JP2011226680A - Cooling water producing facility - Google Patents

Cooling water producing facility Download PDF

Info

Publication number
JP2011226680A
JP2011226680A JP2010095135A JP2010095135A JP2011226680A JP 2011226680 A JP2011226680 A JP 2011226680A JP 2010095135 A JP2010095135 A JP 2010095135A JP 2010095135 A JP2010095135 A JP 2010095135A JP 2011226680 A JP2011226680 A JP 2011226680A
Authority
JP
Japan
Prior art keywords
cooling water
cooling
pump
towers
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010095135A
Other languages
Japanese (ja)
Inventor
Yuji Miyajima
裕二 宮島
Hironari Kikuchi
宏成 菊池
Toshito Takenami
敏人 竹浪
Hideo Hanaoka
秀夫 花岡
Itsushi Fukui
伊津志 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2010095135A priority Critical patent/JP2011226680A/en
Publication of JP2011226680A publication Critical patent/JP2011226680A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cooling water producing facility capable of preventing cooling capacity from lowering even when a flow rate of cooling water in a cooling tower is low.SOLUTION: Cooling water producing facility 10 includes two units of cooling towers 12 and 14, a cooling water pump 18, a load section 20, a piping system 22 that distributes cooling water into the cooling towers 12 and 14 to pass water therethrough in parallel, and a piping system 24 that passes cooling water through cooling towers 12 and 14 in series. A cooling water pump 26 is provided with the piping system 24. Operation of cooling water pumps 18 and 26 is halted when the flow rate of the cooling water is low. Series operation and parallel operation of the cooling towers 12 and 14 are launched by start and stop of the cooling water pumps 18 and 26. In the cooling water producing facility 10, the cooling towers 12 and 14 adopts a piping system to be a parallel connection at the time of a maximum load, and when the flow rate of the cooling water is low, the cooling water pump 26 performs ON/OFF and switching valves 28A and 28B are opened and closed so as to be a series connection.

Description

本発明は冷却水製造設備に係り、特に一年を通じて冷熱源が必要な半導体工場等の工場に設置される冷却水製造設備に関する。   The present invention relates to a cooling water manufacturing facility, and more particularly to a cooling water manufacturing facility installed in a factory such as a semiconductor factory that requires a cooling heat source throughout the year.

特許文献1には、冷却塔の大型化、台数増設による冷却水の低温化が提案されている。   Patent Document 1 proposes an increase in the size of a cooling tower and a reduction in cooling water temperature by increasing the number of cooling towers.

特開2005−214608号公報JP 2005-214608 A

しかしながら、従来の冷却水製造設備では、一般の冷凍機用冷却塔の台数を増やして伝熱面積を増加させれば、同一の外気条件における冷却水製造温度を低温化できるが、冷却水の流量が少ない場合には、冷却水を均一に滴下することが困難となり、所定の冷却能力を維持することができないという問題があった。   However, in conventional cooling water production facilities, if the number of general cooling towers for refrigeration units is increased to increase the heat transfer area, the cooling water production temperature can be lowered under the same outside air conditions. When the amount of water is small, it becomes difficult to drop the cooling water uniformly, and there is a problem that a predetermined cooling capacity cannot be maintained.

冷却塔の大型化と冷却水の変流量化による省エネ化のためには、冷却水の流量が少ない場合でも伝熱性能を維持して、風量、流量を削減する必要がある。しかし、空調用の冷却塔は型式毎に仕様が限られるため、広範囲の流量変化に対応することが困難であった。   In order to save energy by increasing the size of the cooling tower and changing the cooling water flow rate, it is necessary to maintain the heat transfer performance and reduce the air volume and flow rate even when the cooling water flow rate is low. However, since the specifications of the cooling tower for air conditioning are limited for each model, it is difficult to cope with a wide range of flow rate changes.

本発明はこのような事情に鑑みてなされたものであり、冷却塔における冷却水の低流量時においても冷却能力の低下を防止することができる冷却水製造設備を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the cooling water manufacturing equipment which can prevent the fall of a cooling capability even at the time of the low flow volume of the cooling water in a cooling tower.

本発明は、前記目的を達成するために、冷却水と外気とを熱交換して冷却水を冷却する複数の冷却塔と、前記複数の冷却塔によって冷却された冷却水を前記複数の冷却塔と負荷部との間で循環させる第1のポンプと、前記負荷部を通過した前記冷却水を前記複数の冷却塔に分配して並列に通水する第1の配管系統と、前記複数の冷却塔に冷却水を直列に通水する第2の配管系統と、前記第2の配管系統に冷却水を通水する第2のポンプと、を備えたことを特徴とする冷却水製造設備を提供する。   In order to achieve the above object, the present invention provides a plurality of cooling towers that cool the cooling water by exchanging heat between the cooling water and the outside air, and the cooling water cooled by the plurality of cooling towers. A first pump that circulates between the first and second load sections, a first piping system that distributes the cooling water that has passed through the load section to the plurality of cooling towers, and passes water in parallel, and the plurality of cooling sections A cooling water production facility comprising: a second piping system for passing cooling water through the tower in series; and a second pump for passing cooling water through the second piping system. To do.

本発明は、2台以上の冷却塔を並列に接続する配管系統に直列に冷却水を通水可能な系統を設け、冷却水の流量変化に対応させて、冷却塔の通水系統を並列運転と直列運転とに切り替えることにより、冷却塔における冷却水の低流量時においても冷却能力の低下を防止するものである。   The present invention provides a system capable of passing cooling water in series with a piping system connecting two or more cooling towers in parallel, and operating the cooling tower water flow system in parallel in response to changes in the flow rate of the cooling water. By switching to the serial operation, the cooling capacity is prevented from being lowered even at a low flow rate of the cooling water in the cooling tower.

本発明によれば、複数の冷却塔の直列運転と並列運転を、第1のポンプ及び第2のポンプの発停で行うことが可能である。また、第2のポンプを冷却塔の近傍に設置してバイパスすることで、ポンプ揚程小さくすることが可能となり、バイパス時の搬送動力を低減することができる。   According to the present invention, it is possible to perform serial operation and parallel operation of a plurality of cooling towers by starting and stopping the first pump and the second pump. In addition, by installing the second pump in the vicinity of the cooling tower and bypassing it, the pump head can be reduced, and the conveyance power during the bypass can be reduced.

本発明においては、前記第1のポンプ及び第2のポンプの回転数を変更させる機能と、演算器とを有し、前記演算器の指令により前記第1のポンプを運転して複数の冷却塔を並列に通水する運転と、第1のポンプ及び第2のポンプを運転して冷却塔を直列に通水する運転とを行うことが好ましい。   In this invention, it has a function which changes the rotation speed of the said 1st pump and a 2nd pump, and a calculator, A said 1st pump is drive | operated by the instruction | command of the said calculator, and several cooling towers It is preferable to perform an operation of passing water in parallel and an operation of operating the first pump and the second pump to pass water through the cooling tower in series.

本発明によれば、冷却塔の冷却水流量を最小流量以上に制御し、流量が減少した場合に直列運転を行うことで、冷却塔の充填材の散布水の分布が不均一になることを防止でき、伝熱面積の減少を防止することで、冷却性能の低下を防ぐことが可能となる。冷却水流量100%で直列運転を行う場合には、ポンプの動力が並列時に比べて増加するが、直列運転は低流量時にのみ行うことでポンプ動力の増加を削減できる。また、伝熱面積を維持できる冷却水流量範囲を拡大し、冷却塔の風量と増加を防ぐことが可能となり、冷却塔のファン動力を低減できる。   According to the present invention, by controlling the cooling water flow rate of the cooling tower to be equal to or higher than the minimum flow rate and performing the series operation when the flow rate is reduced, the distribution of the spray water of the cooling tower filler becomes non-uniform. It can prevent, and it becomes possible to prevent the fall of cooling performance by preventing the reduction of a heat-transfer area. When the series operation is performed at a cooling water flow rate of 100%, the power of the pump is increased as compared with the parallel operation, but the increase in the pump power can be reduced by performing the series operation only at a low flow rate. Moreover, it becomes possible to expand the cooling water flow rate range in which the heat transfer area can be maintained, to prevent the air volume and increase of the cooling tower, and to reduce fan power of the cooling tower.

本発明においては、冷却負荷計測手段を有し、前記演算器は、前記冷却負荷計測手段によって計測された冷却負荷と湿球温度計測値を入力条件として、前記複数の冷却塔、前記第1のポンプ、及び前記第2のポンプのエネルギー消費量が最小となるように、冷却水流量、冷却水温度、冷却塔の運転状態を演算して、第1のポンプと第2のポンプの発停を行い冷却塔の直列運転と並列運転を切り替えるとともに、第1のポンプと第2のポンプの回転数制御を行うことが好ましい。   In the present invention, it has cooling load measuring means, and the computing unit uses the cooling load and wet bulb temperature measurement values measured by the cooling load measuring means as input conditions, and the plurality of cooling towers, the first The cooling water flow rate, the cooling water temperature, and the operation state of the cooling tower are calculated so that the energy consumption of the pump and the second pump is minimized, and the first pump and the second pump are started and stopped. It is preferable to switch between the serial operation and the parallel operation of the cooling tower and to control the rotational speed of the first pump and the second pump.

本発明によれば、外気湿球温度と冷却負荷に応じて、冷却水製造設備のエネルギー消費量を最小値に近づけることが可能となる。また、エネルギー消費量が小さくなる運転となるように、冷却塔を並列運転と直列運転での切り替えと冷却水変流量の変更が可能となる。   According to the present invention, the energy consumption amount of the cooling water production facility can be made closer to the minimum value in accordance with the outside wet bulb temperature and the cooling load. In addition, the cooling tower can be switched between parallel operation and series operation and the cooling water variable flow rate can be changed so as to reduce the energy consumption.

また、フリークーリング運転時には、冷却塔の伝熱面積を大きくすることで、冷却水が湿球温度に近づくため、冷却水出口温度を低温化でき、通常の冷却塔と使用した場合に比べて高い湿球温度まで、フリークーリングが可能となる。   Also, during free cooling operation, by increasing the heat transfer area of the cooling tower, the cooling water approaches the wet bulb temperature, so the cooling water outlet temperature can be lowered, which is higher than when used with a normal cooling tower Free cooling is possible up to the wet bulb temperature.

また、本発明は、前記目的を達成するために、外気と冷却水を熱交換して冷却水を冷却する複数の冷却塔を備えて冷却水を製造する冷却水製造設備において、前記複数の冷却塔を直列に通水する場合と並列に通水する場合に冷却水を分配する冷却水分配手段と、前記冷却水分配手段によって分配された冷却水の水量を設定する水量設定手段と、を備えたことを特徴とする冷却水製造設備を提供する。   In order to achieve the above object, the present invention provides a cooling water production facility that includes a plurality of cooling towers that cool the cooling water by exchanging heat between the outside air and the cooling water, and produces the cooling water. A cooling water distribution means for distributing cooling water when water is passed through the tower in series and in parallel; and a water amount setting means for setting the amount of cooling water distributed by the cooling water distribution means. A cooling water production facility is provided.

本発明においては、冷却負荷と外気湿球温度又は乾球温度に対応して、前記直列と並列と冷却水の流量分配量を設定する流量分配量設定手段を備えることが好ましい。   In the present invention, it is preferable to include flow rate distribution amount setting means for setting the flow rate distribution amount of the cooling water in series and in parallel, corresponding to the cooling load and the outside wet bulb temperature or the dry bulb temperature.

本発明によれば、冷却水流量を変化させてポンプ動力を減少させながら、冷却塔の伝熱性能が極端に小さくなるような流量を下回らないように通水し、冷却水流量が少ない場合でも冷却水と空気の熱交換面積を確保し、冷却塔の冷却能力の低下を防止できる。   According to the present invention, while reducing the pump power by changing the cooling water flow rate, water is passed so that the heat transfer performance of the cooling tower becomes extremely small, even when the cooling water flow rate is small. A heat exchange area between the cooling water and the air can be secured, and a decrease in the cooling capacity of the cooling tower can be prevented.

第1の実施の形態の冷却水製造設備の構成を示したブロック図The block diagram which showed the structure of the cooling water manufacturing equipment of 1st Embodiment 第2の実施の形態の冷却水製造設備において並列運転時の構成を示したブロック図The block diagram which showed the structure at the time of parallel operation in the cooling water manufacturing equipment of 2nd Embodiment 第2の実施の形態の冷却水製造設備において直列運転時の構成を示したブロックThe block which showed the structure at the time of series operation in the cooling water manufacturing equipment of 2nd Embodiment 第3の実施の形態の冷却水製造設備の構成を示したブロック図The block diagram which showed the structure of the cooling water manufacturing equipment of 3rd Embodiment 第4の実施の形態の冷却水製造設備の構成を示したブロック図The block diagram which showed the structure of the cooling water manufacturing equipment of 4th Embodiment

以下、添付図面に従って本発明に係る冷却水製造設備の好ましい実施の形態について説明する。   Hereinafter, preferred embodiments of a cooling water production facility according to the present invention will be described with reference to the accompanying drawings.

図1は、第1の実施の形態の冷却水製造設備10の構成を示したブロック図である。この冷却水製造設備10は2台の冷却塔12、14、演算器16によって回転数がインバータ制御された冷却水ポンプ(第1のポンプ)18、及び負荷部20を備えている。また、冷却水製造設備10は、冷却水を冷却塔12、14に分配して並列に通水する配管系統(第1の配管系統)22を備えるとともに、冷却塔12、14に冷却水を直列に通水する配管系統(第2の配管系統)24を備え、この配管系統24に、演算器16によって回転数がインバータ制御された冷却水ポンプ(第2のポンプ)26が備えられている。また、配管系統22に切替バルブ28Aが設けられるとともに、配管系統24に切替バルブ28Bが設けられる。なお、冷却塔12、14の台数は2台に限定されるものではなく、3台以上であってもよい。冷却水は、冷却塔12、14に供給されるフリークーリング時において、外気と熱交換されて冷却される。   FIG. 1 is a block diagram illustrating a configuration of a cooling water production facility 10 according to the first embodiment. The cooling water production facility 10 includes two cooling towers 12 and 14, a cooling water pump (first pump) 18 whose rotational speed is inverter-controlled by a calculator 16, and a load unit 20. The cooling water production facility 10 includes a piping system (first piping system) 22 that distributes the cooling water to the cooling towers 12 and 14 and passes water in parallel, and the cooling water is serially connected to the cooling towers 12 and 14. A piping system (second piping system) 24 for passing water is provided, and the piping system 24 is provided with a cooling water pump (second pump) 26 whose number of revolutions is inverter-controlled by the calculator 16. In addition, a switching valve 28A is provided in the piping system 22, and a switching valve 28B is provided in the piping system 24. The number of cooling towers 12 and 14 is not limited to two, and may be three or more. The cooling water is cooled by exchanging heat with the outside air during free cooling supplied to the cooling towers 12 and 14.

図1に示した冷却水製造設備10は、冷却水の低流量時に、冷却水ポンプ18、26の運転停止を行うことが可能な構成である。この冷却水製造設備10は、冷却塔12、14の直列運転と並列運転を冷却水ポンプ18、26の発停で行うことが可能である。すなわち、冷却水ポンプ18を運転することにより、冷却塔12、14の並列運転が可能となり、冷却水ポンプ18、26を運転することにより冷却塔12、14の直列運転が可能になる。また、冷却水ポンプ26を冷却塔12の近傍に設置してバイパスすることで、冷却水ポンプ26の揚程小さくすることが可能となり、バイパス時の搬送動力が低減される。   The cooling water production facility 10 shown in FIG. 1 is configured to be able to stop the operation of the cooling water pumps 18 and 26 when the cooling water flow rate is low. The cooling water production facility 10 can perform serial operation and parallel operation of the cooling towers 12 and 14 by starting and stopping the cooling water pumps 18 and 26. That is, the cooling towers 12 and 14 can be operated in parallel by operating the cooling water pump 18, and the cooling towers 12 and 14 can be operated in series by operating the cooling water pumps 18 and 26. Also, by installing the cooling water pump 26 in the vicinity of the cooling tower 12 and bypassing it, it becomes possible to reduce the head of the cooling water pump 26, and the conveyance power during the bypass is reduced.

この冷却水製造設備10によれば、最大負荷時は冷却塔12、14を並列接続となる配管系統22とし、冷却水の低流量時には直列接続となる配管系統24とるように、冷却水ポンプ26のON−OFFを行う。   According to this cooling water production facility 10, the cooling water pump 26 is configured so that the cooling towers 12 and 14 are connected in parallel at the time of maximum load, and the piping system 24 is connected in series at a low flow rate of cooling water. ON-OFF.

図2は、第2の実施の形態の冷却水製造設備30の構成を示したブロック図であり、図1に示した冷却水製造設備10と同一又は類似の部材については同一の符号を付し、その説明は省略する。また、図2の冷却水製造設備30は、冷却塔12、14の並列運転時を示している。   FIG. 2 is a block diagram showing the configuration of the cooling water production facility 30 of the second embodiment, and the same or similar members as those in the cooling water production facility 10 shown in FIG. The description is omitted. Moreover, the cooling water production facility 30 in FIG. 2 shows the cooling towers 12 and 14 in parallel operation.

冷却水製造設備30の計画時に、最大負荷を処理するための流量を100%の流量とした場合、100%流量時には、並列接続の配管系統22に切り替えて、冷却塔12、14に通水を行う。この場合、冷却水ポンプ18はON、冷却水ポンプ26はOFF、切替バルブ28Aは開、切替バルブ28Bは閉である。   When the flow rate for processing the maximum load is set to 100% when planning the cooling water production facility 30, when the flow rate is 100%, the flow is switched to the parallel-connected piping system 22 and water is passed to the cooling towers 12 and 14. Do. In this case, the cooling water pump 18 is ON, the cooling water pump 26 is OFF, the switching valve 28A is open, and the switching valve 28B is closed.

一方で、冷却水流量が50%となった場合には、すなわち、冷却塔12、14の冷却能力が必要な冷却能力より小さく、冷却に必要な流量が低くなった場合には、図3に示すように、並列接続の配管系統22から直列接続の配管系統24に切り替えて、冷却塔12から冷却塔14に冷却水を通水する。この場合、冷却水ポンプ18はON、冷却水ポンプ26はON、切替バルブ28Aは閉、切替バルブ28Bは開である。   On the other hand, when the cooling water flow rate becomes 50%, that is, when the cooling capacity of the cooling towers 12 and 14 is smaller than the required cooling capacity and the flow rate required for cooling becomes lower, FIG. As shown, the cooling water is passed from the cooling tower 12 to the cooling tower 14 by switching from the parallel-connected piping system 22 to the serially connected piping system 24. In this case, the cooling water pump 18 is ON, the cooling water pump 26 is ON, the switching valve 28A is closed, and the switching valve 28B is open.

なお、直列運転と並列運転を切り替える冷却水の流量は、冷却塔12、14の冷却水流量範囲で行う。例えば、冷却水の流量が100%から80%以下に低下すると、図3に示した直列運転に切り替える。また、冷却水が低流量から70%以上になると、図2に示した並列運転に切り替える。   The cooling water flow rate for switching between the serial operation and the parallel operation is set within the cooling water flow rate range of the cooling towers 12 and 14. For example, when the flow rate of the cooling water decreases from 100% to 80% or less, the operation is switched to the series operation shown in FIG. Further, when the cooling water becomes 70% or more from the low flow rate, the operation is switched to the parallel operation shown in FIG.

演算器16は冷却水の流量に応じて、並列運転と直列運転の切り替えを行い、直列運転時には各々の冷却塔12、14の流量が同流量となる冷却水ポンプ26のインバータ周波数を変化させる。冷却水配管の流量は、冷却水ポンプ26のINV周波数と流量の関係を予め計測しておき、主配管の冷却水流量に対応した冷却水ポンプ26のINV周波数を演算する。   The computing unit 16 switches between parallel operation and series operation according to the flow rate of the cooling water, and changes the inverter frequency of the cooling water pump 26 at which the flow rates of the cooling towers 12 and 14 become the same flow rate during the serial operation. As for the flow rate of the cooling water pipe, the relationship between the INV frequency of the cooling water pump 26 and the flow rate is measured in advance, and the INV frequency of the cooling water pump 26 corresponding to the cooling water flow rate of the main pipe is calculated.

この冷却水製造設備30によれば、冷却塔12、14の冷却水流量を最小流量以上に制御し、流量が減少した場合に直列運転を行うことで、冷却塔12、14内の冷却水を均等に散水でき、伝熱面積の減少を防止することで、冷却性能の低下を防ぐことができる。   According to this cooling water production equipment 30, the cooling water flow rate of the cooling towers 12 and 14 is controlled to be equal to or higher than the minimum flow rate, and the cooling water in the cooling towers 12 and 14 is obtained by performing a series operation when the flow rate decreases. It is possible to spray water evenly and prevent a decrease in cooling performance by preventing a decrease in heat transfer area.

冷却水流量が100%で直列運転を行う場合には、冷却水ポンプ26の動力が並列時に比べて増加するが、直列運転は低流量時にのみ行うことでポンプ動力の増加を削減することができる。また、伝熱面積を維持できる冷却水流量範囲を拡大し、冷却塔12、14の風量と増加を防ぐことが可能となり、冷却塔12、14に設置されているファン12A、14Aの動力が低減する。   When the series operation is performed at a cooling water flow rate of 100%, the power of the cooling water pump 26 is increased as compared with the parallel operation. However, the increase in pump power can be reduced by performing the series operation only at a low flow rate. . Moreover, it becomes possible to expand the cooling water flow rate range that can maintain the heat transfer area, prevent the air volume and increase of the cooling towers 12 and 14, and reduce the power of the fans 12A and 14A installed in the cooling towers 12 and 14. To do.

図4は、第3の実施の形態の冷却水製造設備40の構成を示したブロック図であり、図2に示した冷却水製造設備30と同一又は類似の部材については同一の符号を付し、その説明は省略する。   FIG. 4 is a block diagram showing the configuration of the cooling water production facility 40 of the third embodiment, and the same or similar members as those of the cooling water production facility 30 shown in FIG. The description is omitted.

この冷却水製造設備40は、冷却水製造設備30を基本構造とし、この基本構造に、負荷部20に冷水を冷却水する熱交換器42、外気湿球温度検出器44、負荷部20側の冷水の流量を計測する流量計46、及び負荷部20側の冷水の温度を検出する温度検出器48A、48B、及びポンプ49を負荷部20側の冷水循環系統47に付加し、冷水を製造する設備である。   This cooling water production facility 40 has a cooling water production facility 30 as a basic structure, and in this basic structure, a heat exchanger 42 that cools cold water to the load unit 20, an outside air wet bulb temperature detector 44, and a load unit 20 side. A flow meter 46 for measuring the flow rate of the cold water, temperature detectors 48A and 48B for detecting the temperature of the cold water on the load unit 20 side, and a pump 49 are added to the cold water circulation system 47 on the load unit 20 side to produce cold water. Equipment.

演算器16の演算部2は、冷却負荷と外気湿球温度に対応した冷水を製造するために必要な冷却塔ファン12A、14A、冷却水ポンプ18、26、冷却水ポンプ18、26のエネルギー消費量を演算するシミュレータを用いて、機器のエネルギー消費量の総和が最小となる冷却水出口温度、冷水出口温度、冷却塔の運転状態(直列運転、並列運転)の組み合せを算出する。冷却塔のシミュレータは、一般的な冷却塔のエンタルピー基準総括容積伝達係数と冷却塔性能近似式を用いて、冷却水入口温度、冷却水流量、外気湿球温度、外気風量から、冷却水出口温度を算出し、風量からファンのエネルギー消費量を演算する。ポンプのエネルギー消費量は、配管系等の流量に対する圧力損失の関係を予測又は実測した結果を基に、ポンプ揚程を算出し、流量と揚程との関係からポンプ動力を演算する。   The computing unit 2 of the computing unit 16 consumes energy of the cooling tower fans 12A and 14A, the cooling water pumps 18 and 26, and the cooling water pumps 18 and 26 that are necessary for producing the cooling water corresponding to the cooling load and the outside air wet bulb temperature. The combination of the cooling water outlet temperature, the cooling water outlet temperature, and the cooling tower operation state (series operation, parallel operation) that minimizes the sum of the energy consumption of the devices is calculated using a simulator that calculates the amount. The cooling tower simulator uses the general cooling tower enthalpy standard overall volume transfer coefficient and the cooling tower performance approximation formula to calculate the cooling water outlet temperature from the cooling water inlet temperature, cooling water flow rate, outside air wet bulb temperature, outside air volume. And the fan energy consumption is calculated from the air volume. The energy consumption of the pump calculates the pump head based on the result of predicting or actually measuring the relationship between the pressure loss and the flow rate of the piping system, and calculates the pump power from the relationship between the flow rate and the head.

演算部2は冷却水温度制御目標値、冷水製造温度目標値、冷却塔12、14の運転状態の最適値を演算部1と温度検出器に指示し、演算部1は冷却水ポンプ18、26のINV周波数を変更して冷水製造温度の制御目標値になるように制御を行う。   The calculating unit 2 instructs the cooling unit temperature control target value, the cooling water production temperature target value, and the optimum value of the operation state of the cooling towers 12 and 14 to the calculating unit 1 and the temperature detector. The INV frequency is changed so that the control target value of the cold water production temperature is reached.

演算部1は冷却水温度制御目標値に従って、冷却水温度が一定になるように、冷却塔ファン12A、14Aの回転数をINV制御する。湿球温度と冷却負荷が小さく、1台の冷却塔12で冷却可能な場合は、冷却塔14のファン14Aを停止し冷却塔の運転台数を減少させる。この台数は、演算器16が湿球温度と冷却負荷に対する冷却塔性能から求めた冷却塔の必要台数のデータベースをテーブルデータとして記憶し、負荷と湿球温度との計測値から台数、冷却水量を出力する。演算器16は、台数、冷却水流量に対応して運転状態、流量を変更する。   The computing unit 1 performs INV control of the rotational speeds of the cooling tower fans 12A and 14A so that the cooling water temperature becomes constant according to the cooling water temperature control target value. When the wet bulb temperature and the cooling load are small and can be cooled by one cooling tower 12, the fan 14A of the cooling tower 14 is stopped and the number of operating cooling towers is reduced. This number is stored as table data in a database of the required number of cooling towers obtained by the calculator 16 from the wet bulb temperature and the cooling tower performance with respect to the cooling load. Output. The computing unit 16 changes the operating state and flow rate according to the number of units and the coolant flow rate.

この冷却水製造設備40によれば、外気湿球温度と冷却負荷に応じて、冷却水製造設備のエネルギー消費量を最小値に近づけることが可能となる。また、エネルギー消費量が小さくなる運転となるように、冷却塔12、14を並列運転と直列運転での切り替えと冷却水変流量の変更が可能となる。   According to the cooling water production facility 40, the energy consumption amount of the cooling water production facility can be brought close to the minimum value according to the outside air wet bulb temperature and the cooling load. In addition, the cooling towers 12 and 14 can be switched between parallel operation and series operation and the cooling water variable flow rate can be changed so that the energy consumption is reduced.

また、冷却水のフリークーリング運転時には、負荷が大きい場合、冷却塔を並列に運転することで伝熱面積を大きくして冷却性能を向上し、冷却水温度を湿球温度に近づけることができ、フリークーリングを長期化できる。また、負荷が小さい場合には、熱交換器の伝熱に必要な最低流量を維持して、流量を減少させることが可能になり、無駄な動力を削減できる。   Also, during free cooling operation of cooling water, if the load is large, the cooling tower can be operated in parallel to increase the heat transfer area and improve the cooling performance, and the cooling water temperature can be brought close to the wet bulb temperature, Free cooling can be extended. In addition, when the load is small, it is possible to maintain the minimum flow rate necessary for heat transfer of the heat exchanger and reduce the flow rate, thereby reducing useless power.

図5は、第4の実施の形態の冷却水製造設備50の構成を示したブロック図であり、図4に示した冷却水製造設備40と同一又は類似の部材については同一の符号を付し、その説明は省略する。   FIG. 5 is a block diagram showing the configuration of the cooling water production facility 50 of the fourth embodiment, and the same or similar members as those in the cooling water production facility 40 shown in FIG. The description is omitted.

この冷却水製造設備50は、熱交換器42(図4参照)を冷凍機52の凝縮器54としている。また、冷凍機52、冷却水ポンプ18、26、冷却塔12、14、冷却水ポンプ18、26の動力の合計値が最小となる冷却水流量の制御目標値を演算器16で演算し、冷却水流量の制御目標値に基づいて、冷却塔12、14を並列運転と直列運転、冷却水ポンプ18、26のINV周波数を切り替えるように構成されている。   In the cooling water production facility 50, the heat exchanger 42 (see FIG. 4) is used as the condenser 54 of the refrigerator 52. In addition, the control unit 16 calculates a control target value of the cooling water flow rate at which the total power of the refrigerator 52, the cooling water pumps 18 and 26, the cooling towers 12 and 14, and the cooling water pumps 18 and 26 becomes the minimum. Based on the control target value of the water flow rate, the cooling towers 12 and 14 are configured to be switched between parallel operation and series operation, and the INV frequency of the cooling water pumps 18 and 26 is switched.

この冷却水製造設備50では、冷凍機52の凝縮器54の冷却水に用いる冷却塔12、14は伝熱面積を大きくすることで、冷却水が湿球温度に近づくため、冷却水の温度を低温化することで、冷凍機52は冷却水温度が下がり成績係数が高くなってエネルギー消費量を削減できる。   In this cooling water production facility 50, since the cooling towers 12 and 14 used for the cooling water of the condenser 54 of the refrigerator 52 increase the heat transfer area, the cooling water approaches the wet bulb temperature. By lowering the temperature, the refrigerator 52 can reduce the cooling water temperature and increase the coefficient of performance, thereby reducing energy consumption.

なお、冷却塔12、14のファン12A、14Aを、冷却水の出口温度設定値が一定になるようにON−OFF制御することにより、INVを用いない温度制御が可能となり、温度の安定性は低くなるが、システムを簡素化できる。   In addition, by controlling the fans 12A and 14A of the cooling towers 12 and 14 so that the cooling water outlet temperature setting value is constant, temperature control without using INV is possible, and temperature stability is Although lower, the system can be simplified.

また、負荷部20側の流量計は、熱交換器42を流れる冷水流量と冷水の差圧の関係を用いて、差圧の計測値から流量を演算してもよい。これにより、流量計を削減できる。   In addition, the flow meter on the load unit 20 side may calculate the flow rate from the measured value of the differential pressure using the relationship between the flow rate of the cold water flowing through the heat exchanger 42 and the differential pressure of the cold water. Thereby, a flow meter can be reduced.

更に、冷水製造温度を優先し、外気湿球温度が高く、並列よりも直列運転の方が冷水製造温度制御目標値を満足できる場合には、直列運転に切り替えてもよい。これにより、負荷部20や外気湿球温度が高くなり、並列のフリークーリングで冷水製造温度を満足できない場合に、直列運転でフリークーリングを行うことが可能となる。よって、冷凍機52による冷水製造を行った場合よりもエネルギー消費量の小さいフリークーリング運転が可能となり、年間のフリークーリング運転期間を長期化できる。   Furthermore, when the cold water production temperature is prioritized, the outdoor wet bulb temperature is high, and the series operation can satisfy the cold water production temperature control target value rather than the parallel operation, the operation may be switched to the series operation. Thereby, when the load part 20 and an external air wet bulb temperature become high and cold water production temperature cannot be satisfied by parallel free cooling, it becomes possible to perform free cooling by series operation. Therefore, free cooling operation with less energy consumption than when cold water is produced by the refrigerator 52 is possible, and the annual free cooling operation period can be extended.

10、30、40、50…冷却水製造設備、12、14冷却塔、12A、14A…ファン、16…演算器、18…冷却水ポンプ、20…負荷部、22…並列に通水する配管系統、24…冷却水を直列に通水する配管系統、26…冷却水ポンプ、28A、28B…切替バルブ、42…熱交換器、44…外気湿球温度検出器、46…流量計、47…冷却水循環系、48A、48B…温度検出器、52…冷凍機、54…凝縮器   DESCRIPTION OF SYMBOLS 10, 30, 40, 50 ... Cooling water production equipment, 12, 14 cooling tower, 12A, 14A ... Fan, 16 ... Calculator, 18 ... Cooling water pump, 20 ... Load part, 22 ... Piping system which passes water in parallel , 24 ... Piping system for passing cooling water in series, 26 ... Cooling water pump, 28A, 28B ... Switching valve, 42 ... Heat exchanger, 44 ... Outside wet bulb temperature detector, 46 ... Flow meter, 47 ... Cooling Water circulation system, 48A, 48B ... Temperature detector, 52 ... Refrigerator, 54 ... Condenser

Claims (5)

冷却水と外気とを熱交換して冷却水を冷却する複数の冷却塔と、
前記複数の冷却塔によって冷却された冷却水を前記複数の冷却塔と負荷部との間で循環させる第1のポンプと、
前記負荷部を通過した前記冷却水を前記複数の冷却塔に分配して並列に通水する第1の配管系統と、
前記複数の冷却塔に冷却水を直列に通水する第2の配管系統と、
前記第2の配管系統に冷却水を通水する第2のポンプと、
を備えたことを特徴とする冷却水製造設備。
A plurality of cooling towers for cooling the cooling water by exchanging heat between the cooling water and outside air;
A first pump for circulating cooling water cooled by the plurality of cooling towers between the plurality of cooling towers and a load section;
A first piping system that distributes the cooling water that has passed through the load section to the plurality of cooling towers and passes water in parallel;
A second piping system for passing cooling water in series through the plurality of cooling towers;
A second pump for passing cooling water through the second piping system;
A cooling water production facility comprising:
前記第1のポンプ及び第2のポンプの回転数を変更させる機能と、演算器とを有し、前記演算器の指令により前記第1のポンプを運転して複数の冷却塔を並列に通水する運転と、第1のポンプ及び第2のポンプを運転して冷却塔を直列に通水する運転とを行う請求項1に記載の冷却水製造設備。   A function of changing the rotational speeds of the first pump and the second pump, and a computing unit, wherein the first pump is operated in accordance with a command from the computing unit, and a plurality of cooling towers are passed in parallel. The cooling water production facility according to claim 1, wherein an operation for performing the operation and an operation for operating the first pump and the second pump to pass water through the cooling tower in series are performed. 冷却負荷計測手段を有し、
前記演算器は、前記冷却負荷計測手段によって計測された冷却負荷と湿球温度計測値を入力条件として、前記複数の冷却塔、前記第1のポンプ、及び前記第2のポンプのエネルギー消費量が最小となるように、冷却水流量、冷却水温度、冷却塔の運転状態を演算して、第1のポンプと第2のポンプの発停を行い冷却塔の直列運転と並列運転を切り替えるとともに、第1のポンプと第2のポンプの回転数制御を行う請求項2に記載の冷却水製造設備。
Having cooling load measuring means,
The computing unit uses the cooling load measured by the cooling load measuring means and the wet bulb temperature measurement value as input conditions, and energy consumption amounts of the plurality of cooling towers, the first pump, and the second pump are calculated. Calculate the cooling water flow rate, the cooling water temperature, and the cooling tower operation state so as to be minimized, start and stop the first pump and the second pump, and switch between the serial operation and parallel operation of the cooling tower, The cooling water manufacturing facility according to claim 2, wherein the number of revolutions of the first pump and the second pump is controlled.
外気と冷却水を熱交換して冷却水を冷却する複数の冷却塔を備えて冷却水を製造する冷却水製造設備において、
前記複数の冷却塔を直列に通水する場合と並列に通水する場合に冷却水を分配する冷却水分配手段と、
前記冷却水分配手段によって分配された冷却水の水量を設定する水量設定手段と、を備えたことを特徴とする冷却水製造設備。
In a cooling water production facility that produces cooling water with a plurality of cooling towers that cool the cooling water by exchanging heat between the outside air and the cooling water,
A cooling water distribution means for distributing cooling water when the plurality of cooling towers pass in series and in parallel when passing water;
A cooling water production facility comprising: a water amount setting means for setting the amount of cooling water distributed by the cooling water distribution means.
冷却負荷と外気湿球温度又は乾球温度に対応して、前記直列と並列と冷却水の流量分配量を設定する流量分配量設定手段を備えた請求項4に記載の冷却水製造設備。   The cooling water production facility according to claim 4, further comprising a flow rate distribution amount setting means for setting the flow rate distribution amount of the cooling water in series and in parallel with the cooling load and the outside air wet bulb temperature or the dry bulb temperature.
JP2010095135A 2010-04-16 2010-04-16 Cooling water producing facility Pending JP2011226680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010095135A JP2011226680A (en) 2010-04-16 2010-04-16 Cooling water producing facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010095135A JP2011226680A (en) 2010-04-16 2010-04-16 Cooling water producing facility

Publications (1)

Publication Number Publication Date
JP2011226680A true JP2011226680A (en) 2011-11-10

Family

ID=45042230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010095135A Pending JP2011226680A (en) 2010-04-16 2010-04-16 Cooling water producing facility

Country Status (1)

Country Link
JP (1) JP2011226680A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108696A (en) * 2011-11-22 2013-06-06 Mitsubishi Heavy Ind Ltd Heat pump system
CN104708490A (en) * 2015-03-13 2015-06-17 黎建军 Mechanical cooling circulating system
CN105783579A (en) * 2016-05-06 2016-07-20 南京电力设备质量性能检验中心 Expanding unit system running system for natural draft cooling towers and running method
JP2017101875A (en) * 2015-12-01 2017-06-08 新晃工業株式会社 Method for operating air conditioner having plural air supply fans
CN110671950A (en) * 2019-10-31 2020-01-10 长沙经济技术开发区祥原动力供应有限公司 Cooling tower cooling system based on flow change and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108696A (en) * 2011-11-22 2013-06-06 Mitsubishi Heavy Ind Ltd Heat pump system
CN104708490A (en) * 2015-03-13 2015-06-17 黎建军 Mechanical cooling circulating system
JP2017101875A (en) * 2015-12-01 2017-06-08 新晃工業株式会社 Method for operating air conditioner having plural air supply fans
CN105783579A (en) * 2016-05-06 2016-07-20 南京电力设备质量性能检验中心 Expanding unit system running system for natural draft cooling towers and running method
CN110671950A (en) * 2019-10-31 2020-01-10 长沙经济技术开发区祥原动力供应有限公司 Cooling tower cooling system based on flow change and application thereof

Similar Documents

Publication Publication Date Title
JP6334230B2 (en) Refrigerator system
JP5513984B2 (en) Cold water production facility and cold water production method
JP5615559B2 (en) Cooling system
JP5907247B2 (en) Integrated air conditioning system and its control device
JP5234435B2 (en) Cold cooling source device, cooling system and cooling method for free cooling
JP5777929B2 (en) Operation control system for cold source equipment
JP5299680B2 (en) Cooling system and cooling method
JP5984456B2 (en) Heat source system control device, heat source system control method, heat source system, power adjustment network system, and heat source machine control device
TW201736790A (en) Systems and methods for controlling a refrigeration system
JP6091387B2 (en) Air conditioner
JP2007240131A (en) Optimization control of heat source unit and accessory
US11808483B2 (en) Systems and methods for controlling free cooling and integrated free cooling
WO2016077559A1 (en) On board chiller capacity calculation
JP2007127321A (en) Cold water load factor controller for refrigerator
JP2011226680A (en) Cooling water producing facility
JP6644559B2 (en) Heat source control system, control method and control device
WO2012096265A1 (en) Heat source system, control method therfor, and program therefor
JP4994754B2 (en) Heat source system
JP2010025466A (en) Heat source system
TWI436009B (en) Energy saving air condition system
Hausherr et al. Primary energy efficiency potentials of district heat driven refrigeration systems
JP6982146B2 (en) Air conditioning system controls, control methods, control programs and air conditioning systems
JP2009121769A (en) Cold water supply method, cold water supply device and control method for cold water supply device
US20140202177A1 (en) Cooling water process control system
JP6083316B2 (en) Electronic equipment cooling system