JP2007240131A - Optimization control of heat source unit and accessory - Google Patents

Optimization control of heat source unit and accessory Download PDF

Info

Publication number
JP2007240131A
JP2007240131A JP2006095675A JP2006095675A JP2007240131A JP 2007240131 A JP2007240131 A JP 2007240131A JP 2006095675 A JP2006095675 A JP 2006095675A JP 2006095675 A JP2006095675 A JP 2006095675A JP 2007240131 A JP2007240131 A JP 2007240131A
Authority
JP
Japan
Prior art keywords
heat source
cold
temperature
hot water
source unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006095675A
Other languages
Japanese (ja)
Inventor
Hisafumi Takemi
尚史 竹見
Matsuko Takemi
松子 竹見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Es Systems Kk
Original Assignee
Es Systems Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Es Systems Kk filed Critical Es Systems Kk
Priority to JP2006095675A priority Critical patent/JP2007240131A/en
Publication of JP2007240131A publication Critical patent/JP2007240131A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method for refrigerating machines and accessories that can save total energy for heat source units, hot/cold water pumps (including cold water pumps) and, in the case of a water-cooled system, cooling tower fans. <P>SOLUTION: A current value 10, a differential pressure 9 and a hot/cold water outlet temperature 8 of each heat source unit 1, and a (supply) header temperature 12 are measured and a heat source unit load factor is computed to determine a heat source unit margin, and multiunit control is applied according to the (supply) header temperature and load factor. A minimum flow rate is ensured according to the differential pressure, and a hot/cold water pump is inverter-controlled according to the load factor and (supply) header temperature. If the heat source unit has an external hot/cold water outlet temperature setting function, the hot/cold water outlet temperature setting is automatically corrected at an individual operation. An outside air temperature/humidity sensor computes an outside air wet bulb temperature, and a cooling water temperature setting is automatically changed to control a cooling tower fan. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、熱源機の台数制御方法と、補機のインバーター制御方法に関する。  The present invention relates to a method for controlling the number of heat source devices and an inverter control method for auxiliary devices.

熱源機(空冷チラー、空冷ヒートポンプ、各種水冷チラーを含む)を用いた空調システムとして、熱源機に冷温水配管系(冷水のみも含む)及び冷却水配管系を接続し、冷温水配管系に冷温水ポンプ(冷水ポンプも含む)及びヘッダー間のバイパス配管及び複数の二次側設備を接続して冷温水(冷水を含む)を循環させ、冷却水配管に冷却水ポンプ及び冷却塔を接続して冷却水を循環する空調システムが一般に使用されている。  As an air conditioning system using a heat source machine (including air-cooled chillers, air-cooled heat pumps, and various water-cooled chillers), a cold / hot water piping system (including only cold water) and a cooling water piping system are connected to the heat source machine, and the cold / hot water piping system is cooled Connect the water pump (including the chilled water pump), the bypass piping between the headers and multiple secondary equipment to circulate cold / hot water (including chilled water), and connect the cooling water pump and cooling tower to the cooling water piping. Air conditioning systems that circulate cooling water are generally used.

消費電力の大きいこれらの機器を如何に省エネルギー化させられるかが重要となる。台数制御方法についてみると、従来は、二次側流量と送水温度と還温度によって概算負荷を演算し、熱源機は仕様能力を固定で設定され、負荷演算誤差の可能性の為に余裕をもって設定された負荷値によって熱源機の台数制御がされており、熱源機の能力は外気湿球温度や汚れや漏れ等から変動するという要素を無視される為、熱源機状態や負荷状態によっては余分に運転されている状態が多く無駄なエネルギーを使用している。  It is important how these devices with large power consumption can be saved. Regarding the number control method, conventionally, the approximate load is calculated based on the secondary flow rate, the water supply temperature, and the return temperature, and the heat source unit is set with a fixed specification capacity, and it is set with a margin for possible load calculation errors. The number of heat source units is controlled according to the load value, and the factors that the capacity of the heat source unit fluctuates due to the outside air wet bulb temperature, dirt, leaks, etc. are ignored. There is a lot of driving and wasteful energy is used.

冷温水ポンプ制御方法についてみると、従来は、インバーターを使用していない場合が多く、インバーター使用していても固定運転となっており、熱源機状態や負荷状態によっては低減できる電力を無駄に使用している。  Looking at the control method for cold / hot water pumps, inverters are often not used in the past, and fixed operation is possible even if inverters are used, and power that can be reduced depending on the state of the heat source and load is wasted. is doing.

冷却塔ファン制御方法についてみると、従来は、冷却塔出口温度の固定設定値による発停になっており、外気湿球温度によっては熱源機消費電力を低減できる電力を無駄に使用している。  As for the cooling tower fan control method, conventionally, the cooling tower outlet temperature is started and stopped by a fixed set value, and depending on the outside air wet bulb temperature, electric power that can reduce the power consumption of the heat source unit is wasted.

本発明は熱源機状態、外気湿球温度状態を加味して、熱源機、冷温水ポンプ、冷却水ポンプ、冷却塔ファンとトータルでの省エネルギー化になる制御を行い、無駄な電力を削減する制御方法の提供を目的とする。  The present invention takes into account the heat source unit state and the outside air wet bulb temperature state, and performs control to reduce energy consumption in total with the heat source unit, cold / hot water pump, cooling water pump, cooling tower fan, and control to reduce wasted power The purpose is to provide a method.

このような課題を達成するために、本発明の構成は次の通りである。  In order to achieve such an object, the configuration of the present invention is as follows.

(1)各熱源機の電流値及び二次側送水温度の測定値を入力し、稼動熱源機の能力が限界となり且つ送水温度が設定値を一定時間継続して超えた場合に増段し、減段しても能力がまかなえる状態が一定時間継続した場合に減段させ、1台運転時は冷温水ポンプの回転数の減少に応じて冷温水出口温度設定とヘッダー(往)温度設定を自動修正させる制御方法。  (1) Input the current value of each heat source unit and the measured value of the secondary side water supply temperature, and increase the stage when the capacity of the operating heat source unit becomes the limit and the water supply temperature exceeds the set value for a certain period of time, Decrease the stage when the capacity is maintained even if the stage is reduced, and the stage is reduced, and when one unit is operating, the hot / cold water outlet temperature setting and header (outward) temperature setting are automatically set according to the decrease in the number of chilled water pump rotations. Control method to be corrected.

(2)各熱源機の冷温水出入口温度と冷温水出入口圧力(差圧も含む)の測定値を入力し、冷温水ポンプをヘッダー(往)温度が設定温度になるように最低必要流量を確保しながらインバーターで回転数制御させる制御方法。  (2) Enter the measured values of the hot / cold water inlet / outlet temperature and the hot / cold water inlet / outlet pressure (including differential pressure) of each heat source unit, and secure the minimum required flow rate so that the header (outward) temperature is the set temperature. A control method that controls the rotational speed with an inverter.

(3)各冷却塔の出口温度と外気温湿度(外気湿球温度を含む)の測定値を入力し、冷却水温度設定を自動で適正値に変更し、冷却塔ファンを発停制御もしくはインバーター制御させる制御方法。  (3) Input the measured values of the outlet temperature of each cooling tower and outside air temperature humidity (including the outside air wet bulb temperature), automatically change the cooling water temperature setting to an appropriate value, and control the cooling tower fan to start / stop or inverter Control method to control.

(1)熱源機が余分に稼動していた為に稼動させていた補機ポンプ・ファンの電力が削減できる。  (1) The power of auxiliary pumps and fans that have been operating because the heat source equipment has been operating in excess can be reduced.

(2)起動時の不要な冷温水流量の削減、必要に応じた流量確保により、冷温水ポンプの電力が削減できる。  (2) Electric power of the chilled / hot water pump can be reduced by reducing unnecessary chilled / hot water flow rate at start-up and securing a flow rate as required.

(3)冷却水温度が下げられる時に下げる事で、熱源機の圧縮負荷が低減でき、熱源機の電力又はガスが削減できる。  (3) By reducing the cooling water temperature when it is lowered, the compression load of the heat source device can be reduced, and the power or gas of the heat source device can be reduced.

以下、本発明の実施の形態を図1〜図4に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は本発明に係る熱源機廻りのシステムの一実施形態を示すシステム構成図である。このシステムは、熱源機1に接続された冷温水配管系2と冷却水配管系3とにより構成される。冷温水配管系2には冷温水ポンプ6が備わる。冷却水配管系3には、冷却水ポンプ7と冷却塔14が備わる。  FIG. 1 is a system configuration diagram showing an embodiment of a system around a heat source apparatus according to the present invention. This system includes a cold / hot water piping system 2 and a cooling water piping system 3 connected to the heat source unit 1. The cold / hot water piping system 2 is provided with a cold / hot water pump 6. The cooling water piping system 3 is provided with a cooling water pump 7 and a cooling tower 14.

熱源機1には電流計10が備わる。熱源機1の冷温水入出口の差圧を計測する為に冷温水配管2に圧力発信器9(差圧発信器も含む)と冷温水出口側に温度センサー8が備わる。  The heat source device 1 is provided with an ammeter 10. In order to measure the differential pressure at the inlet / outlet of the chilled / hot water of the heat source unit 1, the chilled / hot water pipe 2 is provided with a pressure transmitter 9 (including a differential pressure transmitter) and a temperature sensor 8 on the chilled / hot water outlet side.

冷温水ポンプ6にはインバーター11が備わる。ヘッダー(往)4には温度センサー12が備わる。ヘッダー(還)5には温度センサー13が備わる。The cold / hot water pump 6 is provided with an inverter 11. The header 4 is provided with a temperature sensor 12. The header (return) 5 is provided with a temperature sensor 13.

冷却塔14にはインバーター15が備わる。冷却塔14の出口側の冷却水系配管3に温度センサー16が備わる。外気温湿度から外気湿球温度を演算する為に外気温湿度センサー17(外気露点温度センサーや外気エンタルピーセンサーも含む)を備える。  The cooling tower 14 is provided with an inverter 15. A temperature sensor 16 is provided in the cooling water system pipe 3 on the outlet side of the cooling tower 14. An outside air temperature / humidity sensor 17 (including an outside air dew point temperature sensor and an outside air enthalpy sensor) is provided in order to calculate the outside air wet bulb temperature from the outside air temperature humidity.

上記のデータを制御装置18に取り込み、制御を行う。  The above data is taken into the control device 18 and controlled.

熱源機本体についてみると、通常、冷温水出口温度を設定値になり且つ電流が定格値以上にならないように本体制御されている。冷水の場合には、冷水流量が一定であった時、冷水入口温度が低くなれば、熱源機本体が容量制御を行ってしまう。逆に冷水入口温度が高く熱源機能力がいっぱいとなった場合は、冷水出口温度は上がってしまう。  Looking at the heat source machine main body, the main body control is usually performed so that the outlet temperature of the cold / hot water becomes a set value and the current does not exceed the rated value. In the case of cold water, if the cold water inlet temperature is low when the cold water flow rate is constant, the heat source machine body performs capacity control. On the other hand, when the cold water inlet temperature is high and the heat source function is full, the cold water outlet temperature rises.

また、熱源機の特性として冷却水温度が低下(空冷チラーの場合は外気湿球温度の低下を含む)すると効率が良くなるばかりでなく、冷凍能力もアップするという特性がある。  Further, as a characteristic of the heat source unit, there is a characteristic that not only the efficiency is improved when the cooling water temperature is lowered (in the case of an air-cooled chiller, the temperature of the outside wet bulb is lowered), but the refrigeration capacity is also improved.

図2は、熱源機台数制御方法の機能ブロック図である。上記の熱源機の特性を活用し、運転電流値と定格電流により熱源機能力に余力があるかどうかを判断し、熱源機がターボ冷凍機の場合はベーン開度も全開になっていないか判断する事を加え、ヘッダー(往)温度と電流負荷から増段する必要があるかどうか判断をする。減段は、稼動熱源機の合計電流負荷率を稼働台数マイナス1で割った負荷率とヘッダー(往)温度により減段させる事が可能か判断する。これにより、無駄に熱源機やその補機(冷温水ポンプ、冷却水ポンプ、冷却塔ファン)を廻す必要がなくなる。熱源機が1台運転時は、冷温水ポンプの回転数に 比例して冷温水出口温度設定及びヘッダー(往)温度設定を上限及び下限内で徐々に自動修正を行う。これにより、低負荷時は熱源機の稼動動力が低減され省エネルギー化を行える。  FIG. 2 is a functional block diagram of the heat source unit number control method. Utilizing the above characteristics of the heat source machine, determine whether there is sufficient heat source functional capacity based on the operating current value and rated current, and if the heat source machine is a turbo chiller, determine whether the vane opening is also fully open In addition, it is judged whether it is necessary to increase from the header (outward) temperature and current load. The step-down is determined based on the load factor obtained by dividing the total current load factor of the operating heat source unit by the number of operating units minus 1 and the header (outward) temperature. As a result, there is no need to turn a heat source machine or its auxiliary equipment (cold / hot water pump, cooling water pump, cooling tower fan) wastefully. When one heat source unit is operating, the cold / hot water outlet temperature setting and header (outward) temperature setting are automatically corrected within the upper and lower limits in proportion to the number of rotations of the cold / hot water pump. Thereby, at the time of low load, the operating power of the heat source machine is reduced, and energy saving can be performed.

図3は、冷温水ポンプのインバーター制御方法の機能ブロック図である。冷温水ポンプについてみると、熱源機が凍結しないように最低必要な流量を確保し且つ冷温水出口温度を満たせれば良いといえる。熱源機の最低必要流量は最低必要差圧で判断できる。熱源機起動時は、最低差圧を維持するように冷温水ポンプのインバーター制御を行う事により、冷水の場合、二次側に送られる冷えていない水量を最低限に抑える事ができる。冷水の場合、ヘッダー(往)温度が設定値を保つように、ヘッダー(往)温度が上がって且つ熱源機能力に余力があれば回転数を増やす、温度が下がれば減らすというようにインバーター制御を行う。これにより、ヘッダー(還)温度が下がり熱源機に余力があれば冷温水出口温度とヘッダー(往)温度は下がり、インバーター回転数は減る方向に向かう。ヘッダー(還)温度が上がってきてその流量で負荷を満たせない場合は、ヘッダー(往)温度が上がるため、熱源機に余力があればインバーター回転数を増やすようになる。熱源機に余力がなくなった場合は、上記台数制御で増段されるので能力に支障をきたす事無く、冷温水ポンプの省エネルギー化を行える。  FIG. 3 is a functional block diagram of the inverter control method for the cold / hot water pump. Regarding the cold / hot water pump, it can be said that it is sufficient to ensure the minimum required flow rate and to satisfy the cold / hot water outlet temperature so that the heat source machine does not freeze. The minimum required flow rate of the heat source machine can be judged by the minimum required differential pressure. In the case of cold water, the amount of uncooled water sent to the secondary side can be minimized by performing inverter control of the cold / hot water pump so as to maintain the minimum differential pressure when starting the heat source machine. In the case of cold water, the inverter control is performed so that the number of revolutions is increased when the header (outward) temperature rises and the heat source functional power is sufficient, and the temperature decreases when the header (outward) temperature is kept at the set value. Do. As a result, if the header (return) temperature falls and the heat source machine has sufficient power, the cold / hot water outlet temperature and the header (outward) temperature fall, and the inverter speed decreases. When the header (return) temperature rises and the load cannot meet the load, the header (outward) temperature rises, so if the heat source machine has enough power, the inverter rotation speed is increased. When there is no more power in the heat source machine, the number of stages is increased by the above-mentioned number control, so that energy saving of the chilled / hot water pump can be achieved without causing any problem in the capacity.

図4は、冷却塔ファン制御方法の機能ブロック図である。冷却水系統についてみると、冷却水温度が下がれば熱源機の効率が良くなるし、能力もアップするという特性を活かし、外気湿球温度を演算し、冷却塔で下げられる冷却水温度設定値を演算させる。この時、熱源機の最低冷却水温度は保持する。この設定値になるように冷却塔ファンの発停制御またはインバーター制御を行う。バイパス弁がある場合は、最低温度以下にならないようにする安全対策用として活用するのみとする。冷却水ポンプのインバーターは、シリカ等がチューブに付着しにくくするように適量を流す必要がある為、仕様流量分流れる周波数にする。チューブの熱伝導率を悪くする事は冷凍機の効率を悪くしてしまうが、設計選択されたポンプは通常、仕様よりも大きな容量を持っているので、電力を下げる事が可能となる。これにより冷却塔能力を超えた無意味なファン運転を無くすことができ、又、冷却水温度をもっと下げる事が可能な時に熱源機の効率アップと能力アップが可能となる。  FIG. 4 is a functional block diagram of the cooling tower fan control method. Looking at the cooling water system, if the cooling water temperature decreases, the efficiency of the heat source equipment will improve and the capacity will also be improved, calculating the outdoor wet bulb temperature and setting the cooling water temperature setting value that can be lowered by the cooling tower Calculate. At this time, the minimum cooling water temperature of the heat source unit is maintained. The start / stop control of the cooling tower fan or the inverter control is performed so that the set value is obtained. If there is a bypass valve, it should only be used as a safety measure to prevent the temperature from falling below the minimum temperature. The inverter of the cooling water pump needs to flow an appropriate amount so that silica or the like does not easily adhere to the tube. Decreasing the heat conductivity of the tube will reduce the efficiency of the refrigerator, but the pump selected by design usually has a capacity larger than the specification, so that the power can be reduced. As a result, meaningless fan operation exceeding the cooling tower capacity can be eliminated, and when the cooling water temperature can be further lowered, the efficiency and capacity of the heat source apparatus can be increased.

本発明に係る熱源機廻りのシステムの一実施形態を示すシステム構成図  1 is a system configuration diagram showing an embodiment of a system around a heat source device according to the present invention. 熱源機台数制御方法の機能ブロック図  Functional block diagram of heat source unit control method 冷温水ポンプのインバーター制御方法の機能ブロック図  Functional block diagram of inverter control method for cold / hot water pump 冷却塔ファン制御方法の機能ブロック図  Functional block diagram of cooling tower fan control method

符号の説明Explanation of symbols

1 熱源機
2 冷温水配管系
3 冷却水配管系
4 ヘッダー(往)
5 ヘッダー(還)
6 冷温水ポンプ
7 冷却水ポンプ
8 熱源機冷温水出口温水センサー
9 熱源機冷温水圧力(差圧)発信器
10 熱源機電流センサー
11 冷温水ポンプ用インバーター
12 ヘッダー(往)温度センサー
13 ヘッダー(還)温度センサー
14 冷却塔
15 冷却塔ファン用インバーター
16 冷却塔出口温度センサー
17 外気温湿度(湿球温度)センサー
18 制御装置
1 Heat source machine 2 Cold / hot water piping system 3 Cooling water piping system 4 Header (outward)
5 Header (Return)
6 Chilled / hot water pump 7 Chilled water pump 8 Heat source machine chilled / hot water outlet hot water sensor 9 Heat source machine chilled / hot water pressure (differential pressure) transmitter 10 Heat source machine current sensor 11 Chilled / hot water pump inverter 12 Header (outward) temperature sensor 13 Header (return) ) Temperature sensor 14 Cooling tower 15 Cooling tower fan inverter 16 Cooling tower outlet temperature sensor 17 Outside air temperature humidity (wet bulb temperature) sensor 18 Controller

Claims (3)

熱源機(空冷チラー、空冷ヒートポンプ、各種水冷チラーを含む)を用いた空調システムとして、熱源機に冷温水配管系(冷水のみも含む)を接続し、冷温水配管系に冷温水ポンプ(冷水ポンプも含む)及びヘッダー間のバイパス配管及び複数の二次側設備を接続して冷温水(冷水を含む)を循環する空調システムにおいて、電流値による熱源機負荷率を行い、ヘッダー(往)温度と負荷率によって台数制御を行い、熱源機が外部冷温水出口温度設定機能を有する場合は1台運転時に冷温水温度設定を自動修正する制御方法。  As an air conditioning system that uses heat source equipment (including air-cooled chillers, air-cooled heat pumps, and various water-cooled chillers), a cold / hot water piping system (including only cold water) is connected to the heat source equipment, and a cold / hot water pump (cold water pump) is connected to the cold / hot water piping system. In the air conditioning system that circulates cold / hot water (including chilled water) by connecting bypass piping between headers and multiple secondary equipments, the load factor of the heat source is determined by the current value, and the header (outward) temperature and A control method in which the number of units is controlled by the load factor, and when the heat source device has an external cold / hot water outlet temperature setting function, the cold / hot water temperature setting is automatically corrected when one unit is in operation. 上記熱源機を流通する冷温水の差圧を検出し、必要最低流量以上であれば、上記負荷率とヘッダー(往)温度と冷温水出口温度によって冷温水ポンプをインバーター制御させる制御方法。  A control method for detecting a differential pressure of cold / hot water flowing through the heat source unit and controlling an inverter of the cold / hot water pump according to the load factor, the header (outward) temperature, and the cold / hot water outlet temperature if the flow rate exceeds the required minimum flow rate. 上記熱源機において冷却水配管系を接続し、冷却水配管系に冷却水ポンプ及び冷却塔を接続して冷却水を循環するシステムにおいて、外気湿球温度によって自動で冷却水温度設定を行い、冷却塔ファンを制御させる制御方法。  In the above heat source unit, a cooling water piping system is connected, a cooling water pump and a cooling tower are connected to the cooling water piping system, and the cooling water is circulated. A control method for controlling the tower fan.
JP2006095675A 2006-03-03 2006-03-03 Optimization control of heat source unit and accessory Pending JP2007240131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006095675A JP2007240131A (en) 2006-03-03 2006-03-03 Optimization control of heat source unit and accessory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006095675A JP2007240131A (en) 2006-03-03 2006-03-03 Optimization control of heat source unit and accessory

Publications (1)

Publication Number Publication Date
JP2007240131A true JP2007240131A (en) 2007-09-20

Family

ID=38585828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006095675A Pending JP2007240131A (en) 2006-03-03 2006-03-03 Optimization control of heat source unit and accessory

Country Status (1)

Country Link
JP (1) JP2007240131A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151481A (en) * 2006-12-20 2008-07-03 Kawasaki Thermal Engineering Co Ltd Energy-saving control operation method and device for refrigerating machine
JP2009198123A (en) * 2008-02-22 2009-09-03 Kurita Water Ind Ltd Heat source system and method of operating the same
JP2009250578A (en) * 2008-04-10 2009-10-29 Kawasaki Thermal Engineering Co Ltd Energy saving control operation method by stabilization of refrigerating machine cooling water temperature
CN101776361A (en) * 2009-01-13 2010-07-14 北京星美电子设备有限公司 Full frequency conversion embedded type energy-saving integrated refrigeration station
JP2010236728A (en) * 2009-03-30 2010-10-21 Mitsubishi Heavy Ind Ltd Heat source system and control method of the same
JP2012180996A (en) * 2011-03-02 2012-09-20 Mitsubishi Heavy Ind Ltd Multitype air conditioner
JP2012229823A (en) * 2011-04-25 2012-11-22 Mitsubishi Heavy Ind Ltd Control method of cooling water flow rate of heat source system
JP2013002802A (en) * 2011-06-22 2013-01-07 Panasonic Corp Cooling system and solvent recovering system using the same
CN102901179A (en) * 2012-09-28 2013-01-30 广州市科维机电设备安装有限公司 Energy-saving group control method of host machine of central air conditioner
KR101508448B1 (en) 2011-03-30 2015-04-07 미츠비시 쥬고교 가부시키가이샤 Heat source system and number-of-machines control method for heat source system
US9206994B2 (en) 2009-11-13 2015-12-08 Mitsubishi Heavy Industries, Ltd. Heat source system
CN106931592A (en) * 2017-03-06 2017-07-07 湖北卓立集控智能技术有限公司 A kind of device for tail end of central air conditioner air-conditioner performance analysis
CN107036231A (en) * 2016-12-28 2017-08-11 杭州裕达自动化科技有限公司 Cooling tower intelligent energy-saving control method in central air-conditioning monitoring system
CN108645096A (en) * 2018-06-25 2018-10-12 长沙经济技术开发区祥原动力供应有限公司 A kind of circulating cooling system and its control method
JP2021028569A (en) * 2020-11-30 2021-02-25 高砂熱学工業株式会社 Control apparatus, control method, and control program of air conditioning system, and air conditioning system
CN112665213A (en) * 2020-12-02 2021-04-16 珠海格力电器股份有限公司 Integrated cold station system and control method and device thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151481A (en) * 2006-12-20 2008-07-03 Kawasaki Thermal Engineering Co Ltd Energy-saving control operation method and device for refrigerating machine
JP2009198123A (en) * 2008-02-22 2009-09-03 Kurita Water Ind Ltd Heat source system and method of operating the same
JP2009250578A (en) * 2008-04-10 2009-10-29 Kawasaki Thermal Engineering Co Ltd Energy saving control operation method by stabilization of refrigerating machine cooling water temperature
CN101776361B (en) * 2009-01-13 2013-05-01 北京星美电子设备有限公司 Full frequency conversion embedded type energy-saving integrated refrigeration station
CN101776361A (en) * 2009-01-13 2010-07-14 北京星美电子设备有限公司 Full frequency conversion embedded type energy-saving integrated refrigeration station
JP2010236728A (en) * 2009-03-30 2010-10-21 Mitsubishi Heavy Ind Ltd Heat source system and control method of the same
US8646284B2 (en) 2009-03-30 2014-02-11 Mitsubishi Heavy Industries, Ltd. Heat-source system and method for controlling the same
US9206994B2 (en) 2009-11-13 2015-12-08 Mitsubishi Heavy Industries, Ltd. Heat source system
JP2012180996A (en) * 2011-03-02 2012-09-20 Mitsubishi Heavy Ind Ltd Multitype air conditioner
KR101508448B1 (en) 2011-03-30 2015-04-07 미츠비시 쥬고교 가부시키가이샤 Heat source system and number-of-machines control method for heat source system
JP2012229823A (en) * 2011-04-25 2012-11-22 Mitsubishi Heavy Ind Ltd Control method of cooling water flow rate of heat source system
JP2013002802A (en) * 2011-06-22 2013-01-07 Panasonic Corp Cooling system and solvent recovering system using the same
CN102901179A (en) * 2012-09-28 2013-01-30 广州市科维机电设备安装有限公司 Energy-saving group control method of host machine of central air conditioner
CN107036231A (en) * 2016-12-28 2017-08-11 杭州裕达自动化科技有限公司 Cooling tower intelligent energy-saving control method in central air-conditioning monitoring system
CN106931592A (en) * 2017-03-06 2017-07-07 湖北卓立集控智能技术有限公司 A kind of device for tail end of central air conditioner air-conditioner performance analysis
CN108645096A (en) * 2018-06-25 2018-10-12 长沙经济技术开发区祥原动力供应有限公司 A kind of circulating cooling system and its control method
JP2021028569A (en) * 2020-11-30 2021-02-25 高砂熱学工業株式会社 Control apparatus, control method, and control program of air conditioning system, and air conditioning system
JP7043573B2 (en) 2020-11-30 2022-03-29 高砂熱学工業株式会社 Air conditioning system controls, control methods, control programs, and air conditioning systems
CN112665213A (en) * 2020-12-02 2021-04-16 珠海格力电器股份有限公司 Integrated cold station system and control method and device thereof
CN112665213B (en) * 2020-12-02 2022-04-12 珠海格力电器股份有限公司 Integrated cold station system and control method and device thereof

Similar Documents

Publication Publication Date Title
JP2007240131A (en) Optimization control of heat source unit and accessory
JP6570746B2 (en) Heat medium circulation system
JP5268317B2 (en) Oil-cooled air compressor
JP6334230B2 (en) Refrigerator system
US10174986B2 (en) Heat source machine and control method therefor
JP5907247B2 (en) Integrated air conditioning system and its control device
JP5495526B2 (en) Heat source system and control method thereof
JP5500615B2 (en) Energy-saving control operation method by stabilizing the cooling water temperature of the refrigerator
JP6091387B2 (en) Air conditioner
JP2005257221A (en) Cooling water control method of refrigerator
JP5984456B2 (en) Heat source system control device, heat source system control method, heat source system, power adjustment network system, and heat source machine control device
JP2007315695A (en) Cold and hot water control method for cold and heat source machine, and air conditioning system using it
JP2008151481A (en) Energy-saving control operation method and device for refrigerating machine
JP6413761B2 (en) Snow and ice air conditioning system and its control device
JP2012141098A (en) Heat source system and its control method
JP2005233557A (en) Refrigeration system and its operating method
WO2013175890A1 (en) Air-conditioning system, integrated air-conditioning system, and control device
JP2010216771A (en) Local cooling system, and device for controlling the same and program
TW201932770A (en) Systems for a chiller electrical enclosure
JP5854882B2 (en) Chilling unit
JP2011226680A (en) Cooling water producing facility
JP5455338B2 (en) Cooling tower and heat source system
JP2016017729A (en) Air conditioner
JP6301784B2 (en) CONTROL DEVICE USED FOR HEAT SOURCE SYSTEM AND HEAT SOURCE SYSTEM HAVING THE CONTROL DEVICE
JP2013160440A (en) Turbo refrigerator