JP6847022B2 - Control method of heat pump device and heat pump device - Google Patents

Control method of heat pump device and heat pump device Download PDF

Info

Publication number
JP6847022B2
JP6847022B2 JP2017224951A JP2017224951A JP6847022B2 JP 6847022 B2 JP6847022 B2 JP 6847022B2 JP 2017224951 A JP2017224951 A JP 2017224951A JP 2017224951 A JP2017224951 A JP 2017224951A JP 6847022 B2 JP6847022 B2 JP 6847022B2
Authority
JP
Japan
Prior art keywords
pressure difference
expansion valve
heat pump
pump device
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017224951A
Other languages
Japanese (ja)
Other versions
JP2019095127A (en
Inventor
若林 努
努 若林
孝弘 佐古
孝弘 佐古
薬師寺 新吾
新吾 薬師寺
良胤 ▲高▼島
良胤 ▲高▼島
智史 片山
智史 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2017224951A priority Critical patent/JP6847022B2/en
Publication of JP2019095127A publication Critical patent/JP2019095127A/en
Application granted granted Critical
Publication of JP6847022B2 publication Critical patent/JP6847022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、冷媒を圧縮する圧縮機と、圧縮機にて圧縮した冷媒を凝縮する凝縮器と、凝縮器にて凝縮した冷媒を膨張させる膨張弁としての第1膨張弁及び第2膨張弁と、冷媒を貯留するレシーバと、前記膨張弁にて膨張した冷媒を蒸発させる蒸発器と、前記圧縮機と前記凝縮器と前記第1膨張弁と前記レシーバと前記第2膨張弁と前記蒸発器とに記載の順に冷媒を循環する冷媒循環路とを備えるヒートポンプ装置の制御方法、及びヒートポンプ装置に関する。 The present invention includes a compressor that compresses the refrigerant, a condenser that condenses the refrigerant compressed by the compressor, and a first expansion valve and a second expansion valve as expansion valves that expand the refrigerant condensed by the condenser. , The receiver that stores the refrigerant, the evaporator that evaporates the refrigerant expanded by the expansion valve, the compressor, the condenser, the first expansion valve, the receiver, the second expansion valve, and the evaporator. The present invention relates to a control method of a heat pump device including a refrigerant circulation path for circulating a refrigerant in the order described in the above, and a heat pump device.

昨今、ヒートポンプ装置として、圧縮機にて圧縮した冷媒を凝縮する凝縮器と、凝縮器にて凝縮した冷媒を膨張させる膨張弁としての第1膨張弁及び第2膨張弁と、冷媒を貯留するレシーバと、膨張弁にて膨張した冷媒を蒸発させる蒸発器と、圧縮機と凝縮器と第1膨張弁とレシーバと第2膨張弁と蒸発器とに記載の順に冷媒を循環する冷媒循環路とを備えるヒートポンプ装置が知られている(特許文献1を参照)。
特許文献1に開示の技術にあっては、圧縮機の運転台数及び回転数を定格運転時よりも小さくする部分負荷運転を実行しているときで、冷媒循環路を循環する冷媒流量が少なくなったときに、第1膨張弁の開度を全開にしていると、凝縮器での凝縮圧力が保てず、凝縮不足となるという課題に着目している。
そして、当該課題を解決するべく、第1膨張弁の開度を全開から閉じ側へ調整する制御を実行することで、凝縮器での凝縮圧力を保ち、凝縮不足となることを防止している。
また、当該特許文献1には、「運転条件により凝縮器の過冷却度の調整が可能となり、ヒートポンプ装置の冷房効率を向上する」という開示がある。
Recently, as a heat pump device, a condenser that condenses the refrigerant compressed by the compressor, a first expansion valve and a second expansion valve as expansion valves that expand the refrigerant condensed by the condenser, and a receiver that stores the refrigerant. An evaporator that evaporates the refrigerant expanded by the expansion valve, and a refrigerant circulation path that circulates the refrigerant in the order described in the compressor, the condenser, the first expansion valve, the receiver, the second expansion valve, and the evaporator. A heat pump device including the heat pump device is known (see Patent Document 1).
In the technique disclosed in Patent Document 1, the amount of refrigerant circulating in the refrigerant circulation path is reduced when the partial load operation is performed in which the number of compressors in operation and the number of revolutions are smaller than those in the rated operation. At that time, if the opening degree of the first expansion valve is fully opened, the condensing pressure in the condenser cannot be maintained, and the problem of insufficient condensation is focused on.
Then, in order to solve the problem, by executing the control of adjusting the opening degree of the first expansion valve from the fully open side to the closed side, the condensing pressure in the condenser is maintained and the insufficient condensing is prevented. ..
Further, Patent Document 1 discloses that "the degree of supercooling of the condenser can be adjusted depending on the operating conditions, and the cooling efficiency of the heat pump device is improved".

特開2016−173200号公報Japanese Unexamined Patent Publication No. 2016-173200

上記特許文献1に開示の技術では、第1膨張弁の開度を調整することが開示されているものの、その目的は、凝縮器での凝縮圧力を保ち、凝縮不足となることを防止するものである。
また、特許文献1には、「運転条件により凝縮器の過冷却度の調整が可能となり、ヒートポンプ装置の冷房効率を向上する」という開示があるものの、運転条件としてどのような指標を採用し、当該指標がどのような条件にあるときに、何をどのように調整することで、ヒートポンプ装置の冷房効率を向上するのかについて、何の開示も示唆もなく、その検討等も一切なされていない。
即ち、特許文献1に開示の技術は、第1膨張弁の開度を制御することについては、開示があるものの、その制御が、どのように実行されることにより、ヒートポンプ装置のCOPにどのように寄与するのかについて、検討されたものではなく、改善の余地があった。
Although the technique disclosed in Patent Document 1 discloses adjusting the opening degree of the first expansion valve, the purpose is to maintain the condensing pressure in the condenser and prevent insufficient condensing. Is.
Further, although Patent Document 1 discloses that "the degree of supercooling of the condenser can be adjusted according to the operating conditions and the cooling efficiency of the heat pump device is improved", what kind of index is adopted as the operating conditions? There is no disclosure or suggestion of what and how to improve the cooling efficiency of the heat pump device under what conditions the index is, and no study has been made.
That is, although the technique disclosed in Patent Document 1 discloses that the opening degree of the first expansion valve is controlled, how the control is executed affects the COP of the heat pump device. It was not examined whether it would contribute to the above, and there was room for improvement.

本発明は、上述の課題に鑑みてなされたものであり、その目的は、第1膨張弁の開度もしくは第1膨張弁の開度に起因して変化する凝縮器とレシーバの間に生じる圧力差の具体的な制御による、圧縮動力を極小化してCOPを極大化し得るヒートポンプ装置の制御方法、及びヒートポンプ装置を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is the pressure generated between the condenser and the receiver, which changes depending on the opening degree of the first expansion valve or the opening degree of the first expansion valve. It is an object of the present invention to provide a control method of a heat pump device capable of minimizing the compression power and maximizing the COP by concretely controlling the difference, and providing the heat pump device.

上記目的を達成するためのヒートポンプ装置の制御方法は、
冷媒を圧縮する圧縮機と、前記圧縮機にて圧縮した冷媒を凝縮する凝縮器と、前記凝縮器にて凝縮した冷媒を膨張させる膨張弁としての第1膨張弁及び第2膨張弁と、冷媒を貯留するレシーバと、前記膨張弁にて膨張した冷媒を蒸発させる蒸発器と、前記圧縮機と前記凝縮器と前記第1膨張弁と前記レシーバと前記第2膨張弁と前記蒸発器とに記載の順に冷媒を循環する冷媒循環路とを備えるヒートポンプ装置の制御方法であって、その特徴構成は、
前記第1膨張弁の開度もしくは前記第1膨張弁の開度に起因して変化する前記凝縮器と前記レシーバの間に生じる圧力差を、前記圧縮機での圧縮動力を極小化してCOPを極大化するように制御し、
前記ヒートポンプ装置の運転条件としてのパラメータの夫々の変化率が、安定判定時間に亘って所定の安定判定割合に収まっている安定状態にあることを判定する安定判定工程と、
前記安定判定工程において前記安定状態にあると判定した場合に、前記ヒートポンプ装置の運転条件毎に、当該運転条件と前記開度もしくは前記圧力差との関係であるマップデータから現状の運転条件に対応する前記開度もしくは前記圧力差を読み出す圧力差読出工程と、
前記開度もしくは前記圧力差を前記圧力差読出工程にて読み出された値に維持した状態で、前記圧縮機での圧縮動力を算出する圧縮動力算出工程と、
前記開度もしくは前記圧力差を、前記圧縮動力算出工程にて算出された圧縮動力が極小値となりCOPが極大値となるように制御する圧力差制御工程とを有する点にある。
The control method of the heat pump device for achieving the above object is
A compressor for compressing refrigerant, a condenser for condensing refrigerant compressed by said compressor, a first expansion valve and the second expansion valve as an expansion valve for expanding the refrigerant condensed by the condenser, the refrigerant Described in the receiver, the evaporator that evaporates the refrigerant expanded by the expansion valve, the compressor, the condenser, the first expansion valve, the receiver, the second expansion valve, and the evaporator. It is a control method of a heat pump device including a refrigerant circulation path that circulates a refrigerant in the order of, and the characteristic configuration thereof is.
The pressure difference generated between the condenser and the receiver, which changes due to the opening degree of the first expansion valve or the opening degree of the first expansion valve, is minimized by the compression power of the compressor to reduce the COP. Control to maximize
A stability determination step for determining that the rate of change of each parameter as an operating condition of the heat pump device is within a predetermined stability determination ratio over the stability determination time, and a stability determination step.
When it is determined in the stability determination step that the heat pump device is in the stable state, the current operating conditions are supported from the map data which is the relationship between the operating conditions and the opening degree or the pressure difference for each operating condition of the heat pump device. The pressure difference reading step of reading the opening degree or the pressure difference to be performed, and
A compression power calculation step of calculating the compression power of the compressor while maintaining the opening degree or the pressure difference at the value read in the pressure difference reading step.
It has a pressure difference control step of controlling the opening degree or the pressure difference so that the compression power calculated in the compression power calculation step becomes the minimum value and the COP becomes the maximum value .

上記目的を達成するためのヒートポンプ装置は、
冷媒を圧縮する圧縮機と、前記圧縮機にて圧縮した冷媒を凝縮する凝縮器と、前記凝縮器にて凝縮した冷媒を膨張させる膨張弁としての第1膨張弁及び第2膨張弁と、冷媒を貯留するレシーバと、前記膨張弁にて膨張した冷媒を蒸発させる蒸発器と、前記圧縮機と前記凝縮器と前記第1膨張弁と前記レシーバと前記第2膨張弁と前記蒸発器とに記載の順に冷媒を循環する冷媒循環路とを備えるヒートポンプ装置であって、その特徴構成は、
前記第1膨張弁の開度もしくは前記第1膨張弁の開度に起因して変化する前記凝縮器と前記レシーバの間に生じる圧力差を、前記圧縮機での圧縮動力を極小化してCOPを極大化するように制御する圧力差制御部
前記ヒートポンプ装置の運転条件としてのパラメータの夫々の変化率が、安定判定時間に亘って所定の安定判定割合に収まっている安定状態にあることを判定する安定判定部と、
前記安定判定部において前記安定状態にあると判定した場合に、前記ヒートポンプ装置の運転条件毎に、当該運転条件と前記開度もしくは前記圧力差との関係であるマップデータから現状の運転条件に対応する前記開度もしくは前記圧力差を読み出す圧力差読出部と、
前記開度もしくは前記圧力差を前記圧力差読出部にて読み出された値に維持した状態で、前記圧縮機での圧縮動力を算出する圧縮動力算出部とを有し、
前記圧力差制御部が、前記開度もしくは前記圧力差を、前記圧縮動力算出部にて算出された圧縮動力が極小値となりCOPが極大値となるように制御する点にある。
The heat pump device for achieving the above purpose is
A compressor for compressing refrigerant, a condenser for condensing refrigerant compressed by said compressor, a first expansion valve and the second expansion valve as an expansion valve for expanding the refrigerant condensed by the condenser, the refrigerant Described in the receiver, the evaporator that evaporates the refrigerant expanded by the expansion valve, the compressor, the condenser, the first expansion valve, the receiver, the second expansion valve, and the evaporator. It is a heat pump device provided with a refrigerant circulation path that circulates a refrigerant in the order of, and its characteristic configuration is:
The pressure difference generated between the condenser and the receiver, which changes due to the opening degree of the first expansion valve or the opening degree of the first expansion valve, is minimized by the compression power of the compressor to reduce the COP. a pressure differential controller configured to maximize,
A stability determination unit that determines that the rate of change of each parameter as an operating condition of the heat pump device is in a stable state within a predetermined stability determination ratio over the stability determination time.
When the stability determination unit determines that the heat pump device is in the stable state, it corresponds to the current operating condition from the map data which is the relationship between the operating condition and the opening degree or the pressure difference for each operating condition of the heat pump device. A pressure difference reading unit that reads out the opening degree or the pressure difference
It has a compression power calculation unit that calculates the compression power of the compressor while maintaining the opening degree or the pressure difference at the value read by the pressure difference reading unit.
The pressure difference control unit controls the opening degree or the pressure difference so that the compression power calculated by the compression power calculation unit becomes the minimum value and the COP becomes the maximum value .

本発明の発明者らは、膨張弁として第1膨張弁と第2膨張弁とを備えると共にレシーバを有するヒートポンプ装置において、「第1膨張弁における開度もしくはその開度に起因して生じる凝縮器と前記レシーバの間に生じる圧力差(以下、「第1膨張弁前後の圧力差」と記載する場合がある)の制御」により、ヒートポンプ装置の圧縮動力が極小値を取りCOPが極大値を取り得る形で変化するという知見を見出し、発明を完成するに至ったものである。
以下、図2に基づいて、説明を追加する。尚、図2では、「第1膨張弁前後の圧力差」が小さい場合(図2のPh線図で鎖線)から大きい場合(図2のPh線図で実線)へ変化する状況について説明する。因みに、以下では、蒸発器での冷却能力(例えば、冷房運転における冷房能力)のCOPを極大化できる理由について説明する。尚、説明の簡略化のため、配管や熱交換器で生じる圧力損失は、ここでは考慮しないこととする。
図1に示すレシーバを有するヒートポンプ装置においては、想定される種々の運転条件において、レシーバに液位が存在するように冷媒が充填される。このようにレシーバに液位が存在する場合は、図2に示すように、レシーバには飽和液状態の冷媒が出入りするため、レシーバでの冷媒はPh線図上で常に飽和液線上に位置する。そのため、凝縮器とレシーバとの間の「第1膨張弁前後の圧力差(図2のdP)」を大きくした場合、凝縮器出口の冷媒温度、即ちレシーバでの冷媒温度となる飽和液温度(レシーバでの冷媒の飽和液の圧力)が低下しその比エンタルピが減少する現象と、凝縮器出口の冷媒圧力が増加する現象の2つが生じる可能性があると考えられる。
The inventors of the present invention have described in a heat pump device having a first expansion valve and a second expansion valve as expansion valves and a receiver, "a condenser generated due to the opening degree of the first expansion valve or the opening degree thereof. By controlling the pressure difference (hereinafter, sometimes referred to as "pressure difference before and after the first expansion valve") generated between the receiver and the receiver, the compression power of the heat pump device takes the minimum value and the COP takes the maximum value. He found the finding that it changes in the form of gain, and completed the invention.
Hereinafter, a description will be added based on FIG. Note that FIG. 2 describes a situation in which the “pressure difference before and after the first expansion valve” changes from a small case (chain line in the Ph diagram of FIG. 2) to a large case (solid line in the Ph diagram of FIG. 2). Incidentally, in the following, the reason why the COP of the cooling capacity in the evaporator (for example, the cooling capacity in the cooling operation) can be maximized will be described. For the sake of simplification of the explanation, the pressure loss generated in the piping and the heat exchanger will not be considered here.
In the heat pump device having the receiver shown in FIG. 1, the refrigerant is filled so that the receiver has a liquid level under various assumed operating conditions. When the liquid level is present in the receiver in this way, as shown in FIG. 2, since the refrigerant in the saturated liquid state enters and exits the receiver, the refrigerant in the receiver is always located on the saturated liquid line on the Ph diagram. .. Therefore, when the "pressure difference before and after the first expansion valve (dP in FIG. 2)" between the condenser and the receiver is increased, the refrigerant temperature at the outlet of the condenser, that is, the saturated liquid temperature (which is the refrigerant temperature at the receiver) ( It is considered that there are two possibilities: a phenomenon in which the pressure of the refrigerant saturated liquid at the receiver decreases and its specific enthalpy decreases, and a phenomenon in which the refrigerant pressure at the outlet of the condenser increases.

前者では、蒸発器に導入される比エンタルピが減少(図2のΔh)するため、蒸発器での冷却能力(比エンタルピ差)は、「第1膨張弁前後の圧力差」を増加前の冷却能力をdhとし、「第1膨張弁前後の圧力差」を増加後の冷却能力をdhとすると、以下の(式1)で表される。
dh=dh+Δh・・・(式1)
In the former case, the specific enthalpy introduced into the evaporator decreases (Δh in FIG. 2), so that the cooling capacity (specific enthalpy difference) in the evaporator is the cooling before increasing the “pressure difference before and after the first expansion valve”. Assuming that the capacity is dh 1 and the cooling capacity after increasing the "pressure difference before and after the first expansion valve" is dh 2 , it is expressed by the following (Equation 1).
dh 2 = dh 1 + Δh ... (Equation 1)

一方、後者では、凝縮圧力が増加(図2のΔP)し、それに応じて圧縮機での圧縮仕事(比エンタルピ差)が増加(図2のΔw)するため、圧縮機での圧縮仕事(比エンタルピ差)は、「第1膨張弁前後の圧力差」を増加前の圧縮仕事をdwとし、「第1膨張弁前後の圧力差」を増加後の圧縮仕事をdwとすると、以下の(式2)で表される。
dw=dw+Δw・・・(式2)
On the other hand, in the latter case, the condensing pressure increases (ΔP c in FIG. 2), and the compression work (specific enthalpy difference) in the compressor increases accordingly (Δw in FIG. The specific enthalpy difference) is as follows, assuming that the "pressure difference before and after the first expansion valve" is dw 1 before the increase and the "pressure difference before and after the first expansion valve" is dw 2 after the increase. It is expressed by (Equation 2) of.
dw 2 = dw 1 + Δw ... (Equation 2)

ここで、冷却能力(冷房運転時)のCOPは、以下の式で表される。
COP=dh/dw・・・(式3)
Here, the COP c of the cooling capacity (during cooling operation) is expressed by the following equation.
COP c = dh 2 / dw 2 ... (Equation 3)

当該COPは、「第1膨張弁前後の圧力差」が大きくなると、COPの増加に繋がるdhとしてのΔhが増大する一方、COPの減少に繋がるdwとしてのΔwが増大するため、両者はトレードオフの関係にあり、COPに極大値が存在すると推定できる。凝縮器出口の冷媒温度は外気温度までが理論的な下限となるため、Δhには上限が存在する。一方、ヒートポンプ装置の耐圧の制限がないとすればΔPには上限の制約はない。そのため、ΔPに相関して大きくなるΔwが、Δh×dw/dh以上に増加すると、COPの向上効果はなくなると考えられる。
尚、加熱能力(例えば、暖房運転における暖房能力)のCOPについては、説明を省略するが、冷房運転時のCOPと同様の理由にて、「第1膨張弁前後の圧力差」を変化させた場合に極大値が発生する。
As for the COP c , when the "pressure difference before and after the first expansion valve" becomes large, Δh as dh 2 leading to an increase in COP c increases, while Δw as dw 2 leading to a decrease in COP c increases. , Both are in a trade-off relationship, and it can be estimated that there is a maximum value in COP c. Since the theoretical lower limit of the refrigerant temperature at the outlet of the condenser is up to the outside air temperature, there is an upper limit for Δh. On the other hand, if there is no limit on the withstand voltage of the heat pump device, there is no upper limit on ΔP c. Therefore, if Δw, which increases in correlation with ΔP c , increases to Δh × dw 1 / dh 1 or more, it is considered that the effect of improving COP c disappears.
The COP h of the heating capacity (for example, the heating capacity in the heating operation) will not be described, but the “pressure difference before and after the first expansion valve” is changed for the same reason as the COP c during the cooling operation. A maximum value is generated when the value is increased.

前記の補足であるが、「第1膨張弁前後の圧力差」を増加させると、同じ空調(冷房)能力の場合であれば、蒸発器での比エンタルピ差が増加するため、冷媒循環量は減少する。そのため、COPに極大値が発生する条件では、圧縮仕事(比エンタルピ差)と冷媒循環量の積である圧縮動力自体は極小値となる。
また、冷媒循環量が減少すると、蒸発器や凝縮器の熱交換面積が相対的に増えることになるため、蒸発圧力は増加し、凝縮圧力は低下する特性がある。ただし、蒸発ではより液に近く比エンタルピが小さい(乾き度が小さい)状態から蒸発させる必要があり、また凝縮ではより過冷却度がついた比エンタルピが小さい状態まで凝縮させる必要があるため、各々の圧力については逆の影響となる。実際には蒸発器や凝縮器での伝熱現象を考慮した蒸発圧力および凝縮圧力で運転されることとなる。
因みに、冷媒循環量が減少すると、室内機と室外機を連結する配管等(特にガス管)で生じる圧力損失が減少するため、実際にはCOPが更に向上する効果も期待できる。
As a supplement to the above, if the "pressure difference before and after the first expansion valve" is increased, the specific enthalpy difference in the evaporator will increase if the air conditioning (cooling) capacity is the same, so the amount of refrigerant circulation will increase. Decrease. Therefore, under the condition that the maximum value is generated in COP, the compression power itself, which is the product of the compression work (specific enthalpy difference) and the amount of refrigerant circulation, becomes the minimum value.
Further, when the amount of refrigerant circulation decreases, the heat exchange area of the evaporator and the condenser increases relatively, so that the evaporation pressure increases and the condensation pressure decreases. However, in evaporation, it is necessary to evaporate from a state where it is closer to the liquid and has a small specific enthalpy (less dryness), and in condensation, it is necessary to condense to a state where the specific enthalpy with a higher degree of supercooling is small. It has the opposite effect on the pressure of. Actually, it will be operated at the evaporation pressure and the condensation pressure in consideration of the heat transfer phenomenon in the evaporator and the condenser.
Incidentally, when the amount of refrigerant circulation is reduced, the pressure loss generated in the pipes connecting the indoor unit and the outdoor unit (particularly the gas pipe) is reduced, so that the effect of further improving the COP can be expected in practice.

詳細については後述するが、図4(a)、図5(a)、図6(a)に示すように、熱交換器での伝熱特性等を考慮した計算では、負荷や外気温度に関わらず、「第1膨張弁前後の圧力差」を変化させた場合に、COPに極大値が発生することが確かめられた。
以上より、第1膨張弁前後の圧力差の具体的な制御による、圧縮動力を極小化してCOPを極大化し得るヒートポンプ装置の制御方法、及びヒートポンプ装置を実現できる。
Details will be described later, but as shown in FIGS. 4 (a), 5 (a), and 6 (a), the calculation considering the heat transfer characteristics of the heat exchanger is not related to the load and the outside air temperature. However, it was confirmed that a maximum value was generated in COP c when the "pressure difference before and after the first expansion valve" was changed.
From the above, it is possible to realize a control method of the heat pump device capable of minimizing the compression power and maximizing the COP by concretely controlling the pressure difference before and after the first expansion valve, and the heat pump device.

ヒートポンプ装置の制御方法の更なる特徴構成は、
前記ヒートポンプ装置の運転条件毎に、当該運転条件と前記開度もしくは前記圧力差との関係であるマップデータから、現状の運転条件に対応した前記開度もしくは前記圧力差を読み出し、現状の運転条件に対応した前記圧縮機での圧縮動力を算出し、当該圧縮動力を極小化してCOPを極大化するように、前記開度もしくは前記圧力差を制御する点にある。
Further features of the control method of the heat pump device
For each operating condition of the heat pump device, the opening or the pressure difference corresponding to the current operating condition is read out from the map data which is the relationship between the operating condition and the opening or the pressure difference, and the current operating condition is read. The point is to calculate the compression power of the compressor corresponding to the above, and control the opening degree or the pressure difference so as to minimize the compression power and maximize the COP.

さて、第1膨張弁における開度もしくはその開度に起因して生じる凝縮器とレシーバの間に生じる圧力差は、圧縮機の回転数、外気温度、室内温度(室内機吸い込み空気温度)、室内機運転負荷率(室外機定格容量に対する運転している室内機の合計容量の比率)、凝縮圧力、蒸発圧力、過冷却度(凝縮器出口)、過熱度(圧縮機入口)、室外機ファン回転数等の運転条件に基づいて決定されるものである。
そこで、本発明にあっては、これらの運転条件と、第1膨張弁前後の圧力差(第1膨張弁における開度、及びその開度に起因して生じる凝縮器と前記レシーバの間に生じる圧力差を意味する概念)との関係を記憶するマップデータから、現状の運転条件に対応した第1膨張弁前後の圧力差を読み出し、更に、取得した運転条件に対応した圧縮動力を算出し、第1膨張弁前後の圧力差を、算出した圧縮動力が極小となりCOPが極大となるように制御するのである。
尚、記憶されるマップデータの運転条件は、離散的に記憶することができ、現状の運転条件が、離散的に記憶された条件の間の条件である場合、両者の間の値が補間計算され、現状の運転条件に対応した第1膨張弁前後の圧力差が算出され読み出される。
By the way, the opening degree of the first expansion valve or the pressure difference generated between the condenser and the receiver caused by the opening degree is the compressor rotation speed, the outside air temperature, the indoor temperature (indoor unit suction air temperature), and the indoor unit. Machine operating load factor (ratio of the total capacity of the indoor units in operation to the rated capacity of the outdoor unit), condensation pressure, evaporation pressure, overcooling degree (condenser outlet), overheating degree (compressor inlet), outdoor unit fan rotation It is determined based on the operating conditions such as the number.
Therefore, in the present invention, these operating conditions and the pressure difference before and after the first expansion valve (the opening degree of the first expansion valve and the pressure difference between the condenser and the receiver caused by the opening degree) occur. From the map data that stores the relationship with the pressure difference), the pressure difference before and after the first expansion valve corresponding to the current operating conditions is read out, and the compression power corresponding to the acquired operating conditions is calculated. The pressure difference before and after the first expansion valve is controlled so that the calculated compression power becomes the minimum and the COP becomes the maximum.
The operating conditions of the stored map data can be stored discretely, and when the current operating conditions are conditions between the discretely stored conditions, the value between the two is interpolated. Then, the pressure difference before and after the first expansion valve corresponding to the current operating conditions is calculated and read out.

ヒートポンプ装置の制御方法の更なる特徴構成は、
前記圧力差制御工程では、前記開度もしくは前記圧力差に対応する圧縮動力と、現状の前記開度もしくは前記圧力差を所定変化量だけ変化させた後の圧縮動力とを比較し、小さい方の圧縮動力に対応する前記開度もしくは前記圧力差を、現状の前記開度もしくは前記圧力差とする処理を連続して実行する局所探索法により、圧縮動力を極小化してCOPを極大化する前記開度もしくは前記圧力差を導出する点にある。
Further features of the control method of the heat pump device
In the pressure difference control step, the compression power corresponding to the opening degree or the pressure difference is compared with the compression power after changing the current opening degree or the pressure difference by a predetermined change amount, and the smaller one is compared. The opening that minimizes the compression power and maximizes the COP by a local search method that continuously executes a process of continuously converting the opening or the pressure difference corresponding to the compression power into the current opening or the pressure difference. The point is to derive the degree or the pressure difference.

本発明の発明者らは、これまで説明してきたように、膨張弁として第1膨張弁と第2膨張弁とを備えると共にレシーバを備えたヒートポンプ装置が、第1膨張弁前後の圧力差の最適化により、圧縮動力が極小値を有し、COPが極大値を有することを、新たに見出した。
そこで、圧力差制御工程において上述したような局所探索法を実行することにより、圧縮動力を極小化してCOPを極大化する圧力差を良好に導出することができる。
尚、この場合、学習制御を合わせて適用することも可能である。
As described above, the inventors of the present invention use a heat pump device having a first expansion valve and a second expansion valve as expansion valves and a receiver to optimize the pressure difference between the front and rear of the first expansion valve. It was newly found that the compression power has a minimum value and the COP has a maximum value.
Therefore, by executing the local search method as described above in the pressure difference control step, it is possible to satisfactorily derive the pressure difference that minimizes the compression power and maximizes the COP.
In this case, it is also possible to apply the learning control together.

ヒートポンプ装置の制御方法の更なる特徴構成は、
前記安定判定工程と前記圧力差読出工程と前記圧縮動力算出工程と前記圧力差制御工程とを、前記ヒートポンプ装置の運転時にリアルタイムに実行する形態で、前記開度もしくは前記圧力差を制御する点にある。
Further features of the control method of the heat pump device
The point of controlling the opening degree or the pressure difference in a form in which the stability determination step, the pressure difference reading step, the compression power calculation step, and the pressure difference control step are executed in real time during the operation of the heat pump device. is there.

第1膨張弁前後の圧力差を制御する場合、前記の運転条件が経時的に変化すると、制御された圧力差においてCOPが適切に極大値にならない可能性がある。
そこで、上記特徴構成にあっては、安定判定工程と圧力差読出工程と前記圧縮動力算出工程と圧力差制御工程とを、ヒートポンプ装置の運転時にリアルタイムに実行することで、圧縮動力が適切に極小値を維持(COPが適切に極大値を維持)するように、第1膨張弁前後の圧力差を制御することができるのである。
When controlling the pressure difference before and after the first expansion valve, if the above-mentioned operating conditions change with time, the COP may not reach an appropriate maximum value in the controlled pressure difference.
Therefore, in the above-mentioned feature configuration, the compression power is appropriately minimized by executing the stability determination step, the pressure difference reading step, the compression power calculation step, and the pressure difference control step in real time during the operation of the heat pump device. The pressure difference before and after the first expansion valve can be controlled so as to maintain the value (COP appropriately maintains the maximum value).

実施形態に係るヒートポンプ装置の概略構成図Schematic configuration diagram of the heat pump device according to the embodiment 実施形態に係るヒートポンプ装置において、第1膨張弁前後の圧力差の調整前後のph線図を示すグラフ図In the heat pump device according to the embodiment, a graph showing a pH diagram before and after adjusting the pressure difference before and after the first expansion valve. 実施形態に係るヒートポンプ装置の制御フローControl flow of the heat pump device according to the embodiment 定格負荷運転で外気温度35℃の場合におけるCOPの第1膨張弁前後の圧力差依存性等を示すグラフ図Graph graph showing the pressure difference dependence before and after the first expansion valve of COP when the outside air temperature is 35 ° C in rated load operation. 部分負荷運転で外気温度35℃の場合におけるCOPの第1膨張弁前後の圧力差依存性等を示すグラフ図Graph graph showing the pressure difference dependence before and after the first expansion valve of COP when the outside air temperature is 35 ° C in partial load operation. 部分負荷運転で外気温度29℃の場合におけるCOPの第1膨張弁前後の圧力差依存性等を示すグラフ図Graph graph showing the pressure difference dependence before and after the first expansion valve of COP when the outside air temperature is 29 ° C in partial load operation. 別実施形態に係るヒートポンプ装置の概略構成図Schematic configuration diagram of the heat pump device according to another embodiment 別実施形態に係るヒートポンプ装置において、第1膨張弁第1膨張弁前後の圧力差の調整前後のph線図を示すグラフ図In the heat pump device according to another embodiment, a graph showing a pH diagram before and after adjusting the pressure difference between the first expansion valve and the first expansion valve.

本発明の実施形態に係るヒートポンプ装置100の制御方法、及びヒートポンプ装置100は、第1膨張弁前後の圧力差の具体的な制御により、圧縮動力を極小化してCOPを極大化し得るものに関する。
尚、当該実施形態に係るヒートポンプ装置100の制御方法、及びヒートポンプ装置100では、第1膨張弁前後の圧力差を変化させているときには、空調能力は変化させないものとする。
The control method of the heat pump device 100 and the heat pump device 100 according to the embodiment of the present invention relate to those capable of minimizing the compression power and maximizing the COP by specifically controlling the pressure difference before and after the first expansion valve.
In the control method of the heat pump device 100 and the heat pump device 100 according to the embodiment, the air conditioning capacity is not changed when the pressure difference before and after the first expansion valve is changed.

実施形態に係るヒートポンプ装置100は、図1に示すように、エンジン14にて回転駆動され冷媒を圧縮する圧縮機11と、圧縮機11にて圧縮した冷媒を凝縮する凝縮器と、凝縮器にて凝縮した冷媒を膨張させる膨張弁としての第1膨張弁及び第2膨張弁と、冷媒を貯留するレシーバ17と、膨張弁にて膨張した冷媒を蒸発させる蒸発器と、圧縮機11と凝縮器と第1膨張弁とレシーバ17と第2膨張弁と蒸発器とに記載の順に冷媒を循環する冷媒循環路C1とを備える。当該冷媒循環路C1には、冷房運転(冷却能力を発揮するときの運転の一例)と暖房運転(加熱能力を発揮するときの運転の一例)とで冷媒の循環状態を切り替える四方弁20が設けられている。
また、圧縮機11の入口には冷媒を貯留するアキュムレータ15が設けられ、液相状態の冷媒が圧縮機11へ導かれることを防止している。
更に、圧縮機11の出口には圧縮機11から冷媒配管内へ混入したオイルを冷媒から分離するオイルセパレータ16が設けられると共に、当該オイルセパレータ16と圧縮機11の入口とを連通接続するオイル流路Lo及びオイル流路Loを開閉するオイル弁V3が設けられており、オイルセパレータ16に貯留されたオイルは、定期的に、オイル弁V3を閉止状態から開放状態へ移行する形態で、圧縮機11の入口へ導かれる。
As shown in FIG. 1, the heat pump device 100 according to the embodiment includes a compressor 11 that is rotationally driven by the engine 14 to compress the refrigerant, a condenser that condenses the refrigerant compressed by the compressor 11, and a condenser. A first expansion valve and a second expansion valve as expansion valves for expanding the condensed refrigerant, a receiver 17 for storing the refrigerant, an evaporator for evaporating the refrigerant expanded by the expansion valve, a compressor 11 and a condenser. The first expansion valve, the receiver 17, the second expansion valve, and the refrigerant circulation path C1 for circulating the refrigerant in the order described in the first expansion valve, the receiver 17, and the evaporator are provided. The refrigerant circulation path C1 is provided with a four-way valve 20 that switches the refrigerant circulation state between a cooling operation (an example of operation when demonstrating cooling capacity) and a heating operation (an example of operation when demonstrating heating capacity). Has been done.
Further, an accumulator 15 for storing the refrigerant is provided at the inlet of the compressor 11 to prevent the refrigerant in the liquid phase state from being guided to the compressor 11.
Further, an oil separator 16 that separates the oil mixed into the refrigerant pipe from the compressor 11 from the refrigerant is provided at the outlet of the compressor 11, and an oil flow that connects the oil separator 16 and the inlet of the compressor 11 in communication with each other. An oil valve V3 that opens and closes the passage Lo and the oil flow path Lo is provided, and the oil stored in the oil separator 16 periodically shifts the oil valve V3 from the closed state to the open state, and is a compressor. You will be guided to the entrance of 11.

冷房運転時には、図1に示すように、冷媒循環路C1を通流する冷媒は、圧縮機11、オイルセパレータ16、ファン(図示せず)により送風される室外空気と冷媒とを熱交換する室外熱交換器12(凝縮器に相当)、暖房用膨張弁Vh(第1膨張弁に相当)、レシーバ17、冷房用膨張弁Vc(第2膨張弁に相当)、ファン(図示せず)により送風される室内空気と冷媒とを熱交換する室内熱交換器13(蒸発器に相当)とに記載の順に循環するように、四方弁20が切り換えられる。
一方、暖房運転時には、図示は省略するが、冷媒循環路C1を通流する冷媒は、圧縮機11、オイルセパレータ16、ファン(図示せず)により送風される室内空気と冷媒とを熱交換する室内熱交換器13(凝縮器に相当)、冷房用膨張弁Vc(第1膨張弁に相当)、レシーバ17、暖房用膨張弁Vh(第2膨張弁に相当)、ファン(図示せず)により送風される室外空気と冷媒とを熱交換する室外熱交換器12(蒸発器に相当)とに記載の順に循環するように、四方弁20が切り換えられる。なお、エンジン14の排熱を用いて冷媒の一部を蒸発させる熱交換器も設置されている場合が多いが、図示は省略する。
During the cooling operation, as shown in FIG. 1, the refrigerant flowing through the refrigerant circulation path C1 exchanges heat between the outdoor air blown by the compressor 11, the oil separator 16, and the fan (not shown) and the refrigerant. Blower by heat exchanger 12 (corresponding to a condenser), heating expansion valve Vh (corresponding to the first expansion valve), receiver 17, cooling expansion valve Vc (corresponding to the second expansion valve), and fan (not shown) The four-way valve 20 is switched so as to circulate in the order described in the indoor heat exchanger 13 (corresponding to an evaporator) that exchanges heat between the indoor air and the refrigerant.
On the other hand, during the heating operation, although not shown, the refrigerant flowing through the refrigerant circulation path C1 exchanges heat between the refrigerant and the indoor air blown by the compressor 11, the oil separator 16, and the fan (not shown). By indoor heat exchanger 13 (corresponding to a condenser), cooling expansion valve Vc (corresponding to the first expansion valve), receiver 17, heating expansion valve Vh (corresponding to the second expansion valve), fan (not shown) The four-way valve 20 is switched so as to circulate in the order described in the outdoor heat exchanger 12 (corresponding to an evaporator) that exchanges heat between the blown outdoor air and the refrigerant. In many cases, a heat exchanger that evaporates a part of the refrigerant by using the exhaust heat of the engine 14 is also installed, but the illustration is omitted.

さて、当該実施形態に係るヒートポンプ装置100にあっては、圧縮動力を極小化するべく(COPを極大化するべく)、運転を制御する制御装置50は、圧縮機11の回転数、外気温度、室内温度(室内機吸い込み空気温度)、室内機運転負荷率(室外機定格容量に対する運転している室内機の合計容量の比率)、凝縮圧力、蒸発圧力、過冷却度(凝縮器出口)、過熱度(圧縮機入口)、室外機ファン回転数等の運転条件毎に、当該運転条件と当該運転条件から決定される第1膨張弁前後の圧力差(第1膨張弁における開度、もしくはその開度に起因して生じる凝縮器とレシーバの間に生じる圧力差)との関係であるマップデータを記憶する記憶部51を備えると共に、以下の各種制御を実行する制御部52をソフトウェアとハードウェアとが協働する形態で備えている。
説明を追加すると、制御部52は、前記の運転条件としてのパラメータの夫々の変化率が、安定判定時間(例えば、5分間)に亘って所定の安定判定割合に収まっている安定状態にあることを安定判定部と、安定判定部において安定状態にあると判定した場合に、マップデータから現状の運転条件に対応する第1膨張弁前後の圧力差を読み出す圧力差読出部と、第1膨張弁前後の圧力差を圧力差読出部にて読み出された値に維持した状態で、圧縮機11での圧縮動力を算出する圧縮動力算出部と、圧縮動力算出部にて算出された圧縮動力が極小値となりCOPが極大値となるように、第1膨張弁前後の圧力差を制御する圧力差制御部とを有する。
In the heat pump device 100 according to the embodiment, the control device 50 that controls the operation in order to minimize the compression power (to maximize the COP) is the rotation speed of the compressor 11, the outside air temperature, and the like. Indoor temperature (indoor unit suction air temperature), indoor unit operating load factor (ratio of total capacity of operating indoor unit to outdoor unit rated capacity), condensation pressure, evaporation pressure, degree of overcooling (compressor outlet), overheating For each operating condition such as degree (compressor inlet) and outdoor unit fan rotation speed, the pressure difference between the operating condition and the pressure difference before and after the first expansion valve determined from the operating condition (opening in the first expansion valve or its opening). A storage unit 51 that stores map data, which is the relationship between the pressure difference between the compressor and the receiver caused by the degree, is provided, and the control unit 52 that executes the following various controls is provided with software and hardware. Are prepared in a collaborative manner.
Adding an explanation, the control unit 52 is in a stable state in which the rate of change of each of the parameters as the above-mentioned operating conditions is within a predetermined stability determination ratio over the stability determination time (for example, 5 minutes). The pressure difference reading unit and the first expansion valve that read the pressure difference before and after the first expansion valve corresponding to the current operating conditions from the map data when the stability determination unit and the stability determination unit determine that the vehicle is in a stable state. With the front and rear pressure difference maintained at the value read by the pressure difference reading unit, the compression power calculation unit that calculates the compression power in the compressor 11 and the compression power calculated by the compression power calculation unit It has a pressure difference control unit that controls the pressure difference before and after the first expansion valve so that the value becomes the minimum value and the COP becomes the maximum value.

ここで、安定判定部において安定判定割合に収まっている安定状態とは、例えば、安定判定時間における値の平均値に対する最大値の割合、及び安定判定時間における値の平均値に対する最小値の割合の双方が、所定の割合以内であることを意味するものとする。
具体的には上記の割合は、例えば、圧縮機や室外ファン等の回転数は2%以内(定格運転での値を基準)、外気温度、室内温度(室内機吸い込み空気温度)、過熱度、過冷却度は1K以内、凝縮圧力や蒸発圧力は2%以内(定格運転での値を基準)、室内機運転負荷率は変化無しとなる状態を、安定状態と規定する。
Here, the stable state within the stability determination ratio in the stability determination unit is, for example, the ratio of the maximum value to the average value in the stability determination time and the ratio of the minimum value to the average value in the stability determination time. It shall mean that both are within the prescribed ratio.
Specifically, the above ratios are, for example, the number of revolutions of the compressor, outdoor fan, etc. within 2% (based on the value in rated operation), outside air temperature, indoor temperature (indoor unit suction air temperature), superheat degree, etc. A stable state is defined as a state in which the degree of supercooling is within 1 K, the condensation pressure and evaporation pressure are within 2% (based on the values in rated operation), and the indoor unit operating load factor does not change.

記憶部51に記憶されるマップデータとしては、例えば、図1にその一部を示すように、圧縮機11の回転数が大きいほど第1膨張弁前後の圧力差が大きくなる関係等を、外気温度等の他の運転条件毎に記憶したものとなっている。
尚、当該マップデータは、第1膨張弁前後の圧力差は、冷媒循環路C1の配管長にも依存する値である。このため、マップデータは、ヒートポンプ装置を設置するビル等の設備毎の冷媒循環路C1の配管長、具体的には室外機と室内機の連絡配管の長さ毎に、記憶されることが望ましい。
As the map data stored in the storage unit 51, for example, as shown in a part of FIG. 1, the relationship that the pressure difference before and after the first expansion valve increases as the rotation speed of the compressor 11 increases is determined by the outside air. It is stored for each other operating condition such as temperature.
In the map data, the pressure difference before and after the first expansion valve is a value that also depends on the pipe length of the refrigerant circulation path C1. Therefore, it is desirable that the map data is stored for each pipe length of the refrigerant circulation path C1 for each facility such as a building where the heat pump device is installed, specifically, for each length of the connecting pipe between the outdoor unit and the indoor unit. ..

当該実施形態に係るヒートポンプ装置100にあっては、図示は省略するが、冷媒圧力及び冷媒温度を計測するセンサが適宜設けられている。圧縮動力算出部では、上記センサの出力に基づいて、圧縮機11の入口と出口でのエンタルピを算出し、圧縮機11の出口のエンタルピから圧縮機11の入口のエンタルピを減算した値に、圧縮機11の回転数と体積効率と排除容積と圧縮機入口の冷媒密度の積として算出される冷媒循環量を積算する形態で、圧縮動力Wを算出する。
尚、圧縮動力算出部による演算は、すべて、第1膨張弁前後の圧力差を圧力差読出部にて読み出された値に維持した状態で実行される。
Although not shown, the heat pump device 100 according to the embodiment is appropriately provided with sensors for measuring the refrigerant pressure and the refrigerant temperature. The compression power calculation unit calculates the enthalpy at the inlet and outlet of the compressor 11 based on the output of the sensor, and compresses the enthalpy at the outlet of the compressor 11 minus the enthalpy at the inlet of the compressor 11. The compression power W is calculated in the form of integrating the refrigerant circulation amount calculated as the product of the rotation speed of the machine 11, the volume efficiency, the exclusion volume, and the refrigerant density at the compressor inlet.
All the calculations by the compression power calculation unit are executed in a state where the pressure difference before and after the first expansion valve is maintained at the value read by the pressure difference reading unit.

次に、当該実施形態に係るヒートポンプ装置100において圧縮動力を極小化(COPを極大化)する制御を、図3の制御フローに基づいて説明する。
尚、当該実施形態に係るヒートポンプ装置100では、図3に示す制御フローを、ヒートポンプ装置100の運転時にリアルタイムに実行するものであり、これにより、運転条件の変化に追従する形態で、第1膨張弁前後の圧力差が制御されることとなる。
Next, the control for minimizing the compression power (maximizing the COP) in the heat pump device 100 according to the embodiment will be described based on the control flow of FIG.
In the heat pump device 100 according to the embodiment, the control flow shown in FIG. 3 is executed in real time during the operation of the heat pump device 100, whereby the first expansion follows a change in operating conditions. The pressure difference between the front and rear of the valve will be controlled.

第1膨張弁前後の圧力差による圧縮動力の極小化による制御は、前の制御から所定の時間(例えば、5分間)が経過したタイミングや、運転条件が大きく変化するタイミングで、リアルタイムに実行される。
制御部52は、運転条件を取得する(#01)。
制御部52は、安定判定工程として、#01のステップにて取得した各運転条件としてのパラメータの夫々の変化率が、安定判定時間に亘って所定の安定判定割合に収まっている安定状態にあるか否かを判定する安定判定工程を実行し(#02)、安定状態にない場合には所定時間(例えば、2分間)待機した後(#03)、再度、安定判定工程を実行する(#02)。
安定判定工程にて安定していると判定された場合、制御部52は、記憶部51にて記憶されるマップデータに基づいて、現状の第1膨張弁前後の圧力差を読み出す圧力差読出工程を実行する(#04)。
制御部52は、第1膨張弁前後の圧力差を圧力差読出工程にて読み出した値に維持した状態で、各運転条件の安定判定(#06)や所定時間の待機(#07)を実施した後に、圧縮機11での圧縮動力を算出する圧縮動力算出工程を実行する(#08)。
The control by minimizing the compression power due to the pressure difference before and after the first expansion valve is executed in real time at the timing when a predetermined time (for example, 5 minutes) elapses from the previous control or at the timing when the operating conditions change significantly. To.
The control unit 52 acquires the operating conditions (# 01).
As a stability determination step, the control unit 52 is in a stable state in which the rate of change of each parameter as each operating condition acquired in step # 01 is within a predetermined stability determination ratio over the stability determination time. The stability determination step for determining whether or not it is determined is executed (# 02), and if it is not in a stable state, it waits for a predetermined time (for example, 2 minutes) (# 03), and then the stability determination step is executed again (#). 02).
When it is determined to be stable in the stability determination step, the control unit 52 reads out the pressure difference before and after the current first expansion valve based on the map data stored in the storage unit 51. Is executed (# 04).
The control unit 52 performs stability determination (# 06) of each operating condition and standby (# 07) for a predetermined time while maintaining the pressure difference before and after the first expansion valve at the value read in the pressure difference reading step. After that, the compression power calculation step of calculating the compression power in the compressor 11 is executed (# 08).

制御部52は、以下の#09〜#16のステップを実行することで、第1膨張弁前後の圧力差を、圧縮動力算出工程にて算出された圧縮動力を極小値となるように制御する圧力差損制御工程を実行する。
換言すると、制御部52は、当該圧力差制御工程において、現状の第1膨張弁前後の圧力差に対応する圧縮動力と、現状の第1膨張弁前後の圧力差を所定変化量だけ変化させた後の圧力差に対応する圧縮動力とを比較し、小さい方の圧縮動力に対応する第1膨張弁前後の圧力差を現状の第1膨張弁前後の圧力差とする処理を連続して実行する局所探索法により、圧縮動力を極小とする第1膨張弁前後の圧力差を導出する。
尚、詳細な説明は省略するが、制御部52は、学習制御を合わせて適用して、圧縮動力を極小とする第1膨張弁前後の圧力差を導出する制御を実行しても構わない。
By executing the following steps # 09 to # 16, the control unit 52 controls the pressure difference before and after the first expansion valve so that the compression power calculated in the compression power calculation step becomes the minimum value. Perform the pressure loss control step.
In other words, in the pressure difference control step, the control unit 52 changes the compression power corresponding to the current pressure difference before and after the first expansion valve and the current pressure difference before and after the first expansion valve by a predetermined amount of change. Comparing with the compression power corresponding to the later pressure difference, the process of making the pressure difference before and after the first expansion valve corresponding to the smaller compression power the current pressure difference before and after the first expansion valve is continuously executed. The pressure difference before and after the first expansion valve that minimizes the compression power is derived by the local search method.
Although detailed description will be omitted, the control unit 52 may also apply learning control to execute control for deriving the pressure difference before and after the first expansion valve that minimizes the compression power.

具体的には、制御部52は、n=1とし(#09)、n=1において、現状の第1膨張弁前後の圧力差dPに対応する圧縮動力Wと、圧力差を所定変化量だけ変化させた後の第1膨張弁前後の圧力差dPn+1に対応するWn+1とを算出し(#10)、Wn+1とWとの差の絶対値(|Wn+1−W|)が規定値αより小さいか否かを判定する(#11)。
制御部52は、Wn+1とWとの差の絶対値(|Wn+1−W|)が規定値αより小さい場合(#11でYes)、現状の第1膨張弁前後の圧力差dPが、Wを極小とする値の近傍にあると判断し、現状の圧力差dPで制御を継続する(#16)。
一方、制御部52は、Wn+1とWとの差の絶対値(|Wn+1−W|)が規定値α以上である場合(#11でNo)、圧力差変化後のWn+1が圧力差変化前のWよりも小さいか否かを判断し(#12)、小さい場合は(#12でYes)、第1膨張弁前後の圧力差の変化方向を維持したままとし(#13)、圧力差変化後のWn+1が圧力差変化前のW以上の場合(#12でNo)は、第1膨張弁前後の圧力差の変化方向を逆転させる(#14、15)。
制御部52は、上記#12〜#15の制御を、Wn+1とWとの差の絶対値(|Wn+1−W|)が規定値αより小さくなるまで継続する。
Specifically, the control unit 52 sets n = 1 (# 09), and at n = 1, the compression power W n corresponding to the current pressure difference dP n before and after the first expansion valve and the pressure difference are predeterminedly changed. Calculate W n + 1 corresponding to the pressure difference dP n + 1 before and after the first expansion valve after changing by the amount (# 10), and the absolute value of the difference between W n + 1 and W n (| W n + 1 −W n | ) Is smaller than the specified value α (# 11).
When the absolute value of the difference between W n + 1 and W n (| W n + 1 −W n |) is smaller than the specified value α (Yes in # 11), the control unit 52 has a pressure difference dP before and after the current first expansion valve. It is determined that n is in the vicinity of the value that minimizes W, and the control is continued with the current pressure difference dP n (# 16).
On the other hand, the control unit 52, the absolute value of the difference between W n + 1 and W n (| W n + 1 -W n |) If it is the prescribed value α or more (No in # 11), W n + 1 after the pressure difference change is It is judged whether or not it is smaller than W n before the pressure difference change (# 12), and if it is smaller (# 12 is Yes), the change direction of the pressure difference before and after the first expansion valve is maintained (# 13). ), When W n + 1 after the pressure difference change is W n or more before the pressure difference change (No in # 12), the change direction of the pressure difference before and after the first expansion valve is reversed (# 14, 15).
The control unit 52 continues the control of # 12 to # 15 until the absolute value of the difference between W n + 1 and W n (| W n + 1 −W n |) becomes smaller than the specified value α.

次に、当該実施形態に係るヒートポンプ装置100の制御において、第1膨張弁前後の圧力差を制御した場合の圧縮動力Wの変化に相当するCOPの変化を計算により求めた結果であるグラフを示す。
図4は、冷房運転を定格負荷で実行している場合であって、冷房能力:50kW、圧縮効率:80%、体積効率90%、圧縮機11の入口での過熱度SH:5K、外気温度:35℃、室外ファン空気流量:1.6m/s、室内温度:27℃(WB19℃)、室内ファン空気流量:0.8m/s、冷媒:R410Aとした。また、室外機出口から室内機までの冷媒循環路C1(液管)および室内機から室外機までの冷媒循環路C1(ガス管)の長さは、それぞれ20mとした。
尚、当該グラフでは、図7(後述)に示す過冷却流路を設けた本発明の別実施形態に対応する構成での計算結果も併せて示してあり、過冷却(SC)有の場合、過冷却で受熱した後の冷媒の過熱度SH:10Kであるとした。
Next, in the control of the heat pump device 100 according to the embodiment, a graph showing the result of calculating the change in COP corresponding to the change in the compression power W when the pressure difference before and after the first expansion valve is controlled is shown. ..
FIG. 4 shows a case where the cooling operation is performed at the rated load, the cooling capacity: 50 kW, the compression efficiency: 80%, the volume efficiency 90%, the degree of superheat at the inlet of the compressor 11 SH: 5K, and the outside air temperature. : 35 ° C., outdoor fan air flow rate: 1.6 m / s, indoor temperature: 27 ° C. (WB19 ° C.), indoor fan air flow rate: 0.8 m / s, refrigerant: R410A. Further, the lengths of the refrigerant circulation path C1 (liquid pipe) from the outlet of the outdoor unit to the indoor unit and the refrigerant circulation path C1 (gas pipe) from the indoor unit to the outdoor unit were set to 20 m, respectively.
In addition, in the graph, the calculation result in the configuration corresponding to another embodiment of the present invention provided with the supercooling flow path shown in FIG. 7 (described later) is also shown, and when supercooling (SC) is present, it is also shown. It was assumed that the degree of superheat of the refrigerant after receiving heat by supercooling was SH: 10K.

図4(b)に示すように、第1膨張弁前後の圧力差が増加するに従って、レシーバ17と第2膨張弁との間の液管の温度は低下(COPが増加)し、図4(c)に示すように、第1膨張弁前後の圧力差が増加するに従って、凝縮器12の出口圧力、即ち圧縮機11の出口の圧力が増加(COPが低下)する。両者は、トレードオフの関係にあるため、図4(a)に示すように、COPは、第1膨張弁前後の圧力差が増加するに従って、所定の値で極大値が存在することが確認できた。 As shown in FIG. 4 (b), as the pressure difference before and after the first expansion valve increases, the temperature of the liquid pipe between the receiver 17 and the second expansion valve decreases (COP increases), and FIG. 4 (B) As shown in c), as the pressure difference before and after the first expansion valve increases, the outlet pressure of the condenser 12, that is, the pressure at the outlet of the compressor 11 increases (COP decreases). Since the two are in a trade-off relationship, as shown in FIG. 4A, it can be confirmed that the COP has a maximum value at a predetermined value as the pressure difference before and after the first expansion valve increases. It was.

更に、冷房運転を部分負荷(定格負荷の半分程度の中間負荷)で行い外気温度が35℃である場合(図5に図示)、及び冷房運転を部分負荷(定格負荷の半分程度の中間負荷)で行い外気温度が29℃である場合(図6に図示)から明らかなように、運転負荷が変化した場合、外気温度が変化した場合も、第1膨張弁前後の圧力差を変化させることによりCOPが極大値をとることが確認できた。 Further, when the cooling operation is performed with a partial load (intermediate load of about half of the rated load) and the outside air temperature is 35 ° C. (shown in FIG. 5), and the cooling operation is performed with a partial load (intermediate load of about half of the rated load). As is clear from the case where the outside air temperature is 29 ° C. (shown in FIG. 6), even if the operating load changes or the outside air temperature changes, the pressure difference before and after the first expansion valve is changed. It was confirmed that the COP had a maximum value.

〔別実施形態〕
(1)上記実施形態の計算結果は、冷房運転の場合を例として説明したが、暖房運転であっても、圧縮動力を極小化してCOPを極大化する第1膨張弁前後の圧力差dPが存在する。
この場合、圧力差の制御に使用される第1膨張弁は、冷房用膨張弁Vcで実施可能ではあるが、ビルマルタイプの場合は複数の室内機があり、それぞれに冷房用膨張弁がついているため、圧力差の制御が複雑になる恐れがある。そのため、例えば、レシーバ直前に別途の第1膨張弁としての膨張弁を設けることが望ましい。
[Another Embodiment]
(1) The calculation result of the above embodiment has been described by taking the case of cooling operation as an example, but even in heating operation, the pressure difference dP before and after the first expansion valve that minimizes the compression power and maximizes COP is Exists.
In this case, the first expansion valve used to control the pressure difference can be implemented by the cooling expansion valve Vc, but in the case of the Birmal type, there are a plurality of indoor units, each of which has a cooling expansion valve. Therefore, the control of the pressure difference may be complicated. Therefore, for example, it is desirable to provide a separate expansion valve as the first expansion valve immediately before the receiver.

(2)上記実施形態では、エンジン駆動式ヒートポンプ装置を例として説明したが、電気駆動式ヒートポンプ装置であっても、本発明の目的は、良好に達成される。 (2) In the above embodiment, the engine-driven heat pump device has been described as an example, but the object of the present invention can be satisfactorily achieved even with the electric-driven heat pump device.

(3)上記実施形態では、1台の圧縮機11を備える構成例を示したが、複数台の圧縮機を備える構成を採用しても構わない。
当該構成においては、上記実施形態に係る「圧縮機の回転数」として、複数台の圧縮機の夫々の回転数を含む運転パターンが、採用されることになる。
(3) In the above embodiment, a configuration example including one compressor 11 is shown, but a configuration including a plurality of compressors may be adopted.
In this configuration, as the "compressor rotation speed" according to the above embodiment, an operation pattern including the rotation speeds of each of the plurality of compressors is adopted.

(4)ビル等の空調設備の如く、冷媒循環路C1の配管長が長くなる場合、冷媒循環路C1の配管長が、第1膨張弁前後の圧力差の値に影響を与えるパラメータとなると考えられる。
このため、上記特徴構成の如く、冷媒循環路(液管やガス管)の配管長さをも、第1膨張弁前後の圧力差に影響する値として、マップデータとして記憶しておいても構わない。
(4) When the piping length of the refrigerant circulation path C1 becomes long as in air-conditioning equipment such as buildings, it is considered that the piping length of the refrigerant circulation path C1 becomes a parameter that affects the value of the pressure difference before and after the first expansion valve. Be done.
Therefore, as in the above characteristic configuration, the pipe length of the refrigerant circulation path (liquid pipe or gas pipe) may be stored as map data as a value that affects the pressure difference before and after the first expansion valve. Absent.

(5)本発明に係るヒートポンプ装置100、及びその制御方法は、図7に示すように、過冷却流路C2を備える構成であっても良好にその機能を発揮する。
図7には、冷房運転時における過冷却流路C2の回路構成の一例を示す。
尚、以下では、上記実施形態と異なる構成である過冷却流路C2に関連する構成についてのみ説明し、説明のない構成については、上記実施形態と同一であるとする。
図7に示すように、過冷却流路C2の上流端は、レシーバ17と冷房用膨張弁Vc(第2膨張弁の一例)との間の冷媒循環路C1に接続されると共に、下流端は、アキュムレータ15と圧縮機11との間の冷媒循環路C1(より詳細には、オイル流路Loの下流端とアキュムレータ15との間の冷媒循環路C1)に接続されている。
当該過冷却流路C2は、膨張弁V4にて膨張された冷媒が通流する流路部位が、レシーバ17の内部の液冷媒貯留部位を通過する形態で配設され、これにより、レシーバ17内の冷媒を冷却して過冷却度を調整するものである。
当該構成を採用した場合に、第1膨張弁前後の圧力差dPを変化させた場合のPh線図は、図8に示すようになる。第1膨張弁前後の圧力差dPを大きくした場合、レシーバ17入口の冷媒温度が低下するため、過冷却時の温度差が小さくなり、過冷却度がやや小さくなる傾向があるものの、上述した実施形態と同様の理由により、圧縮動力を極小化してCOPを極大化する圧力差dPが存在することになる。
なお、図7は過冷却回路がある一例であり、過冷却熱交がレシーバに内蔵されておらず、外付になっている仕様や、過冷却のために分岐する箇所が、過冷却後ではなく過冷却前になっている仕様もある。
(5) As shown in FIG. 7, the heat pump device 100 and its control method according to the present invention satisfactorily exhibit their functions even in a configuration including a supercooling flow path C2.
FIG. 7 shows an example of the circuit configuration of the supercooling flow path C2 during the cooling operation.
In the following, only the configuration related to the supercooling flow path C2, which is a configuration different from the above embodiment, will be described, and the configuration without explanation will be the same as the above embodiment.
As shown in FIG. 7, the upstream end of the supercooling flow path C2 is connected to the refrigerant circulation path C1 between the receiver 17 and the cooling expansion valve Vc (an example of the second expansion valve), and the downstream end is connected to the refrigerant circulation path C1. , It is connected to the refrigerant circulation path C1 between the accumulator 15 and the compressor 11 (more specifically, the refrigerant circulation path C1 between the downstream end of the oil flow path Lo and the accumulator 15).
In the supercooled flow path C2, a flow path portion through which the refrigerant expanded by the expansion valve V4 flows passes through the liquid refrigerant storage portion inside the receiver 17, whereby the inside of the receiver 17 is provided. The degree of supercooling is adjusted by cooling the refrigerant in the above.
When this configuration is adopted, the Ph diagram when the pressure difference dP before and after the first expansion valve is changed is as shown in FIG. When the pressure difference dP before and after the first expansion valve is increased, the temperature of the refrigerant at the inlet of the receiver 17 is lowered, so that the temperature difference at the time of supercooling tends to be small and the degree of supercooling tends to be slightly small. For the same reason as in the form, there is a pressure difference dP that minimizes the compression power and maximizes the COP.
Note that FIG. 7 shows an example of a supercooling circuit, in which the supercooling heat exchange is not built in the receiver, and the specifications that are externally attached and the parts that branch due to supercooling are after supercooling. There is also a specification that is before supercooling.

(6)圧縮動力は、圧縮機11による圧縮動力そのものや、圧縮機11をエンジンにて駆動する場合にはエンジンに供給される燃料量を意味するものとする。 (6) The compression power means the compression power itself by the compressor 11 or the amount of fuel supplied to the engine when the compressor 11 is driven by the engine.

尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 The configuration disclosed in the above embodiment (including another embodiment, the same shall apply hereinafter) can be applied in combination with the configuration disclosed in other embodiments as long as there is no contradiction. The embodiments disclosed in the present specification are examples, and the embodiments of the present invention are not limited thereto, and can be appropriately modified without departing from the object of the present invention.

本発明のヒートポンプ装置の制御方法、及びヒートポンプ装置は、第1膨張弁前後の圧力差の具体的な制御による、圧縮動力を極小化してCOPを極大化し得るヒートポンプ装置の制御方法、及びヒートポンプ装置として、有効に利用可能である。 The heat pump device control method of the present invention and the heat pump device are as a heat pump device control method capable of minimizing compression power and maximizing COP by concretely controlling the pressure difference before and after the first expansion valve, and as a heat pump device. , Can be used effectively.

11 :圧縮機
12 :室外熱交換器
13 :室内熱交換器
14 :エンジン
17 :レシーバ
50 :制御装置
51 :記憶部
100 :ヒートポンプ装置
C1 :冷媒循環路
Vc :冷房用膨張弁
Vh :暖房用膨張弁
W :圧縮動力
dP :圧力差
dh :冷却等の空調能力(比エンタルピ差)
α :規定値
11: Compressor 12: Outdoor heat exchanger 13: Indoor heat exchanger 14: Engine 17: Receiver 50: Control device 51: Storage unit 100: Heat pump device C1: Refrigerant circulation path Vc: Cooling expansion valve Vh: Heating expansion Valve W: Compressive power dP: Pressure difference dh : Air-conditioning capacity such as cooling (specific enthalpy difference)
α: Specified value

Claims (5)

冷媒を圧縮する圧縮機と、前記圧縮機にて圧縮した冷媒を凝縮する凝縮器と、前記凝縮器にて凝縮した冷媒を膨張させる膨張弁としての第1膨張弁及び第2膨張弁と、冷媒を貯留するレシーバと、前記膨張弁にて膨張した冷媒を蒸発させる蒸発器と、前記圧縮機と前記凝縮器と前記第1膨張弁と前記レシーバと前記第2膨張弁と前記蒸発器とに記載の順に冷媒を循環する冷媒循環路とを備えるヒートポンプ装置の制御方法であって、
前記第1膨張弁の開度もしくは前記第1膨張弁の開度に起因して変化する前記凝縮器と前記レシーバの間に生じる圧力差を、前記圧縮機での圧縮動力を極小化してCOPを極大化するように制御し、
前記ヒートポンプ装置の運転条件としてのパラメータの夫々の変化率が、安定判定時間に亘って所定の安定判定割合に収まっている安定状態にあることを判定する安定判定工程と、
前記安定判定工程において前記安定状態にあると判定した場合に、前記ヒートポンプ装置の運転条件毎に、当該運転条件と前記開度もしくは前記圧力差との関係であるマップデータから現状の運転条件に対応する前記開度もしくは前記圧力差を読み出す圧力差読出工程と、
前記開度もしくは前記圧力差を前記圧力差読出工程にて読み出された値に維持した状態で、前記圧縮機での圧縮動力を算出する圧縮動力算出工程と、
前記開度もしくは前記圧力差を、前記圧縮動力算出工程にて算出された圧縮動力が極小値となりCOPが極大値となるように制御する圧力差制御工程とを有するヒートポンプ装置の制御方法。
A compressor for compressing refrigerant, a condenser for condensing refrigerant compressed by said compressor, a first expansion valve and the second expansion valve as an expansion valve for expanding the refrigerant condensed by the condenser, the refrigerant Described in the receiver, the evaporator that evaporates the refrigerant expanded by the expansion valve, the compressor, the condenser, the first expansion valve, the receiver, the second expansion valve, and the evaporator. It is a control method of a heat pump device including a refrigerant circulation path that circulates a refrigerant in the order of.
The pressure difference generated between the condenser and the receiver, which changes due to the opening degree of the first expansion valve or the opening degree of the first expansion valve, is minimized by the compression power of the compressor to reduce the COP. Control to maximize
A stability determination step for determining that the rate of change of each parameter as an operating condition of the heat pump device is within a predetermined stability determination ratio over the stability determination time, and a stability determination step.
When it is determined in the stability determination step that the heat pump device is in the stable state, the current operating conditions are supported from the map data which is the relationship between the operating conditions and the opening degree or the pressure difference for each operating condition of the heat pump device. The pressure difference reading step of reading the opening degree or the pressure difference to be performed, and
A compression power calculation step of calculating the compression power of the compressor while maintaining the opening degree or the pressure difference at the value read in the pressure difference reading step.
A control method for a heat pump device including a pressure difference control step of controlling the opening degree or the pressure difference so that the compression power calculated in the compression power calculation step becomes a minimum value and COP becomes a maximum value.
前記ヒートポンプ装置の運転条件毎に、当該運転条件と前記開度もしくは前記圧力差との関係であるマップデータから、現状の運転条件に対応した前記開度もしくは前記圧力差を読み出し、現状の運転条件に対応した前記圧縮機での圧縮動力を算出し、当該圧縮動力を極小化してCOPを極大化するように、前記開度もしくは前記圧力差を制御する請求項1に記載のヒートポンプ装置の制御方法。 For each operating condition of the heat pump device, the opening or the pressure difference corresponding to the current operating condition is read out from the map data which is the relationship between the operating condition and the opening or the pressure difference, and the current operating condition is read. The control method of the heat pump device according to claim 1, wherein the opening degree or the pressure difference is controlled so as to calculate the compression power of the compressor corresponding to the above and minimize the compression power to maximize the COP. .. 前記圧力差制御工程では、前記開度もしくは前記圧力差に対応する圧縮動力と、現状の前記開度もしくは前記圧力差を所定変化量だけ変化させた後の圧縮動力とを比較し、小さい方の圧縮動力に対応する前記開度もしくは前記圧力差を、現状の前記開度もしくは前記圧力差とする処理を連続して実行する局所探索法により、圧縮動力を極小化してCOPを極大化する前記開度もしくは前記圧力差を導出する請求項1又は2に記載のヒートポンプ装置の制御方法。 In the pressure difference control step, the compression power corresponding to the opening degree or the pressure difference is compared with the compression power after changing the current opening degree or the pressure difference by a predetermined change amount, and the smaller one is compared. The opening that minimizes the compression power and maximizes the COP by a local search method that continuously executes a process of continuously converting the opening or the pressure difference corresponding to the compression power into the current opening or the pressure difference. The method for controlling a heat pump device according to claim 1 or 2, wherein the degree or the pressure difference is derived. 前記安定判定工程と前記圧力差読出工程と前記圧縮動力算出工程と前記圧力差制御工程とを、前記ヒートポンプ装置の運転時にリアルタイムに実行する形態で、前記開度もしくは前記圧力差を制御する請求項1から3の何れか一項に記載のヒートポンプ装置の制御方法。 A claim for controlling the opening degree or the pressure difference in a form in which the stability determination step, the pressure difference reading step, the compression power calculation step, and the pressure difference control step are executed in real time during the operation of the heat pump device. The method for controlling a heat pump device according to any one of 1 to 3. 冷媒を圧縮する圧縮機と、前記圧縮機にて圧縮した冷媒を凝縮する凝縮器と、前記凝縮器にて凝縮した冷媒を膨張させる膨張弁としての第1膨張弁及び第2膨張弁と、冷媒を貯留するレシーバと、前記膨張弁にて膨張した冷媒を蒸発させる蒸発器と、前記圧縮機と前記凝縮器と前記第1膨張弁と前記レシーバと前記第2膨張弁と前記蒸発器とに記載の順に冷媒を循環する冷媒循環路とを備えるヒートポンプ装置であって、 A compressor that compresses the refrigerant, a condenser that condenses the refrigerant compressed by the compressor, a first expansion valve and a second expansion valve as expansion valves that expand the refrigerant condensed by the condenser, and a refrigerant. Described in the receiver, the evaporator that evaporates the refrigerant expanded by the expansion valve, the compressor, the condenser, the first expansion valve, the receiver, the second expansion valve, and the evaporator. A heat pump device including a refrigerant circulation path that circulates refrigerant in the order of
前記第1膨張弁の開度もしくは前記第1膨張弁の開度に起因して変化する前記凝縮器と前記レシーバの間に生じる圧力差を、前記圧縮機での圧縮動力を極小化してCOPを極大化するように制御する圧力差制御部と、 The pressure difference generated between the condenser and the receiver, which changes due to the opening degree of the first expansion valve or the opening degree of the first expansion valve, is minimized by the compression power of the compressor to reduce the COP. A pressure difference control unit that controls to maximize
前記ヒートポンプ装置の運転条件としてのパラメータの夫々の変化率が、安定判定時間に亘って所定の安定判定割合に収まっている安定状態にあることを判定する安定判定部と、 A stability determination unit that determines that the rate of change of each parameter as an operating condition of the heat pump device is in a stable state within a predetermined stability determination ratio over the stability determination time.
前記安定判定部において前記安定状態にあると判定した場合に、前記ヒートポンプ装置の運転条件毎に、当該運転条件と前記開度もしくは前記圧力差との関係であるマップデータから現状の運転条件に対応する前記開度もしくは前記圧力差を読み出す圧力差読出部と、 When the stability determination unit determines that the heat pump device is in the stable state, it corresponds to the current operating condition from the map data which is the relationship between the operating condition and the opening degree or the pressure difference for each operating condition of the heat pump device. A pressure difference reading unit that reads out the opening degree or the pressure difference
前記開度もしくは前記圧力差を前記圧力差読出部にて読み出された値に維持した状態で、前記圧縮機での圧縮動力を算出する圧縮動力算出部とを有し、 It has a compression power calculation unit that calculates the compression power of the compressor while maintaining the opening degree or the pressure difference at the value read by the pressure difference reading unit.
前記圧力差制御部が、前記開度もしくは前記圧力差を、前記圧縮動力算出部にて算出された圧縮動力が極小値となりCOPが極大値となるように制御するヒートポンプ装置。 A heat pump device in which the pressure difference control unit controls the opening degree or the pressure difference so that the compression power calculated by the compression power calculation unit becomes the minimum value and the COP becomes the maximum value.
JP2017224951A 2017-11-22 2017-11-22 Control method of heat pump device and heat pump device Active JP6847022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017224951A JP6847022B2 (en) 2017-11-22 2017-11-22 Control method of heat pump device and heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017224951A JP6847022B2 (en) 2017-11-22 2017-11-22 Control method of heat pump device and heat pump device

Publications (2)

Publication Number Publication Date
JP2019095127A JP2019095127A (en) 2019-06-20
JP6847022B2 true JP6847022B2 (en) 2021-03-24

Family

ID=66971310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017224951A Active JP6847022B2 (en) 2017-11-22 2017-11-22 Control method of heat pump device and heat pump device

Country Status (1)

Country Link
JP (1) JP6847022B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117458048B (en) * 2023-09-04 2024-05-24 东莞市深合电气有限公司 Refrigerating capacity control method of liquid cooling unit, liquid cooling unit and energy storage system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3188989B2 (en) * 1993-04-06 2001-07-16 株式会社日立製作所 Air conditioner
JP3156191B2 (en) * 1993-10-15 2001-04-16 株式会社日立製作所 Air conditioner
JPH11316108A (en) * 1998-02-13 1999-11-16 Nikon Corp Device and method for providing information on the basis of optical image of a prescribed object
JP2004053150A (en) * 2002-07-22 2004-02-19 Matsushita Electric Ind Co Ltd Refrigeration cycle device and its control method
JP4028502B2 (en) * 2004-03-15 2007-12-26 東洋熱工業株式会社 Cooling water control method for refrigerator
JP4017014B2 (en) * 2006-12-20 2007-12-05 三菱電機株式会社 Air conditioner
JP5416375B2 (en) * 2008-08-06 2014-02-12 株式会社前川製作所 Drying method and drying apparatus
JP2010101552A (en) * 2008-10-23 2010-05-06 Sanden Corp Gas injection refrigeration system
JP2014142158A (en) * 2013-01-25 2014-08-07 Denso Corp Refrigeration cycle device
AU2014209299C1 (en) * 2013-01-25 2017-02-02 Emerson Climate Technologies Retail Solutions, Inc. System and method for control of a transcritical refrigeration system
JP6250428B2 (en) * 2014-02-12 2017-12-20 東芝キヤリア株式会社 Refrigeration cycle equipment
JP6380088B2 (en) * 2014-12-24 2018-08-29 株式会社デンソー Heat pump cycle control method and heating system
US10240836B2 (en) * 2015-06-30 2019-03-26 Emerson Climate Technologies Retail Solutions, Inc. Energy management for refrigeration systems

Also Published As

Publication number Publication date
JP2019095127A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
JP5318099B2 (en) Refrigeration cycle apparatus and control method thereof
JP5871959B2 (en) Air conditioner
KR101873595B1 (en) A cascade heat pump and a driving method for the same
JP4799347B2 (en) Hot water supply, cold and hot water air conditioner
JP4740984B2 (en) Refrigeration air conditioner
JP3894221B1 (en) Air conditioner
US11384965B2 (en) Refrigeration cycle apparatus performing a refrigerant circulation operation using a liquid pump
WO2014091909A1 (en) Heat pump-type heating device
JP6160725B1 (en) Refrigeration equipment
JP2002081767A (en) Air conditioner
WO2014128831A1 (en) Air conditioning device
JP6341326B2 (en) Refrigeration unit heat source unit
JP6847022B2 (en) Control method of heat pump device and heat pump device
WO2018193498A1 (en) Refrigeration cycle device
JP6847023B2 (en) Control method of heat pump device and heat pump device
KR101917391B1 (en) Air conditioner
JP5659909B2 (en) Heat pump equipment
JP7086231B2 (en) Air conditioner
JP6336066B2 (en) Air conditioner
JP6554903B2 (en) Air conditioner
JP2015087020A (en) Refrigeration cycle device
WO2017094172A1 (en) Air conditioning device
KR101973202B1 (en) Air conditioner
WO2024166276A1 (en) Air-conditioning device
WO2022075358A1 (en) Heat source unit and control method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210302

R150 Certificate of patent or registration of utility model

Ref document number: 6847022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150