JP2007127321A - Cold water load factor controller for refrigerator - Google Patents

Cold water load factor controller for refrigerator Download PDF

Info

Publication number
JP2007127321A
JP2007127321A JP2005319690A JP2005319690A JP2007127321A JP 2007127321 A JP2007127321 A JP 2007127321A JP 2005319690 A JP2005319690 A JP 2005319690A JP 2005319690 A JP2005319690 A JP 2005319690A JP 2007127321 A JP2007127321 A JP 2007127321A
Authority
JP
Japan
Prior art keywords
refrigerator
chilled water
cold water
load
load factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005319690A
Other languages
Japanese (ja)
Inventor
Masayasu Nishinosono
雅靖 西之園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2005319690A priority Critical patent/JP2007127321A/en
Publication of JP2007127321A publication Critical patent/JP2007127321A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/13Pump speed control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cold water load factor controller for a refrigerator realizing high energy saving by predicting refrigerator electric power by the controller, and controlling a cold water load factor (a cold water flow rate) of a cold water pump so as to minimize the refrigerator electric power. <P>SOLUTION: In a cold water manufacturing system using a plurality of refrigerators 23, a cooling water temperature measuring means 27 is provided for measuring a cooling water temperature of a refrigerator inlet, and a cold water load factor per cooling water temperature and a partial load characteristic being a function of the refrigerator electric power are inputted into the controller 26. In the controller, a cold water temperature and the cold water flow rate of a return passage side are measured by a return passage side cold water thermometer 15 and a return passage side flowmeter 13, a cold water total heating value is calculated on the basis of these, a refrigerator inlet cooling water temperature is measured by the cooling water temperature measuring means, each refrigerator electric power per load factor is calculated from the partial load characteristic, a combination of load factors satisfying a necessary refrigerating capacity with respect to the cold water total heating value and minimizing a total of electric power is predicted, and a rotational frequency of the cold water pump is controlled such that the predicted load factor is provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、複数台の冷凍機を用いた冷水製造システムにおいて、冷凍機の効率が最適になるように冷水負荷を分担させる冷凍機の冷水負荷率制御装置に関するものである。   The present invention relates to a cold water load factor control device for a refrigerator that shares a cold water load so that the efficiency of the refrigerator is optimized in a cold water production system using a plurality of refrigerators.

冷水製造システムは、工場、病院、ビルにおける空調や装置冷却等、幅広い分野で使用されているが、大量のエネルギーを消費するため、省エネを考慮したシステム構築が必要不可欠なものとなっている。   Chilled water production systems are used in a wide range of fields such as air conditioning and equipment cooling in factories, hospitals, and buildings. However, since a large amount of energy is consumed, it is indispensable to construct a system that considers energy saving.

図2に従来の一般的な冷水製造システムを示す。図において、11は空調機、熱交換器等からなる冷水負荷で、冷水のユースポイントである。12は冷水負荷11の入口側に設けられた往路側冷水2次ヘッダー、13は冷水負荷11の出口側に設けられた還路側冷水流量計、14は往路側冷水2次ヘッダー12に取り付けられた往路側ヘッダー温度計、15は還路側冷水温度計、16は複数台(図では3台)の2次冷水ポンプで、2次冷水ポンプ1〜3である。17は往路側冷水1次ヘッダー、18は還路側冷水1次ヘッダー、19は冷凍機出口流量計、20は複数台(図では2台)の1次冷水ポンプで、1次冷水ポンプ1及び1次冷水ポンプ2である。21は冷凍機出口温度計、22は冷凍機入口温度計、23は複数台(図では2台)のターボ冷凍機で、ターボ冷凍機1及びターボ冷凍機2である。24は複数台(図では2台)の冷却水ポンプで、冷却水ポンプ1及び冷却水ポンプ2である。25は複数台(図では2台)の冷却塔で、冷却塔1及び冷却塔2である。26は制御装置である。
このシステムでは、ターボ冷凍機23を2台配置し、それぞれに1次冷水ポンプ20、冷却水ポンプ24、冷却塔25を備えている。また、ユースポイントである空調機コイル、熱交換器等の冷水負荷11への送水用として2次冷水ポンプ16を採用している。各ターボ冷凍機23で製造された冷水は、各1次冷水ポンプ20にて、往路側冷水1次ヘッダー17に送水され、合流した後、2次冷水ポンプ16によって往路側冷水2次ヘッダー12を通してユースポイントである冷水負荷11に送水される。送水された冷水は、熱交換後、還路側冷水1次ヘッダー18に戻り、各ターボ冷凍機23に戻る仕組みになっている。
FIG. 2 shows a conventional general cold water production system. In the figure, reference numeral 11 denotes a cold water load composed of an air conditioner, a heat exchanger and the like, which is a use point of cold water. Reference numeral 12 denotes a forward side cold water secondary header provided on the inlet side of the cold water load 11, reference numeral 13 denotes a return side cold water flow meter provided on the outlet side of the cold water load 11, and reference numeral 14 denotes an outgoing side cold water secondary header 12. A forward side header thermometer, 15 is a return side cold water thermometer, 16 is a plurality of (three in the figure) secondary chilled water pumps, which are secondary chilled water pumps 1 to 3. Reference numeral 17 is a forward cold water primary header, 18 is a return cold water primary header, 19 is a refrigerator outlet flowmeter, and 20 is a plurality of (two in the figure) primary cold water pumps. This is a secondary cold water pump 2. Reference numeral 21 denotes a refrigerator outlet thermometer, reference numeral 22 denotes a refrigerator inlet thermometer, reference numeral 23 denotes a plurality of (two in the figure) turbo refrigerators, which are the turbo refrigerator 1 and the turbo refrigerator 2. Reference numeral 24 denotes a plurality of (two in the figure) cooling water pumps, which are the cooling water pump 1 and the cooling water pump 2. Reference numeral 25 denotes a plurality of cooling towers (two in the figure), which are the cooling tower 1 and the cooling tower 2. Reference numeral 26 denotes a control device.
In this system, two turbo chillers 23 are arranged, each having a primary chilled water pump 20, a cooling water pump 24, and a cooling tower 25. Moreover, the secondary chilled water pump 16 is employ | adopted for the water supply to the chilled water loads 11, such as an air-conditioner coil and a heat exchanger which are use points. The chilled water produced by each turbo chiller 23 is sent to the forward-side chilled water primary header 17 by each primary chilled water pump 20 and merges, and then passes through the forward-side chilled water secondary header 12 by the secondary chilled water pump 16. Water is sent to the cold water load 11 which is a use point. The sent cold water returns to the return path side cold water primary header 18 and returns to each turbo refrigerator 23 after heat exchange.

図2のシステムは、ユースポイントである空調機コイル、熱交換器等の負荷(熱量)に応じて、ターボ冷凍機23の運転台数をコントロールしている。冷水1次ヘッダー18の入口側に取り付けた冷水温度計15、冷水流量計13により、還路側の冷水温度並びに2次冷水流量を計測する。これらの計測値を基に制御装置26は、冷水総熱量を計算し、ターボ冷凍機23の運転台数を決定する。   The system in FIG. 2 controls the number of operating turbo chillers 23 according to the load (heat amount) of air conditioner coils and heat exchangers that are use points. The chilled water temperature meter 15 and the chilled water flow meter 13 attached to the inlet side of the chilled water primary header 18 measure the chilled water temperature on the return path side and the secondary chilled water flow rate. Based on these measured values, the control device 26 calculates the total amount of chilled water heat and determines the number of operating turbo chillers 23.

また、図2のシステムは、1次冷水流量と2次冷水流量の比率に応じて、1次冷水ポンプ20の回転数制御を行っている。また、制御装置26は、各ターボ冷凍機23の出口に取り付けた冷凍機出口流量計19により1次冷水流量を計測し、合計する。その結果と上記2次冷水流量を比較し、2次冷水流量=1次冷水流量となるように1次冷水ポンプ20の流量を決定し、それらの定格流量比(=冷凍機の定格容量比)で各々の回転数を制御している。   Further, the system of FIG. 2 performs the rotational speed control of the primary chilled water pump 20 in accordance with the ratio between the primary chilled water flow rate and the secondary chilled water flow rate. Further, the control device 26 measures the primary chilled water flow rate by the refrigerator outlet flow meter 19 attached to the outlet of each turbo refrigerator 23 and totals them. The result is compared with the above secondary chilled water flow rate, the flow rate of the primary chilled water pump 20 is determined so that the secondary chilled water flow rate = the primary chilled water flow rate, and the rated flow rate ratio (= the rated capacity ratio of the refrigerator). The number of rotations is controlled by.

また、従来技術として、冷温熱媒体を循環供給して空調を行う空調設備において、空調設備を構成する冷温熱発生機、ポンプ等の機器のシミュレーションモデルを備え、シミュレーションにより評価関数を最小或いは最大とする最適制御目標値を決定し、最適制御目標値で空調設備を運転するものが提案されている(例えば、特許文献1参照)。   In addition, as a conventional technology, in an air conditioning facility that circulates and supplies a cold / hot medium, air conditioning equipment is equipped with a simulation model of equipment such as a cool / heat generator and a pump constituting the air conditioning facility, and the evaluation function is minimized or maximized by simulation. An optimal control target value to be determined is determined and the air conditioning equipment is operated with the optimal control target value (for example, see Patent Document 1).

特開2005−134110号公報JP 2005-134110 A

従来の冷水製造システムは、以上のような制御を実施しているため、冷水負荷(熱量)は、冷凍機の効率に関係なく、冷水ポンプの定格流量比で均等配分されるので、最も効率の高い冷凍機の能力が十分発揮されておらず、無駄な電力を消費している。冷凍機の電力が最小となるように、それらの冷水負荷率(冷水流量)をコントロールすれば、より高い省エネ効果を生むことになる。   Since the conventional chilled water production system performs the control as described above, the chilled water load (heat quantity) is evenly distributed according to the rated flow rate ratio of the chilled water pump regardless of the efficiency of the refrigerator. The capacity of the high refrigerator is not fully demonstrated, and wasteful power is consumed. If the chilled water load factor (chilled water flow rate) is controlled so that the electric power of the refrigerator is minimized, a higher energy saving effect is produced.

また、特許文献1記載の空調設備は、空調設備を構成する冷温熱発生機、ポンプ等の機器のシミュレーションモデルを備え、シミュレーションにより評価関数を最小或いは最大とする最適制御目標値を決定し、最適制御目標値で空調設備を運転するものであり、冷凍機の効率が最適になるように冷水負荷を分担させるものではない。   The air conditioning facility described in Patent Document 1 includes a simulation model of a device such as a cold / hot heat generator or a pump that constitutes the air conditioning facility, and determines the optimum control target value that minimizes or maximizes the evaluation function by simulation. The air conditioning equipment is operated with the control target value, and the cold water load is not shared so that the efficiency of the refrigerator is optimized.

この発明は、上記のような課題を解決するためになされたものであり、冷凍機の電力を制御装置で随時予測し、冷凍機の電力が最小になるように冷水ポンプの冷水負荷率(冷水流量)を制御して、より高い省エネを実現する冷凍機の冷水負荷率制御装置を提供するものである。   The present invention has been made to solve the above-described problems, and predicts the power of the refrigerator as needed by the control device, and the cold water load factor (cold water) of the cold water pump so that the power of the refrigerator is minimized. The present invention provides a chilled water load factor control device for a refrigerator that realizes higher energy saving by controlling the flow rate.

この発明に係る冷凍機の冷水負荷率制御装置においては、冷水のユースポイントである冷水負荷と、冷水負荷の入口側に設けられた往路側冷水ヘッダーと、冷水負荷の出口側に設けられた還路側冷水流量計と、往路側ヘッダー温度計と、還路側冷水温度計と、還路側冷水ヘッダーと、冷凍機出口流量計と、複数台の1次冷水ポンプと、冷凍機出口温度計と、冷凍機入口温度計と、複数台のターボ冷凍機と、複数台の冷却水ポンプと、複数台の冷却塔と、制御装置とを備え、各ターボ冷凍機で製造された冷水を、各1次冷水ポンプにて、往路側冷水ヘッダーを通して冷水負荷に送水し、冷水負荷で熱交換後、還路側冷水ヘッダーを通して各ターボ冷凍機に戻るように構成された複数台の冷凍機を用いた冷水製造システムにおいて、冷凍機入口の冷却水温度を測定する冷却水温度測定手段を設け、制御装置に冷却水温度毎の冷凍機冷水負荷率と冷凍機電力の関数である部分負荷特性を入力し、制御装置は、還路側冷水温度計と還路側流量計により還路側の冷水温度並びに冷水流量を計測し、これらの計測値を基に冷水総熱量を計算し、さらに、冷却水温度測定手段により冷凍機入口冷却水温度を計測し、部分負荷特性から負荷率毎の各冷凍機電力を計算し、その結果から冷水総熱量に対して必要な冷凍能力を満足し、かつ、電力の合計が最小となる負荷率の組み合わせを予測し、予測した負荷率となるように冷水ポンプの回転数を制御するものである。   In the chilled water load factor control device for a refrigerator according to the present invention, a chilled water load that is a use point of chilled water, a forward-side chilled water header provided on the inlet side of the chilled water load, and a return provided on the outlet side of the chilled water load. Roadside chilled water flow meter, Outward side header thermometer, Return side chilled water thermometer, Return side chilled water header, chiller outlet flow meter, multiple primary chilled water pumps, chiller outlet thermometer, refrigeration An inlet thermometer, a plurality of turbo chillers, a plurality of cooling water pumps, a plurality of cooling towers, and a control device are provided, and the chilled water produced by each turbo chiller is converted into each primary chilled water. In a chilled water production system using multiple chillers configured to pump water to the chilled water load through the forward-side chilled water header, exchange heat with the chilled water load, and return to each turbo chiller through the return-side chilled water header Of the refrigerator entrance A cooling water temperature measuring means for measuring the rejection water temperature is provided, and a partial load characteristic that is a function of the refrigerator cooling water load factor and the refrigerator power for each cooling water temperature is input to the control device. Measure the chilled water temperature and chilled water flow rate on the return side with the flowmeter and the return side flow meter, calculate the total amount of chilled water based on these measured values, and measure the cooling water temperature at the refrigerator inlet with the cooling water temperature measurement means. Calculate the power of each refrigerator for each load factor from the partial load characteristics, and predict the combination of load factors that satisfies the required refrigeration capacity for the total amount of chilled water and minimizes the total power from the result. The number of rotations of the chilled water pump is controlled so that the predicted load factor is obtained.

この発明によれば、冷凍機の電力が最小になり、高い省エネ効果を得ることができる。   According to this invention, the power of the refrigerator is minimized and a high energy saving effect can be obtained.

実施の形態1.
図1はこの発明の実施の形態1における冷凍機の冷水負荷率制御装置を示すシステム構成図である。
図において、11は空調機、熱交換器等からなる冷水負荷で、冷水のユースポイントである。12は冷水負荷11の入口側に設けられた往路側冷水2次ヘッダー、13は冷水負荷11の出口側に設けられた還路側冷水流量計、14は往路側冷水2次ヘッダー12に取り付けられた往路側ヘッダー温度計、15は還路側冷水温度計、16は複数台(図では3台)の2次冷水ポンプで、2次冷水ポンプ1〜3である。17は往路側冷水1次ヘッダー、18は還路側冷水1次ヘッダー、19は冷凍機出口流量計、20は複数台(図では2台)の1次冷水ポンプで、1次冷水ポンプ1及び1次冷水ポンプ2である。21は冷凍機出口温度計、22は冷凍機入口温度計、23は複数台(図では2台)のターボ冷凍機で、ターボ冷凍機1及びターボ冷凍機2である。24は複数台(図では2台)の冷却水ポンプで、冷却水ポンプ1及び冷却水ポンプ2である。25は複数台(図では2台)の冷却塔で、冷却塔1及び冷却塔2である。26は制御装置である。
このシステムでは、ターボ冷凍機23を2台配置し、それぞれに1次冷水ポンプ20、冷却水ポンプ24、冷却塔25を備えている。また、ユースポイントである空調機コイル、熱交換器等の冷水負荷11への送水用として2次冷水ポンプ16を採用している。各ターボ冷凍機23で製造された冷水は、各1次冷水ポンプ20にて、往路側冷水1次ヘッダー17に送水され、合流した後、2次冷水ポンプ16によって往路側冷水2次ヘッダー12を通してユースポイントである冷水負荷11に送水される。送水された冷水は、熱交換後、還路側冷水1次ヘッダー18に戻り、各ターボ冷凍機23に戻る仕組みになっている。
以上の構成は従来の構成と同一である。
Embodiment 1 FIG.
FIG. 1 is a system configuration diagram showing a chilled water load factor control device for a refrigerator according to Embodiment 1 of the present invention.
In the figure, reference numeral 11 denotes a cold water load composed of an air conditioner, a heat exchanger and the like, which is a use point of cold water. Reference numeral 12 denotes a forward side cold water secondary header provided on the inlet side of the cold water load 11, reference numeral 13 denotes a return side cold water flow meter provided on the outlet side of the cold water load 11, and reference numeral 14 denotes an outgoing side cold water secondary header 12. A forward side header thermometer, 15 is a return side cold water thermometer, 16 is a plurality of (three in the figure) secondary chilled water pumps, which are secondary chilled water pumps 1 to 3. Reference numeral 17 is a forward cold water primary header, 18 is a return cold water primary header, 19 is a refrigerator outlet flowmeter, and 20 is a plurality of (two in the figure) primary cold water pumps. This is a secondary cold water pump 2. Reference numeral 21 denotes a refrigerator outlet thermometer, reference numeral 22 denotes a refrigerator inlet thermometer, reference numeral 23 denotes a plurality of (two in the figure) turbo refrigerators, which are the turbo refrigerator 1 and the turbo refrigerator 2. Reference numeral 24 denotes a plurality of (two in the figure) cooling water pumps, which are the cooling water pump 1 and the cooling water pump 2. Reference numeral 25 denotes a plurality of cooling towers (two in the figure), which are the cooling tower 1 and the cooling tower 2. Reference numeral 26 denotes a control device.
In this system, two turbo chillers 23 are arranged, each having a primary chilled water pump 20, a cooling water pump 24, and a cooling tower 25. Moreover, the secondary chilled water pump 16 is employ | adopted for the water supply to the chilled water loads 11, such as an air-conditioner coil and a heat exchanger which are use points. The chilled water produced by each turbo chiller 23 is sent to the forward-side chilled water primary header 17 by each primary chilled water pump 20 and merges, and then passes through the forward-side chilled water secondary header 12 by the secondary chilled water pump 16. Water is sent to the cold water load 11 which is a use point. The sent cold water returns to the return path side cold water primary header 18 and returns to each turbo refrigerator 23 after heat exchange.
The above configuration is the same as the conventional configuration.

この発明の特徴とするところは、冷凍機入口の冷却水温度を測定する手段としての冷凍機入口冷却水温度計27を設けた点である。また、制御装置26に冷凍機23の部分負荷特性を予めインプットする手段を設ける。部分負荷特性とは、冷却水温度毎の冷凍機冷水負荷率と冷凍機電力を表わした関数である。また、制御装置26は、還路側冷水1次ヘッダー18の入口に取り付けた温度計15と流量計13により還路側の冷水温度並びに2次冷水流量を計測し、これらの計測値を基に冷水総熱量を計算する手段を設ける。これにより、制御装置26は必要冷凍能力を決定する。更にまた、制御装置26は、冷凍機入口冷却水温度計27により冷凍機入口冷却水温度を計測し、上記部分負荷特性から冷水負荷率毎の各冷凍機電力を計算する手段、及びその結果から冷水総熱量に対して必要な冷凍能力を満足し、かつ、電力の合計が最小となる負荷率の組み合わせを予測する手段を設ける。そして、予測した負荷率となるように冷水ポンプの回転数を制御する。また、制御手段26は、経年劣化による冷凍機の効率の低下等により、部分負荷特性が変動した場合を考慮し、上記制御を実施後、実際の冷凍機電力を計測し、制御装置26の部分負荷特性を更新する手段を設ける。
なお、ターボ冷凍機23の定格冷凍能力は2台とも2637KWである。
The feature of the present invention is that a refrigerator inlet cooling water thermometer 27 is provided as means for measuring the cooling water temperature at the refrigerator inlet. The control device 26 is provided with means for inputting in advance the partial load characteristics of the refrigerator 23. The partial load characteristic is a function representing a refrigerator cold water load factor and refrigerator power for each cooling water temperature. Further, the control device 26 measures the chilled water temperature and the secondary chilled water flow rate on the return path side with the thermometer 15 and the flow meter 13 attached to the inlet of the return path side chilled water primary header 18, and the total chilled water flow is based on these measured values. A means for calculating the amount of heat is provided. Thereby, the control apparatus 26 determines required refrigerating capacity. Furthermore, the control device 26 measures the refrigerator inlet cooling water temperature by the refrigerator inlet cooling water thermometer 27, calculates each refrigerator electric power for each cold water load factor from the partial load characteristics, and the result. Means are provided for predicting a combination of load factors that satisfies the required refrigeration capacity with respect to the total amount of chilled water heat and that minimizes the total power. And the rotation speed of a cold water pump is controlled so that it may become the estimated load factor. Further, the control means 26 takes into account the case where the partial load characteristics fluctuate due to a decrease in the efficiency of the refrigerator due to deterioration over time, etc., and after performing the above control, measures the actual refrigerator power, Means are provided for updating the load characteristics.
The rated refrigeration capacity of the turbo chiller 23 is 2637 KW for both units.

次に、この発明の具体的な実施例について図1及び表1〜表4に基づいて説明する。
冷凍機の部分負荷特性により、冷却水温度1℃刻みの冷凍機冷水負荷率と冷凍機電力の関数を作成し、制御装置26にインプットする。表1、表2は冷却水温度毎の負荷率と冷凍機電力の関数である。但し、冷凍機の特性上、負荷率20%以下の運転は不可である。また、ターボ冷凍機23の冷却水は、インバータ機で13℃〜32℃、定速機で20℃〜32℃になるように制御されるので、この範囲以外のデータは使用しない。
Next, specific embodiments of the present invention will be described with reference to FIG. 1 and Tables 1 to 4.
Based on the partial load characteristics of the refrigerator, a function of the refrigerator cold water load factor and the refrigerator power in units of 1 ° C. of the cooling water temperature is created and input to the control device 26. Tables 1 and 2 are functions of the load factor and the refrigerator power for each cooling water temperature. However, due to the characteristics of the refrigerator, operation with a load factor of 20% or less is not possible. Moreover, since the cooling water of the turbo refrigerator 23 is controlled to be 13 ° C. to 32 ° C. by the inverter machine and 20 ° C. to 32 ° C. by the constant speed machine, data outside this range is not used.

Figure 2007127321
Figure 2007127321

Figure 2007127321
Figure 2007127321

次に、往路側冷水2次ヘッダー12に取り付けられた往路側ヘッダー温度計14、還路側冷水1次ヘッダー18の入口側に設けられた還路側冷水温度計15及び還路側冷水流量計13により往路側の冷水温度、還路側の冷水温度並びに2次冷水流量を計測する。制御装置26は、これらの計測値を基に冷水総熱量を計算する。図1の場合は、往路側ヘッダー温度=7℃、還路側ヘッダー温度=17℃、2次冷水流量=318.3m/hであるので、冷水総熱量(KW)=(17−7)×318.3×1.16=3692KWとなる。 Next, the forward path header thermometer 14 attached to the forward path side cold water secondary header 12, the return path side cold water thermometer 15 provided on the inlet side of the return path side cold water primary header 18, and the return path side cold water flow meter 13. The cold water temperature on the side, the cold water temperature on the return path side, and the secondary cold water flow rate are measured. The control device 26 calculates the total amount of cold water based on these measured values. In the case of FIG. 1, since the forward header temperature = 7 ° C., the return header temperature = 17 ° C., and the secondary chilled water flow rate = 318.3 m 3 / h, the chilled water total heat quantity (KW) = (17−7) × It becomes 318.3 * 1.16 = 3692KW.

さらに、運転中のターボ冷凍機の入口冷却水温度を計測し、上記の部分負荷特性関数から各冷凍機の電力を負荷率20%〜100%で1%毎に計算する。その結果を基に、冷水総熱量に対して必要な冷凍能力を満足し、かつ、電力の合計が最小となる負荷率の組み合わせを予測する。
冷水総熱量=3692KWを満足するためには、ターボ冷凍機1とターボ冷凍機2の負荷率の合計が140%必要である。冷却水測定温度が22℃であるので、冷却水温度22℃時の部分負荷特性から各冷凍機の電力を負荷率20%〜100%で1%毎に計算する。ここでは、説明の便宜上、10%刻みの結果を表3に示す。組み合わせ結果から、冷凍機1を60%、冷凍機2を80%で運転した時が497KWとなり、電力が最小となる。
Furthermore, the inlet cooling water temperature of the operating centrifugal chiller is measured, and the electric power of each chiller is calculated every 1% at a load factor of 20% to 100% from the partial load characteristic function. Based on the result, a combination of load factors that satisfies the refrigerating capacity necessary for the total amount of cold water and that minimizes the total power is predicted.
In order to satisfy the total amount of heat of cold water = 3692 KW, the total load factor of the turbo refrigerator 1 and the turbo refrigerator 2 needs to be 140%. Since the cooling water measurement temperature is 22 ° C., the power of each refrigerator is calculated every 1% with a load factor of 20% to 100% from the partial load characteristics at the cooling water temperature of 22 ° C. Here, for convenience of explanation, Table 3 shows the results in increments of 10%. From the combination result, when the refrigerator 1 is operated at 60% and the refrigerator 2 is operated at 80%, it becomes 497 kW, and the power becomes the minimum.

Figure 2007127321
Figure 2007127321

上記で計算した負荷率を基に各1次冷水ポンプ10の必要冷水量(=上記で予測した冷凍機の負荷率×定格冷水量)を決定し、1次冷水ポンプの性能特性(表4に示す各1次冷水ポンプの流量と周波数の関数)から各1次冷水ポンプの周波数を予測する。但し、冷凍機の特性上、流量50%以下または110%以上の運転は不可のため、この範囲のデータは使用しない。
冷凍機1を60%、冷凍機2を80%で運転する組み合わせを選択したので、表4より、1次冷水ポンプ1の運転周波数は31.3Hzとなり、また、1次冷水ポンプ2の運転周波数は38.3Hzとなる。この周波数により1次冷水ポンプの回転数制御を実施する。
Based on the load factor calculated above, the required amount of chilled water for each primary chilled water pump 10 (= the load factor of the refrigerator predicted above × the rated chilled water amount) is determined, and the performance characteristics of the primary chilled water pump (Table 4) The frequency of each primary chilled water pump is predicted from the function of the flow rate and frequency of each primary chilled water pump shown. However, due to the characteristics of the refrigerator, operation at a flow rate of 50% or less or 110% or more is not possible, so data in this range is not used.
Since the combination of operating the refrigerator 1 at 60% and the refrigerator 2 at 80% was selected, the operating frequency of the primary chilled water pump 1 is 31.3 Hz from Table 4, and the operating frequency of the primary chilled water pump 2 Becomes 38.3 Hz. The number of revolutions of the primary chilled water pump is controlled by this frequency.

Figure 2007127321
上記制御を実施後、冷凍機の電力、冷却水温度の計測を実施し、制御装置26にデータを蓄積する。そして、蓄積したデータにより、自動的に部分負荷特性を補正する。
Figure 2007127321
After the above control is performed, the power of the refrigerator and the cooling water temperature are measured, and data is accumulated in the control device 26. Then, the partial load characteristics are automatically corrected based on the accumulated data.

実施の形態2.
なお、上記実施の形態1では、部分負荷特性は冷却水温度毎の冷水負荷率と冷凍機電力の関数を使用したが、冷却水温度毎の冷水負荷率と冷凍機成績係数(COP)の関数を用いることもできる。COPは、冷水熱量(=負荷率×定格冷凍能力)/冷凍機電力で表わされ、電力による関数と全く同様の結果をもたらす。
Embodiment 2. FIG.
In the first embodiment, the partial load characteristic uses a function of the chilled water load factor and the chiller power for each cooling water temperature, but a function of the chilled water load factor and the chiller performance coefficient (COP) for each cooling water temperature. Can also be used. COP is expressed by the quantity of chilled water heat (= load factor × rated refrigeration capacity) / refrigerator power, and gives exactly the same result as a function by power.

この発明の実施の形態1における冷凍機の冷水負荷率制御装置を示すシステム構成図である。It is a system block diagram which shows the cold water load factor control apparatus of the refrigerator in Embodiment 1 of this invention. 従来の一般的な冷水製造システムを示すシステム構成図である。It is a system block diagram which shows the conventional common cold water manufacturing system.

符号の説明Explanation of symbols

11 冷水負荷(冷水のユースポイント)
12 往路側冷水2次ヘッダー
13 還路側冷水流量計
14 往路側ヘッダー温度計
15 還路側冷水温度計
16 2次冷水ポンプ
17 往路側冷水1次ヘッダー
18 還路側冷水1次ヘッダー
19 冷凍機出口流量計
20 1次冷水ポンプ
21 冷凍機出口温度計
22 冷凍機入口温度計
23 ターボ冷凍機
24 冷却水ポンプ
25 冷却塔
26 制御装置
27 冷凍機入口の冷却水温度を測定する手段(冷凍機入口冷却水温度計)
11 Cold water load (use point for cold water)
12 Outbound side cold water secondary header 13 Return path side cold water flow meter 14 Outbound side header thermometer 15 Return path side cold water thermometer 16 Secondary chilled water pump 17 Outbound side cold water primary header 18 Return path side cold water primary header 19 Refrigerator outlet flow meter 20 Primary chilled water pump 21 Refrigerator outlet thermometer 22 Refrigerator inlet thermometer 23 Turbo chiller 24 Cooling water pump 25 Cooling tower 26 Control device 27 Means for measuring the cooling water temperature at the chiller inlet (refrigerator inlet cooling water temperature Total)

Claims (3)

冷水のユースポイントである冷水負荷と、冷水負荷の入口側に設けられた往路側冷水ヘッダーと、冷水負荷の出口側に設けられた還路側冷水流量計と、往路側ヘッダー温度計と、還路側冷水温度計と、還路側冷水ヘッダーと、冷凍機出口流量計と、複数台の1次冷水ポンプと、冷凍機出口温度計と、冷凍機入口温度計と、複数台のターボ冷凍機と、複数台の冷却水ポンプと、複数台の冷却塔と、制御装置とを備え、各ターボ冷凍機で製造された冷水を、各1次冷水ポンプにて、往路側冷水ヘッダーを通して冷水負荷に送水し、冷水負荷で熱交換後、還路側冷水ヘッダーを通して各ターボ冷凍機に戻るように構成された複数台の冷凍機を用いた冷水製造システムにおいて、
冷凍機入口の冷却水温度を測定する冷却水温度測定手段を設け、前記制御装置に冷却水温度毎の冷凍機冷水負荷率と冷凍機電力の関数である部分負荷特性を入力し、前記制御装置は、前記還路側冷水温度計と還路側流量計により還路側の冷水温度並びに冷水流量を計測し、これらの計測値を基に冷水総熱量を計算し、さらに、前記冷却水温度測定手段により冷凍機入口冷却水温度を計測し、前記部分負荷特性から冷水負荷率毎の各冷凍機電力を計算し、その結果から冷水総熱量に対して必要な冷凍能力を満足し、かつ、電力の合計が最小となる負荷率の組み合わせを予測し、予測した負荷率となるように前記冷水ポンプの回転数を制御することを特徴とする冷凍機の冷水負荷率制御装置。
Chilled water load, which is the chilled water use point, the outward chilled water header provided on the inlet side of the chilled water load, the return side chilled water flow meter provided on the outlet side of the chilled water load, the outgoing header thermometer, and the return side Chilled water thermometer, return side chilled water header, refrigerator outlet flow meter, multiple primary chilled water pumps, refrigerator outlet thermometer, refrigerator inlet thermometer, multiple turbo refrigerators, multiple A cooling water pump, a plurality of cooling towers, and a control device, and the chilled water produced by each centrifugal chiller is sent to the chilled water load through the outgoing chilled water header by each primary chilled water pump, In a chilled water production system using a plurality of refrigerators configured to return to each turbo refrigerator through a return path side chilled water header after heat exchange with a chilled water load,
A cooling water temperature measuring means for measuring a cooling water temperature at the inlet of the refrigerator is provided, and a partial load characteristic that is a function of a refrigerator cooling water load factor and a refrigerator power for each cooling water temperature is input to the control device, and the control device Measures the chilled water temperature and the chilled water flow rate on the return side with the return side chilled water thermometer and the return side flow meter, calculates the total amount of chilled water based on these measured values, and further uses the cooling water temperature measuring means to Measure the cooling water temperature at the inlet of the machine, calculate the chiller power for each chilled water load factor from the partial load characteristics, and satisfy the required refrigeration capacity for the total amount of chilled water from the result, and the total power A chilled water load factor control device for a refrigerator, wherein a combination of load factors that is minimized is predicted, and the number of revolutions of the chilled water pump is controlled to achieve the predicted load factor.
制御装置は、経年劣化による冷凍機の効率の低下により、部分負荷特性が変動した場合実際の冷凍機電力を計測し、制御装置の部分負荷特性を更新することを特徴とする請求項1記載の冷凍機の冷水負荷率制御装置。   The control device updates the partial load characteristic of the control device by measuring the actual refrigerator power when the partial load characteristic varies due to a decrease in efficiency of the refrigerator due to deterioration over time. Cold water load factor control device for refrigerators. 部分負荷特性として、冷却水温度毎の冷凍機冷水負荷率と冷凍機電力の関数に代えて、冷却水温度毎の冷凍機冷水負荷率と冷凍機成績係数(COP)の関数を用いることを特徴とする請求項1又は請求項2記載の冷凍機の冷水負荷率制御装置。   As a partial load characteristic, a function of the refrigerator cold water load factor and the refrigerator coefficient of performance (COP) for each cooling water temperature is used instead of the function of the refrigerator cold water load factor and the refrigerator power for each cooling water temperature. The cold water load factor control device for a refrigerator according to claim 1 or 2.
JP2005319690A 2005-11-02 2005-11-02 Cold water load factor controller for refrigerator Pending JP2007127321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005319690A JP2007127321A (en) 2005-11-02 2005-11-02 Cold water load factor controller for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005319690A JP2007127321A (en) 2005-11-02 2005-11-02 Cold water load factor controller for refrigerator

Publications (1)

Publication Number Publication Date
JP2007127321A true JP2007127321A (en) 2007-05-24

Family

ID=38150120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005319690A Pending JP2007127321A (en) 2005-11-02 2005-11-02 Cold water load factor controller for refrigerator

Country Status (1)

Country Link
JP (1) JP2007127321A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121769A (en) * 2007-11-15 2009-06-04 Toshiba Mitsubishi-Electric Industrial System Corp Cold water supply method, cold water supply device and control method for cold water supply device
JP2009216259A (en) * 2008-03-07 2009-09-24 Hitachi Industrial Equipment Systems Co Ltd Operating method of refrigerator equipment and refrigerator equipment
JP2009250578A (en) * 2008-04-10 2009-10-29 Kawasaki Thermal Engineering Co Ltd Energy saving control operation method by stabilization of refrigerating machine cooling water temperature
JP2011169533A (en) * 2010-02-19 2011-09-01 Mitsubishi Heavy Ind Ltd Heat source system and method of controlling the same
JP2012141098A (en) * 2010-12-28 2012-07-26 Mitsubishi Heavy Ind Ltd Heat source system and its control method
CN106679023A (en) * 2016-12-31 2017-05-17 广州佳都信息技术研发有限公司 Comprehensive energy saving management system
JP2018087692A (en) * 2018-03-01 2018-06-07 荏原冷熱システム株式会社 Control device used for heat source system and heat source system equipped with the control device
CN111623491A (en) * 2020-06-11 2020-09-04 西安建筑科技大学 Variable speed water pump operation adjusting method based on collaborative optimization strategy
CN114934896A (en) * 2022-05-30 2022-08-23 广船国际有限公司 Water pump frequency conversion control method and system and ship
CN116345451A (en) * 2023-05-26 2023-06-27 电子科技大学 Operation control method and device for variable frequency temperature control load and terminal equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031376A (en) * 2000-07-19 2002-01-31 Aisin Seiki Co Ltd Air-conditioning system
JP2003120982A (en) * 2001-10-16 2003-04-23 Hitachi Ltd System for operating air conditioning facility and supporting system for design of air conditioning facility
JP2005114295A (en) * 2003-10-09 2005-04-28 Takasago Thermal Eng Co Ltd Heat source system and controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031376A (en) * 2000-07-19 2002-01-31 Aisin Seiki Co Ltd Air-conditioning system
JP2003120982A (en) * 2001-10-16 2003-04-23 Hitachi Ltd System for operating air conditioning facility and supporting system for design of air conditioning facility
JP2005114295A (en) * 2003-10-09 2005-04-28 Takasago Thermal Eng Co Ltd Heat source system and controller

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121769A (en) * 2007-11-15 2009-06-04 Toshiba Mitsubishi-Electric Industrial System Corp Cold water supply method, cold water supply device and control method for cold water supply device
JP2009216259A (en) * 2008-03-07 2009-09-24 Hitachi Industrial Equipment Systems Co Ltd Operating method of refrigerator equipment and refrigerator equipment
JP2009250578A (en) * 2008-04-10 2009-10-29 Kawasaki Thermal Engineering Co Ltd Energy saving control operation method by stabilization of refrigerating machine cooling water temperature
JP2011169533A (en) * 2010-02-19 2011-09-01 Mitsubishi Heavy Ind Ltd Heat source system and method of controlling the same
JP2012141098A (en) * 2010-12-28 2012-07-26 Mitsubishi Heavy Ind Ltd Heat source system and its control method
US9341401B2 (en) 2010-12-28 2016-05-17 Mitsubishi Heavy Industries, Ltd. Heat source system and control method therefor
CN106679023A (en) * 2016-12-31 2017-05-17 广州佳都信息技术研发有限公司 Comprehensive energy saving management system
JP2018087692A (en) * 2018-03-01 2018-06-07 荏原冷熱システム株式会社 Control device used for heat source system and heat source system equipped with the control device
CN111623491A (en) * 2020-06-11 2020-09-04 西安建筑科技大学 Variable speed water pump operation adjusting method based on collaborative optimization strategy
CN114934896A (en) * 2022-05-30 2022-08-23 广船国际有限公司 Water pump frequency conversion control method and system and ship
CN116345451A (en) * 2023-05-26 2023-06-27 电子科技大学 Operation control method and device for variable frequency temperature control load and terminal equipment
CN116345451B (en) * 2023-05-26 2023-08-11 电子科技大学 Operation control method and device for variable frequency temperature control load and terminal equipment

Similar Documents

Publication Publication Date Title
JP2007127321A (en) Cold water load factor controller for refrigerator
JP6334230B2 (en) Refrigerator system
KR101508448B1 (en) Heat source system and number-of-machines control method for heat source system
JP4505363B2 (en) Control method of cold / hot water in air conditioning system
JP5777929B2 (en) Operation control system for cold source equipment
US10181725B2 (en) Method for operating at least one distributed energy resource comprising a refrigeration system
JP6556065B2 (en) Operation plan system for heat source system, and operation plan judgment method for heat source system
JP2008215679A (en) Air conditioning equipment
WO2012173240A1 (en) Heat source system and control method of same
RU2535271C1 (en) Heat source
JP6644559B2 (en) Heat source control system, control method and control device
JP4166051B2 (en) Air conditioning system
WO2012096265A1 (en) Heat source system, control method therfor, and program therefor
JP2012042098A (en) Operation method of air conditioner and refrigerating machine
JP2007303725A (en) Device and method of deciding number of operated heat source machine
JP2007205605A (en) Air conditioning system
JP2006250443A (en) Operation control method in one pump-type heat source equipment
JP5492712B2 (en) Water supply temperature control apparatus and method
JP2011226680A (en) Cooling water producing facility
JP6523798B2 (en) Heat source equipment and heat source equipment control method
JP2014020630A (en) Heat source system
JP2006250445A (en) Operation control method in two pump-type heat source equipment
JP2010286126A (en) Cooling system and cooling method
JP5200497B2 (en) Chilled water supply method, chilled water supply device, and control method of chilled water supply device
JP2015169367A (en) Air conditioning system and air conditioning system control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101124