JP4028502B2 - Cooling water control method for refrigerator - Google Patents

Cooling water control method for refrigerator Download PDF

Info

Publication number
JP4028502B2
JP4028502B2 JP2004072225A JP2004072225A JP4028502B2 JP 4028502 B2 JP4028502 B2 JP 4028502B2 JP 2004072225 A JP2004072225 A JP 2004072225A JP 2004072225 A JP2004072225 A JP 2004072225A JP 4028502 B2 JP4028502 B2 JP 4028502B2
Authority
JP
Japan
Prior art keywords
cooling water
refrigerator
temperature
cooling
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004072225A
Other languages
Japanese (ja)
Other versions
JP2005257221A (en
Inventor
達 村澤
敏明 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonets Corp
Original Assignee
Tonets Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonets Corp filed Critical Tonets Corp
Priority to JP2004072225A priority Critical patent/JP4028502B2/en
Publication of JP2005257221A publication Critical patent/JP2005257221A/en
Application granted granted Critical
Publication of JP4028502B2 publication Critical patent/JP4028502B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、冷凍機の冷却水制御方法に関する。   The present invention relates to a cooling water control method for a refrigerator.

一次側に冷却水を循環させ、二次側に冷水を循環させて熱源負荷を設けた冷凍機において、冷却水循環系には冷却水ポンプとともに冷却塔が設けられる。この冷却水流量は、通常、冷凍機の定格流量として一定流量で運転される。   In a refrigerator in which cooling water is circulated on the primary side and cold water is circulated on the secondary side to provide a heat source load, a cooling tower is provided in the cooling water circulation system together with a cooling water pump. This cooling water flow rate is normally operated at a constant flow rate as the rated flow rate of the refrigerator.

図7は、従来の冷却水ポンプ及び冷却塔ファンの制御方法の説明図である。図示したように、冷凍機の冷却水出口温度にかかわらず、ポンプは一定の定格水量で冷却水を循環させる。冷却塔の冷却水出口温度が下降した場合は、冷却塔ファンの駆動台数を減らすことにより負荷減少や外気温度下降などによる冷却水温度の下降に対処して冷却水温度が下がりすぎないようにする。   FIG. 7 is an explanatory diagram of a conventional cooling water pump and cooling tower fan control method. As shown in the drawing, the pump circulates the cooling water with a constant rated water amount regardless of the cooling water outlet temperature of the refrigerator. If the cooling water outlet temperature of the cooling tower falls, reduce the number of cooling tower fans to cope with the cooling water temperature drop due to load reduction or outside air temperature fall so that the cooling water temperature does not drop too much .

しかしながら、このような一定の定格水量でポンプを運転するのでは、負荷によっては無駄な電力消費となり冷凍機を用いたシステム全体の運転効率が低下して総合的な消費電力が増加する場合がある。   However, if the pump is operated with such a constant rated water volume, depending on the load, wasteful power consumption may result, and the overall operating efficiency of the system using the refrigerator may decrease and the overall power consumption may increase. .

一方、熱源負荷に応じて冷却水の流量を変える冷凍機の冷却水変流量装置が特許文献1に記載されている。この特許文献1に記載の冷却水変流量装置は、冷却水入口温度に応じて、冷却水出入口温度差一定制御モードと冷却水出口温度一定制御モードのうち省エネルギー効果の大きい制御モードを自動的に選択して冷却水ポンプによる循環流量を制御するものである。   On the other hand, Patent Document 1 discloses a cooling water variable flow rate device for a refrigerator that changes the flow rate of cooling water according to a heat source load. According to the cooling water inlet temperature, the cooling water variable flow rate device described in Patent Document 1 automatically selects a control mode having a large energy saving effect among the cooling water inlet / outlet temperature constant control mode and the cooling water outlet temperature constant control mode. Select and control the circulation flow rate by the cooling water pump.

しかしながら、この特許文献1の冷却水制御方法では、冷却水の出入口温度差から熱源負荷を算出し、この熱源負荷にのみ対応して制御モードを選択するため、総合的な熱エネルギーの効率となる成績係数(COP)をみた場合に必ずしも最適なエネルギー効率で運転しているとはいえない。すなわち、この特許文献1の方法では、冷却水ポンプの電力、冷却塔ファンの電力及び冷凍機自体の電力に加えて熱源負荷による消費電力を考慮した総合的な運転効率判断ができず、したがって、運転システム全体の最適な冷却水制御ができない。また、上記特許文献1では、冷却水ポンプによる流量制御のみを行うため、冷却塔ファンによるエネルギー効率が十分に反映されず、消費エネルギーの無駄を生じるおそれがある。   However, in the cooling water control method disclosed in Patent Document 1, the heat source load is calculated from the inlet / outlet temperature difference of the cooling water, and the control mode is selected corresponding to only the heat source load. When looking at the coefficient of performance (COP), it cannot always be said that the vehicle is operating with optimum energy efficiency. That is, in the method of Patent Document 1, it is not possible to make a comprehensive operation efficiency determination in consideration of the power consumed by the heat source load in addition to the power of the cooling water pump, the power of the cooling tower fan, and the power of the refrigerator itself. Optimal cooling water control for the entire operating system is not possible. Moreover, in the said patent document 1, since only flow control by a cooling water pump is performed, the energy efficiency by a cooling tower fan is not fully reflected, and there exists a possibility of producing a waste of energy consumption.

特許第3354896号公報Japanese Patent No. 3354896

本発明は、上記従来技術を考慮したものであって、冷凍機の一次側冷却水系の冷却水ポンプや冷却塔ファン等の一次側設備及び二次側冷水系の冷水ポンプ及び冷凍機自体の消費電力を総合的に考慮して、システム全体の総合的なエネルギー効率を最大にするように冷却水循環系の機器を駆動制御することによりシステム全体の省エネルギーを有効に達成する冷凍機の冷却水制御方法の提供を目的とする。   The present invention takes the above-mentioned conventional technology into consideration, and uses the primary side equipment such as the cooling water pump of the primary side cooling water system and the cooling tower fan, the cooling water pump of the secondary side cold water system, and the consumption of the freezing machine itself. Cooling water control method for a refrigerator that effectively achieves energy saving of the entire system by driving and controlling the equipment of the cooling water circulation system so as to maximize the overall energy efficiency of the entire system in consideration of electric power comprehensively The purpose is to provide.

前記目的を達成するため、請求項1の発明では、冷却水が循環する冷凍機の一次側に冷却水ポンプ及び冷却塔を含む一次側設備が設けられ、冷水が循環する二次側に熱負荷となる二次側設備が設けられた冷凍機の冷却水制御方法において、前記一次側設備及び二次側設備を含む冷凍機システム全体の熱源総合COPを、(冷凍機生産熱量÷熱源総合消費電力)により演算し、この熱源総合COPに基づいて前記冷凍機の冷却水出口温度を設定し、当該設定温度となるように、前記冷却水ポンプ及び冷却塔のファンを制御することを特徴とする冷凍機の冷却水制御方法を提供する。 In order to achieve the above object, according to the first aspect of the present invention, the primary side equipment including the cooling water pump and the cooling tower is provided on the primary side of the refrigerator in which the cooling water circulates, and the heat load is provided on the secondary side where the cooling water circulates. In the cooling water control method for a refrigerator provided with the secondary side equipment, the total heat source COP of the entire refrigerator system including the primary side equipment and the secondary side equipment is expressed as (freezer production heat amount / heat source total power consumption). ), A cooling water outlet temperature of the refrigerator is set based on the heat source total COP, and the cooling water pump and the cooling tower fan are controlled so as to be the set temperature. A cooling water control method for a machine is provided.

請求項2の発明では、前記冷凍機生産熱量は、(冷水出口温度−冷水入口温度)×冷水流量に基づいて演算し、前記熱源総合消費電力は、(冷凍機電力+冷水ポンプ電力+冷却水ポンプ電力+冷却塔ファン電力)に基づいて演算することを特徴としている。 In the invention of claim 2, the amount of heat produced by the refrigerator is calculated based on (cold water outlet temperature−cold water inlet temperature) × cold water flow rate, and the total heat source power consumption is (refrigerator power + cold water pump power + cooling water). The calculation is based on (pump power + cooling tower fan power).

請求項3の発明では、所定の周期で冷却水の設定温度を所定の温度差だけ上昇方向又は下降方向に変化させるとともに、前記熱源総合COPを演算して前回演算した熱源総合COPと比較し、増加した場合には、前記所定の温度差だけ設定温度を同じ方向に変化させ、減少した場合には前記所定の温度差だけ設定温度を逆方向に変化させることを特徴としている。 In the invention of claim 3, the set temperature of the cooling water is changed in a rising direction or a falling direction by a predetermined temperature difference at a predetermined cycle, and the heat source total COP is calculated and compared with the previously calculated heat source total COP. When it increases, the set temperature is changed in the same direction by the predetermined temperature difference, and when it decreases, the set temperature is changed in the reverse direction by the predetermined temperature difference.

請求項1の発明によれば、冷凍機システムの冷凍機生産熱量と総合消費電力に基づいてシステム全体の総合COPを算出し、この総合COPに基づいて一次側の冷却水ポンプ及び冷却塔ファンを駆動制御するため、システム全体の総合的なエネルギー効率が最大となるように各機器を駆動制御することができ、常に最適で十分な省エネルギー効果が得られる。また、システム稼動中のリアルタイムの運転データに基づいて総合COPを演算することにより、機器の経年劣化や配管等の圧力損失変化などにかかわらず、常にほぼリアルタイムで運転状態や環境条件の変化に追従して最大エネルギー効率で冷却水制御ができる。   According to the first aspect of the present invention, the total COP of the entire system is calculated based on the refrigerator production heat quantity and the total power consumption of the refrigerator system, and the cooling water pump and the cooling tower fan on the primary side are calculated based on the total COP. Since the drive control is performed, it is possible to drive and control each device so that the overall energy efficiency of the entire system is maximized, and an optimum and sufficient energy saving effect is always obtained. In addition, by calculating total COP based on real-time operation data during system operation, it always follows changes in operating conditions and environmental conditions almost in real time regardless of equipment aging or pressure loss changes in piping. Cooling water can be controlled with maximum energy efficiency.

さらに説明すると、冷却水の最大流量及び冷却塔ファンの最大風量では、冷却水温度をシステム上で可能な限り冷やすことができるので、ポンプやファンの動力が増加して消費電力が大きくなるが、冷凍機の運転効率は高くなり冷凍機の消費電力は低下する。逆に冷却水量や風量を落とせばポンプやファンの動力が低下し消費電力は下がるが、冷却水温度が上がるので、冷凍機の運転効率は低くなり、冷凍機の消費電力は増加する。本発明は、冷却水ポンプや冷却塔ファンの運転効率を冷凍機の運転効率とともに全体的に考慮して、消費電力がシステム全体で最小に抑えられるように各機器を駆動制御するものである。これにより、省エネルギーによるランニングコストの低減が図られるとともに、地球環境保全及び炭酸ガス排出量の低減に寄与できる。   To explain further, with the maximum cooling water flow rate and the maximum cooling fan air flow rate, the cooling water temperature can be cooled as much as possible on the system, so the power of the pump and fan increases and the power consumption increases. The operating efficiency of the refrigerator increases and the power consumption of the refrigerator decreases. Conversely, if the amount of cooling water or air flow is reduced, the power of the pump or fan decreases and power consumption decreases. However, since the cooling water temperature increases, the operating efficiency of the refrigerator decreases and the power consumption of the refrigerator increases. In the present invention, the operation efficiency of the cooling water pump and the cooling tower fan is considered together with the operation efficiency of the refrigerator, and each device is driven and controlled so that the power consumption can be minimized in the entire system. As a result, the running cost can be reduced by energy saving, and it can contribute to the global environment conservation and the reduction of carbon dioxide emission.

請求項2の発明によれば、冷凍機生産熱量は冷水の出入口温度差に基づいて算出され、熱源総合消費電力は、冷凍機電力、冷水ポンプ電力、冷却水電力及び冷却塔ファン電力に基づいて算出されるため、各値がセンサや電力計などで容易に確実に計測され状況変化に確実に追従して信頼性の高い冷却水制御が達成される。   According to the invention of claim 2, the refrigerator production heat quantity is calculated based on the inlet / outlet temperature difference of the cold water, and the heat source total power consumption is based on the refrigerator power, the cold water pump power, the cooling water power, and the cooling tower fan power. Since it is calculated, each value is easily and reliably measured by a sensor, a wattmeter, etc., and reliably follows the change in the situation to achieve highly reliable cooling water control.

請求項3の発明によれば、周囲の温度変化や熱負荷の変動に追従してほぼリアルタイムで冷却水ポンプ及び冷却塔ファンが駆動制御されるため、システム全体で常に最大エネルギー効率で冷凍機システムを制御して消費電力の軽減を図ることができる。   According to the invention of claim 3, since the cooling water pump and the cooling tower fan are driven and controlled almost in real time following changes in ambient temperature and heat load, the refrigeration system always has the maximum energy efficiency in the entire system. The power consumption can be reduced by controlling.

図1は、本発明の実施形態の基本構成説明図である。
冷凍機1のエネルギー効率に影響してその消費電力を増減させる要素として冷凍機出口側冷却水の温度(冷却水出口温度)及び冷水出口温度がある。冷却水温度は低い程エネルギー効率が高く、冷却水量は多い程エネルギー効率が高い。このような冷却水出口温度及び冷水出口温度に応じて冷凍機1に電力が供給され、その消費電力(瞬時電力)が電力計8により計測される。
FIG. 1 is an explanatory diagram of a basic configuration of an embodiment of the present invention.
Factors that affect the energy efficiency of the refrigerator 1 and increase or decrease its power consumption include the temperature of the refrigerator outlet side cooling water (cooling water outlet temperature) and the temperature of the cold water outlet. The lower the cooling water temperature, the higher the energy efficiency, and the larger the amount of cooling water, the higher the energy efficiency. Electric power is supplied to the refrigerator 1 according to the cooling water outlet temperature and the cold water outlet temperature, and the power consumption (instantaneous electric power) is measured by the wattmeter 8.

冷凍機1の一次側に接続された冷却水系(不図示)に冷却水ポンプ2及び冷却塔3が設けられる。冷却水ポンプ2のエネルギー効率に影響してその消費電力を増減させる要素として冷却水量がある。冷却水量は少ない程エネルギー効率が高い。この冷却水量に応じて冷却水ポンプ2に電力が供給されその消費電力(瞬時電力)が電力計9により計測される。   A cooling water pump 2 and a cooling tower 3 are provided in a cooling water system (not shown) connected to the primary side of the refrigerator 1. The amount of cooling water is an element that affects the energy efficiency of the cooling water pump 2 and increases or decreases its power consumption. The smaller the amount of cooling water, the higher the energy efficiency. Power is supplied to the cooling water pump 2 in accordance with the amount of cooling water, and the power consumption (instantaneous power) is measured by the wattmeter 9.

コントローラ4を介して冷却水出口温度が設定されると、それに応じて冷却塔ファン及び冷却水ポンプが駆動される。例えば、冷却塔ファン及び冷却水ポンプの回転数(電力)を上げて冷却水量及び風量を増やすと冷却水出口温度が下がる。   When the cooling water outlet temperature is set via the controller 4, the cooling tower fan and the cooling water pump are driven accordingly. For example, when the number of rotations (electric power) of the cooling tower fan and the cooling water pump is increased to increase the cooling water amount and the air volume, the cooling water outlet temperature decreases.

冷却塔3のファンのエネルギー効率に影響してその消費電力を増減させる要素として、ファンによる強制排気風量がある。風量は少ない程エネルギー効率が高い。この風量に応じて冷却塔3のファンに電力が供給されその消費電力(瞬時電力)が電力計10により計測される。   As a factor that affects the energy efficiency of the fan of the cooling tower 3 and increases or decreases its power consumption, there is a forced exhaust air volume by the fan. The smaller the air volume, the higher the energy efficiency. Power is supplied to the fan of the cooling tower 3 according to the air volume, and the power consumption (instantaneous power) is measured by the wattmeter 10.

冷凍機1、冷却水ポンプ2及び冷却塔3の冷水ポンプ消費電力の計測データはマイコンからなるコントローラ4に入力される。コントローラ4には、モニタ5が接続される。モニタ5にはコントローラ4による制御状況が表示されるとともに、キーボードなどからコントローラ4に対し、プログラムやメモリデータの変更あるいは制御用データの入力が可能である。   Measurement data of the power consumption of the chilled water pump of the refrigerator 1, the cooling water pump 2 and the cooling tower 3 is input to a controller 4 comprising a microcomputer. A monitor 5 is connected to the controller 4. The monitor 5 displays the control status of the controller 4 and can change programs and memory data or input control data to the controller 4 from a keyboard or the like.

コントローラ4にはさらに、冷凍機の二次側に設けられた冷凍機生産熱量データ6が入力される。コントローラ4は、上記消費電力の計測データ、冷凍機生産熱量データ6等に基づき、熱源総合COP(成績係数)を算出し、この総合COPに基づいて冷却水ポンプ2及び冷却塔3のファンを駆動制御する。   The controller 4 further receives refrigerator production heat data 6 provided on the secondary side of the refrigerator. The controller 4 calculates a heat source total COP (coefficient of performance) based on the power consumption measurement data, the refrigerator production heat quantity data 6 and the like, and drives the cooling water pump 2 and the cooling tower 3 fans based on the total COP. Control.

ここで、熱源総合COPは、「冷凍機生産熱量(瞬時値)÷熱源総合消費電力」とする。冷凍機生産熱量(瞬時値)[kW]は、「(冷凍機出口冷水温度[℃]−冷凍機入口冷水温度[℃])×冷水流量[l/hr]÷860」で演算する。熱源総合消費電力は、「冷凍機消費電力[kW]+冷水ポンプ消費電力[kW]+冷却水ポンプ消費電力[kW]+冷却塔ファン消費電力[kW]」で演算する。   Here, the heat source total COP is “refrigerator production heat quantity (instantaneous value) ÷ heat source total power consumption”. The amount of heat produced by the refrigerator (instantaneous value) [kW] is calculated by “(chiller outlet cold water temperature [° C.] − Refrigerator inlet cold water temperature [° C.]) × cold water flow rate [l / hr] ÷ 860”. The heat source total power consumption is calculated by “refrigerator power consumption [kW] + cold water pump power consumption [kW] + cooling water pump power consumption [kW] + cooling tower fan power consumption [kW]”.

演算した熱源総合COPに基づいて、後述のように、この総合COPが大きくなるように、冷却水ポンプ及び冷却塔ファンを、例えばインバータによる回転数制御により、ポンプ及びファンの回転数をそれぞれ制御して冷却水量及び風量を制御する。なお、インバータ制御方法に限らず、ポンプやファンのモータ軸動力を落としたり、運転台数を増減させることにより、冷却水量や風量及び水温を制御してもよい。   Based on the calculated heat source total COP, as will be described later, the cooling water pump and the cooling tower fan are controlled so as to increase the total COP, for example, by controlling the rotation speed of the pump and the fan by, for example, an inverter. To control the cooling water volume and air volume. Note that the cooling water amount, the air flow rate, and the water temperature may be controlled not only by the inverter control method but also by reducing the motor shaft power of the pump or fan or increasing / decreasing the number of operating units.

図2は、本発明に係る冷却水温度制御のブロック線図である。前述のように、熱源総合COPに基づいて冷却塔ファン及び冷却水ポンプのインバータ11を制御してファンやポンプその他のプラント12のモータ回転数を制御する。このプラント12の負荷による冷凍機冷却水出口温度は、外気湿球温度、冷水出口温度、二次側冷水負荷及び設備の性能劣化等の外乱に影響される。システム稼動中に冷凍機冷却水の出口温度を水温センサ13で検出し、このデータをコントローラ4(図1)にフィードバックして冷凍機冷却水の出口設定温度を制御する。   FIG. 2 is a block diagram of cooling water temperature control according to the present invention. As described above, the cooling tower fan and the inverter 11 of the cooling water pump are controlled based on the heat source total COP to control the motor speed of the fan, the pump, and other plant 12. The refrigerator cooling water outlet temperature due to the load of the plant 12 is affected by disturbances such as the outside air wet bulb temperature, the cold water outlet temperature, the secondary side cold water load, and the performance deterioration of the equipment. During the operation of the system, the outlet temperature of the refrigerator cooling water is detected by the water temperature sensor 13, and this data is fed back to the controller 4 (FIG. 1) to control the outlet cooling set temperature of the refrigerator cooling water.

図3は、本発明に係る冷凍機システムの全体構成図である。
冷凍機1の一次側に冷却水系14が接続される。冷却水系14上に冷却水ポンプ2及び冷却塔3が備わる。冷凍機1の出口側に冷却水温度センサ15が備わる。冷却水ポンプ2及び冷却塔3のファンにはそれぞれインバータ16,17及び電力計18,19が備わる。冷凍機1に電力計30が備わる。
FIG. 3 is an overall configuration diagram of the refrigerator system according to the present invention.
A cooling water system 14 is connected to the primary side of the refrigerator 1. A cooling water pump 2 and a cooling tower 3 are provided on the cooling water system 14. A cooling water temperature sensor 15 is provided on the outlet side of the refrigerator 1. The cooling water pump 2 and the fans of the cooling tower 3 are provided with inverters 16 and 17 and power meters 18 and 19, respectively. The refrigerator 1 has a power meter 30.

冷凍機1の二次側に冷水系29が接続される。冷水系29上に冷水ポンプ25、熱負荷となる空調機などの二次側設備28及び冷水バイパス用の二方弁27が備わる。冷水ポンプ25に電力計26が備わる。冷凍機1の出口側に冷水出口温度センサ22が備わる。冷凍機1の入口側に冷水入口温度センサ24及び流量センサ23が備わる。   A cold water system 29 is connected to the secondary side of the refrigerator 1. On the cold water system 29, a cold water pump 25, a secondary side equipment 28 such as an air conditioner serving as a heat load, and a cold water bypass two-way valve 27 are provided. A wattmeter 26 is provided in the cold water pump 25. A cold water outlet temperature sensor 22 is provided on the outlet side of the refrigerator 1. A cold water inlet temperature sensor 24 and a flow rate sensor 23 are provided on the inlet side of the refrigerator 1.

電力計18,19,22,27は熱源総合消費電力演算回路20に接続される。この熱源総合消費電力演算回路20は、コントローラ4に接続される。なお、熱源総合消費電力演算回路20は、コントローラ4に内蔵されていてもよい。   The wattmeters 18, 19, 22, and 27 are connected to the heat source total power consumption calculation circuit 20. The heat source total power consumption calculation circuit 20 is connected to the controller 4. The heat source total power consumption calculation circuit 20 may be incorporated in the controller 4.

冷水出入口の冷水温度センサ24,26及び冷水流量センサ25は、冷凍機生産熱量演算回路21に接続される。冷凍機生産熱量演算回路21はコントローラ4に接続される。なお、冷凍機生産熱量演算回路21は、コントローラ4に内蔵されていてもよい。   The cold water temperature sensors 24 and 26 and the cold water flow rate sensor 25 at the cold water inlet / outlet are connected to the refrigerator production heat amount calculation circuit 21. The refrigerator production heat amount calculation circuit 21 is connected to the controller 4. The refrigerator production heat amount calculation circuit 21 may be built in the controller 4.

このような冷凍機システムにおいて、コントローラ4は、熱源総合COPを、(冷凍機生産熱量演算回路21で求めた冷凍機生産熱量)÷(熱源総合消費電力演算回路20で求めた消費電力)により算出する。さらにコントローラ4は、熱源総合COPが最大となるように、冷凍機出口側の冷却水温度センサ15で検出した冷却水温度の設定値を変更するとともに、この変更後の冷却水温度設定値となるように、冷却水ポンプ2及び冷却塔3のファンのインバータ16,17を制御してポンプ及びファンの回転数を制御し、冷却水量及び冷却塔の風量が最適となるように制御する。   In such a refrigerator system, the controller 4 calculates the total heat source COP by (refrigerator production heat quantity obtained by the refrigerator production heat quantity calculation circuit 21) / (power consumption obtained by the heat source total power consumption calculation circuit 20). To do. Further, the controller 4 changes the setting value of the cooling water temperature detected by the cooling water temperature sensor 15 on the refrigerator outlet side so that the heat source total COP becomes the maximum, and becomes the changed cooling water temperature setting value. Thus, the inverters 16 and 17 of the cooling water pump 2 and the cooling tower 3 are controlled to control the rotational speeds of the pump and the fan so that the cooling water amount and the cooling tower air flow are optimized.

図4(A)〜(D)は、冷却水ポンプ及び冷却塔ファンの回転数制御のパターン例を示すグラフである。   4 (A) to 4 (D) are graphs showing pattern examples of the rotational speed control of the cooling water pump and the cooling tower fan.

(A)は、回転数を落として流量を絞る場合に先にファン風量を絞るパターンである。冷却水温度がt3以上の状態(ポンプ及びファンをそれぞれ定格100%の運転状態)から温度がt3まで下がったとき、ポンプ流量は変えずにインバータ制御によりファンの風量を落とす。さらに温度がt2まで下がったらファンの風量をそこで維持したままインバータ制御によりポンプの流量を落として冷却水温をt1まで低下させる。なお、インバータによるポンプ及びファンの最低回転数は、それぞれ冷凍機が安定して稼動できる必要最低限の回転数以上に維持する。また、回転数の変化は図示したようにリニアに限らず曲線状に変化させてもよい。このような変化パターンは、制御マップとして予めコントローラに格納し、前述のように熱源総合COPに基づいて冷却水出口設定温度が算出されたときに、その設定温度に応じてこのマップパターンに基づいてポンプ及びファンの回転数を制御する。   (A) is a pattern in which the fan air volume is reduced first when the flow rate is reduced by reducing the rotational speed. When the temperature falls from the state where the cooling water temperature is equal to or higher than t3 (operating state where the pump and the fan are rated at 100% each) to t3, the air flow of the fan is reduced by inverter control without changing the pump flow rate. When the temperature further falls to t2, the flow rate of the pump is reduced by inverter control while maintaining the fan air volume there, and the cooling water temperature is lowered to t1. In addition, the minimum rotation speeds of the pump and the fan by the inverter are maintained to be equal to or higher than the minimum rotation speed at which the refrigerator can be stably operated. Further, the change in the rotational speed is not limited to linear as shown in the figure, but may be changed in a curved line. Such a change pattern is stored in the controller in advance as a control map, and when the coolant outlet set temperature is calculated based on the heat source total COP as described above, based on this map pattern based on the set temperature. Controls the rotation speed of the pump and fan.

(B)は、回転数を落として流量を絞る場合に先にポンプ流量を絞るパターンである。冷却水温度がt6以上の状態(ポンプ及びファンをそれぞれ定格100%の運転状態)から温度がt6まで下がったとき、ファン風量は変えずにインバータ制御によりポンプ流量を落とす。さらに温度がt5まで下がったらポンプ流量をそこで維持したままインバータ制御によりファン風量を落として冷却水温をt4まで低下させる。   (B) is a pattern in which the pump flow rate is reduced first when the flow rate is reduced by reducing the rotational speed. When the temperature falls from the state where the cooling water temperature is t6 or higher (operating state where the pump and the fan are rated at 100% each) to t6, the pump flow rate is reduced by inverter control without changing the fan air volume. When the temperature further decreases to t5, the fan flow rate is reduced by inverter control while maintaining the pump flow rate, and the cooling water temperature is decreased to t4.

(C)は、回転数を落として流量を絞る場合に、ポンプ流量とファン風量を同時に絞るパターンである。冷却水温度がt9以上の状態(ポンプ及びファンをそれぞれ定格100%の運転状態)から温度がt9まで下がったとき、インバータ制御によりポンプ流量及びファン風量を同時に落とす。温度がt8まで下がったらポンプ流量をそこで維持したままさらにファン風量を落として冷却水温をt7まで低下させる。   (C) is a pattern in which the pump flow rate and the fan air volume are simultaneously reduced when reducing the rotation speed and reducing the flow rate. When the temperature falls from the state where the cooling water temperature is equal to or higher than t9 (operating state where the pump and the fan are rated at 100%) to t9, the pump flow rate and the fan air volume are simultaneously reduced by inverter control. When the temperature drops to t8, the fan flow rate is further reduced while maintaining the pump flow rate, and the cooling water temperature is lowered to t7.

(D)は、回転数を落として流量を絞る場合に、ポンプ流量とファン風量を同時に絞るパターンの別の例である。冷却水温度がt11以上の状態(ポンプ及びファンをそれぞれ定格100%の運転状態)から温度がt11まで下がったとき、インバータ制御によりポンプ流量及びファン風量を同時に落として冷却水温度をt10まで低下させる。   (D) is another example of a pattern in which the pump flow rate and the fan air volume are simultaneously reduced when the flow rate is reduced by reducing the rotational speed. When the temperature falls to t11 from the state where the cooling water temperature is t11 or more (operating state where the pump and the fan are rated at 100% each), the pump flow rate and the fan air volume are simultaneously reduced by the inverter control to lower the cooling water temperature to t10. .

図5は、熱源総合COPに基づいて冷却水温度設定値を定める方法を示す説明図である。
コントローラは、一定周期F(例えば10分)で熱源総合COPを算出し、そのCOPが前回のCOPより高ければ、前述の図4のいずれかのパターンにしたがって、ポンプ及びファンを前回と同じ方向に駆動する。逆に今回算出したCOPが前回のCOPより低ければ、ポンプ及びファンを前回と逆方向に駆動する。
FIG. 5 is an explanatory diagram showing a method for determining the coolant temperature set value based on the heat source total COP.
The controller calculates the heat source total COP at a constant period F (for example, 10 minutes). If the COP is higher than the previous COP, the pump and the fan are moved in the same direction as the previous according to any of the patterns in FIG. To drive. Conversely, if the COP calculated this time is lower than the previous COP, the pump and fan are driven in the opposite direction to the previous time.

図の例でさらに説明すると、時間a0,a1,a2のときの熱源総合COPをそれぞれ、COP0,COP1,COP2とし、設定冷却水温度をT0,T1,T2とする。時間a0では、設定温度を一定量ΔTだけ上げるようにファン及びポンプを駆動制御している。一定周期F後の時間a1でのCOP1が前回のCOP0より大きければ、COPが高まる方向であるため、そのまま今回も設定温度をΔTだけ上げる方向にインバータ制御を行う(図示した状態)。逆に今回(時間a1)でのCOP1が前回のCOP0より小さければ、COPが低下する方向に進んでいるため、前回とは逆に設定温度をΔTだけ下げる方向にインバータ制御を行う。同様に時間a2においてもCOP2を算出し、その前のCOP1と比較して上昇しているか下降しているかに応じて設定温度を変更する。すなわち、   Further explaining with the example in the figure, the heat source total COPs at times a0, a1, and a2 are COP0, COP1, and COP2, respectively, and the set cooling water temperatures are T0, T1, and T2. At time a0, the fan and pump are driven and controlled so that the set temperature is increased by a certain amount ΔT. If COP1 at time a1 after a certain period F is larger than the previous COP0, the COP increases, so that the inverter control is performed in the direction in which the set temperature is increased by ΔT as it is (the state shown in the figure). On the contrary, if COP1 at this time (time a1) is smaller than COP0 of the previous time, since the COP has proceeded in a decreasing direction, the inverter control is performed in a direction to lower the set temperature by ΔT contrary to the previous time. Similarly, COP2 is calculated at time a2, and the set temperature is changed depending on whether it is rising or falling compared to the previous COP1. That is,

COP1≦COP2かつT1>T0ならばT2=T1+ΔT (1)
COP1≦COP2かつT1<T0ならばT2=T1−ΔT (2)
COP1>COP2かつT1>T0ならばT2=T1−ΔT (3)
COP1>COP2かつT1<T0ならばT2=T1+ΔT (4)
と設定する。
If COP1 ≦ COP2 and T1> T0, then T2 = T1 + ΔT (1)
If COP1 ≦ COP2 and T1 <T0, then T2 = T1−ΔT (2)
If COP1> COP2 and T1> T0, then T2 = T1-ΔT (3)
If COP1> COP2 and T1 <T0, then T2 = T1 + ΔT (4)
And set.

以上のような熱源総合COPに基づいてポンプ及びファンのインバータ制御により冷凍機冷却水出口温度のフィードバック制御を行うことにより、A部で示されるように、冷却水温の上昇下降を繰り返しながら最適な冷却水温に定まる。また、外気の湿球温度や負荷の変動があったときには、B部に示されるように。負荷変動等に追従して最適な冷却水設定温度に定まる。   By performing feedback control of the chiller cooling water outlet temperature by inverter control of the pump and fan based on the heat source total COP as described above, optimum cooling while repeatedly raising and lowering the cooling water temperature as shown in part A Determined by water temperature. When there is a change in the wet bulb temperature or load of the outside air, as shown in part B. The optimum cooling water set temperature follows the load fluctuation.

図6は、上記図5の時間a1及びa2での熱源総合COPを比較する方法のフローチャートであり、前述の式(1)〜(4)と同じ内容をフローで表したものである。   FIG. 6 is a flowchart of a method for comparing the heat source total COPs at the times a1 and a2 in FIG. 5, and represents the same contents as the above-described equations (1) to (4) in a flow.

本発明は、冷却水が循環する冷凍機を備えたあらゆるシステムに利用でき、システム全体の運転効率を最大にして省エネルギーを有効に達成できる。   INDUSTRIAL APPLICABILITY The present invention can be used in any system including a refrigerator in which cooling water circulates, and can effectively achieve energy saving by maximizing the operation efficiency of the entire system.

本発明の実施形態の基本構成説明図。The basic composition explanatory view of the embodiment of the present invention. 本発明に係る冷却水温度制御のブロック線図。The block diagram of the cooling water temperature control which concerns on this invention. 本発明に係る冷凍機システムの全体構成図。1 is an overall configuration diagram of a refrigerator system according to the present invention. 本発明に係る冷却水ポンプ及び冷却塔ファンの回転数制御のパターン例を示すグラフ。The graph which shows the example of a pattern of rotation speed control of the cooling water pump which concerns on this invention, and a cooling tower fan. 本発明に係る熱源総合COPに基づいて冷却水温度設定値を定める方法を示す説明図。Explanatory drawing which shows the method of determining a cooling water temperature setting value based on the heat source total COP which concerns on this invention. 図5の時間a1及びa2での熱源総合COPを比較する方法のフローチャート。6 is a flowchart of a method for comparing the heat source total COP at times a1 and a2 in FIG. 従来の冷却水ポンプ及び冷却塔ファンの制御方法の説明図。Explanatory drawing of the control method of the conventional cooling water pump and a cooling tower fan.

符号の説明Explanation of symbols

1:冷凍機、2:冷却水ポンプ、3:冷却塔、4:コントローラ、
5:モニタ、6:冷凍機負荷熱量、7:外気乾球・湿球温度、
8,9,10:電力計、11:インバータ、12:プラント、
13:水温センサ、14:冷却水系、15:冷却水温センサ、
16:インバータ、17:インバータ、18:電力計、19:電力計、20:熱源総合消費電力演算回路、21:冷凍機生産熱量演算回路、
22:冷水温度センサ、23:冷水流量センサ、24:冷水温度センサ、25:冷水ポンプ、26:電力計、27:二方弁、28:二次側設備、29:冷水系、30:電力計。
1: refrigerator, 2: cooling water pump, 3: cooling tower, 4: controller,
5: Monitor, 6: Refrigerator load heat quantity, 7: Outside air dry bulb / wet bulb temperature,
8, 9, 10: Wattmeter, 11: Inverter, 12: Plant
13: Water temperature sensor, 14: Cooling water system, 15: Cooling water temperature sensor,
16: Inverter, 17: Inverter, 18: Power meter, 19: Power meter, 20: Heat source total power consumption calculation circuit, 21: Refrigerating machine production heat amount calculation circuit,
22: Chilled water temperature sensor, 23: Chilled water flow rate sensor, 24: Chilled water temperature sensor, 25: Chilled water pump, 26: Power meter, 27: Two-way valve, 28: Secondary equipment, 29: Chilled water system, 30: Power meter .

Claims (3)

冷却水が循環する冷凍機の一次側に冷却水ポンプ及び冷却塔を含む一次側設備が設けられ、冷水が循環する二次側に熱負荷となる二次側設備が設けられた冷凍機の冷却水制御方法において、
前記一次側設備及び二次側設備を含む冷凍機システム全体の熱源総合COPを、(冷凍機生産熱量÷熱源総合消費電力)により演算し、この熱源総合COPに基づいて前記冷凍機の冷却水出口温度を設定し、当該設定温度となるように、前記冷却水ポンプ及び冷却塔のファンを制御することを特徴とする冷凍機の冷却水制御方法。
Cooling of a refrigerator in which a primary side facility including a cooling water pump and a cooling tower is provided on the primary side of the refrigerator in which the cooling water circulates, and a secondary side facility serving as a heat load is provided on the secondary side in which the chilled water circulates. In the water control method,
The total heat source COP of the refrigerator system including the primary side equipment and the secondary side equipment is calculated by (refrigerator production heat amount / heat source total power consumption) , and the cooling water outlet of the refrigerator based on the heat source total COP A cooling water control method for a refrigerator , wherein a temperature is set and the cooling water pump and the cooling tower fan are controlled so as to be the set temperature .
前記冷凍機生産熱量は、(冷水出口温度−冷水入口温度)×冷水流量に基づいて演算し、前記熱源総合消費電力は、(冷凍機電力+冷水ポンプ電力+冷却水ポンプ電力+冷却塔ファン電力)に基づいて演算することを特徴とする請求項1に記載の冷凍機の冷却水制御方法。   The amount of heat produced by the refrigerator is calculated based on (cold water outlet temperature−cold water inlet temperature) × cold water flow rate, and the total heat source power consumption is (refrigerator power + cold water pump power + cooling water pump power + cooling tower fan power). The cooling water control method for a refrigerator according to claim 1, wherein the calculation is based on 所定の周期で冷却水の設定温度を所定の温度差だけ上昇方向又は下降方向に変化させるとともに、前記熱源総合COPを演算して前回演算した熱源総合COPと比較し、増加した場合には、前記所定の温度差だけ設定温度を同じ方向に変化させ、減少した場合には前記所定の温度差だけ設定温度を逆方向に変化させることを特徴とする請求項1又は2に記載の冷凍機の冷却水制御方法。   When the set temperature of the cooling water is changed in a rising direction or a decreasing direction by a predetermined temperature difference at a predetermined cycle, the heat source total COP is calculated and compared with the heat source total COP calculated last time, The cooling of the refrigerator according to claim 1 or 2, wherein when the set temperature is changed in the same direction by a predetermined temperature difference and the set temperature is decreased, the set temperature is changed in the reverse direction by the predetermined temperature difference. Water control method.
JP2004072225A 2004-03-15 2004-03-15 Cooling water control method for refrigerator Expired - Lifetime JP4028502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004072225A JP4028502B2 (en) 2004-03-15 2004-03-15 Cooling water control method for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004072225A JP4028502B2 (en) 2004-03-15 2004-03-15 Cooling water control method for refrigerator

Publications (2)

Publication Number Publication Date
JP2005257221A JP2005257221A (en) 2005-09-22
JP4028502B2 true JP4028502B2 (en) 2007-12-26

Family

ID=35083114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004072225A Expired - Lifetime JP4028502B2 (en) 2004-03-15 2004-03-15 Cooling water control method for refrigerator

Country Status (1)

Country Link
JP (1) JP4028502B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338448A (en) * 2011-08-29 2012-02-01 上海迪普自动化技术有限公司 High-efficiency energy-saving control system for central air conditioner of large-sized supermarket
CN104457394A (en) * 2013-09-23 2015-03-25 山东能源机械集团大族再制造有限公司 Temperature-control water cooling system
CN106168447A (en) * 2016-08-29 2016-11-30 山东汇锋传动股份有限公司 Multiple stage intermediate frequency furnace and switch board heat exchange water centralized cycle chiller

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4505363B2 (en) * 2005-03-29 2010-07-21 東洋熱工業株式会社 Control method of cold / hot water in air conditioning system
JP4994754B2 (en) * 2006-09-12 2012-08-08 株式会社九電工 Heat source system
JP4897439B2 (en) * 2006-11-21 2012-03-14 川重冷熱工業株式会社 Energy saving control operation method and apparatus for absorption chiller / heater
JP2008134013A (en) * 2006-11-29 2008-06-12 Toyo Netsu Kogyo Kk Operation control method of cold source machine and cold source system using the same
JP2008151481A (en) * 2006-12-20 2008-07-03 Kawasaki Thermal Engineering Co Ltd Energy-saving control operation method and device for refrigerating machine
WO2008094152A1 (en) * 2007-02-01 2008-08-07 Cotherm Of America Corporation Heat transfer system and associated methods
JP4936961B2 (en) * 2007-04-04 2012-05-23 株式会社東芝 Air conditioning system controller
EP2012068A1 (en) * 2007-06-04 2009-01-07 RHOSS S.p.A. Method for regulating the delivery temperature of a service fluid in output from a refrigerating machine
JP4505498B2 (en) * 2007-12-21 2010-07-21 株式会社トーエネック Heat source performance evaluation system for air conditioning
JP5071146B2 (en) * 2008-02-22 2012-11-14 栗田工業株式会社 Heat source system and operation method thereof
JP5363139B2 (en) * 2009-02-25 2013-12-11 アズビル株式会社 Cooling tower fan control apparatus and method
JP5615559B2 (en) * 2010-01-06 2014-10-29 株式会社日立製作所 Cooling system
JP5506460B2 (en) * 2010-03-05 2014-05-28 株式会社日立製作所 Cooling system
JP5906448B2 (en) * 2011-06-22 2016-04-20 パナソニックIpマネジメント株式会社 Cooling system and solvent recovery system using the same
US9175872B2 (en) 2011-10-06 2015-11-03 Lennox Industries Inc. ERV global pressure demand control ventilation mode
JP2013160441A (en) * 2012-02-06 2013-08-19 Hitachi Appliances Inc Refrigerator
JP6090904B2 (en) 2012-02-29 2017-03-08 三菱重工業株式会社 Cooling tower control device, cooling tower control method, and heat source system
KR101363004B1 (en) * 2013-09-02 2014-02-14 주식회사 성지공조기술 Method for controlling cooling system for operation cost reduction of refrigerator and verification method fot the same
JP6117078B2 (en) * 2013-10-22 2017-04-19 大和ハウス工業株式会社 Heat source system
CN103836777B (en) * 2014-03-28 2016-02-17 庄春龙 Mixing type ground source heat pump pipeline control structure
CN105277009A (en) * 2014-07-24 2016-01-27 黄绪耀 Cooling system, energy consumption regulating and controlling method of cooling system, fluid compression cooling system and electricity generation cooling system
CN106288602A (en) * 2015-06-23 2017-01-04 深圳市固泰鑫电子有限公司 A kind of industrial cooling circulating water system and control method thereof
JP6904333B2 (en) * 2016-03-24 2021-07-14 日本電気株式会社 Cooling device, control method and storage medium
CN105783378A (en) * 2016-05-06 2016-07-20 中山市华源电气设备有限公司 Water cooling system
JP6618860B2 (en) * 2016-06-27 2019-12-11 荏原冷熱システム株式会社 Heat source system and control method thereof
CN106767119B (en) * 2016-11-24 2018-10-19 中国能源建设集团广东省电力设计研究院有限公司 Indirect air cooling system with residual neat recovering system and its control method
JP6589946B2 (en) * 2017-07-20 2019-10-16 ダイキン工業株式会社 Refrigeration equipment
CN107560086B (en) * 2017-09-19 2020-06-30 广东美的暖通设备有限公司 Control method and device for central air conditioner cooling water system and central air conditioner
JP6845784B2 (en) * 2017-11-08 2021-03-24 株式会社東芝 Information processing equipment, information processing methods and programs
JP6847023B2 (en) * 2017-11-22 2021-03-24 大阪瓦斯株式会社 Control method of heat pump device and heat pump device
JP6847022B2 (en) * 2017-11-22 2021-03-24 大阪瓦斯株式会社 Control method of heat pump device and heat pump device
JP7109917B2 (en) * 2017-12-28 2022-08-01 株式会社東芝 Operation planning device, operation planning method, operation planning system and computer program
KR102032811B1 (en) * 2018-05-30 2019-10-17 뉴브로드테크놀러지(주) Appratus and method of reducing energy consumption using removed heat capacity of refrigerator
JP7169233B2 (en) * 2019-03-11 2022-11-10 東京瓦斯株式会社 refrigerator system
JP6866447B2 (en) * 2019-10-01 2021-04-28 新菱冷熱工業株式会社 Heat source system control method and its equipment
KR20210121850A (en) * 2020-03-31 2021-10-08 엘지전자 주식회사 Heat pump and method thereof
JP7445718B1 (en) 2022-08-24 2024-03-07 東京瓦斯株式会社 heat source system
JP7453294B2 (en) 2022-08-25 2024-03-19 株式会社中部プラントサービス Control method for cooling water system equipment, control device for cooling water system equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338448A (en) * 2011-08-29 2012-02-01 上海迪普自动化技术有限公司 High-efficiency energy-saving control system for central air conditioner of large-sized supermarket
CN104457394A (en) * 2013-09-23 2015-03-25 山东能源机械集团大族再制造有限公司 Temperature-control water cooling system
CN106168447A (en) * 2016-08-29 2016-11-30 山东汇锋传动股份有限公司 Multiple stage intermediate frequency furnace and switch board heat exchange water centralized cycle chiller
CN106168447B (en) * 2016-08-29 2018-06-29 山东汇锋传动股份有限公司 More intermediate frequency furnaces and switch board heat exchange water centralized cycle cooling device

Also Published As

Publication number Publication date
JP2005257221A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
JP4028502B2 (en) Cooling water control method for refrigerator
JP6334230B2 (en) Refrigerator system
US6257007B1 (en) Method of control of cooling system condenser fans and cooling tower fans and pumps
US20090133419A1 (en) Trailer Refrigeration System
JP4594276B2 (en) Cold / hot water control method for cold / hot heat source machine and air conditioning system used therefor
JP2007240131A (en) Optimization control of heat source unit and accessory
CN107101451A (en) Refrigerator and its refrigeration control method and device
WO2014153848A1 (en) Control circuit of air conditioning outdoor fan, control method, and air conditioning
CN104126098A (en) Heat source system, device for controlling same, and method for controlling same
CN100567850C (en) Full-liquid type water-icing machine
US20160033190A1 (en) Fan control device for energy saving
JP2010025466A (en) Heat source system
JP6301784B2 (en) CONTROL DEVICE USED FOR HEAT SOURCE SYSTEM AND HEAT SOURCE SYSTEM HAVING THE CONTROL DEVICE
JP4513545B2 (en) Refrigeration unit control system and cooling supply system
JP5455338B2 (en) Cooling tower and heat source system
JP2008116155A (en) Operation control method for air conditioner
JP6586182B2 (en) CONTROL DEVICE USED FOR HEAT SOURCE SYSTEM AND HEAT SOURCE SYSTEM HAVING THE CONTROL DEVICE
JP2009008356A (en) System for controlling number of machines, and method of controlling number of machines
JP6866447B2 (en) Heat source system control method and its equipment
JP2003254635A (en) Multi-chamber type air conditioner
JP7285080B2 (en) Cooling tower control device and cooling tower control method
JPH07158937A (en) Controller for refrigerating cycle
WO2013111579A1 (en) Compressor control device for cooling device
KR100432723B1 (en) Control method for air conditioner
JP2007183030A (en) Connected type water cooler-heater, and its operating method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4028502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

EXPY Cancellation because of completion of term