさない場合にはステップS304に処理が移行する。   If the above design conditions are satisfied, the process moves to step S308. On the other hand, if the above design conditions are not satisfied, the process proceeds to step S304.

ステップS304において、PLC0は、1次冷水流量がバイパス管流量の上限値のとき(図6の点(c))の解を算出する。具体的には、PLC0は、上記の式(11)において、仮の1次冷水流量tVc1にVc2−Vbp_MAXを代入したときの仮の冷凍機冷水出口温度tTcs1を算出する。また、PLC0は、上記の式(12)により、1次冷水流量がバイパス管流量の上限値のときの仮の1次冷水温度差tΔT1を算出する。   In step S304, the PLC 0 calculates a solution when the primary chilled water flow rate is the upper limit value of the bypass pipe flow rate (point (c) in FIG. 6). Specifically, the PLC0 calculates the temporary refrigerator cold water outlet temperature tTcs1 when Vc2−Vbp_MAX is substituted for the temporary primary cold water flow rate tVc1 in the above equation (11). In addition, the PLC0 calculates the temporary primary chilled water temperature difference tΔT1 when the primary chilled water flow rate is the upper limit of the bypass pipe flow rate by the above equation (12).

なお、図6(c)に示すバイパス管流量の上限値のときの仮の1次冷水流量tVc1は、現在の熱源台数Nに応じて変動する。ここで、バイパス管流量の上限値Vbp_MAXは固定値(一般的に冷凍機1台分の流量)であるが、1次冷水流量は熱源台数Nが多いほど大きくなり、熱源台数Nが少なくなれば小さくなる。したがって、熱源台数Nが多いほどバイパス管流量の上限値のときの仮の1次冷水流量tVc1は相対的に高い値となり、図6での点(c)の位置が1次冷水流量の上限値の方向に近づく。逆に、熱源台数Nが少ないほどバイパス管流量の上限値のときの仮の1次冷水流量tVc1は相対的に低い値となり、図6での点(c)の位置が1次冷水流量の下限値の方向に近づく。   The temporary primary chilled water flow rate tVc1 at the time of the upper limit of the bypass pipe flow rate shown in FIG. 6C fluctuates according to the current number N of heat sources. Here, the upper limit value Vbp_MAX of the bypass pipe flow rate is a fixed value (generally, the flow rate for one refrigerator), but the primary chilled water flow rate increases as the number of heat sources N increases, and if the number N of heat sources decreases. Become smaller. Therefore, as the number N of heat sources increases, the temporary primary chilled water flow rate tVc1 at the upper limit of the bypass pipe flow rate becomes a relatively high value, and the position of the point (c) in FIG. Approaching the direction of. Conversely, as the number N of heat sources decreases, the temporary primary chilled water flow rate tVc1 at the upper limit value of the bypass pipe flow rate becomes a relatively low value, and the position of the point (c) in FIG. Approaching the direction of the value.

ステップS305において、PLC0は、ステップS304で算出した解が設計条件を満たすかを判定する。具体的には、PLC0は、PLC0は、以下の(条件21)〜(条件23)の全てを満たす場合に設計条件を満たすと判定する。
(条件21):仮の冷凍機冷水出口温度tTcs1が冷凍機冷水出口温度の下限値から上限値までの範囲内(Tcs1_MIN≦tTcs1≦Tcs1_MAX)にある。
(条件22):仮の1次冷水温度差tΔT1が1次冷水温度差の下限値ΔT1_MIN以上(tΔT1≧ΔT1_MIN)である。
(条件23):仮の1次冷水流量tVc1が1次冷水流量の下限値から上限値までの範囲内(Vc1_MIN≦tVc1≦Vc1_MAX)にある。
In step S305, the PLC 0 determines whether the solution calculated in step S304 satisfies the design condition. Specifically, the PLC 0 determines that the PLC 0 satisfies the design condition when all of the following (condition 21) to (condition 23) are satisfied.
(Condition 21): The temporary refrigerator cold water outlet temperature tTcs1 is within the range from the lower limit to the upper limit of the refrigerator cool water outlet temperature (Tcs1_MIN ≦ tTcs1 ≦ Tcs1_MAX).
(Condition 22): The temporary primary chilled water temperature difference tΔT1 is equal to or larger than the lower limit value ΔT1_MIN of the primary chilled water temperature difference (tΔT1 ≧ ΔT1_MIN).
(Condition 23): The provisional primary chilled water flow rate tVc1 is within the range from the lower limit to the upper limit value of the primary chilled water flow rate (Vc1_MIN ≦ tVc1 ≦ Vc1_MAX).

上記の設計条件を満たす場合にはステップS308に処理が移行する。一方、上記の設計条件を満たさない場合には、逆流が発生する解の組み合わせでは設計条件を満たすことが出来ないと考えられる。したがって、計測値から算出した2次側の負荷熱量Q2と計算で求める1次側の生成熱量Q1とが等しくなる条件で、かつ冷凍機10の出口と入口との間の1次冷水温度差ΔT1が最大となる解はtTcs1=Tcs2_SP、tVc1=Vc2の1次冷水と2次冷水が均衡した状態となる。Vc2が1次冷水ポンプ11の流量調整範囲内(Vc2≦Vc1_MAX)であるかを判定するために、ステップS306に処理が移行する。   If the above design conditions are satisfied, the process moves to step S308. On the other hand, when the above design conditions are not satisfied, it is considered that the design conditions cannot be satisfied by a combination of solutions in which a backflow occurs. Therefore, the primary cold water temperature difference ΔT1 between the outlet and the inlet of the refrigerator 10 under the condition that the secondary load calorific value Q2 calculated from the measured value is equal to the primary-side generated calorific value Q1 calculated. Is a state in which the primary chilled water and the secondary chilled water of tTcs1 = Tcs2_SP and tVc1 = Vc2 are balanced. The process shifts to step S306 to determine whether Vc2 is within the flow rate adjustment range of the primary chilled water pump 11 (Vc2 ≦ Vc1_MAX).

ステップS306において、PLC0は、2次冷水流量Vc2がその時点における冷凍機の運転台数から算出した1次冷水流量の上限値Vc1_MAX以下であるか(Vc2≦Vc1_MAX)を判定する。2次冷水流量Vc2が1次冷水流量の上限値Vc1_MAX以下である場合にはステップS307に処理が移行する。一方、2次冷水流量Vc2が1次冷水流量の上限値Vc1_MAXよりも大きい場合には、設計条件を満たす解が存在しないため、ステップS309に処理が移行する。   In step S306, the PLC0 determines whether the secondary chilled water flow rate Vc2 is equal to or less than the upper limit value Vc1_MAX of the primary chilled water flow rate calculated from the number of operating refrigerators at that time (Vc2 ≦ Vc1_MAX). If the secondary chilled water flow rate Vc2 is equal to or less than the upper limit value Vc1_MAX of the primary chilled water flow rate, the process proceeds to step S307. On the other hand, if the secondary chilled water flow rate Vc2 is larger than the primary chilled water flow rate upper limit value Vc1_MAX, there is no solution that satisfies the design conditions, and the process proceeds to step S309.

ステップS307において、1次冷水流量と2次冷水流量とが等しいときの解を算出する。PLC0は、仮の1次冷水流量tVc1を2次冷水流量Vc2とし(tVc1=Vc2)、仮の冷凍機冷水出口温度tTcs1を2次冷水往温度の設定値Tcs2_SPとする(tTcs1=Tcs2_SP)。その後、ステップS308に処理が移行する。   In step S307, a solution when the primary chilled water flow rate is equal to the secondary chilled water flow rate is calculated. PLC0 sets the temporary primary chilled water flow rate tVc1 to the secondary chilled water flow rate Vc2 (tVc1 = Vc2), and sets the temporary chiller chilled water outlet temperature tTcs1 to the secondary chilled water forward temperature set value Tcs2_SP (tTcs1 = Tcs2_SP). Thereafter, the process proceeds to step S308.

ステップS308において、PLC0は、第1の制御設定値である冷凍機冷水出口温度の設定値Tcs1_SPをtTcsとする(Tcs1_SP=tTsc1)。また、PLC0は、第2の制御設定値である1次冷水流量比率の設定値pVc1_SPをtVc1/Vc1_MAX×100とする(pVc1_SP=tVc1/Vc1_MAX×100[%])。   In step S308, the PLC 0 sets the set value Tcs1_SP of the refrigerator cold water outlet temperature, which is the first control set value, to tTcs (Tcs1_SP = tTsc1). In addition, the PLC 0 sets the set value pVc1_SP of the primary chilled water flow ratio, which is the second control set value, to tVc1 / Vc1_MAX × 100 (pVc1_SP = tVc1 / Vc1_MAX × 100 [%]).

このように、ステップS301、ステップS303、ステップS305、ステップS307の順に解を求めることで、PLC0は、計測値から算出した2次側の負荷熱量と計算で求める1次側の生成熱量Q1とが等しくなる条件で、かつ1次冷水ポンプ11の流量調整範囲内で冷凍機10の出口と入口との間の1次冷水温度差ΔT1が最大となるような第1の制御設定値(Tcs1_SP)および第2の制御設定値(pVc1_SP)の解を求めることができる。ステップS308の後、PLC0は図5の処理を終了する。   As described above, by finding the solution in the order of step S301, step S303, step S305, and step S307, the PLC0 calculates the secondary-side load calorie calculated from the measured value and the primary-side generated calorific value Q1 obtained by the calculation. A first control set value (Tcs1_SP) that maximizes the primary chilled water temperature difference ΔT1 between the outlet and the inlet of the refrigerator 10 under the condition of being equal and within the flow rate adjustment range of the primary chilled water pump 11; The solution of the second control set value (pVc1_SP) can be obtained. After step S308, PLC0 ends the processing in FIG.

ステップS309において、PLC0は、第1の制御設定値である冷凍機冷水出口温度の設定値Tcs1_SPを冷凍機冷水出口温度の下限値Tcs1_MINとする(Tcs1_SP=Tsc1_MIN)。また、PLC0は、第2の制御設定値である1次冷水流量比率の設定値pVc1_SPを100%とする(pVc1_SP=100[%])。ステップS309の後、PLC0は図5の処理を終了する。   In step S309, the PLC 0 sets the refrigerator cooling water outlet temperature set value Tcs1_SP, which is the first control set value, to the lower limit of the refrigerator cooling water outlet temperature Tcs1_MIN (Tcs1_SP = Tsc1_MIN). In addition, the PLC 0 sets the primary chilled water flow rate set value pVc1_SP, which is the second control set value, to 100% (pVc1_SP = 100 [%]). After step S309, PLC0 ends the processing in FIG.

ステップS309の場合、熱量的には冷凍機10の運転台数が見合っていても現在の運転台数ではQ1=Q2となる1次冷水流量を賄えない可能性がある。そのため、PLC0は、可能な範囲で1次側の生成熱量を最大とする制御を行う。なお、この場合には、PLC1によって熱源台数を増段する制御が別途行われることとなる。   In the case of step S309, even if the number of operating refrigerators 10 is commensurate with the calorific value, the current number of operating refrigerators may not be able to cover the primary chilled water flow rate of Q1 = Q2. Therefore, the PLC 0 performs control to maximize the amount of generated heat on the primary side as much as possible. In this case, control for increasing the number of heat sources by the PLC 1 is separately performed.

次に、図7から図9を参照し、熱源制御システムの比較例および実施例の動作を説明する。なお、図7から図9は、1次2次ポンプ方式の熱源制御システムの構成を模式的に示し、簡単のため、2次往ヘッダ、2次冷水ポンプの図示は省略している。   Next, the operation of the comparative example and the example of the heat source control system will be described with reference to FIGS. 7 to 9 schematically show the configuration of the heat source control system of the primary and secondary pump type, and the illustration of the secondary forward header and the secondary chilled water pump is omitted for simplicity.

ここで、図7から図9での熱源制御システムは、3台の冷凍機R1−R3を有する。冷凍機R1はINVターボで530USRTの冷凍能力、冷凍機R2は定速ターボで530USRTの冷凍能力、冷凍機R3はガス吸収式で500USRTの冷凍能力とする。また、外気条件は、乾球温度15.0℃Db、相対湿度40.0%RH、湿球温度8.48℃Wbとする。また、2次負荷熱量条件は26%、406USRT(1426kW)とする。   Here, the heat source control system in FIGS. 7 to 9 has three refrigerators R1 to R3. The refrigerator R1 has an INV turbo refrigeration capacity of 530 USRT, the refrigerator R2 has a constant speed turbo refrigeration capacity of 530 USRT, and the refrigerator R3 has a gas absorption type refrigeration capacity of 500 USRT. The outside air conditions are a dry bulb temperature of 15.0 ° C. Db, a relative humidity of 40.0% RH, and a wet bulb temperature of 8.48 ° C. Wb. The secondary load calorie condition is 26%, 406 USRT (1426 kW).

図7は、2次冷水往温度が10℃、2次冷水還温度が15℃、2次冷水の温度差ΔT=5℃であり、還ヘッダから往ヘッダの逆流を禁止した制御での動作状態を示している。図7の場合、熱量比率76.53%で冷凍機R1を1台運転したときに、2次負荷熱量と1次側の生成熱量とが均衡し、かつ1次冷水流量と2次冷水流量も均衡する。   FIG. 7 shows an operation state under the control in which the secondary chilled water forward temperature is 10 ° C., the secondary chilled water return temperature is 15 ° C., and the secondary chilled water temperature difference ΔT = 5 ° C., and backflow from the return header to the forward header is prohibited. Is shown. In the case of FIG. 7, when one refrigerator R1 is operated at a heat amount ratio of 76.53%, the secondary load heat amount and the generated heat amount on the primary side are balanced, and the primary chilled water flow rate and the secondary chilled water flow rate are also equal. Balance.

なお、図7の例では、冷水ポンプの動力は、8.6kW、冷凍機の冷却に用いられる冷却水ポンプの動力は8.1kw、冷凍機の冷却に用いられる冷却塔のファンの動力は13.3kwであった。   In the example of FIG. 7, the power of the cooling water pump is 8.6 kW, the power of the cooling water pump used for cooling the refrigerator is 8.1 kW, and the power of the fan of the cooling tower used for cooling the refrigerator is 13 kW. 0.3 kw.

図8は、2次冷水の温度差ΔT=3℃において、還ヘッダから往ヘッダの逆流を禁止した比較例の制御での動作状態を示している。図8の例では、2次冷水流量が408.8m3/hに増加するため、冷凍機冷水出口温度(10℃)の冷水をそのまま空調機に送水するためには、1次冷水流量を増加させて逆流を抑止する必要が生じる。そのため、図8の例では、流量収支より運転台数を増加させる制御を行い、冷凍機R1、R2をそれぞれ熱量比率38.26%で運転させる。これにより、1次冷水流量は408.8m3/hとなり、1次冷水流量と2次冷水流量が均衡するので逆流は生じない。 FIG. 8 shows an operation state under the control of the comparative example in which the backflow from the return header to the forward header is prohibited when the temperature difference ΔT = 3 ° C. in the secondary chilled water. In the example of FIG. 8, since the secondary chilled water flow rate is increased to 408.8 m 3 / h, the primary chilled water flow rate is increased in order to directly send the chilled water at the chiller chilled water outlet temperature (10 ° C.) to the air conditioner. It is necessary to suppress the backflow. Therefore, in the example of FIG. 8, control is performed to increase the number of operating units based on the flow balance, and the refrigerators R1 and R2 are operated at a heat amount ratio of 38.26%. As a result, the flow rate of the primary chilled water becomes 408.8 m 3 / h, so that the flow rate of the primary chilled water and the flow rate of the secondary chilled water are balanced, so that no backflow occurs.

なお、図8の例では、冷水ポンプの動力は、9.6kW、冷却水ポンプの動力は13.2kw、冷却塔のファンの動力は17.1kwであった。   In the example of FIG. 8, the power of the cold water pump was 9.6 kW, the power of the cooling water pump was 13.2 kW, and the power of the fan of the cooling tower was 17.1 kW.

一方、図9は、2次冷水の温度差ΔT=3℃における本実施形態の実施例の制御での動作状態を示している。本実施形態の実施例の制御の場合、逆流を許容し、1次冷水ポンプの1次冷水と、バイパス管からの還ヘッダから往ヘッダへの流れとを合流させて制御目標値の2次冷水往温度を得る。つまり、図9の例では、図8の例のように1次冷水流量を2次冷水流量以上とする必要はなく、2次負荷熱量と1次側の生成熱量とが均衡するように冷凍機の運転条件を決めればよい。そのため、図9の例では、熱量収支により冷凍機R1を熱量比率76.80%で1台運転させればよく、図8の例よりも冷凍機や冷水ポンプの運転台数を抑止できる。   On the other hand, FIG. 9 shows an operation state under control of the example of the present embodiment when the temperature difference ΔT of the secondary chilled water is 3 ° C. In the case of the control of the example of the present embodiment, the backflow is allowed, and the primary chilled water of the primary chilled water pump is combined with the flow from the return header to the forward header from the bypass pipe, and the secondary chilled water of the control target value is combined. Get outbound temperature. That is, in the example of FIG. 9, it is not necessary to make the primary chilled water flow rate equal to or more than the secondary chilled water flow rate as in the example of FIG. What is necessary is just to determine the operating conditions. Therefore, in the example of FIG. 9, one refrigerator R1 may be operated at a heat amount ratio of 76.80% based on the heat balance, and the number of operating refrigerators and chilled water pumps can be suppressed as compared with the example of FIG.

また、図9の例では、バイパス管で還ヘッダから往ヘッダに逆流する水の温度は13℃であり、その流量は204.4m3/hとなる。そのため、制御目標値である10℃まで2次冷水往温度を下げるために、冷凍機冷水出口温度は制御目標値の10℃よりも低い温度である7℃に設定される。図9の例では、冷凍機冷水入口温度(13℃)と冷凍機冷水出口温度(7℃)との1次冷水温度差は6℃となり、図8の例(ΔT1=3℃)よりも大きくなることがわかる。 In the example of FIG. 9, the temperature of the water flowing backward from the return header to the forward header in the bypass pipe is 13 ° C., and the flow rate is 204.4 m 3 / h. Therefore, in order to lower the secondary chilled water upstream temperature to the control target value of 10 ° C., the refrigerator cold water outlet temperature is set to 7 ° C., which is lower than the control target value of 10 ° C. In the example of FIG. 9, the primary chilled water temperature difference between the chilled water inlet temperature (13 ° C.) and the chilled water outlet temperature (7 ° C.) is 6 ° C., which is larger than the example of FIG. 8 (ΔT1 = 3 ° C.). It turns out that it becomes.

なお、図9の例では、冷水ポンプの動力は、4.8kW、冷却水ポンプの動力は8.8kw、冷却塔のファンの動力は13.3kwであった。   In the example of FIG. 9, the power of the cold water pump was 4.8 kW, the power of the cooling water pump was 8.8 kW, and the power of the fan of the cooling tower was 13.3 kW.

また、図7から図9の場合に冷水ポンプの動力を比較すると、図7の場合は8.6kWであるのに対し、図8の場合は9.6kW、図9の場合は4.8kWとなる。また、冷却水ポンプの動力を比較すると、図7の場合は8.1kWであるのに対し、図8の場合は13.2kW、図9の場合は8.8kWとなる。同様に、冷却塔のファンの動力を比較すると、図7の場合は13.3kWであるのに対し、図8の場合は17.1kW、図9の場合は13.3kWとなる。このように、図8に示す比較例と比べると、図9に示す本実施形態の実施例では、冷水ポンプの動力、冷却水ポンプの動力、冷却塔ファンの動力のいずれも小さくすることができる。   Also, comparing the power of the chilled water pump in the case of FIG. 7 to FIG. 9, it is 8.6 kW in FIG. 7, whereas it is 9.6 kW in FIG. 8, and 4.8 kW in FIG. Become. When comparing the power of the cooling water pump, the power in the case of FIG. 7 is 8.1 kW, whereas the power in the case of FIG. 8 is 13.2 kW, and in the case of FIG. 9 8.8 kW. Similarly, when the power of the cooling tower fan is compared, it is 13.3 kW in FIG. 7, 17.1 kW in FIG. 8, and 13.3 kW in FIG. 9. As described above, in the example of the present embodiment illustrated in FIG. 9, all of the power of the chilled water pump, the motive power of the cooling water pump, and the motive power of the cooling tower fan can be reduced as compared with the comparative example illustrated in FIG. 8. .

以下、本実施形態の熱源制御システムでの作用効果を述べる。   Hereinafter, the operation and effect of the heat source control system of the present embodiment will be described.

本実施形態の熱源制御システム100では、制御装置は、2次冷水温度差ΔT2が設計値未満となるときに、2次負荷熱量Q2と1次側の生成熱量Q1とが等しくなる条件で、かつ1次冷水ポンプ11が送水する1次冷水と、バイパス管18を介して還ヘッダから第1往ヘッダ12へ流入する2次還冷水とが合流した2次冷水往温度Tcs2が2次冷水往温度の設定値Tcs2_SPとなるように、2次冷水往温度の設定値Tcs2_SPと、2次冷水還温度Tcr2と、2次冷水流量Vc2を用いて、冷凍機冷水出口温度を制御するための第1の制御設定値(Tcs1_SP)と、1次冷水流量を制御するための第2の制御設定値(pVc1_SP)とを求める。   In the heat source control system 100 of the present embodiment, the control device is configured such that, when the secondary chilled water temperature difference ΔT2 is less than the design value, the secondary load heat quantity Q2 and the generated heat quantity Q1 on the primary side are equal, and The secondary chilled water outgoing temperature Tcs2, in which the primary chilled water sent by the primary chilled water pump 11 and the secondary chilled water flowing from the return header into the first forward header 12 via the bypass pipe 18 are combined, is the secondary chilled water outward temperature. The first set value Tcs2_SP of the secondary chilled water forward temperature, the secondary chilled water return temperature Tcr2, and the second chilled water flow rate Vc2 for controlling the chilled water outlet temperature of the refrigerator so that the set value Tcs2_SP A control set value (Tcs1_SP) and a second control set value (pVc1_SP) for controlling the primary chilled water flow rate are obtained.

つまり、本実施形態では、逆流を許容し、1次冷水ポンプ11の1次冷水と、バイパス管18からの還ヘッダから往ヘッダへの流れとを合流させて制御目標値の2次冷水往温度を得ることで、2次冷水往温度Tcs2の上昇を抑止でき、従来の制御では成り行きで温度が決まっていた2次冷水往温度Tcs2を安定して制御できる。   That is, in the present embodiment, the backflow is permitted, and the primary chilled water of the primary chilled water pump 11 and the flow from the return header to the forward header from the bypass pipe 18 are merged to control the secondary chilled water forward temperature of the control target value. By this, the rise of the secondary chilled water outgoing temperature Tcs2 can be suppressed, and the secondary chilled water outgoing temperature Tcs2, whose temperature has been determined by the conventional control, can be stably controlled.

また、本実施形態では、1次冷水ポンプ11の1次冷水と、バイパス管18からの還ヘッダから往ヘッダへの流れとを合流させて制御目標値の2次冷水往温度を得るのに、2次冷水往温度Tcs2よりも冷凍機冷水出口温度Tcs1を低くする場合があるが、その冷凍機冷水出口温度Tcs1を、その時点で要求される2次冷水熱量を基準に、冷凍機冷水出口温度下限値と冷水流量下限値とを少なくとも考慮して演算で決定する。そのため、本実施形態では、1次側において1次冷水温度差ΔT1を制御範囲内で最大にすることが可能となる。冷凍機において1次冷水温度差ΔT1が小さくなると冷凍機のコンプレッサを自動停止させて軽負荷運転状態にする制御が行われるが、本実施形態によれば、1次冷水温度差ΔT1を制御範囲内で最大にできることから、軽負荷運転状態への移行頻度が低下する。これにより、本実施形態によれば、熱源制御システムにおける熱源の軽負荷運転状態への移行による2次冷水往温度Tcs2上昇のリスクを従来の制御よりも極力抑制できる。   Further, in the present embodiment, the primary chilled water of the primary chilled water pump 11 and the flow from the return pipe from the bypass pipe 18 to the forward header are merged to obtain the secondary chilled water upstream temperature of the control target value. Although the refrigerator cold water outlet temperature Tcs1 may be lower than the secondary cold water forward temperature Tcs2, the refrigerator cold water outlet temperature Tcs1 is determined based on the secondary cold water calorie required at that time. The calculation is determined by considering at least the lower limit and the lower limit of the flow rate of the cold water. Therefore, in the present embodiment, the primary chilled water temperature difference ΔT1 on the primary side can be maximized within the control range. When the primary chilled water temperature difference ΔT1 in the refrigerator becomes small, control is performed to automatically stop the compressor of the refrigerator and enter a light load operation state. According to the present embodiment, however, the primary chilled water temperature difference ΔT1 falls within the control range. , The frequency of shifting to the light load operation state is reduced. Thus, according to the present embodiment, the risk of an increase in the secondary chilled water forward temperature Tcs2 due to the transition of the heat source to the light load operation state in the heat source control system can be suppressed as much as possible by the conventional control.

また、本実施形態では、1次冷水ポンプ11の1次冷水と、バイパス管18からの還ヘッダから往ヘッダへの流れとを合流させて制御目標値の2次冷水往温度を得るのに、2次冷水往温度Tcs2よりも冷凍機冷水出口温度Tcs1を低くする場合があるが、その冷凍機冷水出口温度Tcs1を、その時点で要求される2次冷水熱量を基準に演算決定するので、1次冷水流量Vc1を2次冷水流量Vc2よりも大きくしなくてもよい。そのため、本実施形態によれば、従来と比べて1次冷水の搬送動力を削減することができる。   Further, in the present embodiment, the primary chilled water of the primary chilled water pump 11 and the flow from the return pipe from the bypass pipe 18 to the forward header are merged to obtain the secondary chilled water upstream temperature of the control target value. Although the refrigerator cold water outlet temperature Tcs1 may be lower than the secondary cold water forward temperature Tcs2, the refrigerator cold water outlet temperature Tcs1 is calculated and determined based on the secondary cold water calorie required at that time. The secondary cold water flow rate Vc1 does not need to be larger than the secondary cold water flow rate Vc2. Therefore, according to the present embodiment, it is possible to reduce the power for transporting the primary cold water as compared with the related art.

また、従来の制御では1次冷水流量Vc1を2次冷水流量Vc2よりも大きくしていたため、往ヘッダから還ヘッダへの流れにより1次冷水温度差ΔT1が2次冷水温度差ΔT2よりも必然的に小さくなり、1次冷水流量Vc1を制御範囲内で最大としても冷凍機が定格生成熱量を生成できない場合があった。本実施形態によれば、制御範囲内でΔT1を最大とすることが可能なため従来の制御よりも多くの場合において冷凍機の定格能力を発揮する制御が可能となる。   Further, in the conventional control, the primary chilled water flow rate Vc1 is set to be larger than the secondary chilled water flow rate Vc2, so that the primary chilled water temperature difference ΔT1 is inevitably greater than the secondary chilled water temperature difference ΔT2 due to the flow from the forward header to the return header. In some cases, even if the primary chilled water flow rate Vc1 is maximized within the control range, the refrigerator may not be able to generate the rated generated heat. According to the present embodiment, ΔT1 can be maximized within the control range, so that control that exerts the rated capacity of the refrigerator can be performed in more cases than conventional control.

また、本実施形態によれば、1次冷水ポンプ11の1次冷水と、バイパス管18からの還ヘッダから往ヘッダへの流れとを合流させて制御目標値の2次冷水往温度を得るのに、2次冷水往温度Tcs2よりも冷凍機冷水出口温度Tcs1を低くする場合があるが、その冷凍機冷水出口温度Tcs1を、その時点で要求される2次冷水熱量を基準に演算決定するので、1次冷水流量Vc1を2次冷水流量Vc2よりも大きくしなくてもよい。そのため、本実施形態では、1次側と2次側の流量収支ではなく、1次側と2次側の熱量収支で冷凍機10の運転台数を制御できるため、従来と比べて温度上昇により発生していた余計な熱源の追加起動を極力抑止できる。   Further, according to the present embodiment, the primary chilled water of the primary chilled water pump 11 and the flow from the return header to the forward header from the bypass pipe 18 are combined to obtain the secondary chilled water upstream temperature of the control target value. In some cases, the chiller outlet water temperature Tcs1 is set lower than the secondary chiller water outlet temperature Tcs2. However, the chiller outlet water temperature Tcs1 is calculated and determined based on the amount of secondary chilled water heat required at that time. The primary cold water flow rate Vc1 need not be larger than the secondary cold water flow rate Vc2. For this reason, in the present embodiment, the number of operating refrigerators 10 can be controlled by the heat balance of the primary side and the secondary side instead of the flow balance of the primary side and the secondary side, so that the number of operation of the refrigerators 10 is increased due to a rise in temperature compared with the conventional case. It is possible to minimize the unnecessary start-up of unnecessary heat sources.

(実施形態の補足事項)
上記の実施形態では、PLC0およびPLC1をそれぞれ独立した装置として説明したが、これらの一部または全部の機能を他のPLCに集約する構成としてもよい。また、上記の実施形態において、各々のPLCが他のPLCとデータ通信を行い、共通の情報をPLC間の通信で取得するようにしてもよい。
(Supplementary items of the embodiment)
In the above embodiment, the PLC0 and the PLC1 are described as independent devices, however, a configuration in which some or all of these functions are integrated into another PLC may be adopted. In the above embodiment, each PLC may perform data communication with another PLC, and acquire common information by communication between the PLCs.

また、上記の実施形態の制御では、複数台の熱源が運転される場合において熱量の分配を均等分配比例方式としているが、熱源の性能に応じて重みづけを行い、稼働させる熱源に優先順位を設けるようにしてもよい。例えば、熱源ごとの定格COP(Coefficient Of Performance)に基づいて熱源の重み係数を決定し、高効率の熱源の重み係数を高くすることで高効率の熱源を優先的に運転するようにしてもよい。あるいは、熱源ごとに上限値および下限値が異なる場合において、運転台数Nおよび2次負荷熱量Q2に応じた重み係数のテーブルを設定し、このテーブルを参照して稼働させる熱源を決定することで、熱源の上限値および下限値の範囲内で制御値を決定してもよい。   Further, in the control of the above-described embodiment, when a plurality of heat sources are operated, the heat amount is distributed in a uniform distribution proportional manner.However, weighting is performed according to the performance of the heat sources, and priority is given to the heat sources to be operated. It may be provided. For example, the weight coefficient of the heat source may be determined based on the rated COP (Coefficient Of Performance) for each heat source, and the high efficiency heat source may be preferentially operated by increasing the weight coefficient of the high efficiency heat source. . Alternatively, when the upper limit value and the lower limit value are different for each heat source, a table of weighting factors corresponding to the number of operating units N and the secondary load heat quantity Q2 is set, and the heat source to be operated is determined with reference to this table. The control value may be determined within the range of the upper limit and the lower limit of the heat source.

以上の詳細な説明により、実施形態の特徴点および利点は明らかになるであろう。これは、特許請求の範囲が、その精神および権利範囲を逸脱しない範囲で前述のような実施形態の特徴点および利点にまで及ぶことを意図するものである。また、当該技術分野において通常の知識を有する者であれば、あらゆる改良および変更に容易に想到できるはずである。したがって、発明性を有する実施形態の範囲を前述したものに限定する意図はなく、実施形態に開示された範囲に含まれる適当な改良物および同等物に拠ることも可能である。   The features and advantages of the embodiments will be apparent from the above detailed description. It is intended that the appended claims extend to the features and advantages of the embodiments described above without departing from the spirit and scope of the claims. In addition, any person having ordinary skill in the art can easily think of any improvements and changes. Therefore, there is no intention to limit the scope of the inventive embodiments to those described above, and it is possible to rely on appropriate improvements and equivalents included in the scope disclosed in the embodiments.

100 熱源制御システム
10 冷凍機(熱源R1−Rn)
10a 冷凍機側盤
11 1次冷水ポンプ
12 第1往ヘッダ
13 第2往ヘッダ
14 第1還ヘッダ
15 第2還ヘッダ
16 2次冷水ポンプ
17 空調機(AHU)
18 バイパス管
21 冷水1次往配管
22 冷水1次還配管
23 温度センサ
24 流量計
25 温度センサ
26 流量指示調節計(FIC)
27 インバータ
31 往ヘッダ配管
32 インバータ
33 温度センサ
34 温度センサ
35 流量計
36 冷水2次往配管
37 冷水2次還配管
100 heat source control system 10 refrigerator (heat sources R1-Rn)
10a Refrigerator side panel 11 Primary chilled water pump 12 First outgoing header 13 Second outgoing header 14 First return header 15 Second return header 16 Secondary chilled water pump 17 Air conditioner (AHU)
18 bypass pipe 21 chilled water primary return pipe 22 chilled water primary return pipe 23 temperature sensor 24 flow meter 25 temperature sensor 26 flow indication controller (FIC)
27 Inverter 31 Outgoing header pipe 32 Inverter 33 Temperature sensor 34 Temperature sensor 35 Flow meter 36 Chilled water secondary outgoing pipe 37 Chilled water secondary return pipe

Claims (6)

冷凍機と、
前記冷凍機の冷水出口側に冷水1次往配管で接続される第1往ヘッダと、
1次冷水ポンプを介して、前記冷凍機の冷水入口側に冷水1次往配管で接続される還ヘッダと、
前記第1往ヘッダと前記還ヘッダとを接続するバイパス管と、
2次冷水ポンプを介して、前記第1往ヘッダに往ヘッダ配管で接続される第2往ヘッダと、
前記第2往ヘッダと前記還ヘッダとの間に冷水2次往配管及び冷水2次還配管を介して接続される空調負荷と、
前記第2往ヘッダ又は前記冷水2次往配管に2次往温度計と、前記還ヘッダ又は前記冷水2次還配管に2次冷水還温度を計測する2次還温度計と、前記冷水2次還配管に2次冷水流量を計測する2次流量計と、
前記冷凍機および前記1次冷水ポンプを制御する制御装置と、
を備え、
前記制御装置は、
前記空調負荷の出口の前記2次還温度計と前記空調負荷の入口の前記2次往温度計の計測値の差である2次冷水温度差が設計値未満となるときに、前記2次還温度計と前記2次往温度計と前記2次流量計の各計測値から算出した2次側の負荷熱量と、前記2次冷水還温度計測値と冷凍機冷水出口温度と1次冷水流量から計算で求める1次側の生成熱量とが等しくなる条件で、かつ前記1次冷水ポンプが送水する1次冷水と、前記バイパス管を介して前記還ヘッダから前記第1往ヘッダへ流入する2次還冷水とが合流した2次冷水往温度が制御目標値である2次冷水往温度の設定値となるように、
前記2次冷水往温度の設定値と、前記2次冷水還温度と、前記2次冷水流量を用いて、冷凍機冷水出口温度を制御するための第1の制御設定値と、1次冷水流量を制御するための第2の制御設定値とを求め、前記第1の制御設定値および前記第2の制御設定値に基づいて前記冷凍機および前記1次冷水ポンプを制御する
ことを特徴とする熱源制御システム。
A refrigerator,
A first going header connected to a chilled water outlet side of the refrigerator by a chilled water first going pipe;
A return header connected to a chilled water inlet side of the refrigerator via a chilled water primary outgoing pipe via a chilled water pump;
A bypass pipe connecting the first header and the return header;
A second outgoing header connected to the first outgoing header via an outgoing header pipe via a secondary chilled water pump;
An air conditioning load connected between the second outgoing header and the return header via a chilled water secondary outgoing pipe and a chilled water secondary return pipe,
A second return thermometer for the second header or the cold water secondary return pipe, a secondary return thermometer for measuring a secondary cold water return temperature on the return header or the cold water secondary return pipe, A secondary flow meter for measuring the secondary chilled water flow rate in the return pipe,
A control device for controlling the refrigerator and the primary chilled water pump;
With
The control device includes:
When a secondary chilled water temperature difference, which is a difference between a measured value of the secondary return thermometer at the outlet of the air conditioning load and a measurement value of the secondary forward thermometer at the inlet of the air conditioning load, is smaller than a design value, the secondary return is performed. The load heat on the secondary side calculated from the measured values of the thermometer, the secondary outgoing thermometer, and the secondary flow meter, the measured value of the secondary chilled water return temperature , the refrigerator chilled water outlet temperature, and the primary chilled water flow rate Under the condition that the amount of heat generated on the primary side obtained by calculation from Eq. (1) is equal, and the primary chilled water supplied by the primary chilled water pump flows into the first header from the return header via the bypass pipe. The secondary chilled water outgoing temperature, where the secondary chilled water is merged, becomes the set value of the secondary chilled water outgoing temperature, which is the control target value,
Using the set value of the secondary chilled water forward temperature, the secondary chilled water return temperature, and the secondary chilled water flow rate, a first control set value for controlling the chiller chilled water outlet temperature, and the primary chilled water flow rate A second control set value for controlling the chiller and the first chilled water pump based on the first control set value and the second control set value. Heat source control system.
請求項1に記載の熱源制御システムにおいて、
前記制御装置は、
前記第1の制御設定値および前記第2の制御設定値に基づいて送水される1次冷水の前記冷凍機冷水出口温度を、前記2次冷水往温度の設定値よりも低い温度とする制御を行うことを特徴とする熱源制御システム。
The heat source control system according to claim 1,
The control device includes:
A control for setting the refrigerator cold water outlet temperature of the primary chilled water supplied based on the first control set value and the second control set value to a temperature lower than the set value of the secondary cold water forward temperature. A heat source control system characterized by performing.
請求項1または請求項2に記載の熱源制御システムにおいて、
前記制御装置は、
前記2次還温度計と前記2次往温度計と前記2次流量計の各計測値から算出した2次側の負荷熱量と前記2次冷水還温度計測値と前記冷凍機冷水出口温度と前記1次冷水流量から計算で求める1次側の生成熱量とが等しくなる条件で、かつ前記1次冷水ポンプの流量調整範囲内で前記冷凍機の出口と入口との間の1次冷水温度差が最大となる場合の前記第1の制御設定値および前記第2の制御設定値を求めることを特徴とする熱源制御システム。
In the heat source control system according to claim 1 or 2,
The control device includes:
The secondary return thermometer, the secondary forward thermometer, and the load heat on the secondary side calculated from the measurement values of the secondary flow meter, the secondary chilled water return temperature measured value, the refrigerator cold water outlet temperature, and The primary chilled water temperature difference between the outlet and the inlet of the refrigerator under the condition that the generated heat amount on the primary side calculated from the primary chilled water flow rate becomes equal and within the flow rate adjustment range of the primary chilled water pump. A heat source control system, wherein the first control set value and the second control set value at a maximum are obtained.
請求項3に記載の熱源制御システムにおいて、
前記制御装置は、
冷凍機冷水出口温度が下限値の場合に対応した仮の冷凍機冷水出口温度、あるいは、前記1次冷水流量が下限値の場合、前記バイパス管の流量が上限値の場合、前記1次冷水流量が2次冷水流量と等しくなる場合のいずれかに対応した仮の1次冷水流量を用いて、前記第1の制御設定値および前記第2の制御設定値の解を求めることを特徴とする熱源制御
システム。
The heat source control system according to claim 3,
The control device includes:
A temporary chiller chilled water outlet temperature corresponding to the case where the chilled chilled water outlet temperature is the lower limit value, or the primary chilled water flow rate when the primary chilled water flow rate is the lower limit value, the flow rate of the bypass pipe is the upper limit value. Wherein a solution of the first control set value and the second control set value is obtained by using a temporary primary chilled water flow rate corresponding to any of the cases where is equal to the secondary chilled water flow rate. control
system.
冷凍機と、前記冷凍機の冷水出口側に冷水1次往配管で接続される第1往ヘッダと、1次冷水ポンプを介して、前記冷凍機の冷水入口側に冷水1次往配管で接続される還ヘッダと、前記第1往ヘッダと前記還ヘッダとを接続するバイパス管と、2次冷水ポンプを介して、前記第1往ヘッダに往ヘッダ配管で接続される第2往ヘッダと、前記第2往ヘッダと前記還ヘッダとの間に冷水2次往配管及び冷水2次還配管を介して接続される空調負荷と、前記第2往ヘッダ又は前記冷水2次往配管に2次往温度計と、前記還ヘッダ又は前記冷水2次還配管に2次冷水還温度を計測する2次還温度計と、前記冷水2次還配管に2次冷水流量を計測する2次流量計と、制御装置と、
を備える熱源制御システムの制御方法であって、
前記空調負荷の出口の前記2次還温度計と前記空調負荷の入口の前記2次往温度計の計測値の差である2次冷水温度差が設計値未満となるときに、前記2次還温度計と前記2次往温度計と前記2次流量計の各計測値から算出した2次側の負荷熱量と、前記2次冷水還温度計測値と冷凍機冷水出口温度と1次冷水流量から計算で求める1次側の生成熱量とが等しくなる条件で、かつ前記1次冷水ポンプが送水する1次冷水と、前記バイパス管を介して前記還ヘッダから前記第1往ヘッダへ流入する2次還冷水とが合流した2次冷水往温度が制御目標値である2次冷水往温度の設定値となるように、
前記制御装置が、前記2次冷水往温度の設定値と、前記2次冷水還温度と、前記2次冷水流量を用いて、冷凍機冷水出口温度を制御するための第1の制御設定値と、1次冷水流量を制御するための第2の制御設定値とを求め、
前記制御装置が、前記第1の制御設定値および前記第2の制御設定値に基づいて前記冷凍機および前記1次冷水ポンプを制御する
ことを特徴とする熱源制御システムの制御方法。
A chiller, a first outgoing header connected to a chilled water outlet side of the chiller by a first chilled water outgoing pipe, and a first chilled water pump connected to the chilled water inlet side of the chiller through a first chilled water pump. Return header, a bypass pipe connecting the first header and the return header, a second header connected to the first header via a secondary chilled water pump via a header pipe, An air conditioning load connected between the second outgoing header and the return header via a chilled water secondary outgoing pipe and a chilled water secondary returning pipe; and a second outgoing feed to the second outgoing header or the chilled water secondary outgoing pipe. A thermometer, a secondary return thermometer that measures a secondary chilled water return temperature in the return header or the chilled water secondary return pipe, and a secondary flow meter that measures a secondary chilled water flow rate in the chilled water secondary return pipe, A control device;
A control method for a heat source control system comprising:
When a secondary chilled water temperature difference, which is a difference between a measured value of the secondary return thermometer at the outlet of the air conditioning load and a measurement value of the secondary forward thermometer at the inlet of the air conditioning load, is smaller than a design value, the secondary return is performed. The load heat on the secondary side calculated from the measured values of the thermometer, the secondary outgoing thermometer, and the secondary flow meter, the measured value of the secondary chilled water return temperature , the refrigerator chilled water outlet temperature, and the primary chilled water flow rate Under the condition that the amount of heat generated on the primary side obtained by calculation from Eq. (1) is equal, and the primary chilled water supplied by the primary chilled water pump flows into the first header from the return header via the bypass pipe. The secondary chilled water outgoing temperature, where the secondary chilled water is merged, becomes the set value of the secondary chilled water outgoing temperature, which is the control target value,
The control device is configured to use the set value of the secondary chilled water forward temperature, the secondary chilled water return temperature, and the secondary chilled water flow rate to control a chiller chilled water outlet temperature, and a first control set value. And a second control set value for controlling the primary chilled water flow rate,
The control method of a heat source control system, wherein the control device controls the refrigerator and the primary chilled water pump based on the first control set value and the second control set value.
冷凍機と、前記冷凍機の冷水出口側に冷水1次往配管で接続される第1往ヘッダと、1次冷水ポンプを介して、前記冷凍機の冷水入口側に冷水1次往配管で接続される還ヘッダと、前記第1往ヘッダと前記還ヘッダとを接続するバイパス管と、2次冷水ポンプを介して、前記第1往ヘッダに往ヘッダ配管で接続される第2往ヘッダと、前記第2往ヘッダと前記還ヘッダとの間に冷水2次往配管及び冷水2次還配管を介して接続される空調負荷と、前記第2往ヘッダ又は前記冷水2次往配管に2次往温度計と、前記還ヘッダ又は前記冷水2次還配管に2次冷水還温度を計測する2次還温度計と、前記冷水2次還配管に2次冷水流量を計測する2次流量計と、を備える熱源制御システムに適用される制御装置であって、
前記空調負荷の出口の前記2次還温度計と前記空調負荷の入口の前記2次往温度計の計測値の差である2次冷水温度差が設計値未満となるときに、前記2次還温度計と前記2次往温度計と前記2次流量計の各計測値から算出した2次側の負荷熱量と、前記2次冷水還温度計測値と冷凍機冷水出口温度と1次冷水流量から計算で求める1次側の生成熱量とが等しくなる条件で、かつ前記1次冷水ポンプが送水する1次冷水と、前記バイパス管を介して前記還ヘッダから前記第1往ヘッダへ流入する2次還冷水とが合流した2次冷水往温度が制御目標値である2次冷水往温度の設定値となるように、
前記2次冷水往温度の設定値と、前記2次冷水還温度と、前記2次冷水流量を用いて、冷凍機冷水出口温度を制御するための第1の制御設定値と、1次冷水流量を制御するための第2の制御設定値とを求める処理と、
前記第1の制御設定値および前記第2の制御設定値に基づいて前記冷凍機および前記1次冷水ポンプを制御する処理と、
を実行することを特徴とする制御装置。
A chiller, a first outgoing header connected to a chilled water outlet side of the chiller by a chilled water primary outgoing pipe, and a chilled water inlet side connected to the chilled water inlet side of the chiller through a primary chilled water pump. Return header, a bypass pipe connecting the first header and the return header, a second header connected to the first header via a secondary chilled water pump via a header pipe, An air conditioning load connected between the second outgoing header and the return header via a chilled water secondary outgoing pipe and a chilled water secondary returning pipe; and a second outgoing feed to the second outgoing header or the chilled water secondary outgoing pipe. A thermometer, a secondary return thermometer that measures a secondary chilled water return temperature in the return header or the chilled water secondary return pipe, and a secondary flow meter that measures a secondary chilled water flow rate in the chilled water secondary return pipe, A control device applied to a heat source control system including:
When a secondary chilled water temperature difference, which is a difference between a measured value of the secondary return thermometer at the outlet of the air conditioning load and a measurement value of the secondary forward thermometer at the inlet of the air conditioning load, is smaller than a design value, the secondary return is performed. The load heat on the secondary side calculated from the measured values of the thermometer, the secondary outgoing thermometer, and the secondary flow meter, the measured value of the secondary chilled water return temperature , the refrigerator chilled water outlet temperature, and the primary chilled water flow rate Under the condition that the amount of heat generated on the primary side obtained by calculation from Eq. (1) is equal, and the primary chilled water supplied by the primary chilled water pump flows into the first header from the return header via the bypass pipe. The secondary chilled water outgoing temperature, where the secondary chilled water is merged, becomes the set value of the secondary chilled water outgoing temperature, which is the control target value,
Using the set value of the secondary chilled water forward temperature, the secondary chilled water return temperature, and the secondary chilled water flow rate, a first control set value for controlling the chiller chilled water outlet temperature, and the primary chilled water flow rate Obtaining a second control set value for controlling
A process of controlling the refrigerator and the primary chilled water pump based on the first control set value and the second control set value;
A control device characterized by performing:
JP2016010982A 2016-01-22 2016-01-22 Heat source control system, control method and control device Active JP6644559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016010982A JP6644559B2 (en) 2016-01-22 2016-01-22 Heat source control system, control method and control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016010982A JP6644559B2 (en) 2016-01-22 2016-01-22 Heat source control system, control method and control device

Publications (2)

Publication Number Publication Date
JP2017129340A JP2017129340A (en) 2017-07-27
JP6644559B2 true JP6644559B2 (en) 2020-02-12

Family

ID=59396202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016010982A Active JP6644559B2 (en) 2016-01-22 2016-01-22 Heat source control system, control method and control device

Country Status (1)

Country Link
JP (1) JP6644559B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7017406B2 (en) 2017-12-27 2022-02-08 三菱重工サーマルシステムズ株式会社 Control device, refrigerator system, control method and program
JP7093649B2 (en) * 2018-03-08 2022-06-30 三機工業株式会社 Heat source system and its control method
CN108759991B (en) * 2018-06-21 2021-01-05 广东美的暖通设备有限公司 Measurement error diagnosis method and device for sensor in air conditioning system and air conditioning system
KR20210121850A (en) * 2020-03-31 2021-10-08 엘지전자 주식회사 Heat pump and method thereof
CN114440419B (en) * 2021-12-31 2023-10-27 博锐尚格科技股份有限公司 Control method, device, equipment and storage medium of cold station secondary pump system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10213339A (en) * 1997-01-30 1998-08-11 Mitsubishi Electric Corp Air conditioner
JP4388637B2 (en) * 1999-08-27 2009-12-24 高砂熱学工業株式会社 Air conditioner
JP2008070067A (en) * 2006-09-15 2008-03-27 Yamatake Corp Device and method for determining number of operating refrigerators
JP5515166B2 (en) * 2009-04-28 2014-06-11 株式会社大気社 Heat source system
JP5492712B2 (en) * 2010-09-09 2014-05-14 アズビル株式会社 Water supply temperature control apparatus and method
JP2013170753A (en) * 2012-02-21 2013-09-02 Hitachi High-Tech Control Systems Corp Refrigerator system
JP6297324B2 (en) * 2013-12-18 2018-03-20 三菱重工サーマルシステムズ株式会社 Refrigeration system and control method thereof

Also Published As

Publication number Publication date
JP2017129340A (en) 2017-07-27

Similar Documents

Publication Publication Date Title
JP6644559B2 (en) Heat source control system, control method and control device
JP6334230B2 (en) Refrigerator system
KR101508448B1 (en) Heat source system and number-of-machines control method for heat source system
JP5501179B2 (en) Medium temperature source system with free cooling
US9562701B2 (en) Temperature control system and air conditioning system
JP5274222B2 (en) Heat source control system for air conditioning equipment
US20110030405A1 (en) Heat source system and control method thereof
RU2535271C1 (en) Heat source
JP2013170753A (en) Refrigerator system
JP2013002757A (en) Heat source system and control method of the same
JP6681896B2 (en) Refrigeration system
WO2012096265A1 (en) Heat source system, control method therfor, and program therefor
JP2007127321A (en) Cold water load factor controller for refrigerator
JP5227247B2 (en) Heat source system operating method and heat source system
JP6434848B2 (en) Heat source control system
JP4523461B2 (en) Operation control method for 1-pump heat source equipment
JP2008309428A (en) Flow rate control device of heat source system and flow rate control method of heat source system
JP4440147B2 (en) Operation control method for two-pump heat source equipment
JP5286479B2 (en) Cold water circulation system
JP2011226680A (en) Cooling water producing facility
JP2001241735A (en) Air conditioning system and its controlling method
JP5195696B2 (en) Cold water circulation system
JP6523798B2 (en) Heat source equipment and heat source equipment control method
JP3550336B2 (en) Air conditioning system
JP2006266566A (en) Operation control method for two pump system heating source facility

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20170510

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200108

R150 Certificate of patent or registration of utility model

Ref document number: 6644559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150