JP4994754B2 - Heat source system - Google Patents

Heat source system Download PDF

Info

Publication number
JP4994754B2
JP4994754B2 JP2006246767A JP2006246767A JP4994754B2 JP 4994754 B2 JP4994754 B2 JP 4994754B2 JP 2006246767 A JP2006246767 A JP 2006246767A JP 2006246767 A JP2006246767 A JP 2006246767A JP 4994754 B2 JP4994754 B2 JP 4994754B2
Authority
JP
Japan
Prior art keywords
cooling water
cooling
refrigerator
temperature
cooling tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006246767A
Other languages
Japanese (ja)
Other versions
JP2008070004A (en
Inventor
邦彦 北村
亮典 武安
和彦 早川
恭一 加藤
修 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyudenko Corp
Original Assignee
Kyudenko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyudenko Corp filed Critical Kyudenko Corp
Priority to JP2006246767A priority Critical patent/JP4994754B2/en
Publication of JP2008070004A publication Critical patent/JP2008070004A/en
Application granted granted Critical
Publication of JP4994754B2 publication Critical patent/JP4994754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、冷凍機、冷却塔、冷却水ポンプ、冷水ポンプ等から構成される熱源システムのCOP(成績係数)を向上させることにより高効率化を実現した熱源システムに関するものである。   The present invention relates to a heat source system that achieves high efficiency by improving the COP (coefficient of performance) of a heat source system including a refrigerator, a cooling tower, a cooling water pump, a cooling water pump, and the like.

従来、オフィスビル等の各種施設において空調設備等の熱負荷のために熱源システムが用いられている。かかる熱源システムは、冷却水系に冷凍機、冷却塔、冷却水ポンプを設け、上記冷却水ポンプにて冷却水を冷却水配管内において冷凍機から冷却塔へと循環させ、上記冷凍機の凝縮器にて温度上昇した冷却水を上記冷却塔にて冷却する構成である。また、熱負荷の設けられた冷水系では、冷水配管内の冷水を上記冷凍機の蒸発器にて冷却して熱負荷に循環させる構成である。   Conventionally, a heat source system has been used in various facilities such as office buildings for heat loads such as air conditioning equipment. The heat source system includes a refrigerator, a cooling tower, and a cooling water pump in a cooling water system, and the cooling water pump circulates the cooling water from the refrigerator to the cooling tower in the cooling water pipe, and the condenser of the refrigerator It is the structure which cools the cooling water which raised the temperature in said cooling tower. Moreover, in the cold water system provided with the heat load, the cold water in the cold water pipe is cooled by the evaporator of the refrigerator and circulated to the heat load.

このような熱源システムにおいて、冷却水温度が低くなれば上記冷凍機の効率が良くなることは知られているが、通常は、最大負荷時(ピーク時)以外の中間期(部分負荷時)の外気温が低くなった時に冷却水温度もそれに応じて低下するという状況下での運転状態となっている。   In such a heat source system, it is known that if the cooling water temperature is lowered, the efficiency of the refrigerator is improved. Usually, however, in the intermediate period (partial load) other than the maximum load (peak time) When the outside air temperature becomes low, the cooling water temperature is lowered accordingly.

そこで、夏場のピーク負荷時において冷却水系の冷却水温度を低下させて熱源システム全体の効率を向上させることが考えられるが、そのためには冷却塔の送風ファンの動力を大きくしたり、同一構成の冷却塔を複数台並設してその冷却能力を向上させることにより、冷却水温度を低下させ、これにより冷凍機のCOP(成績係数)を向上させることが提案されている(特許文献1)。   Therefore, it is conceivable to improve the efficiency of the entire heat source system by lowering the cooling water temperature of the cooling water system at the peak load in summer, but for this purpose, the power of the cooling tower blower fan is increased or the same configuration is used. It has been proposed that a plurality of cooling towers are juxtaposed to improve the cooling capacity, thereby reducing the cooling water temperature and thereby improving the COP (coefficient of performance) of the refrigerator (Patent Document 1).

また、ピーク負荷時においては、冷凍機の入口温度と出口温度の冷却水温度差を5℃の冷却水流量にて運転し、部分負荷時においては、インバータにより冷却水ポンプの動力を低減制御することで冷却水流量を下げ、これにより動力低減を行って熱源システム全体の効率の向上を図ることが提案されている(特許文献2)。   Also, during peak loads, the cooling water temperature difference between the inlet temperature and outlet temperature of the refrigerator is operated at a cooling water flow rate of 5 ° C., and during partial loads, the power of the cooling water pump is reduced and controlled by an inverter. Thus, it has been proposed to reduce the flow rate of the cooling water and thereby reduce the power to improve the efficiency of the entire heat source system (Patent Document 2).

特開2005−214608JP-A-2005-214608 特開2005−257221JP-A-2005-257221

ところで、上記特許文献1の技術では、冷却塔の台数を増やして冷却塔の容量を2倍程度に増強し、ターボ冷凍機の凝縮温度を下げて冷凍機のCOPを向上させているが、単に冷却塔を増設すると各冷却塔に設けられている冷却ファンの消費電力が増加して冷却水系の消費電力量が増加してしまう。このため冷却水系のCOPの最適化に必ずしもつながらないという課題がある。   By the way, in the technique of the above-mentioned Patent Document 1, the number of cooling towers is increased to increase the capacity of the cooling towers by about twice, and the condensation temperature of the turbo refrigerator is lowered to improve the COP of the refrigerator. If the number of cooling towers is increased, the power consumption of the cooling fan provided in each cooling tower is increased, and the power consumption of the cooling water system is increased. For this reason, there exists a subject that it does not necessarily lead to optimization of COP of a cooling water system.

また、上記特許文献2の技術では、圧縮式冷凍機の冷却水入口と冷却水出口の温度差を上記冷凍機のCOPに応じて変更する方式であるが、熱源システム内に多くのセンサーやインバータが必要となり、熱源システムの構成及びその制御が複雑となり設計及び運転が難しいとの課題がある。   In the technique of Patent Document 2, the temperature difference between the cooling water inlet and the cooling water outlet of the compression refrigerator is changed according to the COP of the refrigerator, but there are many sensors and inverters in the heat source system. Therefore, there is a problem that the configuration and control of the heat source system are complicated and the design and operation are difficult.

本発明は、上記課題に鑑みてなされたものであり、冷却塔のファン動力を増加させることなく、外気と冷却水温度との熱交換面積を広げることにより、当該冷却塔の冷却水温度が年間を通して低くなるように設定したものであり、また、ピーク時において冷凍機の入口温度と出口温度の冷却水温度差を従来の温度差より大きく設定すると共に、そのような温度差を実現するための冷却水流量を以って年間を通じて一定流量で運転すること等により、複雑な制御を必要とせずに、構造の簡単な高効率の熱源システムを実現したものである。   The present invention has been made in view of the above problems, and by increasing the heat exchange area between the outside air and the cooling water temperature without increasing the fan power of the cooling tower, the cooling water temperature of the cooling tower can be reduced annually. In order to realize such a temperature difference, the cooling water temperature difference between the inlet temperature and the outlet temperature of the refrigerator is set to be larger than the conventional temperature difference at the peak time. By operating at a constant flow rate throughout the year with a cooling water flow rate, a highly efficient heat source system with a simple structure is realized without the need for complicated control.

本発明は上記課題を解決するため、
第1に、冷却塔と、冷凍機と、その間を配管で接続して冷却水を循環させる冷却水ポンプから構成される冷却水系と、上記冷凍機で冷却された冷水を冷水ポンプで負荷側に供給する冷水系からなる熱源システムにおいて、上記冷却塔は、冷却塔のファン動力を増加させることなく外気と冷却水との熱交換面積を広げることにより、当該冷却塔の冷却水出口温度が年間を通じて1℃程度低くなるように設定したものであることを特徴とする熱源システムにより構成される。
In order to solve the above problems, the present invention
First, a cooling water system composed of a cooling tower, a refrigerator, and a cooling water pump that circulates the cooling water by connecting between them with piping, and the cold water cooled by the refrigerator is loaded to the load side by the cold water pump In the heat source system consisting of the chilled water system to be supplied, the cooling tower increases the heat exchange area between the outside air and the cooling water without increasing the fan power of the cooling tower, so that the cooling water outlet temperature of the cooling tower can be increased throughout the year. The heat source system is characterized in that it is set to be lowered by about 1 ° C.

上記冷凍機は例えばターボ冷凍機(圧縮式冷凍機)である。このように構成すると、夏場のピーク時のみならず、部分負荷時においても例えば従来型の冷却水温度(ピーク時32℃)より年間を通じて1℃程度低い温度に設定することができ、これにより冷凍機のCOP(成績係数)を年間を通じて向上させることができる。また、冷却水温度の低下は、冷却塔の冷却ファンの動力の増加を伴うことなく実現しているので、熱源システムのCOPを向上させて効率的な運転を実現し得る。上記冷却水温度差の1℃程度とは、1℃を含み概ね0.5℃以上2.0℃以下の範囲を含む温度をいう。   The said refrigerator is a turbo refrigerator (compression type refrigerator), for example. With this configuration, the temperature can be set to about 1 ° C. lower than the conventional cooling water temperature (32 ° C. at the peak), for example, at the time of partial load as well as the summer peak. The COP (coefficient of performance) of the machine can be improved throughout the year. Further, since the cooling water temperature is reduced without increasing the power of the cooling fan of the cooling tower, the COP of the heat source system can be improved and efficient operation can be realized. The cooling water temperature difference of about 1 ° C. refers to a temperature that includes 1 ° C. and generally includes a range of 0.5 ° C. to 2.0 ° C.

第2に、上記冷却塔の100%負荷の運転時における冷却水出口温度は31℃近傍であることを特徴とする上記第1記載の熱源システムにより構成される。   Second, the cooling water outlet temperature at the time of 100% load operation of the cooling tower is around 31 ° C., and is constituted by the heat source system according to the first aspect.

このように構成すると、特に夏場のピーク時の消費電力を低減して熱源システムのCOPを最大限に向上することができる。上記冷却水入口温度の31℃近傍とは、31℃を含み概ね温度範囲が30℃から31℃台前半の範囲を含む温度をいう。   If comprised in this way, the COP of a heat source system can be improved to the maximum by reducing the power consumption especially in the peak of summer. The vicinity of 31 ° C. of the cooling water inlet temperature refers to a temperature that includes 31 ° C. and generally includes a temperature range of 30 ° C. to the lower half of the 31 ° C. range.

第3に、上記冷却塔及び上記冷凍機の100%負荷の運転時において、上記冷凍機の冷却水入口温度と冷却水出口温度の温度差が7℃近傍となるように冷却水の流量を決定すると共に、上記冷却水ポンプは、上記決定した流量による一定流量の冷却水を上記冷却水系に年間を通じて循環させるように構成したものであることを特徴とする上記第1又は2記載の熱源システムである。   Third, the flow rate of the cooling water is determined so that the temperature difference between the cooling water inlet temperature and the cooling water outlet temperature of the refrigerator is close to 7 ° C. when the cooling tower and the refrigerator are operated at 100% load. In addition, the cooling water pump is configured to circulate a constant amount of cooling water with the determined flow rate through the cooling water system throughout the year. is there.

このように構成すると、夏場のピーク時(100%負荷の運転時)において、冷却水入口温度を例えば31℃とすると、冷却水は冷凍機において38℃に温度上昇して(温度差7℃)当該冷凍機を流出して冷却塔に流入し、当該冷却塔により31℃まで冷却され、冷却水ポンプにより再度冷凍機に流入していく。よって、夏場のピーク時においては冷凍機の冷却水温度差は7℃に保たれる。また、上記冷凍機の100%負荷の運転時において冷却水温度差(7℃)を基準に冷却水流量が決定されるので、従来の冷却水温度差(5℃)に基づく冷却水量よりも少ない流量とすることができ、低容量の冷却水ポンプを使用することができる。また、ピーク時以外においては冷凍機の発生熱量は低下するが冷却水量は一定流量を維持するため温度差は小さくなる。しかし、冷却水出口温度が低下するため冷凍機のCOP(成績係数)は向上する。よって、部分負荷時においても消費電力の低い効率的な運転を行うことができる。上記冷却水の温度差が7℃近傍とは、7℃を含み概ね温度差が6℃台後半から8℃台前半の範囲を含む温度をいう。   If comprised in this way, when the cooling water inlet temperature will be 31 degreeC in the peak time of summer (at the time of a driving | operation of 100% load), for example, the temperature will rise to 38 degreeC in a refrigerator (temperature difference 7 degreeC). The refrigerator flows out and flows into the cooling tower, is cooled to 31 ° C. by the cooling tower, and flows into the refrigerator again by the cooling water pump. Therefore, the cooling water temperature difference of the refrigerator is kept at 7 ° C. at the peak of summer. In addition, since the cooling water flow rate is determined based on the cooling water temperature difference (7 ° C.) during the operation of the refrigerator at 100% load, the cooling water amount is smaller than the conventional cooling water temperature difference (5 ° C.). The flow rate can be adjusted, and a low-capacity cooling water pump can be used. In addition, the amount of heat generated by the refrigerator decreases at times other than the peak, but the temperature difference becomes small because the amount of cooling water maintains a constant flow rate. However, since the cooling water outlet temperature is lowered, the COP (coefficient of performance) of the refrigerator is improved. Therefore, efficient operation with low power consumption can be performed even at the time of partial load. The temperature difference of the cooling water in the vicinity of 7 ° C. means a temperature including 7 ° C. and a temperature difference generally including the range from the latter half of 6 ° C. to the lower half of 8 ° C.

第4に、上記冷却塔及びターボ冷凍機の100%負荷の運転時及び部分負荷運転時において、年間を通して常時、熱源システムのCOP(成績係数)が最大値となることを特徴とする上記第1〜3の何れかに記載の熱源システムにより構成される。   Fourth, the COP (coefficient of performance) of the heat source system is always the maximum throughout the year during the 100% load operation and the partial load operation of the cooling tower and the centrifugal chiller. It is comprised by the heat-source system in any one of -3.

本発明に係る熱源システムは、冷却塔のファン動力を増加させることなく冷却水温度が年間を通じて1℃程度低く設定することで、冷凍機のCOPを向上させるものである。   The heat source system according to the present invention improves the COP of the refrigerator by setting the cooling water temperature as low as about 1 ° C. throughout the year without increasing the fan power of the cooling tower.

また、本発明に係る熱源システムは、ピーク時における冷凍機の冷却水温度差を従来より大きく設定すると共に、従来より少ない冷却水流量を以って年間を通じて一定の冷却水を循環させることにより、年間の消費電力量を低減して効率的な運転を可能としたものである。   In addition, the heat source system according to the present invention sets the cooling water temperature difference of the refrigerator at the peak time larger than before, and circulates constant cooling water throughout the year with a cooling water flow rate smaller than before, It reduces the annual power consumption and enables efficient operation.

従って、冷却水ポンプのインバータによる回転数制御等の複雑な制御を必要とせず、非常に簡単な構成により効率的な運転を実現することができる。   Therefore, complicated operation such as rotation speed control by the inverter of the cooling water pump is not required, and efficient operation can be realized with a very simple configuration.

以下、本発明の実施の形態を添付図面に基づいて説明する。尚、以下の説明において本発明のシステムにおけるCOP(成績係数)は、冷水系の冷水ポンプを除く冷却水系の熱源システムのCOPをいうものとする(後述の式(5)(6)参照)。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the following description, the COP (coefficient of performance) in the system of the present invention refers to the COP of the cooling water system heat source system excluding the chilled water system chilled water pump (see formulas (5) and (6) described later).

まず、本発明の熱源システムの基本的構成を図1により詳述する。本発明に係る熱源システムは、ビル等の空調設備に用いられるシステムであり、冷却塔1a〜1cから構成される冷却塔1、ターボ冷凍機(圧縮式冷凍機)2、上記冷却塔1と上記冷凍機2との間に配管され冷凍機用の冷却水の往管3a及び還管3bからなる冷却水配管3、上記冷却水配管3中に設置され上記冷凍機2と上記冷却塔1との間の冷却水を循環させる冷却水ポンプ4、上記冷凍機2に接続され負荷側に冷水を供給する冷水配管5、及び冷水配管5中に設置された冷水ポンプ6を含む。尚、上記冷却水の循環する系を冷却水系、上記冷水が循環する系を冷水系という。上記各冷却塔1a〜1cにおいて、7a〜7cは外気を導入するための冷却ファン、8a〜8cは上記冷却水散布用スプレー、9は冷却水であり、これら冷却塔1a〜1cの冷却水入口は各々上記還管3bに接続され、上記冷却塔1a〜1cの冷却水出口は各々上記往管3aに接続されている。   First, the basic configuration of the heat source system of the present invention will be described in detail with reference to FIG. The heat source system according to the present invention is a system used for air conditioning equipment such as a building, and includes a cooling tower 1 composed of cooling towers 1a to 1c, a turbo refrigerator (compression refrigerator) 2, the cooling tower 1 and the above. A cooling water pipe 3 that is piped between the cooling machine 2 and is composed of an outgoing pipe 3a and a return pipe 3b for the cooling machine, and installed in the cooling water pipe 3 between the cooling machine 2 and the cooling tower 1 A cooling water pump 4 that circulates cooling water therebetween, a chilled water pipe 5 that is connected to the refrigerator 2 and supplies cold water to the load side, and a chilled water pump 6 installed in the chilled water pipe 5. The system through which the cooling water circulates is called a cooling water system, and the system through which the chilled water circulates is called a cold water system. In each of the cooling towers 1a to 1c, 7a to 7c are cooling fans for introducing outside air, 8a to 8c are sprays for spraying the cooling water, 9 is cooling water, and cooling water inlets of these cooling towers 1a to 1c are provided. Are connected to the return pipe 3b, and the cooling water outlets of the cooling towers 1a to 1c are connected to the outgoing pipe 3a.

上記ターボ冷凍機2において、10は気化した冷媒を液化するための凝縮器であり、上記冷却水は上記冷凍機入口12aより凝縮器10内を経て冷凍機出口12bより上記還管3bに流出する。11は液化した冷媒を気化するための蒸発器であり、上記冷凍機2の上記冷水は冷水入口13aから蒸発器11内を経て冷水出口13bより冷水配管5に流出する。14は上記液化した冷媒を圧縮して気化させるための圧縮機である。15aはターボ冷凍機2の冷却水入口温度を計測するための温度センサー、15bはターボ冷凍機2の冷却水出口温度を計測するための温度センサー、16aはターボ冷凍機2の冷水入口温度を計測するための温度センサー、16bはターボ冷凍機2の冷水出口温度を計測するための温度センサー、17はターボ冷凍機2の操作部であり、表示部(図示せず)により上記温度センサー15a,15bの出力値、即ち冷却水入口温度と冷却水出口温度及び上記温度センサー16a,16bの出力値、即ち冷水入口温度と冷水出口温度等を表示し得るように構成されている。尚、図示していないが、上記熱源システムは各動力部に動力を供給するための動力盤と各種制御を行うための制御盤を具備している。   In the turbo refrigerator 2, 10 is a condenser for liquefying the vaporized refrigerant, and the cooling water flows from the refrigerator inlet 12a through the condenser 10 to the return pipe 3b from the refrigerator outlet 12b. . 11 is an evaporator for vaporizing the liquefied refrigerant, and the cold water of the refrigerator 2 flows out from the cold water inlet 13a through the evaporator 11 to the cold water pipe 5 from the cold water outlet 13b. Reference numeral 14 denotes a compressor for compressing and vaporizing the liquefied refrigerant. 15a is a temperature sensor for measuring the cooling water inlet temperature of the turbo chiller 2, 15b is a temperature sensor for measuring the cooling water outlet temperature of the turbo chiller 2, and 16a is measuring the cooling water inlet temperature of the turbo chiller 2. The temperature sensor 16b is a temperature sensor for measuring the temperature of the chilled water outlet of the turbo chiller 2, and 17 is an operation unit for the turbo chiller 2. The temperature sensor 15a, 15b is displayed by a display unit (not shown). Output values, i.e., cooling water inlet temperature and cooling water outlet temperature, and output values of the temperature sensors 16a and 16b, i.e., cold water inlet temperature and cold water outlet temperature, etc. can be displayed. Although not shown, the heat source system includes a power panel for supplying power to each power unit and a control panel for performing various controls.

このような構成の熱源システムは、冷却水系においては、冷却塔1a〜1cから流出した冷却水は冷却水ポンプ4の容量に基づく一定流量でターボ冷凍機2に往管3aを介して流入し、当該ターボ冷凍機2の上記凝縮器10において冷媒の液化に伴う熱を吸収して温度上昇して還管3bに流出し、さらに配管3内を通って冷却塔1a〜1cに流入し、各冷却塔1a〜1cのスプレー8a、8b、8cから散布され各冷却塔において外気により冷却された後、各々往管3aに流入して冷却水ポンプ4により上記冷凍機2に送り出される。   In the heat source system having such a configuration, in the cooling water system, the cooling water flowing out from the cooling towers 1a to 1c flows into the turbo chiller 2 through the forward pipe 3a at a constant flow rate based on the capacity of the cooling water pump 4, The condenser 10 of the turbo chiller 2 absorbs the heat accompanying the liquefaction of the refrigerant, rises in temperature, flows out to the return pipe 3b, and further flows into the cooling towers 1a to 1c through the pipe 3. After being sprayed from the sprays 8a, 8b and 8c of the towers 1a to 1c and cooled by outside air in each cooling tower, each flows into the outgoing pipe 3a and is sent out to the refrigerator 2 by the cooling water pump 4.

また、冷水系においては、負荷により温度上昇した冷水は、冷水ポンプ6により上記冷凍機2に送り出され、当該冷凍機2の上記蒸発器11において冷媒の気化に伴って熱を奪われて温度が低下し、当該冷凍機2の冷水出口13bから冷水配管5を通って負荷側に流出していく。尚、ターボ冷凍機2内の冷媒はその後圧縮機14によりに圧縮されたガスとなり、再度上記凝縮器10に流入するサイクルを繰り返す。   In the chilled water system, the chilled water whose temperature has risen due to the load is sent to the refrigerator 2 by the chilled water pump 6, and the temperature of the evaporator 11 of the refrigerator 2 is deprived of heat with the vaporization of the refrigerant. And flows out from the cold water outlet 13b of the refrigerator 2 through the cold water pipe 5 to the load side. It should be noted that the refrigerant in the turbo refrigerator 2 becomes a gas compressed by the compressor 14 and repeats the cycle of flowing into the condenser 10 again.

尚、図1中、18は上記往管3aと還管3bとの間に接続されたバイパス弁であり、空調負荷が小さくなる中間期において外気温が低下して冷却水温度が低下した場合、当該バイパス弁18を開いて還管3b内の冷却水を往管3a側にバイパスし、これにより冷却水入口温度がターボ冷凍機2の下限値以下にならないようにするものである。   In addition, in FIG. 1, 18 is a bypass valve connected between the said outgoing pipe 3a and the return pipe 3b, and when external temperature falls in the intermediate period when an air-conditioning load becomes small, and cooling water temperature falls, The bypass valve 18 is opened to bypass the cooling water in the return pipe 3b to the outgoing pipe 3a side, so that the cooling water inlet temperature does not fall below the lower limit value of the turbo chiller 2.

(A)ターボ冷凍機単体のCOP(成績係数)について
このように構成される熱源システムにおいて、まず、ターボ冷凍機単体のCOP(成績係数)、即ち、「ターボ冷凍機の消費電力に対するターボ冷凍機の生産熱量の比」に着目する。ここでターボ冷凍機単体のCOPは以下の式(1)により求められる。
ターボ冷凍機のCOP=(ターボ冷凍機の生産熱量)/(ターボ冷凍機の消費電力)
・・・・・・・・・・・・・・(1)
ここで、ターボ冷凍機の生産熱量は以下の式(2)により求められる。
ターボ冷凍機の生産熱量={(冷水入口温度−冷水出口温度)×冷水流量}
・・・・・・・・・・・・・・(2)
また、冷却塔から外気に放熱される熱量は、式(3)及び式(4)により求められる。
冷却塔からの放熱量=ターボ冷凍機の生産熱量+ターボ冷凍機の消費電力・・・(3)
冷却塔からの放熱量={(冷却水出口温度−冷却水入口温度)×冷却水流量}・(4)
(A) Regarding COP (Coefficient of Performance) of Single Turbo Refrigerator In the heat source system configured as described above, first, the COP (coefficient of performance) of the turbo chiller alone, that is, “the turbo chiller with respect to the power consumption of the turbo chiller. Focus on the ratio of production heat. Here, the COP of the single centrifugal chiller is obtained by the following equation (1).
Turbo chiller COP = (Production heat of turbo chiller) / (Power consumption of turbo chiller)
.... (1)
Here, the production heat quantity of the turbo refrigerator is obtained by the following equation (2).
Production quantity of turbo refrigerator = {(cold water inlet temperature−cold water outlet temperature) × cold water flow rate}
... (2)
Further, the amount of heat dissipated from the cooling tower to the outside air is obtained by the equations (3) and (4).
Heat radiation from cooling tower = production heat of turbo chiller + power consumption of turbo chiller (3)
Heat release from cooling tower = {(cooling water outlet temperature−cooling water inlet temperature) × cooling water flow rate} · (4)

図3は、上記熱源システムとして用いられる一般的なインバータ制御のターボ冷凍機2単体のCOP(成績係数)を示すものであり、縦軸にCOP、横軸に負荷率をとり、当該冷凍機2への冷却水入口温度ごとに負荷率とCOPとの関係を示したものである。同図より、全体として冷却水温度が低下する程、ターボ冷凍機のCOPは向上することがわかる。即ち、ターボ冷凍機2は、冷却水温度は低い程効率的な運転が可能であること及び年間を通じての熱源システムのCOP向上に貢献し得ることが予測される。   FIG. 3 shows a COP (coefficient of performance) of a general inverter-controlled turbo chiller 2 used as the heat source system. The ordinate represents the COP and the horizontal axis represents the load factor. It shows the relationship between the load factor and the COP for each cooling water inlet temperature. From the figure, it can be seen that the COP of the centrifugal chiller improves as the cooling water temperature decreases as a whole. That is, it is predicted that the turbo chiller 2 can be operated more efficiently as the cooling water temperature is lower, and can contribute to the COP improvement of the heat source system throughout the year.

ここで、上記ターボ冷凍機2の冷却水入口温度は、上記冷却塔1の設計条件によって定まる。従来、冷却塔1の設計条件は、夏場のピーク時、即ち冷却塔1の100%負荷時において、概ね冷却水入口温度37℃、冷却水出口温度32℃で運転し得るように設計されている。尚、このような従来の一般的な冷却塔を以下「標準型冷却塔」という。   Here, the cooling water inlet temperature of the turbo refrigerator 2 is determined by the design conditions of the cooling tower 1. Conventionally, the design condition of the cooling tower 1 is designed so that it can be operated at a cooling water inlet temperature of 37 ° C. and a cooling water outlet temperature of 32 ° C. at the peak of summer, that is, when the cooling tower 1 is 100% loaded. . Such a conventional general cooling tower is hereinafter referred to as “standard cooling tower”.

そこで、上記ターボ冷凍機2並びに熱源システムのCOPの向上を図るため、夏場のピーク時のターボ冷凍機2の冷却水入口温度を従来の32℃から31℃近傍(31℃を含み概ね温度範囲が30℃から31℃台前半の範囲を含む温度。以下同じ)に低下させ、これによりターボ冷凍機単体のCOPを向上させることを検討する。   Therefore, in order to improve the COP of the turbo chiller 2 and the heat source system, the cooling water inlet temperature of the turbo chiller 2 at the peak of the summer season is changed from the conventional 32 ° C. to around 31 ° C. (including a temperature range of approximately 31 ° C. We will consider reducing the temperature to 30 ° C to the temperature including the lower half of the range of 31 ° C (the same shall apply hereinafter), thereby improving the COP of the turbo refrigerator alone.

ピーク時のターボ冷凍機2の冷却水入口温度を1℃程度(1℃を含み概ね0.5℃以上2.0℃以下の範囲を含む温度。以下同じ)低下させるためには、冷却塔1の冷却能力を向上させることが必要となる。即ち、ピーク時(100%負荷時)の冷却塔1の設計条件を例えば外気温度33.5℃、外気湿球温度27.5℃とし、このときの冷却塔1が冷却水出口温度31℃近傍(或は31℃以下)になるように、冷却水温度を従来の冷却水温度に比較して1℃程度(或は1℃以上)低下させる。結果として、このような冷却能力の冷却塔1によると、ピーク時のみならず、ピーク時以外の部分負荷時においても年間を通じて冷却水温度を1℃程度低下させることになる。   In order to lower the cooling water inlet temperature of the turbo chiller 2 at the peak time by about 1 ° C. (a temperature including 1 ° C. and including a range of approximately 0.5 ° C. or more and 2.0 ° C. or less; the same applies hereinafter), the cooling tower 1 It is necessary to improve the cooling capacity. That is, the design conditions of the cooling tower 1 at the peak time (100% load) are, for example, an outside air temperature of 33.5 ° C. and an outside air wet bulb temperature of 27.5 ° C., and the cooling tower 1 at this time has a cooling water outlet temperature of around 31 ° C. The cooling water temperature is lowered by about 1 ° C. (or 1 ° C. or more) as compared to the conventional cooling water temperature so that it becomes (or 31 ° C. or less). As a result, according to the cooling tower 1 having such a cooling capacity, the cooling water temperature is reduced by about 1 ° C. throughout the year not only at the peak time but also at the partial load other than the peak time.

このとき、冷却塔1の冷却能力を向上させるために、従来技術にて説明したように冷却塔1自体を複数台増設することや、冷却塔1の冷却ファンの動力を増加させること等が考えられるが、何れの場合も冷却塔1の冷却ファン動力が増加してしまい、結果として冷却水系の消費電力が増大し、熱源システムのCOPを低下させるおそれがある。よって、上記冷却塔1の冷却能力の向上は、冷却塔1の冷却ファン7a等の動力を増加させることなく、外気と冷却水との熱交換面積を1.5倍から2倍程度に増大させることにより行う。以下、このように冷却ファンの動力を増加させずに熱交換面積を増大させることにより、ピーク時の冷却水出口温度31℃近傍、かつ年間を通じて上記標準型冷却塔より1℃程度低い冷却水温度を実現した冷却塔を「高性能型冷却塔」という。   At this time, in order to improve the cooling capacity of the cooling tower 1, it is considered to add a plurality of cooling towers 1 as described in the prior art or increase the power of the cooling fan of the cooling tower 1. However, in any case, the cooling fan power of the cooling tower 1 increases, and as a result, the power consumption of the cooling water system increases and the COP of the heat source system may be reduced. Therefore, the improvement of the cooling capacity of the cooling tower 1 increases the heat exchange area between the outside air and the cooling water from about 1.5 times to about 2 times without increasing the power of the cooling fan 7a and the like of the cooling tower 1. By doing. Hereinafter, by increasing the heat exchange area without increasing the power of the cooling fan in this way, the cooling water temperature is about 1 ° C. lower than the standard cooling tower throughout the year near the peak cooling water outlet temperature of 31 ° C. The cooling tower that achieves this is called a "high-performance cooling tower".

(B)ターボ冷凍機の冷却水温度差
次に、本発明の発明者らは、上記熱源システムのCOPをさらに向上させることを検討するに当たり、ターボ冷凍機2の冷却水の出入口温度差に着目した。
(B) Cooling Water Temperature Difference of Turbo Refrigerator Next, the inventors of the present invention pay attention to the cooling water inlet / outlet temperature difference of the turbo chiller 2 in studying further improvement of the COP of the heat source system. did.

従来型のターボ冷凍機は上述のように冷却水入口温度32℃、冷却水出口温度37℃であり、温度差は5℃で運転しているが、一般にターボ冷凍機の生産熱量は、100%負荷時(夏場のピーク時)において生産される熱量Qを基準として、当該基準熱量Qを100%負荷時において生産し得るように設計されている。よって、100%負荷時(夏場のピーク時)を考慮すると、生産される熱量Q及びターボ冷凍機の消費電力は一義的に定まるので、上記式(2)、(4)より、冷却水温度差を増加させると、冷却水流量を低減することができる。   As described above, the conventional centrifugal chiller has a cooling water inlet temperature of 32 ° C. and a cooling water outlet temperature of 37 ° C., and is operated at a temperature difference of 5 ° C. Generally, the production heat quantity of the turbo chiller is 100%. With reference to the heat quantity Q produced at the time of load (summer peak), the reference heat quantity Q is designed to be produced at 100% load. Therefore, considering the time of 100% load (summer peak), the amount of heat Q to be produced and the power consumption of the centrifugal chiller are uniquely determined. From the above equations (2) and (4), the cooling water temperature difference When the flow rate is increased, the cooling water flow rate can be reduced.

即ち、冷却水温度差を大きくすることにより、ターボ冷凍機2自体のCOPは低下するが、その代わり冷却水流量を低減することができるので、冷却水ポンプ4の動力を削減することができる。そして、この冷却水ポンプ4の動力の削減が熱源システムのCOPの削減につながることが予測される。   That is, by increasing the cooling water temperature difference, the COP of the turbo chiller 2 itself decreases, but instead the cooling water flow rate can be reduced, so that the power of the cooling water pump 4 can be reduced. And it is predicted that the reduction of the power of the cooling water pump 4 will lead to the reduction of the COP of the heat source system.

そこで、発明者らは、上記知見に基づいて、上記図1に示す熱源システムについて、上記標準型冷却塔を用いた場合と、上記高性能型冷却塔を用いた場合について、各々以下の試算を行った。   Therefore, based on the above findings, the inventors made the following calculations for the heat source system shown in FIG. 1 when the standard cooling tower is used and when the high performance cooling tower is used. went.

(a)条件1(標準型冷却塔を用いた場合)(図4(a)参照)
冷却塔1として上記標準型冷却塔を用いた。よって、ピーク時の冷却塔1の冷却水出口温度は32℃、ターボ冷凍機2の冷却水入口温度は32℃である。ターボ冷凍機はピーク時(100%負荷時)に生産される熱量Q、標準型冷却塔から放熱される熱量Qs(ピーク時一定)を基準値として、ピーク時におけるターボ冷凍機2の冷却水温度差を5℃、6℃、7℃、8℃、9℃、10℃とした場合の冷却水流量を上記式(2)、(4)に基づいて決定した。即ち、冷却水流量は各温度差毎に、Qs/5、Qs/6、Qs/7、Qs/8、Qs/9、Qs/10となる。
(A) Condition 1 (when a standard cooling tower is used) (see FIG. 4 (a))
The standard type cooling tower was used as the cooling tower 1. Therefore, the cooling water outlet temperature of the cooling tower 1 at the peak time is 32 ° C., and the cooling water inlet temperature of the turbo refrigerator 2 is 32 ° C. The turbo chiller uses the heat quantity Q produced at peak time (100% load) and the heat quantity Qs radiated from the standard cooling tower (constant peak time) as reference values for the cooling water temperature of the turbo chiller 2 at the peak time. The cooling water flow rates when the differences were 5 ° C., 6 ° C., 7 ° C., 8 ° C., 9 ° C. and 10 ° C. were determined based on the above formulas (2) and (4). That is, the cooling water flow rate becomes Qs / 5, Qs / 6, Qs / 7, Qs / 8, Qs / 9, and Qs / 10 for each temperature difference.

そして、これらの冷却水流量を送出可能な容量の冷却水ポンプ4を用いて年間を通じてピーク時以外においても各温度差毎に一定流量を冷却水系に循環させるものとする。そして、上記各冷却水温度差毎に、以下のパターンA〜Cの3パターンの負荷率(後述)について、年間の消費電力量を算出した。   Then, it is assumed that a constant flow rate is circulated in the cooling water system for each temperature difference even during a year other than the peak using the cooling water pump 4 having a capacity capable of delivering these cooling water flow rates. And for every said cooling water temperature difference, the annual power consumption was computed about the load factor (after-mentioned) of three patterns of the following patterns AC.

(b)条件2(高性能型冷却塔を用いた場合)(図4(b)参照)
冷却塔1として上記高性能型冷却塔を用いた。よって、ピーク時の冷却塔1の冷却水出口温度は31℃、ターボ冷凍機2の冷却水入口温度は31℃であり、年間を通じて冷却水温度は上記条件1よりも1℃程度低く設定される。ターボ冷凍機2はピーク時(100%負荷時)に生産される熱量Q、高性能型冷却塔から放熱される熱量Qh(ピーク時一定)を基準値として、ピーク時におけるターボ冷凍機2の冷却水温度差を同様に5℃、6℃、7℃、8℃、9℃、10℃とした場合の冷却水流量を式(2)、(4)に基づいて決定した。即ち、冷却水流量は各温度差毎に、Qh/5、Qh/6、Qh/7、Qh/8、Qh/9、Qh/10となる。
(B) Condition 2 (when a high-performance cooling tower is used) (see FIG. 4B)
The high performance type cooling tower was used as the cooling tower 1. Therefore, the cooling water outlet temperature of the cooling tower 1 at the peak time is 31 ° C., the cooling water inlet temperature of the turbo refrigerator 2 is 31 ° C., and the cooling water temperature is set to be about 1 ° C. lower than the above condition 1 throughout the year. . The turbo chiller 2 cools the turbo chiller 2 at the peak time with the heat quantity Q produced at the peak time (100% load) and the heat quantity Qh radiated from the high performance type cooling tower (constant at the peak time) as reference values. Similarly, the cooling water flow rate when the water temperature difference was 5 ° C., 6 ° C., 7 ° C., 8 ° C., 9 ° C., and 10 ° C. was determined based on the equations (2) and (4). That is, the cooling water flow rate becomes Qh / 5, Qh / 6, Qh / 7, Qh / 8, Qh / 9, and Qh / 10 for each temperature difference.

そして、これらの冷却水流量を送出可能な容量の冷却水ポンプ4を用いて年間を通じて各温度差毎にピーク時以外においても一定流量を冷却水系に循環させるものとする。そして、上記各冷却水温度差毎に、以下のパターンA〜Cの3パターンの負荷率について、年間の消費電力量を算出した。   Then, a constant flow rate is circulated in the cooling water system at a temperature difference other than the peak for every temperature difference throughout the year by using the cooling water pump 4 having a capacity capable of delivering the cooling water flow rate. And for every said cooling water temperature difference, the annual power consumption was computed about the load factor of three patterns of the following patterns AC.

(c)運転パターンについて
この場合、上記条件1、2の何れの場合も、熱源システムの運転パターンは、図5(a)〜(c)に示す3つのパターンの年間負荷率とした。即ち、パターンAは、日間負荷率は、1時から9時までの深夜は45%、9時から23時までが90%であり、月別負荷率は、年間を通じて95%一定とするもので、年間負荷率は65%である。
(C) Operation pattern In this case, the operation pattern of the heat source system is the annual load factor of the three patterns shown in FIGS. That is, in the pattern A, the daily load factor is 45% at midnight from 1 o'clock to 9 o'clock, 90% from 9 o'clock to 23 o'clock, and the monthly load factor is constant 95% throughout the year. The annual load factor is 65%.

パターンBは、日間負荷率はパターンAと同一であるが、月別負荷率は、7月と8月にピークが存在し、それ以外の月は漸次減少するパターンであり、年間負荷率は45%である。   Pattern B has the same daily load factor as Pattern A, but the monthly load factor has a peak in July and August and gradually decreases in other months, with an annual load factor of 45%. It is.

パターンCは、月別負荷率はパターンBと同一であるが、日間負荷率は1時から9時までは0%とするものであり、年間負荷率は30%である。   In the pattern C, the monthly load factor is the same as the pattern B, but the daily load factor is 0% from 1 o'clock to 9 o'clock, and the annual load factor is 30%.

(d)年間を通じた試算方法
まず、パターンA〜Cの各々の負荷(図5の日間負荷率及び月間負荷率)に基づいてその月日の交換熱量を決定し、その月日での外気条件に基づいて冷却塔の運転条件(冷却水温度)を算出する。冷却水流量は一定なので、冷却塔の冷却水出口温度が決まれば、冷却水温度条件が決定される。例えば、標準型冷却塔を用いた場合は(図4(a))、夏場のピーク時(7月、8月等)の冷却水温度は32℃に設定され、ターボ冷凍機2の冷却水温度差が例えば5℃の場合は、ピーク時の冷却水流量はQs/5となる。よって、ピーク時を含めて冷却水流量はQs/5一定で年間を通じて運転される。負荷が小さく、冷凍機が部分負荷運転を行う場合は(例えば、パターンBでは3月、4月は月別負荷率は60%参照)、交換熱量も減少し、冷却水側の交換熱量も減少し、温度差は上記5℃より低下するので、このような中間期の負荷率も考慮する。そして、当該条件で1年間運転した場合の冷却水系の消費電力の合計、即ち、算出した冷却水流量(Qs/5)での年間の冷却水ポンプ4の消費電力量を算出し、算出した温度条件でのターボ冷凍機2本体の消費電力量を算出し、算出した温度条件と冷却水流量から冷却塔1の冷却ファン7a〜7cの消費電力を算出し、これらの合計の消費電力量[kWh/年]を求める。
(D) Trial calculation method throughout the year First, the exchange heat quantity of the month is determined based on each load (the daily load factor and the monthly load factor in FIG. 5) of the patterns A to C, and the outside air condition on the month and day Based on the above, the operating condition (cooling water temperature) of the cooling tower is calculated. Since the cooling water flow rate is constant, if the cooling water outlet temperature of the cooling tower is determined, the cooling water temperature condition is determined. For example, when a standard cooling tower is used (FIG. 4A), the cooling water temperature at the peak of summer (July, August, etc.) is set to 32 ° C., and the cooling water temperature of the turbo chiller 2 is set. When the difference is 5 ° C., for example, the cooling water flow rate at the peak is Qs / 5. Therefore, the cooling water flow rate including the peak time is operated throughout the year at a constant Qs / 5. When the load is small and the refrigerator performs partial load operation (for example, in Pattern B, March and April refer to the monthly load factor of 60%), the exchange heat amount also decreases, and the exchange heat amount on the cooling water side also decreases. Since the temperature difference is lower than 5 ° C., such an intermediate period load factor is also taken into consideration. Then, the total power consumption of the cooling water system when operated for one year under the conditions, that is, the annual power consumption of the cooling water pump 4 at the calculated cooling water flow rate (Qs / 5) is calculated, and the calculated temperature The power consumption of the turbo chiller 2 body under the conditions is calculated, the power consumption of the cooling fans 7a to 7c of the cooling tower 1 is calculated from the calculated temperature condition and the cooling water flow rate, and the total power consumption [kWh / Year].

また、高性能型冷却塔を用いた場合(図4(b))も同様に年間消費電力量を求める。即ち、同様に、パターンA〜Cの各々の負荷(図5の日間負荷率及び月間負荷率)に基づいてその月日の交換熱量を決定し、その月日での外気条件に基づいて冷却塔の運転条件(冷却水温度)を算出する。例えば、高性能型冷却塔を用いた場合は(図4(b))、夏場のピーク時(7月、8月等)の冷却水温度は31℃に設定され、ターボ冷凍機2の冷却水温度差が例えば7℃の場合は、ピーク時の冷却水流量はQh/7となる。よって、ピーク時を含めて冷却水流量はQh/7一定で年間を通じて運転される。負荷が小さく、冷凍機が部分負荷運転を行う場合は(例えば、パターンCでは1月、2月は月別負荷率は40%参照)、交換熱量も減少するので、冷却水側の交換熱量も減少し、温度差は上記7℃より低下するので、このような中間期の負荷率も考慮する。そして、当該条件で1年間運転した場合の冷却水系の消費電力の合計、即ち、算出した冷却水流量(Qh/7)での年間の冷却水ポンプ4の消費電力量を算出し、算出した温度条件でのターボ冷凍機2本体の消費電力量を算出し、算出した温度条件と冷却水流量から冷却塔1の冷却ファン7a〜7cの消費電力を算出し、これらの合計の消費電力量[kWh/年]を求める。
即ち、その日の外気湿球温度(統計値)と冷却塔の性能曲線より、冷凍機の冷却水入口温度を算出し、負荷パターンの部分負荷率と上記冷却水入口温度よりターボ冷凍機の入力値[kw]、冷却塔の入力値[kw]、冷却水ポンプの入力値[kw]を算出して1日の消費電力を算出し、当該消費電力を年間日数分積み上げることにより、年間の消費電力量を求める。
Further, when the high-performance cooling tower is used (FIG. 4B), the annual power consumption is similarly obtained. That is, similarly, the heat exchange amount for the month is determined based on the loads of the patterns A to C (the daily load factor and the monthly load factor in FIG. 5), and the cooling tower is determined based on the outside air conditions on the month and day. The operating conditions (cooling water temperature) are calculated. For example, when a high-performance cooling tower is used (FIG. 4B), the cooling water temperature at the peak of summer (July, August, etc.) is set to 31 ° C., and the cooling water of the turbo refrigerator 2 is set. For example, when the temperature difference is 7 ° C., the cooling water flow rate at the peak is Qh / 7. Therefore, the cooling water flow rate including the peak time is operated throughout the year at a constant Qh / 7. When the load is small and the refrigerator performs partial load operation (for example, in Pattern C, January and February refer to the monthly load factor of 40%), the amount of heat exchange also decreases, so the amount of heat exchanged on the cooling water side also decreases. However, since the temperature difference is lower than 7 ° C., such an intermediate period load factor is also taken into consideration. Then, the total power consumption of the cooling water system when operated for one year under the conditions, that is, the annual power consumption of the cooling water pump 4 at the calculated cooling water flow rate (Qh / 7) is calculated, and the calculated temperature The power consumption of the turbo chiller 2 body under the conditions is calculated, the power consumption of the cooling fans 7a to 7c of the cooling tower 1 is calculated from the calculated temperature condition and the cooling water flow rate, and the total power consumption [kWh / Year].
That is, the cooling water inlet temperature of the refrigerator is calculated from the outdoor wet bulb temperature (statistical value) of the day and the performance curve of the cooling tower, and the input value of the turbo refrigerator is calculated from the partial load factor of the load pattern and the cooling water inlet temperature. By calculating [kw], cooling tower input value [kw], cooling water pump input value [kw], and calculating the daily power consumption, the power consumption is accumulated for the number of days per year, thereby increasing the annual power consumption. Find the amount.

(e)熱源システムのCOP(成績係数)
熱源システム(但し、冷水系の冷水ポンプを除く)のCOPは以下の式(5)により求める。
熱源システムCOP(成績係数)
=ターボ冷凍機の生産熱量[kw]/熱源システムの合計消費電力[kw]
・・・・・・・・・・・(5)
(E) COP (coefficient of performance) of heat source system
The COP of the heat source system (excluding the chilled water pump) is obtained by the following equation (5).
Heat source system COP (coefficient of performance)
= Production heat of turbo chiller [kw] / Total power consumption of heat source system [kw]
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (5)

ここで、ターボ冷凍機の生産熱量は上記式(2)によって算出される。また、熱源システム(但し、冷水系の冷水ポンプを除く)の合計消費電力は、以下の式(6)によって算出する。
熱源システム消費電力=(ターボ冷凍機電力+冷却塔ファン電力+冷却水ポンプ電力)
・・・・・・・・・・・(6)
Here, the production heat quantity of the turbo refrigerator is calculated by the above formula (2). Further, the total power consumption of the heat source system (excluding the chilled water type chilled water pump) is calculated by the following equation (6).
Heat source system power consumption = (turbo refrigerator power + cooling tower fan power + cooling water pump power)
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (6)

(f)試算結果(図6参照)
上記の条件に基づいて、上記パターンA、B、Cの運転を行った場合の標準型冷却塔と高性能型冷却塔について、冷却水温度差に対する年間消費電力量を表したものが図6である。この図によると、まず、標準型冷却塔よりも高性能型冷却塔を用いた方が、どの温度差においても年間の消費電力が低いことがわかる。これは高性能型冷却塔の冷却水温度が標準型冷却塔の冷却水温度よりも年間を通じて1℃程度低いことが消費電力の効率化に貢献しているものと考えられる。さらに、標準型冷却塔及び高性能型冷却塔の何れの場合も、冷却水温度差が7℃近傍のときに、最も消費電力が低いことがわかる。即ち、標準型冷却塔及び高性能型冷却塔の何れの場合も、温度差が7℃近傍のときに、熱源システムのCOP(成績係数)が最高値を示すことがわかる。
(F) Trial calculation result (see Fig. 6)
FIG. 6 shows the annual power consumption with respect to the cooling water temperature difference for the standard cooling tower and the high performance cooling tower when the operations of the patterns A, B, and C are performed based on the above conditions. is there. According to this figure, it can be seen that the annual power consumption is lower at any temperature difference when the high-performance cooling tower is used than at the standard cooling tower. This is probably because the cooling water temperature of the high-performance cooling tower is about 1 ° C. lower than the cooling water temperature of the standard cooling tower throughout the year, which contributes to the efficiency of power consumption. Furthermore, it can be seen that the power consumption is the lowest when the cooling water temperature difference is around 7 ° C. in both the standard cooling tower and the high-performance cooling tower. That is, it can be seen that in both the standard cooling tower and the high performance cooling tower, the COP (coefficient of performance) of the heat source system shows the highest value when the temperature difference is around 7 ° C.

(C)COPの最高値を実現するための構成
以上の検討結果より、発明者らは図1に示す熱源システムにおいて、以下の構成とすることにより、年間の消費電力を最も低くし、熱源システムのCOPを最高値とすることができるとの知見を得るに至った。
(C) Configuration for Realizing Maximum Value of COP From the above examination results, the inventors have made the following configuration in the heat source system shown in FIG. It came to the knowledge that COP of C could be made into the maximum value.

(a)夏場のピーク負荷時に、ターボ冷凍機2を100%運転する場合、冷却水系においてターボ冷凍機2の冷却水入口温度を従来の32℃から1℃程度低下させ31℃近傍とする。そして、年間を通じて冷却水入口温度を1℃程度低下させる。 (A) When the turbo chiller 2 is operated 100% at the peak load in summer, the cooling water inlet temperature of the turbo chiller 2 is lowered by about 1 ° C. from the conventional 32 ° C. to about 31 ° C. in the cooling water system. Then, the cooling water inlet temperature is decreased by about 1 ° C. throughout the year.

これを実現するため冷却塔1の冷却能力を向上させる必要があるが、そのために、冷却ファンの動力を増加させずに、外気と冷却水との熱交換面積を1.5倍から2倍に増大させた高性能型冷却塔を用いる。   In order to realize this, it is necessary to improve the cooling capacity of the cooling tower 1, but for this purpose, the heat exchange area between the outside air and the cooling water is increased from 1.5 times to 2 times without increasing the power of the cooling fan. Use an enhanced high performance cooling tower.

(b)熱源システムの消費電力をさらに低減させるために、ターボ冷凍機2の出入口の冷却水温度差ΔTを、ピーク時(100%負荷時)において7℃近傍に設定する。これを実現させるために、冷却水ポンプ4の冷却水流量を標準型より下げて消費電力を減少させる。 (B) In order to further reduce the power consumption of the heat source system, the cooling water temperature difference ΔT at the inlet / outlet of the turbo chiller 2 is set to around 7 ° C. at the peak time (100% load). In order to realize this, the cooling water flow rate of the cooling water pump 4 is lowered from the standard type to reduce power consumption.

さらに、ピーク時(100%負荷時)のターボ冷凍機2の生産熱量を基準として、上記温度差7℃近傍に基づいて冷却水流量を決定し、当該冷却水流量(一定)にて年間を通じて運転を行う。   Furthermore, the cooling water flow rate is determined based on the temperature difference of about 7 ° C. based on the production heat quantity of the centrifugal chiller 2 at the peak time (100% load), and is operated throughout the year at the cooling water flow rate (constant). I do.

このような条件で運転することにより、標準型冷却塔、高性能型冷却塔の何れを用いた場合も、熱源システムの年間消費電力を最小として、COPを最高値とすることができる。   By operating under such conditions, the annual power consumption of the heat source system can be minimized and the COP can be maximized regardless of whether the standard type cooling tower or the high performance type cooling tower is used.

(D)具体的機器構成
以下、図1の熱源システムにおいて、上記(C)(a)(b)条件を満たす各機器の具体的構成について説明する。
(a)冷却塔(高性能型冷却塔)1について
(D) Specific Device Configuration Hereinafter, a specific configuration of each device that satisfies the conditions (C), (a), and (b) in the heat source system of FIG. 1 will be described.
(A) About the cooling tower (high performance type cooling tower) 1

冷却塔1は、図2(a)に示すような冷却塔を用いる。上述のように夏場のピーク時(100%負荷時)に冷却塔1の冷却水出口温度が31℃となるような設計を行う。具体的には、例えば外気温度を33.5℃、外気湿球温度が27.5℃のとき、冷却塔1の冷却水入口温度38℃、冷却水出口温度31℃となるように当該冷却塔の設計を行う。ここでは、冷却ファン7aの動力を増加せずに設計することが重要である。一例として、標準型冷却塔(冷却水出口温度32℃)が7.5kWのモータを使用した直径2100mmの冷却ファンを用いており、かかる冷却塔を2台並設していたのに対して、3.7kWのモータを使用した直径1800mmの冷却ファン7aを用い、当該冷却塔を3台並設する(冷却塔1a〜1c)。また、冷却塔1台あたりの外気と冷却水との熱交換面積(充填材19の面積)を広げることで、冷凍機1a〜1bの3台における外気と冷却水との熱交換面積の合計を、従来比で1.5倍〜2倍とし、冷却ファン動力を増加させることなく冷却能力を向上し、冷却水出口温度31℃近傍を実現した(図2(b))。上記熱交換面積の増大は、具体的には冷却塔1の充填材19の幅及び奥行はそのままで高さ方向に面積を1.5倍から2倍拡大した。図8に面積拡大後の充填材19(面積拡大部分19’)を示す。尚、このように構成すると設置面積の効率化を図ることができる。尚、図2(a)中、20は外気取入口を示す。   The cooling tower 1 uses a cooling tower as shown in FIG. As described above, the design is such that the cooling water outlet temperature of the cooling tower 1 is 31 ° C. at the peak of summer (at 100% load). Specifically, for example, when the outside air temperature is 33.5 ° C. and the outside air wet bulb temperature is 27.5 ° C., the cooling tower 1 has a cooling water inlet temperature of 38 ° C. and a cooling water outlet temperature of 31 ° C. Do the design. Here, it is important to design the cooling fan 7a without increasing the power. As an example, a standard cooling tower (cooling water outlet temperature 32 ° C.) uses a cooling fan with a diameter of 2100 mm using a motor of 7.5 kW, and two such cooling towers are arranged side by side. Three cooling towers are arranged side by side using a cooling fan 7a having a diameter of 1800 mm using a 3.7 kW motor (cooling towers 1a to 1c). Further, by expanding the heat exchange area between the outside air and the cooling water per cooling tower (the area of the filler 19), the total heat exchange area between the outside air and the cooling water in the three refrigerators 1a to 1b can be calculated. The cooling capacity was improved by 1.5 to 2 times compared with the prior art, without increasing the cooling fan power, and a cooling water outlet temperature of around 31 ° C. was realized (FIG. 2B). Specifically, the increase in the heat exchange area was 1.5 to 2 times larger in the height direction while maintaining the width and depth of the filler 19 of the cooling tower 1. FIG. 8 shows the filler 19 (area enlarged portion 19 ') after area expansion. In addition, if comprised in this way, the efficiency of an installation area can be achieved. In FIG. 2A, reference numeral 20 denotes an outside air intake.

(b)冷凍機2及び冷却水ポンプ4について
冷凍機2は、定速ターボ冷凍機とインバータ制御ターボ冷凍機の何れも使用可能である。尚、このような性能の冷凍機は従来から一般的に用いられているので、本発明を実現するにあたっては従来から用いられているターボ冷凍機をそのまま使用することができる。
(B) Refrigerating machine 2 and cooling water pump 4 As the refrigerating machine 2, either a constant speed turbo refrigerating machine or an inverter-controlled turbo refrigerating machine can be used. In addition, since the refrigerator of such a performance is generally used conventionally, in order to implement | achieve this invention, the turbo refrigerator conventionally used can be used as it is.

そして、本発明に係る熱源システムの設計条件として、ターボ冷凍機2の100%負荷時において発生する熱量(一定値)を基準として、式(2)、(4)に基づいて冷却水温度差が7℃近傍となるように冷却水流量を決定する。   And as a design condition of the heat source system according to the present invention, the cooling water temperature difference based on the equations (2) and (4) is based on the amount of heat (a constant value) generated when the turbo refrigerator 2 is 100% loaded. The cooling water flow rate is determined to be around 7 ° C.

例えば、従来のターボ冷凍機の冷却水温度差が5℃であるとすれば、冷却水流量は従来の熱源システムに比べて約5/7に設定することができる。即ち、ピーク時の冷却水流量が従来比約5/7となるような容量の冷却水ポンプ4を用いる。このように、従来の冷凍機の発生熱量を維持しながら冷却水で入口温度差を7℃近傍とするには、例えば冷却水ポンプ4の能力を従来型の容量の約5/7の容量のポンプを用いればよい。   For example, if the cooling water temperature difference of the conventional turbo refrigerator is 5 ° C., the cooling water flow rate can be set to about 5/7 as compared with the conventional heat source system. That is, the cooling water pump 4 having a capacity such that the cooling water flow rate at the peak time is about 5/7 of the conventional one is used. Thus, in order to make the inlet temperature difference around 7 ° C. with the cooling water while maintaining the heat generation amount of the conventional refrigerator, for example, the capacity of the cooling water pump 4 is about 5/7 of the capacity of the conventional type. A pump may be used.

(c)その他
上述のように、冷却水系の冷却水流量は、例えば従来装置の約5/7のように少ない流量とすることができるため、冷却水系の配管3(往管3a,還管3b)の直径は従来の冷却水温度差が5℃の熱源システムより小さくすることが可能な場合がある。これにより、熱源システム全体の製造コストをも低減することができる。
(C) Others As described above, since the cooling water flow rate of the cooling water system can be set to a low flow rate, for example, about 5/7 of the conventional device, the cooling water system pipe 3 (outward pipe 3a, return pipe 3b) ) May be smaller than a conventional heat source system with a cooling water temperature difference of 5 ° C. Thereby, the manufacturing cost of the whole heat source system can also be reduced.

(E)動作説明
本発明の熱源システムは上述のように構成することができるため、以下その動作を説明する。尚、以下の説明では、冷却塔として冷却塔1a、1b、1cから構成される高性能型冷却塔(ピーク時の冷却水温度31℃近傍)、ターボ冷凍機2のピーク時(100%負荷時)の冷却水入口温度31℃近傍、冷却水出口温度38℃近傍(温度差ΔT=7℃近傍)、冷却水ポンプ4の冷却水流量はQh/7(一定)とする。
(a)ピーク時の運転
(E) Operation Description Since the heat source system of the present invention can be configured as described above, its operation will be described below. In the following description, the cooling tower 1a, 1b, 1c is a high performance type cooling tower (the peak cooling water temperature is around 31 ° C.), and the turbo refrigerator 2 is at the peak (at 100% load). ), The cooling water inlet temperature is around 31 ° C., the cooling water outlet temperature is around 38 ° C. (temperature difference ΔT = 7 ° C.), and the cooling water flow rate of the cooling water pump 4 is Qh / 7 (constant).
(A) Driving at peak

ピーク時においては、ターボ冷凍機2、冷却塔1a、1b、1c、冷却水ポンプ4の何れもが100%の能力で運転を行う。よって、冷却塔1の出口温度は31℃近傍となり、当該温度の冷却水が冷却水ポンプ4によって往管3a内をターボ冷凍機2に向けて送り出される。   At the peak time, the turbo chiller 2, the cooling towers 1a, 1b, 1c, and the cooling water pump 4 are all operated with a capacity of 100%. Accordingly, the outlet temperature of the cooling tower 1 is close to 31 ° C., and the cooling water at that temperature is sent out by the cooling water pump 4 toward the turbo refrigerator 2 through the outgoing pipe 3a.

上記ターボ冷凍機2に流入した冷却水は、31℃近傍の冷却水入口温度にて冷凍機2内の冷却水入口12aから凝縮器10内に入り、当該凝縮器10において冷媒からの放熱により38℃近傍に温度上昇して冷却水出口12bから流出し、還管3b内を介して冷却塔1aの入口から冷却塔1a〜1c内に流入する。上記冷却塔1a〜1cに流入した冷却水は当該冷却塔にて31℃近傍まで冷却され、当該温度にて冷凍機2の冷却水入口12aに流入する。尚、このときバイパス弁18は閉鎖状態となり、ターボ冷凍機2を出た冷却水は全量が冷却塔1に流入する。   The cooling water flowing into the turbo refrigerator 2 enters the condenser 10 from the cooling water inlet 12a in the refrigerator 2 at a cooling water inlet temperature near 31 ° C., and 38 in the condenser 10 due to heat radiation from the refrigerant. The temperature rises to around 0 ° C., flows out from the cooling water outlet 12b, and flows into the cooling towers 1a to 1c from the inlet of the cooling tower 1a through the return pipe 3b. The cooling water that has flowed into the cooling towers 1a to 1c is cooled to around 31 ° C. by the cooling tower, and flows into the cooling water inlet 12a of the refrigerator 2 at the temperature. At this time, the bypass valve 18 is in a closed state, and the entire amount of the cooling water exiting the turbo refrigerator 2 flows into the cooling tower 1.

このように、ピーク時においては、冷却水入口温度31℃近傍、かつターボ冷凍機2の冷却水温度差が7℃近傍に固定して運転が行われる。このとき、図6に示すように、熱源システムのCOP(成績係数)は最大値となっており、効率的な運転を実現し得る。   Thus, at the peak time, the operation is performed with the cooling water inlet temperature around 31 ° C. and the cooling water temperature difference of the turbo chiller 2 fixed at around 7 ° C. At this time, as shown in FIG. 6, the COP (coefficient of performance) of the heat source system is the maximum value, and an efficient operation can be realized.

(b)ピーク時以外の運転
外気条件の変動により例えば外気湿球温度が設計値の27.5℃よりも低くなれば、上記冷却水温度は31℃よりも低くなる(図7参照)。
(B) Operation other than during peak time If the outside air wet bulb temperature becomes lower than the designed value of 27.5 ° C. due to fluctuations in the outside air conditions, the cooling water temperature becomes lower than 31 ° C. (see FIG. 7).

上記外気温が低下する等してターボ冷凍機2の運転が部分負荷(例えば80%)になったとすると、上記ターボ冷凍機2による交換熱量も80%に減少することになり、冷却水の交換熱量も減少する。この場合、冷却水ポンプ4は一定流量(Qh/7)にて運転を継続しているので、上記式(2)、(4)より熱量が減少した分ターボ冷凍機2の冷却水温度差が7℃よりも小さくなる(例えば5.6℃)。   If the operation of the turbo chiller 2 becomes a partial load (for example, 80%) due to a decrease in the outside air temperature or the like, the amount of heat exchanged by the turbo chiller 2 is also reduced to 80%. The amount of heat is also reduced. In this case, since the cooling water pump 4 continues to operate at a constant flow rate (Qh / 7), the cooling water temperature difference of the centrifugal chiller 2 is reduced by the amount of heat decreased from the above equations (2) and (4). It becomes smaller than 7 ° C. (for example, 5.6 ° C.).

しかしながら、このような部分負荷時は外気温がピーク時よりも低くなっているので、冷却水温度もピーク時の31℃近傍よりも低下する(例えば24℃)。よって、ターボ冷凍機2の冷却水入口温度は24℃となり、冷却水入口12aから凝縮器10内に入り、当該凝縮器10において冷媒からの放熱により29.6℃に温度上昇して(温度差5.6℃)冷却水出口12bから流出し、還管3b内を介して冷却塔1aの入口から冷却塔1a〜1c内に流入する。上記冷却塔1a〜1cに流入した冷却水は当該冷却塔にて24℃まで冷却され、当該温度にて冷凍機2の冷却水入口12aに流入する。   However, since the outside air temperature is lower than that at the peak time during such partial load, the cooling water temperature is also lower than the vicinity of 31 ° C. at the peak time (for example, 24 ° C.). Therefore, the cooling water inlet temperature of the turbo chiller 2 becomes 24 ° C., enters the condenser 10 from the cooling water inlet 12a, and rises to 29.6 ° C. due to heat radiation from the refrigerant in the condenser 10 (temperature difference). 5.6 ° C.) It flows out from the cooling water outlet 12b and flows into the cooling towers 1a to 1c from the inlet of the cooling tower 1a through the return pipe 3b. The cooling water that has flowed into the cooling towers 1 a to 1 c is cooled to 24 ° C. in the cooling tower, and flows into the cooling water inlet 12 a of the refrigerator 2 at the temperature.

かかる部分負荷時においては冷却水温度が低下するが、図3に示すようにターボ冷凍機2単体のCOPは冷却水温度がピーク時の31℃近傍より低下してくと逆に向上することになる。例えば、図3において冷却水温度が24℃になると負荷率80%でCOPは約8.5であり、冷却水温度31℃の100%負荷時の約6.5よりも大幅に向上する。よって、冷却水温度が低下しても熱源システムのCOPは低下することはない。また、冷却水温度(上記の24℃)は標準型冷却塔に比較して1℃程度低下しているため(図7参照)、当該部分負荷時においても従来型のターボ冷凍機に比べてターボ冷凍機2(単体)のCOPは向上している。即ち、年間を通じて冷却水温度は1℃程度低下するので、年間を通じてターボ冷凍機2単体のCOPが向上し、結果として熱源システムのCOPが向上して、部分負荷時を含めて年間を通じて効率的な運転を行うことができる。   At such a partial load, the cooling water temperature decreases. However, as shown in FIG. 3, the COP of the turbo chiller 2 alone is improved when the cooling water temperature decreases from around 31 ° C. at the peak. . For example, in FIG. 3, when the cooling water temperature is 24 ° C., the COP is about 8.5 at a load factor of 80%, which is a great improvement over about 6.5 when the cooling water temperature is 31 ° C. and 100% load. Therefore, even if the cooling water temperature decreases, the COP of the heat source system does not decrease. Further, since the cooling water temperature (24 ° C.) is about 1 ° C. lower than that of the standard cooling tower (see FIG. 7), the turbo water is more turbocharged than the conventional turbo refrigerator even at the partial load. The COP of the refrigerator 2 (single unit) is improved. That is, since the cooling water temperature decreases by about 1 ° C. throughout the year, the COP of the turbo chiller 2 alone improves throughout the year, and as a result, the COP of the heat source system improves and is efficient throughout the year, including during partial loads. You can drive.

このように、部分負荷時においても、ピーク時の冷却水温度31℃近傍で冷凍機2の温度差が7℃となるように冷却水流量を選定した冷却水ポンプ4によって、年間を通じて一定流量で運転することにより、冷却水温度差を可能な限り大きくし、ピーク時を含めた年間を通じての熱源システムのCOPを最大とすることができる。   Thus, even at the partial load, the cooling water pump 4 that selects the cooling water flow rate so that the temperature difference of the refrigerator 2 becomes 7 ° C. near the cooling water temperature of 31 ° C. at the peak time can be maintained at a constant flow rate throughout the year. By operating, the cooling water temperature difference can be made as large as possible, and the COP of the heat source system can be maximized throughout the year including the peak time.

以上説明してきた本発明の熱源システムにおいては、冷凍機は定速運転のターボ冷凍機、インバータ制御のターボ冷凍機の何れも適用することができる。   In the heat source system of the present invention described above, the refrigerator can be applied to either a constant speed turbo chiller or an inverter controlled turbo chiller.

本発明の熱源システムは、構造簡単で効率的な運転が可能であり、省エネルギー運転を実現し得るため、工場やオフィスビル等の各種の空調設備に適用することができる。特に本発明は以下の効果を有する。   Since the heat source system of the present invention can be operated efficiently with a simple structure and can realize energy saving operation, it can be applied to various air conditioning facilities such as factories and office buildings. In particular, the present invention has the following effects.

夏場のピーク時においてはターボ冷凍機2の冷却水温度差は7℃近傍に保たれ、消費電力の低い効率的な運転を行うことができる。   At the peak of summer, the cooling water temperature difference of the turbo chiller 2 is kept in the vicinity of 7 ° C., and an efficient operation with low power consumption can be performed.

また、上記冷凍機2の100%負荷の運転時において冷却水温度差(7℃近傍)を基準に冷却水流量が決定されるので、標準の冷却水温度差(5℃)に基づく冷却水流量よりも少ない冷却水流量とすることができ、これにより低容量の冷却水ポンプを使用することができる。   Further, since the cooling water flow rate is determined based on the cooling water temperature difference (near 7 ° C.) when the refrigerator 2 is operated at 100% load, the cooling water flow rate based on the standard cooling water temperature difference (5 ° C.). The cooling water flow rate can be smaller than that, and a low-capacity cooling water pump can be used.

また、ピーク時以外においてはターボ冷凍機2の発生熱量は低下するが、冷却水流量は一定流量を維持するため、外気湿球温度の低下により冷却水温度が低下し、しかも冷却水温度は年間を通して1℃程度低いので、これにより冷凍機のCOP(成績係数)が向上し、部分負荷時においても消費電力の低い効率的な運転を行うことができる。   In addition, although the amount of heat generated by the turbo chiller 2 decreases at times other than the peak, the cooling water flow rate is maintained at a constant flow rate, so that the cooling water temperature decreases due to a decrease in the outside air wet bulb temperature. Therefore, the COP (coefficient of performance) of the refrigerator is improved, and an efficient operation with low power consumption can be performed even at a partial load.

また、本発明の熱源システムにおいては、冷凍機は吸収式冷凍機、吸収式冷温水機等にも適用が可能である。   In the heat source system of the present invention, the refrigerator can be applied to an absorption refrigerator, an absorption chiller / heater, and the like.

従って、冷却水ポンプ等のインバータによる回転数制御等の複雑な制御を必要とせず、非常に簡単な構成により効率的な運転を実現可能な熱源システムを提供し得る。   Therefore, it is possible to provide a heat source system that does not require complicated control such as rotational speed control by an inverter such as a cooling water pump, and that can realize efficient operation with a very simple configuration.

本発明に係る熱源システムの全体構成を示すブロック図である。It is a block diagram showing the whole heat source system composition concerning the present invention. (a)は同上システムにおける冷却塔の詳細構成を示す図、(b)は同上システムにおける冷却塔の構成図である。(A) is a figure which shows the detailed structure of the cooling tower in a system same as the above, (b) is a block diagram of the cooling tower in a system same as the above. 一般的なターボ冷凍機の部分負荷率に対するCOPの特性図である。It is a characteristic figure of COP with respect to the partial load factor of a general turbo refrigerator. (a)は標準型冷却塔における冷却水温度差に対応する各運転条件を示す表、(b)は高性能型冷却塔における冷却水温度差に対応する各運転条件を示す表である。(A) is a table | surface which shows each operating condition corresponding to the cooling water temperature difference in a standard type cooling tower, (b) is a table | surface which shows each operating condition corresponding to the cooling water temperature difference in a high performance type cooling tower. (a)は年間負荷率65%の運転パターンを示す表、(b)は年間負荷率45%の運転パターンを示す表、(c)は年間負荷率30%の運転パターンを示す表である。(A) is a table showing an operation pattern with an annual load factor of 65%, (b) is a table showing an operation pattern with an annual load factor of 45%, and (c) is a table showing an operation pattern with an annual load factor of 30%. 同上システムにおける冷却水温度差に対する消費電力量/年を示す特性図である。It is a characteristic view which shows electric power consumption / year with respect to the cooling water temperature difference in a system same as the above. 同上システムにおける年間の冷却水温度と冷却水流量を示す表である。It is a table | surface which shows the annual cooling water temperature and cooling water flow rate in a system same as the above. 同上システムの冷却塔に使用される充填材の斜視図である。It is a perspective view of the filler used for the cooling tower of a system same as the above.

符号の説明Explanation of symbols

1 冷却塔
1a〜1c 冷却塔
7a〜7c 冷却ファン
2 ターボ冷凍機
3 冷却水配管
4 冷却水ポンプ
6 冷水ポンプ
DESCRIPTION OF SYMBOLS 1 Cooling tower 1a-1c Cooling tower 7a-7c Cooling fan 2 Turbo refrigerator 3 Cooling water piping 4 Cooling water pump 6 Cooling water pump

Claims (1)

冷却塔と、冷凍機と、その間を配管で接続して冷却水を循環させる冷却水ポンプから構成される冷却水系と、上記冷凍機で冷却された冷水を冷水ポンプで負荷側に供給する冷水系からなる熱源システムにおいて、
上記冷却塔は、冷却塔のファン動力を増加させることなく外気と冷却水との熱交換面積を広げることにより、当該冷却塔の冷却水出口温度が年間を通じて1℃程度低くなるように設定することにより、上記冷却塔の100%負荷の運転時における冷却水出口温度が31℃近傍となるように構成し、
冷却塔からの放熱量=(ターボ冷凍機の生産熱量+ターボ冷凍機の消費電力)
=(冷却水温度差×冷却水流量)
の関係式より、上記冷却塔及び上記冷凍機の100%負荷の運転時における上記冷凍機の生産熱量及びその消費電力が一義的に定まることに基づいて、上記100%負荷時における上記冷凍機の冷却水入口温度と冷却水出口温度の冷却水温度差を従来の温度差5℃よりも高い7℃近傍に設定することにより冷却水の流量を上記温度差7℃近傍に対応した従来より低い流量に決定すると共に、
上記冷却水ポンプは、上記冷凍機の生産熱量及びその消費電力が上記100%負荷時、及び、上記冷凍機の生産熱量及びその消費電力が上記100%負荷時よりも低下し上記温度差が上記7℃よりも低下した部分負荷時においても、上記決定した流量による一定流量の冷却水を上記冷却水系に年間を通じて循環させるように構成し、
上記冷却塔及び上記冷凍機の100%負荷の運転時及び部分負荷運転時において、年間を通して常時、熱源システムのCOP(成績係数)が最大値となるように構成したものであることを特徴とする熱源システム。
A cooling water system composed of a cooling tower, a refrigerator, a cooling water pump that circulates the cooling water by connecting between them with a pipe, and a cooling water system that supplies the cooling water cooled by the refrigerator to the load side with the cooling water pump In a heat source system consisting of
The cooling tower is set so that the cooling water outlet temperature of the cooling tower is lowered by about 1 ° C. throughout the year by expanding the heat exchange area between the outside air and the cooling water without increasing the fan power of the cooling tower. The cooling water outlet temperature at the time of 100% load operation of the cooling tower is configured to be close to 31 ° C,
Heat dissipation from cooling tower = (Production heat of turbo chiller + Power consumption of turbo chiller)
= (Cooling water temperature difference x Cooling water flow rate)
From the equation, the cooling tower and on the basis that uniquely determined production heat and power thereof in our Keru the refrigerator during the operation of the 100% load of the refrigerator, the refrigerator during the 100% load By setting the cooling water temperature difference between the cooling water inlet temperature and the cooling water outlet temperature in the vicinity of 7 ° C., which is higher than the conventional temperature difference of 5 ° C. , the flow rate of the cooling water is lower than the conventional one corresponding to the temperature difference of about 7 ° C. In addition to determining the flow rate ,
In the cooling water pump , the amount of production heat and power consumption of the refrigerator is lower than that of the 100% load, and the amount of production heat and power consumption of the refrigerator is lower than that of the 100% load and the temperature difference is Even at a partial load lower than 7 ° C., a constant flow of cooling water with the determined flow rate is circulated through the cooling water system throughout the year,
The cooling tower and the refrigerator are configured so that the COP (coefficient of performance) of the heat source system is always the maximum throughout the year during 100% load operation and partial load operation. Heat source system.
JP2006246767A 2006-09-12 2006-09-12 Heat source system Active JP4994754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006246767A JP4994754B2 (en) 2006-09-12 2006-09-12 Heat source system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006246767A JP4994754B2 (en) 2006-09-12 2006-09-12 Heat source system

Publications (2)

Publication Number Publication Date
JP2008070004A JP2008070004A (en) 2008-03-27
JP4994754B2 true JP4994754B2 (en) 2012-08-08

Family

ID=39291740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006246767A Active JP4994754B2 (en) 2006-09-12 2006-09-12 Heat source system

Country Status (1)

Country Link
JP (1) JP4994754B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112129015A (en) * 2020-09-27 2020-12-25 厦门烟草工业有限责任公司 Refrigeration system and control method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5363212B2 (en) * 2008-09-30 2013-12-11 株式会社日立製作所 Air conditioning system
JP5404132B2 (en) * 2009-03-30 2014-01-29 三菱重工業株式会社 Heat source system and control method thereof
JP5715455B2 (en) * 2011-03-15 2015-05-07 株式会社Nttファシリティーズ Linkage control method of air conditioner and data processing load distribution
CN112577134A (en) * 2020-11-25 2021-03-30 深圳市兴元环境工程有限公司 Central air conditioning chilled water storage system
JP7437831B1 (en) 2023-07-04 2024-02-26 ティーケイケイホールディングス株式会社 Measuring method, measuring device, and measuring program for coefficient of performance of air conditioning equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH086996B2 (en) * 1986-10-20 1996-01-29 株式会社ニチイ Cooling water control method in refrigeration system and its control device
JP3172959B2 (en) * 1994-10-18 2001-06-04 株式会社山武 Free cooling management device
JP3330845B2 (en) * 1997-05-28 2002-09-30 リンナイ株式会社 cooling tower
JP3354896B2 (en) * 1999-03-30 2002-12-09 ダイダン株式会社 Cooling water variable flow control device
JP2002031376A (en) * 2000-07-19 2002-01-31 Aisin Seiki Co Ltd Air-conditioning system
JP2005214608A (en) * 2004-01-31 2005-08-11 Kiyoshi Yanagimachi Method for improving energy saving for air-conditioning facility
JP4028502B2 (en) * 2004-03-15 2007-12-26 東洋熱工業株式会社 Cooling water control method for refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112129015A (en) * 2020-09-27 2020-12-25 厦门烟草工业有限责任公司 Refrigeration system and control method thereof

Also Published As

Publication number Publication date
JP2008070004A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
RU2280214C2 (en) Air-conditioning system
US7567888B2 (en) Method for evaluating and optimizing performance of chiller system
US8701429B2 (en) Air conditioning system
JP5495526B2 (en) Heat source system and control method thereof
JP4994754B2 (en) Heat source system
JPH08233423A (en) Cooling device
AU2002310859A1 (en) Air-conditioning system
JP2006292313A (en) Geothermal unit
JP2007127321A (en) Cold water load factor controller for refrigerator
CN113891635A (en) Cold station unit, integrated cold station system, control method of integrated cold station system and related equipment
JP5295481B2 (en) Air conditioning system
JP2016176672A (en) Air conditioner
KR102507362B1 (en) Data center local cooling system with pre-cooling chiller
CN113891634A (en) Cold station unit, integrated cold station system, control method of integrated cold station system and related equipment
JP2011226680A (en) Cooling water producing facility
KR100812777B1 (en) Heat pump system
Hausherr et al. Primary energy efficiency potentials of district heat driven refrigeration systems
JP2001090990A (en) Dehumidifier
KR20170070796A (en) Air conditioning apparatus
JP5602556B2 (en) Air conditioner indoor unit blowout temperature control method
JP2007255884A (en) Air conditioner
JP7322219B1 (en) heat source system
JP2005030708A (en) Cooling structure for semiconductor for controlling geothermal heat pump
Фролова et al. Energy-focused substantiation of the choice of an air conditioning system for an office and shopping building
US20230168016A1 (en) Air Conditioning Unit, And Operation Control Method And Operation Control Device For Air Conditioning Unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4994754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250